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ABSTRACT
We present FLASH (Fast LSHAlgorithm for Similarity search accel-

erated with HPC), a similarity search system for ultra-high dimen-

sional datasets on a single machine, that does not require similar-

ity computations and is tailored for high-performance computing

platforms. By leveraging a LSH style randomized indexing proce-

dure and combining it with several principled techniques, such as

reservoir sampling, recent advances in one-pass minwise hashing,

and count based estimations, we reduce the computational and

parallelization costs of similarity search, while retaining sound

theoretical guarantees.

We evaluate FLASH on several real, high-dimensional datasets

from different domains, including text, malicious URL, click-through

prediction, social networks, etc. Our experiments shed new light

on the difficulties associated with datasets having several million

dimensions. Current state-of-the-art implementations either fail on

the presented scale or are orders of magnitude slower than FLASH.

FLASH is capable of computing an approximate k-NN graph, from

scratch, over the full webspam dataset (1.3 billion nonzeros) in less

than 10 seconds. Computing a full k-NN graph in less than 10 sec-

onds on the webspam dataset, using brute-force (n2D), will require
at least 20 teraflops. We provide CPU and GPU implementations of

FLASH for replicability of our results
1
.
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1 INTRODUCTION
Similarity search, or k-nearest-neighbor search (k-NNS), is one of

the most frequent operations in large scale data processing systems.

Given a query objectq, with feature representationq ∈ RD , the goal
of similarity search is to find, from a collection C ofN data instances,

an object x (or set of objects) most similar to the given query. The

notions of similarity are based on some popular Euclidian type

measures such as cosine similarity [11] or Jaccard similarity [8].

k-NNS over Ultra-high Dimensional and Sparse Datasets:
Recommendation systems naturally deal with ultra-high dimen-

sional and sparse features as they usually consist of categorical

combinations. Even the general user-item matrix representation

leads to ultra-sparse and ultra-high dimensional representation.

Neighborhood models [15] are popular in recommendation sys-

tems where the first prerequisite is to find a set of near-neighbor

for every item. Social networks are another natural ground for

ultra-high dimensional and extremely sparse representations. In so-

cial networks, we represent the friendship relations between users

as graphs. Given d users, we describe each user as a d ultra-high

dimensional and very sparse vector, whose non-zero entries corre-

spond to edges. By representing each user as a column, we construct

matrix A of dimension d × d . Finding similar entries of such a user

representation is one of the first operations required for a variety of

tasks including link prediction [26], personalization [14], and other

social network mining tasks [47]. Other popular applications where

k-NNS over ultra-high dimensional and sparse dataset is common

include click-through predictions [32] and plagiarism detection [7].

The naive way to perform k-NNS is to compute the exact distance

(or similarity) between the query and all data points, followed by

ranking. The naive approach suffers from time complexity ofO(N ·
D) per query, which is known to be computationally prohibitive

when N is huge and querying is a frequent operation [46]. If we

treat each object in collection C as the query, then the result of N
k-NNS query leads to what is also known as a k −NN graph which

has a computation complexity of N 2 · D, a significantly expensive

operation for massive datasets.

Approximations Suffice In Practice: If we allow approxima-

tions, then it is algorithmically possible to obtain efficient solutions.

https://doi.org/10.1145/3183713.3196925
https://doi.org/10.1145/3183713.3196925


Fortunately, in practice, it is sufficient to solve the similarity search

problem approximately, at the benefit of reduced latency, which is

a critical factor in many applications. Not surprisingly, efficient and

approximate near-neighbor search has been studied extensively

in the past. Due to its ubiquitous nature in several different set-

tings, approximate k-NNS is still an active area of research in the

databases and data mining community.

Existing Approaches and Shortcomings: There are several
strategies for approximate near-neighbor search. Earlier methods

focused on deterministic space partitioning, such as kd-trees [9],

whichwere suitable for low dimensional datasets [46]. Thesemethod-

ologies suffer from the curse of dimensionality leading to poor

performance, reducing the search to near-linear scan on high-

dimensional datasets. Randomized indexing approaches based on

locality sensitive hashing (LSH) [19] showed significant promise in

dealing with the curse of high-dimensionality.

Hash tables based on LSH are known to have skewed bucket

sizes, where a large number of buckets in hash tables are near-

empty while some other buckets are quite heavy. This skewness

hurts the efficiency of the algorithm, and furthermore, it leads to

uneven load balancing making parallelization less useful. Also, LSH

is known to require a significant amount of memory for storing

multiple hash tables [34]. Nevertheless, LSH is still widely adopted

because hash tables are simple and easy to maintain.

Two notable strategies which have gained popularity recently

are: 1) Product Quantization (PQ) [20] and 2) Random Proxim-

ity Graph Method [30]. PQ partitions the dimensions into small

subgroups and then pre-computes the set of neighbors on each par-

tition as a lookup table. Neighbors from these sub-groups comprise

a suitable candidate set. In [21], authors used product quantiza-

tion over four general purpose graphics processing units (GPU) to

show impressive performance on billion scale image datasets, with

relatively small (128) dimensions.

However, PQ, similar to other deterministic space partitioning

ideas, suffers from the curse of dimensionality. For ultra-high di-

mensional (several million) and significantly sparse vectors, such

as those of interest in this work, PQ fails. At several million di-

mensions, candidates generated by looking at only a small set of

dimensions are unlikely to be useful, since any small subset is likely

to be all zeros due to sparsity. Besides, the memory footprint of

PQ scales linearly with the dimensionality. The linear scaling is

because every disjoint subset of dimensions requires its own lookup

tables. Not surprisingly, our experiments show that the recently

proposed, PQ based, FAISS system which is optimized for GPUs

runs out of memory on the datasets of interest to the paper. See

section 4.4.4 for details.

Currently the state-of-the-art approximate near-neighbor tech-

nique is based on the navigable small world (NSW) graph con-

cept [30]. The idea is borrowed from connectivity in social networks,

which exhibits random short and long links. The NSW algorithm

constructs a similar structure based on a variant of greedy branch-

and-bound type navigating algorithms [31] that iterates through

pre-computed proximity graphs with polylogarithmic complexity.

A more advanced version, the hierarchical NSW (HNSW) algo-

rithm [31] improves the performance and allows a logarithmic

complexity search by using a hierarchical set of layers.

Existing methods, including NSW and HNSW, rely on construct-

ing an expensive and memory heavy data structure that helps in

quickly pruning down candidates (See Appendix E). There is usu-

ally a tradeoff between memory and query time computation, and

one can be sacrificed for the other. However, the index building

time and memory are equally important, because they are related

to the cost of managing the data structure (update time). Unfortu-

nately, for most data structures, such as kd-trees, insertion is hard

to parallelize. As a result, there has been an increased emphasis on

the total time for full k-NN graph construction time from scratch

which includes the data structure construction time, rather than

just the query time. It is also known that the same complexity of

computing approximate k-NN graphs is the fundamental bottle-

neck in large-scale deep learning [41]. Furthermore, with increased

dimensionality, pruning becomes less effective, which results in

a lot of similarity computations to eliminate candidates reliably.

Overall these two requirements become the major bottleneck both

in maintaining the data structure as well as querying.

High-Performance Computing Platforms such as GPUs:
Parallelization is one of the essential components of modern big-

data processing systems. Theoretical efficiency is not sufficient for

practicality if the algorithm is not amenable to parallel speedups.

GPU platforms are gaining popularity because they are cheap, and

now an integral part of any data processing system. As a result,

there is an increased interest in implementations of k-NN graph on

GPUs [21]. It is beyond doubt that being able to utilize these plat-

forms efficiently makes a huge difference in practice and adoption.

A notable GPU based k-NN graph implementation is FAISS [21],

where the authors leverage four GPUs, instead of one, and show

impressive performance over 128-dimensional image features, using

product quantization (PQ). As noted before, the PQ technique is

not suitable for ultra-high dimensional data, which is the focus of

this paper. Our experiments indicate that the FAISS library runs

out of memory on several million dimensional datasets.

GPUs are mostly memory constrained. For example, one of the

best units available, the Nvidia Tesla P100 is limited to 16 GB

and cannot even store some of the large scale datasets. Thus, any

methodology relying on similarity computation will have to bring

the data to the GPU device memory for similarity computations

with the query. Unfortunately, most methods, including HNSW,

require similarity computation between the query and several sets

of points to report top-k neighbors, which incurs unavoidable data

movements to GPU memory. FAISS avoids such distance computa-

tions by using PQ based estimation, but it is not suitable for million

dimensional datasets as mentioned.

Even Dimensionality Reduction is Slow: Since we allow ap-

proximations, a reasonable strategy is first to perform dimensional-

ity reduction and then apply any k-NNSmethod over low-dimensional

data. However, dimensionality reduction for ultra-high dimensional

datasets is a costly operation. Even utilizing smart random projec-

tions in parallel can be significantly demanding. As an illustration,

FLASH is capable of computing an approximate k-NN graph 42

times faster than the mere computation of a 100-dimensional sparse

random projection of the data in parallel on the same machine. In

addition, for millions of dimensions, the size of random numbers is

often larger than the data, if the data is very sparse.



Overall, an efficient, low-memory, and scalable approximate

nearest-neighbor search system for ultra-high dimensional datasets

requires balancing several different aspects. We believe this paper

provides such a system.

Our Focus: Our focus is on both approximate k-NN graph com-

putation and approximate k-NNS querying over ultra-high dimen-

sional datasets, which are commonly seen in practice. We limit

ourselves to single machine implementations which exploit paral-

lelism available in the form of multi-cores and/or a GPU.

We note that there are several efficient implementations and

modifications of LSH [42] on a distributed and streaming setting,

which is not the focus of this paper. We further stress that most

LSH implementations [33, 44] use random projection based LSH,

which we argue is significantly slower for our requirements.

1.1 Our Contributions:
We propose an LSH algorithm for similarity search tailored for

high-performance platforms, which does not require any similarity

computations. Being similarity computation free, FLASH does not

need to store the data features and hence is significantly more

memory efficient.

FLASH is a combination of several novelmodifications to the LSH

based similarity search algorithm, which is carefully tailored to bal-

ance computational cost, parallelizability, and accuracy. Our unique

choices of hash function combined with reservoir sampling and

collision-based ranking provably eliminates some of the frequently

encountered problems associated with LSH, such as variable sized

and growing buckets, which could be of independent interest in it-

self. Due to randomized insertions and the use of online procedures

only, our process is massively data parallel with a very low chance

of conflict between processors. We naively parallelize the entire

algorithm using OpenMP as a first step. We also implemented an

OpenCL version with a focus on k-selection, the main bottleneck

of the KNN graph construction and achieved around a 1.5-3.5x

speedup, on a 56 threaded machine, by additionally utilizing a GPU

(NVIDIA Tesla P100).

We provide substantial empirical evidence on four real ultra-

high dimensional datasets coming from email documents, URLs,

click-through predictions, and social network graphs. Our exper-

iments indicate improvements with FLASH over state-of-the-art

alternatives.

2 BACKGROUND
2.1 Minwise Hashing and Locality Sensitive

Hashing (LSH) Algorithm
The oldest andmost famous locality sensitive hashing (LSH) scheme

is minwise hashing [8] which works over binary vectors. The origi-

nal minwise hashing computations require a random hash function

π : N → N (or permutation), from integers to integers. Corre-

sponding to this hash function π , the minwise hash hπ for any

x ∈ 0, 1D is given by:

hπ (x) = min

i s.t. xi,0
π (i) (1)

Under the randomization of π , the probability that the minwise

hash values of two different x and y agree is precisely the Jaccard

similarity between x and y. Formally,

Pr (hπ (x) = hπ (y)) =
x · y

|x | + |y | − x · y , (2)

where |x | is the number of non-zeros elements in x . The quantity
x ·y

|x |+ |y |−x ·y is the famous Jaccard Similarity.

It has been recently shown that minwise hashing is both theoret-

ically and empirically preferred hash function over signed random

projection [38] even for cosine similarity measure. The cosine simi-

larity for binary vectors is given by

C(x ,y) = x · y√
|x | |y |

(3)

2.2 (K,L)-parameterized LSH Algorithm
Since our algorithm builds on the classical (K ,L)-parameterized

LSH Algorithm, we describe the process briefly. For more details

please refer to [5]. The Algorithm requires L random meta-hash

functions, Hi i = {1, 2, ..., L}. Each of this meta hash function

Hi is formed from K different LSH hash functions. Formally, each

meta-hash function can be thought of as a K-tuple value, Hi =

{hi,1,hi,2, ...,hi,K }, where each hi, j is an LSH hash function, such

as minwise hashing. Overall, we need a total of K × L LSH hash

signatures of the data.

With these L meta-hash functions, the Algorithm works in two

phases: 1) Adding or Hash table insertion phase and 2) Querying or

search phase. The querying phase can be further divided into two

sub-phases: a) Candidate Generation and b) Top-k selection.

• Adding Phase: We create L different hash tables, where

every hash key points to a bucket of elements. For every

element x in the collection C, we insert x (identifiers only)

in the bucket at location Hi (x) in table i = {1, 2, ..., L}. To
assign K-tuples Hi to a location, we use some universal ran-

dom mapping function to the desired address range. See [5]

for details.

• Query Phase: Given a query q whose neighbors we are

interested in:

– Candidate Generate Phase: From table i , get all ele-
ments in the bucket addressed byHi (q), where i = {1, 2, ..., L}.
Take union all the L buckets obtained from L hash tables.

– Top-K Selection: From the selected candidates, report

the top-k candidates based on similarity with q.

2.3 Densified One Permutation Hashing
(DOPH)

Computing several minwise hashes of data is a very costly opera-

tion [24]. Fortunately, recent lines of work [38] on Densified One

Permutation Hashing (DOPH) have shown that it is possible to com-

pute several hundreds of even thousands, hashes of the data vector

in one pass with nearly identical properties as minwise hashes. We

will use the most recent variant [36] as our datasets are very sparse.

Our experiment shows that computing DOPH is disruptively faster

compared to all other hashing schemes. Our hashing mechanism

throughout the paper will be DOPH.

We note that DOPH is a significant advancement critical for

FLASH. On ultra-high dimensional datasets, such as webspam with



16 million dimensions and 3700 nonzeros, the cost of random pro-

jection can be more than 400x slower than DOPH. See section 4.4.6

for direct comparisons. DOPH only requires 4 random numbers to

generate all the hashes in one pass [36]. On the other hand, with

random projections, over 16 million dimensions, the cost of storing

and accessing projection matrix is a huge burden. Furthermore,

100 random projections require to loop over the data vector 100

times, even if we use the fast variant of Achlioptas [3] which avoids

multiplications and uses sparsity to reduce computation further.

As a result, FLASH can compute full k-NN graph computation

significantly faster than calculating 100 random projections in par-

allel using 56 threads. We reiterate that LSH based on random

projections requires around thousands or more projections for the

dataset used in this paper. Thus, using other LSH approaches would

not lead to the performance demonstrated in this work.

2.4 Reservoir Sampling
Vitter’s reservoir sampling algorithm [43] processes a stream ofm
numbers and can generateR uniform samples of the given stream by

only using an array of size R. The process is outlined in Algorithm 1.

The algorithm only needs one pass over the stream.

Algorithm 1 Reservoir Sampling

1: procedure ReservoirSampling(Reservoir [0 . . .R − 1],
Stream[0 . . .m − 1])

2: for i = [0,R − 1] do
3: Reservoir [i] := S[i]
4: end for
5: for i = [R,m − 1] do
6: j := Random([0, i])
7: if j ≤ R then
8: Reservoir [j] := S[i]
9: end if
10: end for
11: end procedure

3 PROPOSED ALGORITHM
3.1 Issues with LSH Algorithm
We first focus on several issues, which limit the efficiency and

scalability of LSH algorithms for ultra-high dimensional and sparse

data sets:

(1) Hash Computation Cost: The (K , L) parameterized LSH

Algorithm requiresK×L hash calculations of the data, which
are usually into hundreds or more. With traditional LSH it

will need hundreds or more passes over the data, a prohibi-

tively expensive operation. Hashing cost is a known compu-

tational bottleneck with LSH [28].

(2) Skewed Buckets: Since the LSH bucket assignment is ran-

dom and data dependent. After hashing, the bucket sizes are

heavily skewed in practice. The bucket sizes cannot be in-

ferred in advance as the process is dynamic. Skewed buckets

have two issues: 1) We need to rely on some dynamically in-

creasing data structure. Such a data structure has additional

resizing overheads. 2) If we perform bucket aggregation in

parallel, then skewed buckets are hard to parallelize due to

unequal distribution of work.

(3) Similarity Computations and Data Storage: LSH algo-

rithms use candidate similarity calculations to report top-

k neighbors. Thus, we need to store the complete datasets

which should be brought intomainmemorywhenever needed.

With GPUs this is more critical as most of the data will not

fit the GPU memory and will require switching.

(4) GPUs are not suitable for Sparse Datasets: A known is-

sue with sparse datasets is that they have poor performance

on GPUs as memory coalescing is not readily available. For

ultra-high dimensional sparse datasets, dense representation

of vectors will blow up the memory into terabytes or beyond.

As an instance, one of our datasets, the webspam dataset,

has 16 million dimensions. It requires around 10GB in bi-

nary indexing format. Converting it into dense format will

require more than a terabyte of space. Thus, we are forced

to work with sparse indexing formats. Sparse operations are

not particularly impressive over GPUs.

3.2 Our Proposed Fix
We first focus on the proposed modifications made to the LSH

algorithm to address the above-mentioned efficiency and scalabil-

ity issues. We will then discuss their theoretical justifications in

section 3.3. We made the following specific algorithmic changes:

1. Densified One Permutation Hashes (DOPH): We use the

recent advances in densified one permutation hashing (DOPH) [38]

which computes hundreds of minwise hashes in one pass over

the data vector. DOPH is ideally suited for ultra-high dimensional

and sparse dataset. LSH based on random projections are other

alternatives. There are intelligent strategies on making hash com-

putations faster such as ones using Fast Walsh—Hadamard trans-

formations [4]. However, with several million incredibly sparse

dimensions, Fast Walsh—Hadamard is quite costly as it makes the

data dense (requires dense matrix multiplication of the order of

dimensions). Sparse projections, although appealing, are slow and

have significant memory overheads for storing random numbers.

Overall, with DOPH, we convert sparse data into K × L hash

signatures in a single pass using a simple hash function as shown

in [36]. These fixed sized representations can be readily used in

specialized devices such as GPUs. As we will show, in the querying

phase, our algorithm never needs the indexed data and can work

with only hash tables, which are significantly smaller than the data

size. In section 3.3, we give yet another reason for using DOPH.

2. Fixed Sized Reservoir Sampling of Buckets: The skew-

ness of the buckets is dependent on the data distribution, which we

cannot know in advance. A simple but principled modification is

instead of using dynamically growing buckets, we only keep a fixed

size reservoir (simple arrays), and use online reservoir sampling

to obtain a uniform sample of the bucket. We show in Section 3.3

that this random sample of the bucket is sufficient, and even for a

small reservoir size, the procedure does not affect the theoretical

guarantees on LSH algorithm in any way.

With a small fixed sized array, the buckets are never too crowded,

and they also provide ideal load balancing of threads during parallel

bucket aggregation. The advantages come without any insertion



Pointers

Reservoirs

 DOPH 

H
a

sh
 T

ab
le

 2
H

a
sh

 T
ab

le
 1

...

...

...

...

...

K-Select

Aggregation

Top-k

Data Vectors

Query Vector

Key 1
Key 2

Key 1
Key 2

Key 1
Key 2

Reservoir Sampling
& Add

...

Key 1
Key 2

Adding Hash Table Querying

 DOPH 

Figure 1: Algorithm Overview: A illustration with L = 2 Hash Tables.

overhead. We only need a couple of random number generations

per insertion. Also, the process has strong theoretical guarantees.

3. Count based k-selection:Wemake an observation that with

L different hash tables, data points that appear more frequently

in the aggregated reservoirs are more likely to be similar to the

query data point. This observation allows us to estimate the actual

ranking unbiasedly. We count the frequency of occurrence of each

data point in the aggregated reservoirs. Based on this count, we

report the k most frequent as nearest neighbors. We call this process

count based k-selection. We note that estimating similarity instead of

calculating it is not new [16, 37]. Our collision counting approach

can be efficiently utilized on GPUs without any additional memory

overheads; see section 3.4.1 for details.

4. Reservoir Sharing across Hash Tables: In LSH, most buck-

ets are quite sparse (near empty) due to a large number of buckets.

With reservoir sampling, we eliminate the problem of overcrowded

buckets. However, with fixed bucket size, near empty buckets create

memory overhead. For better utilization of space, we allow random

reservoir (or bucket) sharing across hash tables. In particular, we

allocate a small local pool of reservoirs for each hash table. If the

allocation is exhausted, then reservoirs from the global pool are

assigned randomly, i.e., every hash table picks one of the reservoirs

as its own, as shown in Figure 3.

Two hash tables sharing the same bucket only hurts significantly

if both buckets are heavy. However, heavy buckets are rare, and col-

lision of two heavy buckets is exceedingly rare. Reservoir sharing,

therefore, has very small impact on the search quality.

It should be noted that most of our memory requirements are

already low, but reservoir sharing gives us another 5x factor of im-

provement without apparent loss in accuracy. Due to randomness,

the procedure does not hurt data parallelism.

Overall, the complete process is summarized in Algorithm 2 and

Algorithm 3. Also, see Figure 1 for an illustration of the entire pro-

cess. We defer the description of reservoir sharing to section 3.5

for ease of understanding. Just like the (K , L)-parameterized LSH

algorithm, our algorithm also consists of an Adding phase and a

Querying phase with the above mentioned algorithmic modifica-

tion. The Adding phase computes hashes for input data points and

stores their identifiers in the hash tables. With every addition of

the data, we can discard the data completely and only work with

hash table addresses and identifiers. In the Querying phase, reser-
voirs are aggregated based on the hashes of the query. K-selection
is then performed on the aggregated reservoirs which only uses

the frequency of stored identifiers to report the top-k neighbors.

Thus, for answering any query, we only need to know the L hash

addresses instead of storing the raw data.

Algorithm 2 The Adding Phase

1: procedure Adding-Phase
2: for each DataPoint do
3: AllHashes := DOPH(DataPoint )
4: for each Tablei do
5: Keyi := MapKHashesToAddress

6: Add(DataPointi , Tablei , Keyi )
7: end for
8: end for
9: end procedure

10: function Add(DataPoint , Tablei , Key)
11: if TableI [Key] Empty then
12: TableI [Key] = AllocateReservoir

13: ReservoirCounter =0

14: end if
15: Rand := Random([0,ReservoirCounter ])
16: if Rand < R then
17: Reservoir [Rand] = DataPoint
18: end if
19: ReservoirCounter++

20: end function

3.3 Theoretical Justification
We now argue why our approach has solid theoretical justification.

We briefly review a few definitions and the sub-linearity results

associated with classical LSH. Proofs are deferred to the appendix

for better readability.

Definition 1. (c-Approximate Near Neighbor or c-NN). Consider
a set of n points, denoted by C, in a D-dimensional space RD , and
parameters S0 > 0, δ > 0. The task is to construct a data structure



Algorithm 3 The Querying Phase

1: procedure Querying-Phase

2: for each QueryPoint do
3: AllHashes := DOPH(QueryPoint )
4: Initialize A
5: for each Tablei do
6: Append A with Tablet [Key]
7: end for
8: Outputi := KSelect(A)
9: end for
10: end procedure

11: function KSelect(A)
12: SortInPlace(A)
13: KVPair = CountFreqency(A)
14: SortByValueInPlace(KVPair )
15: return KVPair [0:TopK]
16: end function

17: function CountFreqency(A)
18: Initialize KVPair
19: for each Key in A do
20: if Keyi == Keyi−1 then
21: KVPair [Keyi ]++
22: end if
23: end for
24: return KVPair
25: end function

which, given any query point q, if there exist an S0-near neighbor of
q in P, it reports some cS0-near neighbor of q in C with probability
1 − δ .

The usual notion of c-NN is for distance. Since we deal with

similarities, we define S0-near neighbor of point q as a point p with

Sim(q,p) ≥ S0, where Sim is the similarity function of interest such

as cosine similarity.

Definition 2. (Locality Sensitive Hashing (LSH)) A family H is
called (S0, cS0,p1,p2)-sensitive if for any two point x ,y ∈ RD and h
chosen uniformly from H satisfies the following:

• if Sim(x ,y) ≥ R0 then PrH(h(x) = h(y)) ≥ p1• if Sim(x ,y) ≤ cR0 then PrH(h(x) = h(y)) ≤ p2

For approximate nearest neighbor search typically, p1 > p2, and
c < 1 is needed. Note, c < 1, as we are defining neighbors in terms

of similarity.

Fact 1. Given a family of (S0, cS0,p1,p2) -sensitive hash functions,
one can construct a data structure for c-NNwithO(nρ log

1/p2 n log
1

δ )
query time and space O(n1+ρ log 1

δ ), where ρ =
log 1/p1
log 1/p2 < 1.

Most of the popular LSH algorithms satisfy a stronger condition

known as monotonicity.

Definition 3. Monotonic LSH. We will call an LSH family H
monotonic with respect to the similarity Sim iff PrH(h(x) = h(y)) ≥
PrH(h(u) = h(v)) ⇐⇒ Sim(x ,y) ≥ Sim(u,v)

3.3.1 Guarantees with Reservoir Sampling. As mentioned reser-

voir sampling produces a fixed size random sample of all elements

inserted at a hash location, and therefore, it still has most of the

probabilistic guarantees intact. We can easily redo the proofs, if

the underlying LSH is DOPH, by tweaking the margins in failure

probability, to account for this sampling.

In particular, we show that reservoir sampling of LSH buckets,

with DOPH (or minwise hashing) as LSH, does not affect the worst

case asymptotic guarantees, for reservoir of size R of small constant

(like 5). We only need a very mild additional assumption to take

care of the correlations.

Assumption:Given a query q, and any point x with Sim(q,x) ≥
S0. We need an assumption that for any y with Sim(q,y) ≤ cS0,
we assume Pr (h(q) = h(y)|h(q) = h(x)) ≤ Pr (h(q) = h(y)), i.e. the
conditional probability is less than or equal to the unconditional

probability. Note that if any x and y are independent of each other

then this assumption is always true. We argue in Appendix A, why

this assumption is almost always valid with minwise hashing.

Theorem 1. Under the assumption above, the LSH algorithm with
reservoir sampling on the hash buckets and DOPH (or minwise hash-
ing) as the LSH function using reservoir size satisfying R > constant
solves the c-NN instance with O(nρ log

1/(cS0) n log
1

δ ) query time

and space O(n1+ρ log 1

δ ), where ρ =
log 1/S0

log 1/(cS0) < 1

Even with n around 100 million, a fixed small reservoir of size

is sufficient. Our result solves the problem of having variable and

large buckets, a common practical complaint with LSH. To the best

of our knowledge, there is no prior work that formally addresses

this problem and shows that small bucket sizes are sufficient for

the same asymptotic guarantees. Small-sized buckets make a great

difference from systems perspective.

3.3.2 Count based k-selection. We showed that reservoir sam-

pling does not change any guarantees with LSH. In this section, we

argue why adding count based-k section is theoretically sound. We

show that our overall procedure ensures an important invariant –

points similar to the query have a higher probability of being in

the top-k than less similar ones.

Given the queryq, define Pq,x as the probability thatx is reported
in top-k , by (K , L)-parameterized LSH algorithm, with monotonic

LSH family, and with reservoir sampling combined with our count

based k selection. Let the notions of similarity associated with

LSH be denoted by a two argument function Sim(., .). We have the

following theorem:

Theorem 2. For any x , y ∈ C and for all choices of K , L, we have

Pq,x ≥ Pq,y ⇐⇒ Sim(q,x) ≥ Sim(q,y) (4)

The result is also true for L = 1, in the individual hash tables.

For a given query q, letCP(q,x) denote the probability of finding
x and q in the same bucket in a given hash table (collision). Note

that since all hash tables are independent, the subscript of the hash

table is immaterial. From Theorem 2, we know that for any x , y
with Sim(q,x) ≥ Sim(q,y) we have CP(q,x) ≥ CP(q,y). Counting
the occurrences of x , out of L hash tables, in the bucket of query

q is, therefore, a binomial estimator of L ×CP(q,x). The estimator

is unbiased with variance
CP (q,x )(1−CP (q,x ))

L . Thus a ranking over



these counts is a ranking over the estimators. Due to monotonicity,

the ranking concerningCP(q, .) is same as the desired ranking with

respect to Sim(q, .) (or the actual distance). Thus, with large enough
L, the rankings will statistically converge to the true rankings.

The use of LSH for efficient adaptive sampling, which came to

light very recently [10, 12, 13, 27, 40, 41], has shown huge promise

in unbiased estimation and machine learning pipelines. With the-

orem 2, FLASH can naturally replace LSH implementations for

efficient and adaptive sampling.

Another note on the importance of DOPH: Since we are es-
timating using a small number of indices which should be small for

performance, we require very accurate estimators. Estimation is

another argument why DOPH is uniquely suited for FLASH. Min-

wise hashes are known to have sharper estimation properties [37]

compared to other LSH. Minwise hashing has an extensive range

space, taking D (dimensions) different values. In contrast, signed

random projection only produces 1 bit.

Consider the address space for 15-20 bits for hash tables. In order

to obtain 15-20 bits, with high-dimensional datasets, DOPH can

work with values of K as small as 2-4 or even 1. However, signed

random projections will require at least 15-20 hash bits, making

collision in hash tables exceedingly rare. Therefore signed random

projections will require large values of L as most buckets will be

empty.More formally, The probability of collision in hash tables gets

exponentiated by K [17]. The variance of the k-selection estimator

is
1

LCP(q,x)
K (1−CP(q,x)K ) which is poor (large) for small values

of CP(q,x)K . For a given similarity, signed random projection has

lower values of CP(q,x) and at the same time requires large K ,
compared to DOPH. As a result, the variance of ranking using k-
selection will be significantly poor with signed random projections

requiring a very large value of L.

3.4 Implementation and Parallelization
In similarity search, the query operation is trivially data parallel

across multiple queries. However, with most methodology, inser-

tion is not data parallel. Data insertion is dependent on the global

state of the indices which changes with every addition. Data par-

allelism is crucial in order to fully utilize the massive parallelism

available on modern devices which include multi-core GPUs. This

is one of the unique and key qualities of LSH, which when com-

bined with reservoir sampling to enforce load balancing, puts our

implementation on top in head-to-head comparisons with other

state-of-the-art packages. With LSH, the insertions are independent

with high probability. Inserting x and y leads to a write conflict if

and only if they collide in some hash table. But due to randomiza-

tion, this probability is extremely low.

We provide a multi-core CPU, a full GPU and a hybrid CPU-

GPU implementation of FLASH. The multi-core version exploits

data-parallelism and each different thread deals with separate data

instances during both addition and querying. Due to the simplicity

of the procedure and load balancing of fixed-sized buckets, our

multi-core implementation itself is significantly faster than the

multi-core version of NMSLIB-HNSW which is the current state-

of-art approximate k-NN search implementation. See Section 4.4.2

for a head-to-head comparison.
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Figure 2: CountReduce on the GPU. Before kernel 1, array A
is already sorted segment-wise. Kernel 3 is followed by an-
other round of segmented sort to obtain the candidates with
top counts.

In the full GPU version, the hash tables are entirely stored in

the GPU on-device memory. Data instances are passed once to the

GPU device during the index building phase, and once more during

the querying phase. Since most of the processing is done locally on

the device, this scheme provides the highest throughput given the

very high memory bandwidth and computing power available on

the device. The full GPU FLASH achieves a further 1.5-3.5x speed

up in KNN-Graph construction on a single GPU in comparison to

56 threaded CPUs.

The CPU-GPU hybrid version of FLASH places most of the data

structures in the main memory, leaving only the compute-heavy

operations (the k-selection) to the GPUs. It comes into play when

dealing with datasets too large for the GPU memory.

3.4.1 GPU Implementation of Count Based k-selection. The k
selection is bucket aggregation followed by sorting to report the

top-k . Since FLASH only requires hash tables for the complete

process, once they are created by CPUs in the main memory, only

small chunks of the data structure need to be transferred to the

GPU for k-selection processing.

Our count-based k-selection has input [A0 . . .Am−1], where Ai
are fixed-sized arrays i corresponds to queries. Ai is fixed size

because it is a concatenation of L fixed sized reservoirs. We aim to

report the k most frequent candidates of each Ai for i = 0 . . .m −
1. The algorithm can be decomposed into a counting step and

a ranking step. The counting step counts the frequency of each

candidate inAi . The ranking step extracts the top k candidates with

highest counts from Ai .
Common approaches for the counting step include using hash

maps or sorting followed by a linear pass. The former is not suited

for the GPU because of potential numerous random global memory

accesses while the local memory usually does not fit the hash maps;



Figure 3: Illustration of Reservoir sharing: Reservoirs are
shared randomly for better space utilization.

the later is naively parallelizable on the GPU, but not optimal in

the linear pass step.

Instead, we first use truncated Batcher’s bitonic sort on [A0 . . .Am−1]
until it is sorted segment-wise per Ai . Next we have an efficient

CountReduce scheme shown in Figure 2 to perform the counting.

We start with array A, which is [A0 . . .Am−1] sorted segment-wise,

and array B, initially containing sequential indices of elements in

A, as shown in kernel 1.
In kernel 1, one thread is generated for each memory location

of A. Thread with global thread index t marks array B[t] with t if
A[t] , A[t + 1]. kernel 2 “compacts” the marked positions in Bi and
their corresponding candidates in Ai in sync to the front of each

array. The “compacting” process is done by first prefetching array

A and B to the local memory shared by a pool of threads. Each

thread will then shift elements in their own assigned segments in

two passes. Finally, kernel 3 simply takes the difference between

B[t] and B[t + 1] as the frequency of candidate A[t]. In practice,

CountReduce is 1.5x faster than a naive GPU parallelization.

Finally, for the ranking step, we use truncated bitonic sort to

sort the key-count pairs to get the elements with top counts.

3.5 Memory overheads and Bucket Sharing
The full memory usage of hash tables is on the order of O(L · R ·
Ranдe), where L is the number of hash tables, R is the size of the

reservoirs and Ranдe is the number of reservoirs per table. We

ensure that if a table key is unused, then its reservoir is never

materialized, so the memory overhead is less than O(L · R · Ranдe).
Although FLASH is significantly memory efficient, we anticipate

that for terabytes of data, the memory usage will still be a concern.

We present a reservoir-sharing implementation for the hash

tables to reduce the memory overhead. The empirical evidence

behind sharing is that most of the datasets are imbalanced in most

hash tables, leaving a majority of the reservoirs containing zero

or very few elements in comparison to R. Therefore, we allocate
and initialize one shared chunk of reservoirs. Each table only keeps

pointers corresponding to buckets, and when a reservoir is needed,

the pointer points to a randomly selected shared reservoir. The

randomly shared pool increases the space utilization significantly.

As argued in Section 3.2, random sharing only hurts when two hash

locations collide and are both heavy, which is an infrequent event.
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Figure 4: Effect of varying F on the search quality for dataset
url. K=4, L=128, R=32.

We define F ∈ [0, 1], as the ratio of the actual number of reser-

voirs allocated to the actual range of a hash table. As shown in

figure 3, Allocated Ranдe = F · Actual Ranдe . In practice, this im-

proves memory utilization while only marginally degrading the

search quality. Figure 4 shows the accuracy trade-offs with F with

one of the datasets url described in Section 4.2. We use the same

two accuracy measures described in experiment Section 4.3. Evi-

dent from the benchmarking on the url dataset (Figure 4), obvious
quality degradation is mostly only observed for F < 0.2.

4 EXPERIMENTS AND RESULTS
4.1 System Details
All the experiments were performed on a single machine. The CPU

benchmarks use the dual Intel(R)Xeon(R)CPUE5 - 2660v4@2.00GHz

CPU with 28 physical cores and 56 parallel threads in total and a

total of 512GB RAM. The hybrid CPU + GPU benchmark uses an

NVIDIA Tesla P100 - PCIE with 16GB memory in addition to the

CPU described above. The machine had Ubuntu 16.04 installed.

4.2 Datasets
We chose ultra-high dimensional datasets from different domains:

• Webspam: This dataset is a collection of 350k email docu-

ments using character 3-grams features. Please see [45] for

details. The dimensionality of the data is over 16 million

features. The average number of non-zeros is around 3700.

• Url: This is a collection of 2.3 million URLs with the primary

aim of detecting malicious URLs (spam, phishing, exploits,

etc.). The dataset has around 3.2million features consisting of

various aspects including IP address, WHOIS, Domain name,

geographic location, etc. Please see [29] for details. This is a

sparse dataset with around 116 non-zeros per instance.

• Kdd12: This is a dataset from the click-through prediction

competition. It contains around 150 million instances with 54

million features. Every feature is categorical and converted

to binary features according to the number of possible cate-

gories. Also, each feature vector is normalized to have unit

length. This is extremely sparse data with only 11 non-zeros

per instance on average.

• Friendster: This dataset is made from a social network avail-

able on the Stanford Large Network Collection [22]. This

is a friendship graph with 65 million nodes. Every node is

represented as 65 million dimensional sparse binary vector

indicating a direct edge to other nodes. The average number

of non-zeros is around 27. We use this dataset primarily to



benchmark computations of heavy entries of large matrix

multiplication outputs as shown in [35].

These datasets are from different domains and cover a variety of

scales and similarity levels observed in practice. The statistics of

these datasets are summarized in Table 1. The datasets are all avail-

able in libsvm sparse format.

All these datasets will blow up in memory if used in dense format

as evident from their dimensionality. Thus, any methodology which

requires centering the datasets is out of the question, as it makes

the data dense. Even fast matrix multiplication, which is at the heart

of most GPU based speedups is not available because sparse matrix

multiplication loses all the advantages of memory coalescing.

4.3 Quality Metrics
We evaluate the methodologies on several different performance

and accuracy measures. Our emphasis is on applications where

latency is critical and therefore running time and memory are our

most important concerns for a given level of accuracy.

For performance evaluations, we keep track of main memory

consumption which is also the memory cost of maintaining the

data structure as well as various running times. For running times,

we compute the three wall clock timings: 1) Initialization, 2) Data

Structure Creation (Addition) and 3) Querying. The total of these

three timings indicates the total time to construct the complete

k-NN graph over the full dataset from scratch.

For accuracy evaluations, we use the cosine similarity measure

as the gold standard. Since this is a significantly costly operation of

O(n2), we randomly selected 10000 data points and computed their

neighbors and gold standard similarity with all other data points.

We then calculate the following metrics, averaged over the selected

10000 data points, to report the accuracy.

R@k: We report the mean recall of the 1-nearest neighbor in

the top-k results. This is also the probability that the best neighbor

appears in the top-k reported elements. Following [21], we will

mostly be focussing on R@100, i.e. k = 100, but the conclusions

do not change for other values of k . Note that since k is fixed,

the precision is also determined. R@k is a popular measure to

understand the recall-computation tradeoff at a given precision.

S@k: Also, we also report the average cosine similarity of the

top-k results concerning the query datapoint. This is simply the

average value of the cosine similarity with the query of the top-k

neighbors returned by the algorithm. Ideally, in similarity search

applications such as recommendation systems, it is desirable to get

few candidates with high similarity in a fraction of seconds.

4.4 Results
4.4.1 Effects of Parameters on Accuracy and Performance. For

simplicity, we do not use bucket sharing, i.e., we use F = 1. See

section 3.5 for the effect of F keeping other parameters fixed. We

will use ranдebits to describe the sizes of hashtables, i.e., there will

be 2
ranдebits

total possible buckets in each hash table. R will be

the reservoir size. K , and L are the LSH parameters (Section 2.2).

Varying R, K and L controls the trade-off between the search

quality, speed, and memory usage. Apparently larger values lead to

more candidate pairs and increase the recall. However, they hurt

the running time and memory. A Larger value of K increases the

Figure 5: Effects of Varying L and K for url dataset. R=64.
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Figure 6: Effects of Varying L and R for url dataset. K=4.

100

L

60

S@10, K=4

2020
60

R

100
0.8

0.9

1

Si
m

ila
rit

y

100

L

60

R@10, K=4

2020
60

R

100
0

0.5

1

R
ec

al
l

100

L

60

Initialization

2020
60

R

100
0

500

1000

Ti
m

in
g 

(m
s)

100

L

60
20

Adding

20
60

R

100
0

5

10

15

Ti
m

in
g 

(s
ec

)

100

L

60

Querying

2020
60

R

100
0

100

200

Ti
m

in
g 

(s
ec

)

number of hashes to be computed and hence hashing time for both

the Indexing phase and the Querying phase. Larger values of R and

L increases Querying phase timing as k-selection is performed on

array length proportional to R ·L. We refrained from any parameter

tuning. Instead, we explored the parameter space by conducting

grid searches while constructing k-NN graphs of the dataset. We

report the results on url dataset and all the corresponding numbers.

Other datasets have similar conclusions.



Table 1: Dataset Information

Dataset Datapoints Dimensionality (Mean Non-zero) Mean Cosine Similarity

url 2, 386, 130 3, 231, 961 (116) 0.65

webspam 350, 000 16, 609, 143 (3, 728) 0.33

kdd12 149, 629, 105 54, 686, 452 (11) 0.15

friendster 65, 608, 366 65, 608, 366 (27.5) Close to 0

Figure 5 demonstrates the effect of varying L and K for a fixed

size of R. As we can see, the quality of the search is higher when

K and L are larger. The accuracy quickly climbs to high similarity

regions and then becomes flat indicating the saturation. In the

saturation regions, the accuracy is very robust to the variations

in the parameters. This behavior is expected from randomized

algorithms. However, the runtime for all steps is almost linearly

correlated, as the number of hashes to be computed and the input

size for K-Selection are both proportional to L and K .
Figure 6 demonstrates the effect of varying R and L. In gen-

eral, larger values of R and L lead to better search quality due to

better statistical guarantees. The Initialization timing is linearly

proportional to either R or L as the hash table size is linear in these

parameters, hence more time is needed to initialize the memory.

Since k-selection is performed on array length proportional to R · L,
the Querying timing is also nearly linearly proportional to either R
or L. The Indexing timing is weakly correlated to R as the reservoir

size is unrelated to the runtime complexity.

We usually find K = 4, L = 32, ranдebits = 15, and R = 32

to give a reasonable tradeoff between accuracy and performance.

We note one advantage of DOPH (minwise hashing) is that we get

very accurate estimates with just 32 repetitions. Minwise hashing

is known to be significantly more accurate for sparse datasets [25].

4.4.2 Comparisons with State-of-The-Art Packages: HNSW (NM-
SLIB) and FAISS. The Hierarchical Navigable Small World (HNSW)

graphs method by Malkov el. al. [30] has been shown to be the best

state-of-the-art ANN search method. It has been demonstrated to

be the best algorithm in direct head to head comparisons with best

implementations of different algorithms including FALCONN [6],

annoy library [1], etc. Please see a very recent ann-benchmark
by Bernhardsson [2] for detailed comparisons. NMSLIB-HNSW

is known to beat the best implementation of various algorithms

including LSH and trees by a significant margin on large datasets.

Thus, it suffices to evaluate FLASH against NMSLIB-HNSW thor-

oughly. We use the latest version, 1.6., of NMSLIB. Just like FLASH

has K , L, and R parameters, NMSLIB-HNSW has parameters M ,

e f Construction, and e f Search. These parameters control the num-

ber of layers and the number of search attempts, etc. for HNSW

which trades running time for accuracy (See [31]). To get a fair

comparison, we vary all these parameters over a fine grid and plot

the recall (R@100) with full 100-NN graph computation time as

well as the average query time on webspam and url datasets as it is
fast to run several experiments on them.

NMSLIB-HNSW is a CPU based multi-threaded code. To ensure

no unfair system advantage, we compare it with the CPU-only ver-

sion of FLASH. To contrast the advantage of GPU based k-selection,

we also show the corresponding running time over hybrid CPU-

GPU version of FLASH. Figure 7 shows these tradeoffs for webspam
and url dataset respectively. For better summarization, we also

highlight speedups at recall level of 0.5. 0.6 and 0.7 in Table 2 along

with the index size at the recall level of 0.5.

FLASH is significantly faster, both in k-NN construction time

as well as query only time, than NMSLIB-HNSW for obtaining the

same level of recall on the same system. Note the log scale on the

time axis. The trends are consistent across the two datasets used.

The GPU version gives another 1.5-3.5x improvement over the CPU

only version, validating the superiority of our proposed k-selection.

Higher Similarity may not mean Higher Recall: LSH is a

similarity-based retrieval method. It is known that the hardness of

search based on LSH is dependent on the similarity (or distance

gap) between the good neighbors and the bad neighbors. If the

difference is not significant, LSH will require significant work to

discriminate between them. See [18] and references therein.

In both webspam and url dataset, there is barely any difference

between the similarity of the nearest-neighbor and second-best

neighbor. For webspam, the mean similarity of the best neighbor is

0.972 while that of second best neighbor is 0.966. On url the best is
0.972 and the second best is 0.969. Thus, LSH cannot discriminate

between them, but the recall measure R@100 is very particular

about whether we get the first or the second. That is why we need

to also look at other measures like S@100. However, we can quickly

get the mean similarity of the best neighbor (or the S@1 measure)

with FLASH to 0.941 for webspam and 0.955 for url. In practice, it

will hardly make a difference if we report the 1st neighbor or 20th

neighbor if their similarity with the query is substantial enough.

In section 4.4.7, we showed the aforementioned fact. For all the

neighbors with similarity greater than 0.65, we get more than 90%

recall in the top-20 retrieved by FLASH. It is expected that LSH will

retrieve very similar points, but if the gap between the most similar

and second most similar is not big, then LSH cannot discriminate

between them. In practice, a high similarity is more important than

the ranking. A reason why LSH can only solve the c-approximate

near-neighbor instance which is similarity threshold based.

Memory for Storing Index: The most overwhelming advan-

tage of FLASH is the reduction in index size shown in Table 2. For

achieving 0.5 recall, FLASH only need 0.43GB memory and 0.2 GB

withwebspam and url respectively. This is 37x (16GB) and 25x (5GB)
reduction on the same dataset compared to NMSLIB-HNSW. The

advantages are not surprising given the simplicity of FLASH.

4.4.3 Comparisons with NMSLIB-NSW on KDD12. For kdd12
dataset, which is the largest dataset in terms of n, NMSLIB-HNSW

is significantly slower than FLASH. For NMSLIB-HNSW, we chose

e f Construction = 40 andM = 16, which is one of the recommended



Figure 7: k-NN graph construction and per query timing comparison with HNSW on url and webspam dataset. The GPU gives
another 1.5-3.5x speedup over 56 threaded CPU for the same configuration.
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Table 2: Highlights of FLASH and HNSW comparison on url and webspam

webspam url
R@100 ≈ 0.5 R@100 ≈ 0.6 R@100 ≈ 0.7 R@100 ≈ 0.5 R@100 ≈ 0.6 R@100 ≈ 0.7

FLASH Speedup 27.5× 20.2× 9.15× 13.6× 9.3× 5.8×
R@100 ≈ 0.5 R@100 ≈ 0.5

Index size FLASH: 0.43 GiB, HNSW: 16 GiB FLASH: 0.2 GiB, HNSW: 5 GiB

set of parameters used for testing against FAISS on a SIFT200M

dataset in the HNSW paper [31]. See Appendix E for brief details

on algorithm and our usage. On kdd12, the index structured of

NMSLIB-HNSW has size 122 GiB, which is obtained by taking the

memory usage difference before and after the creation of the index.

We tried attempting e f Search = 80 to construct the k-NN graph,

but the machine goes out of memory. We used e f Search = 20,

which completed successfully. We note that an increase in e f Search
increases the computational cost.

In contrast, for FLASH (CPU only), K = 4, L = 32, R = 64 and

hash table address size of 20-bits easily gave R@100 of around 0.5

which is significantly more than 0.15 obtained via the successful

run of NMSLIB-HNSW. Table 3 summarizes the head-to-head com-

parison. FLASH only requires around 9GB of main memory for

F = 1 and 3GB for F = 0.3. The index size is around 13x and 40x

lower compared to 122GB. The indexing time, which is a signif-

icant bottleneck with NSMLIB-HNSW, is up to 13 times slower

than FLASH and the query time of NMSLIB-HNSW is around 2x

slower than FLASH on the same machine. Despite these overheads,

NMSLIB-HNSW achieves poorer accuracy.

4.4.4 GPU based FAISS Library. The Facebook AI Similarity

Search (FAISS) library is currently the best package supporting

GPUs. FAISS utilizes the power of product quantization to achieve

state-of-the-art ANN search with multiple GPUs [21]. However

FAISS fails in the first stage as it does not provide sparse data

capability, and the main memory capacity is insufficient to convert

our dataset in dense format. As expected, with product quantization,

every subset of dimension requires an index table, which will end

up with several millions of hash tables.

To still access the performance on FAISS, we used the RCV1

dataset [23] (47k dimentions) and also generated a small sample

webspam100k of webspam by only suing 100,000 sampled n-grams

(random sampling to reduce dimensions) instead of 16 million and

removing all samples with all zero columns. That way we can fit the

dense data in GPU memory and run FAISS. We ran FAISS both in

exact mode and approximate mode and compared the running time

and top similarity with FLASH. The results for webspam100k are

summarized in Table 4. We have a similar story for RCV1 data in

appendix C. Clearly, FAISS is no comparison to FLASH even when

dimensions are moderately high (hundred thousand).

4.4.5 Contrast with Vanilla LSH. We also compared the results

of the standard LSH algorithm, using the same DOPH. Effectively,

other thanDOPH for hashing, we disable all ourmodification includ-

ing reservoir sampling and count based k-selection. The standard

algorithm uses dynamic buckets, and it computes the pairwise dis-

tance between the query and their candidates followed by ranking

based on calculated distance. We found that there are some buckets

which contain almost all of the data, leading to near brute force

computations. To avoid this costly bruteforce, we ignore very heavy

buckets from being aggregated.

We compared the performance of Vanilla LSH with FLASH on

the url dataset using CPU only. For FLASH, we used parameters

L = 128, K = 4, R = 32 and ranдebits = 15. For Vanilla LSH, we

used the same parameters without R. We obtained the following

results:

FLASH: S@10 = 0.901, S@100 = 0.856,R@10 = 0.640,R@100 =

0.783. Runtime(Init+Indexing+Querying): 0.305 + 10.58 + 137.4 sec .
Vanilla LSH: S@10 = 0.838, S@100 = 0.781, R@10 = 0.186,

R@100 = 0.187. Runtime(Init+Indexing+Querying): 0.028+ 26.02+

14328 sec .
We can see that querying with Vanilla LSH is 100x more costly.

The indexing cost is also twice as much due to the resizing overhead

of the buckets. Furthermore, because heavy buckets were ignored,

vanilla LSH leads to a slightly inferior accuracy. Reservoir sampling

thus seems quite effective in reducing the bucket load while still

randomly taking advantage of the statistics in the bucket.



Table 3: FLASH compared with HNSW on kdd12

Algorithm Indexing time Querying time Index Size S@10 R@100

FLASH-CPU, F=1 4.6min 30.8min 9 GiB 0.774 0.409

FLASH-CPU, F=0.3 10.6min 38.6min 3 GiB 0.751 0.280

HNSW 63min 61.9min 122 GiB 0.468 0.156

Table 4: Comparison with FAISS on webspam100k

Measure FAISS Exact FAISS Approx FLASH

Indexing Time 362.7 sec 119.6 sec 8.029 sec

Querying Time 536.6 sec 1838.2 sec 1.847 sec

S@1 0.99 0.4 0.9

4.4.6 k-NN Graph Faster than Random Projections. A popular

argument with the ultra-high dimensional dataset is first to reduce

the dimensionality and then utilize any low dimensional method.

In this section, we show that dimensionality reduction itself is a

costly operation.

Random projection is the most efficient known algorithm for

dimensionality reduction and is a prerequisite for most LSH pack-

ages. Given a data vector v and d random vectors r0 . . . rd , random
projection computesv ·ri ∀i , forming an d dimensional compressed

vector. For sparse datasets, only the non-zero elements of v are in-

volved in the multiplication. We computed 100 random projections

for webspam and url using the database friendly random projec-

tion [3], which is the most efficient variant of random projection

for sparse datasets. We use all the 56 threads in parallel. Note, as

argued before, the Fast-JL ideas based on Walsh-Hadamard [4] is

not applicable as it requires making sparse data dense which will

blow up the memory.

webspam took 671.6 sec to generate the random numbers and

426.5 sec to compute the 100 projections while url took 128.3 sec

for generation and 65.12 sec for projection. In contrast, FLASH can

compute a very reasonable full k-NN graph, from scratch, with

R@100 ≥ 0.6 in 20 sec for url and 10 sec for webspam on the same

CPU with same number of threads. A 100-dimensional random

projection is more than 42x slower than full k-NN graph computa-

tion with FLASH on the webspam dataset, ignoring the 671 sec for

random number generation. It is worth noting that 100 dimensions

are not sufficient. Usually, thousands of random projections are

needed for these datasets [37].

We also contrast the time for computing random projections

with the time of computing DOPH. Computing 100 DOPH hashes

takes less than 1 sec for both webspam and url using 56 threads. As

argued in Section 2.3, the memory and computational overheads

are significant with random projections, due to large projection

matrix and requirement of hundreds of passes over data. These

overheads hurt the performance, especially with datasets having

several millions of dimensions.

4.4.7 Sparse Output Matrix Multiplications on a Single Machine.
In social networks, we represent the friendship relation between

users as graphs. Given d users, we represent each user as a d dimen-

sional sparse vector, where non-zero entries correspond to edges.

By representing each user as a column, we construct matrix A of

dimension d × d . In recommender system applications, we are in-

terested in the finding similar users - usually friends to a similar set

of users. Finding similar users requires us to compute ATA, which
is computationally prohibitive - with d being on the million scale,

there will be trillions of multiplications. Recently [35] showed a

distributed algorithm based on random projection for computing

heavier entries of ATA given matrix A.
We use Friendster data, one of the datasets used for bench-

marking the computation of heavier entries of ATA in [35]. The

method did not report any running time and used twitter cluster for

computation. However, they require computing around 1000-2000

signed random projection as a part of their algorithm. For Friend-

ster dataset, generating 2000 random projection, using Achlioptas

method [3] takes 10220 sec on our 56 thread system, in addition

to 41540 sec for random number generation. Both numbers scale

linearly.

In contrast, FLASH can approximate ATA by only multiplying

rows ofAT with its k-nearest neighbors among columns ofA, which
essentially requires the computation of the k-NN graph. Our com-

putation of the approximate k-NN graph of the friendster dataset
took 26.3 minutes (or 1578 sec) and built the 20-nearest neighbor

graph from scratch on a single machine. The recall of neighbors

with similarity > 0.65 being 0.912 in the top 20-nearest neighbors.

Thus we can find almost all heavy entries (> 0.65) of ATA quite

efficiently on a single machine, which is much faster than the first

step required by [35]. We use cosine similarity, but if we are inter-

ested in the inner product instead, we can resort to asymmetric

minwise hashing [39] computation using DOPH.

5 CONCLUSION
We presented FLASH, a system for similarity search with ultra-high

dimensional datasets on a single machine. FLASH uses several prin-

cipled randomized techniques to overcome the computational and

parallelization hurdles associated with the traditional LSH algo-

rithm. The benefits comewith strong theoretical guarantees. FLASH

demonstrates the power of randomized algorithms combined with

parallel processing by obtaining improvements orders of magnitude

faster than state-of-the-art implementations in head-to-head com-

parisons. FLASH is even faster than computing random projections,

which makes it naturally superior to any random projection based

approach.
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7 APPENDIX
A PROOF OF THEOREM 1
The proof mimics the proof of theorem 3.4 in [17]. We give a sketch

for conciseness. In the original proof, the arguments boil down to

showing that the two events– E1) Good points are selected and E2)

Total bad points reported are less than 3L– happens with probability

higher than half. It turns out reservoir sampling, decreases the

probability of retrieving candidates further, and hence the likelihood

of the second event does not change. Now the LSH proof shows

that (E1) holds with 1− 1

e which is more than half. We use the extra

margin to incorporate failure due to reservoir sampling leading to

the proof.

For good points not getting selected we need R bad points to fill

that particular reservoir of size R. Another fact that we use from the

LSH proofs is that each bad point in the worst case is selected with

probability
1

n in any table (part of LSH proof). Thus, the expected

number of bad points in any bucket is at most 1. With DOPH,

this includes the bucket containing the good point (conditional

probability). Before we justify why the conditional probability is

very likely to be small, we show it is sufficient.

The bucket containing the good point fails us due to reservoir

sampling, with probability (1 − 1

R ) in the worst case. This is due to

Markov inequality Pr (#bad ≥ R) ≤ 1

R . The modified total success

probability of (E1) need to be(
1 − 1

e

) (
1 − 1

R

)
>

1

2

.

which gives the desired result for R ≥ 5.

Note, here we have used the assumption that with DOPH (min-

wise hashing) mentioned in Section 2.3. In other words, if a bucket,

where the query q gets mapped, which also contains a good point

x (close to query q), does not have any higher probability of bad

points ys (far of query) mapping in it.

This is always true if the data is independent. Even if they are not

independent, our assumption is generally true for Jaccard similarity.

With Jaccards similarity, as shown in Figure 8, we have the con-

ditional probability Pr (h(q) = h(y)|h(q) = h(x)) = a
b × a

a+y . This

is because, we know that h(Q) = h(X ), therefore, the minimum of

hashes of elements from bothQ and X comes from the intersection,

i.e., a + b. Thus, for three way collision h(Q) = h(X ) = h(Y ), the
minimum of all three should to come from a, instead of a+b, which
under uniformity of hashes boils down to

a
a+b × a

a+y . Although

it is hard to characterize the precise condition when
a

a+b × a
a+y

will be small given
a+b

a+b+c+d+x+q = S0 and
a+c

a+c+q+y+b+d = cS0,

we can see that since Sim(q,x) ≥ S0 is high and Sim(q,y) ≤ cS0 is
low (x is good and y is bad). y and b are large and a is small. Thus

a
a+b × a

a+y is a very small quantity, and it is likely to be smaller

than
a+c

a+c+d+b+q+y = Pr (h(q) = h(y)) which is our mild assump-

tion. Thus, even with correlations we can expect our assumption

to be a reasonable one.

It should be noted, that the above property is not true for projec-

tion based LSH such as signed random projection. With projections,

the three-way conditional collision probability can be very hard to

analyze.
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Figure 8

Table 5: Comparison with FAISS on RCV1

Measure FAISS Exact FAISS Approx FLASH

Indexing Time 48.3 sec 276 sec 1.04 sec

Querying Time 1765 sec 487.5 sec 0.09 sec

S@1 0.6 0.02 0.2

B PROOF OF THEOREM 2
It is not difficult to show that for a given query q the probability of

retrieving a point x in any bucket is given by 1 − (1 − (Pr (h(q) =
h(x)))K )L . The expression is a monotonic function of Sim(q, .) be-
cause the LSH is monotonic. We can further show, using elementary

probability arguments, that reservoir sampling, modifies this to

1 − ΠL
i=1(1 − αi (Pr (h(q) = h(x))K ),

with reservoir sampling probability αi ≥ 0, in table is bucket, which
is still a monotonic function of Sim(q, .). The result follows from
the monotonicity. Note, that every bucket has different sampling

probability, but it is a fixed constant after the hash table is created.

C FAISS VS FLASH ON RCV1 DATA
We use the popular RCV1 dataset [23] which is a benchmark for text

categorization. This dataset has 47k dimensions and can comfort-

ably fit GPU memory. The running time and accuracy comparison

of FLASH vs. FAISS are summarized in Table 5. RCV1 is a low simi-

larity dataset, so the similarity numbers are not significant, even

for the exact methods. The exciting part is that for high similarity

neighbors (similarity ≥ 0.85) FLASH gets a recall of more than 80%.

At the same time, it is disruptively faster, which is expected at high

dimensions because product quantization methods, such as FAISS,

scales poorly with dimensions.

D MORE DISCUSSIONS ON LEVERAGING
DOPH

DOPH is an efficient and practical alternative to minwise hashing.

However, making DOPH to work still requires overcoming several

of its limitations. DOPH, just like minwise hashing, can produce

very heavy buckets where almost all (or a very large chunk of)



data points will go to the same bucket in the hash table. In real-

world, they are always some frequent tokens which are present

in almost all the data instances. It is, therefore, possible that those

tokes lead to a small hash value (with some probability) which will

result in minwise hashing (or DOPH) to map all data points to the

same bucket. In practice, this heavy buckets is always observed (see

Section 4.4.5). These unavoidable heavy buckets will make indexing

and querying a costly operation. Our work uniquely eliminates this

using efficient reservoir sampling. With DOPH, we can also show

theoretical guarantees of reservoir sampling, which is not true for

general LSH including projection based.

Signed random projections, a popularly used LSH, can potentially

avoid heavy buckets if the data is centered. Unfortunately, center-

ing the data is not possible for ultra-high dimensions as it makes

sparse data dense blowing the memory. In addition, signed random

projection being 1-bit has additional problems (See section 3.3.2 for

details). DOPH has large range space, and hence superior estima-

tion via collision probability, which we have uniquely leveraged

for an efficient ranking algorithm.

We have further implemented DOPH and exploited data paral-

lelism that makes hashing time faster than data loading time. As a

result of this fast implementation, we can compute a complete k-NN

graph faster than computing random projections (with the same

parallelism) which is the first prerequisite of most other randomized

algorithms.

Effectively, our work identifies DOPH, among several other hash-

ing schemes in the literature, to be the ideal LSH than can be lever-

aged to an extent where it can beat the state-of-the-art implemen-

tations.

E HNSW DETAILS
HNSW algorithm [30] can be seen as an extension of the probabilis-

tic skip list structure with proximity graphs instead of the linked

lists. Every inserted element will be assigned a maximum layer

with an exponentially decaying probability distribution. The search

starts from the top layer (the most sparse layer) by greedy traversals.

After finding a local minimum on the current layer, the search will

continue on the next layer, using the identified closest neighbors

from the previous layer as entry points. A list of found near neigh-

bors are kept and updated by evaluating the neighborhood of the

closest previously non-evaluated element in the list. The list size

starts with 1, and gradually increase as the algorithm moves on the

later layers. The second phase of the algorithm begins in following

layers, where the found closest neighbors on each layer are also

used as candidates for the connections of the inserted element.

In our evaluation, we made use of the code contributed by the

original author, under package NMSLIB-HNSW. In particular, the

implementation is mainly data parallel, where parallel threads insert

the elements after the very first insertion. Since this algorithm is

not trivially parallelizable, locking mechanisms are employed in

the implementation to prevent race conditions.
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