
Densified Winner Take All (WTA) Hashing for Sparse Datasets

Beidi Chen
Computer Science Dept.

Rice University
beidi.chen@rice.edu

Anshumali Shrivastava
Computer Science Dept.

Rice University
anshumali@rice.edu

Abstract

WTA (Winner Take All) hashing has been suc-
cessfully applied in many large-scale vision
applications. This hashing scheme was tai-
lored to take advantage of the comparative rea-
soning (or order based information), which
showed significant accuracy improvements. In
this paper, we identify a subtle issue with
WTA, which grows with the sparsity of the
datasets. This issue limits the discriminative
power of WTA. We then propose a solution to
this problem based on the idea of Densification
which makes use of 2-universal hash functions
in a novel way. Our experiments show that
Densified WTA Hashing outperforms Vanilla
WTA Hashing both in image retrieval and clas-
sification tasks consistently and significantly.

1 INTRODUCTION

In many important applications like information retrieval
and natural language processing, text documents, and
images data are in high-dimensional representations.
Such high-dimensionality is usually accompanied by ex-
treme data sparsity due to either a large vocabulary or
the use of large image window size. The major reason
we find very sparse datasets almost everywhere results
from the wide adoption of Bag of Words (BoW) repre-
sentation for documents and images. In BoW represen-
tation, the presence or absence of specific features carries
the most information [Chapelle et al., 1999, Jiang et al.,
2007], especially with higher order shingles. The popu-
larity of sparse machine learning [Caiafa et al., 2017, Liu
and Tsang, 2017, Liu et al., 2017, Liu and Tsang, 2016]
and sparse codes [Lee et al., 2006] for image data is an-
other reason for the abundance of sparse datasets in mod-
ern applications. In order to get a sense of this extreme

sparsity, the datasets demonstrated in Google’s Machine
Learning system SIBYL [Canini et al., 2012] have di-
mensions in billions and non-zeros in only a few thou-
sands (even hundreds).

With the advent of the Internet and the explosion in vol-
umes of data, almost all machine learning and data min-
ing applications are constrained by their computational
requirements. Learning with none-liner kernels, by ma-
terializing kernel matrices, which are quadratic in com-
putation and memory, is infeasible [Rahimi and Recht,
2007, Li et al., 2011, Shrivastava, 2015]. Randomized
algorithms, especially those based on Locality Sensitive
Hashing (LSH) [Indyk and Motwani, 1998], have shown
huge promise for reducing computational and memory
requirement in these scenarios. These randomized algo-
rithms lead to drastic gains in computation and memory
for a small, insignificant, amount of approximations.

LSH-based algorithms are quite popular efficient sub-
linear algorithms for near neighbor search [Indyk and
Motwani, 1998]. This is because even a simple linear
scan for near neighbor search, over massive datasets,
becomes prohibitively expensive [Weber et al., 1998].
There are no options but to use hashing approaches for
such scenarios. LSH algorithms can also be used as
cheap random kernel features [Li et al., 2011] for train-
ing large-scale non-linear SVMs without materializing
the expensive kernel matrix, leading to linear time al-
gorithms. Besides, recently a line of work appears to
use LSH as samplers in optimization [Chen et al., 2018]
and deduplication [Chen et al., 2017] problems. They
are embarrassingly parallel, simple and cheap. Owing to
these unique advantages, they are heavily used by com-
mercial search industries for truly large-scale data pro-
cessing systems.

In the last decade, similarities based on relative (or
comparative) attributes have gained huge popularity, es-
pecially in the vision literature [Parikh and Grauman,
2011]. For such similarities, a well-known hashing

scheme is Winner Take All (or WTA) hashing [Yagnik
et al., 2011]. It is one of the fastest known hashing
scheme, which is much faster than signed random
projection (SRP). SRP requires one pass over the data
vector for computing one hash value. This is expensive
because in practice we need hundreds of hash values,
which results in hundreds of passes over the data. Simi-
larly, even random projections are significantly slow for
many large-scale tasks. On the contrary, WTA can gen-
erate multiple hashes in one pass. It is widely known
that hashing time is the major bottleneck, both in the-
ory and practice, for the task of image retrieval. This is
why Google [Dean et al., 2013] needed WTA for detect-
ing 100,000 objects on a single machine in near-real time
with very respectable accuracy.

Large-scale image retrieval, with low-latency con-
straints, is a reality. We cannot afford to have costly hash
functions since even one pass over the data vector for
hash computation is prohibitively expensive both for en-
ergy and latency. WTA hashing has been quite success-
fully applied to produce superior results on massive-scale
object recognition and information retrieval. This ran-
domized hashing scheme seems quite suitable for taking
advantage of multiple partial order statistics rather than
total orderings of the input vector’s feature dimensions
to produce sparse embedding codes.

Deep Neural Networks are widely-used in vision and
speech tasks. While the network architecture sizes grow
exponentially larger to adapt data complexity, LSH al-
gorithms are recently adopted to reduce the computa-
tion [Spring and Shrivastava, 2017, Vijayanarasimhan
et al., 2014]. Moreover hashing cost and quality are the
critical bottleneck in making such approaches practical.
Our Contributions: In this work, we study the applica-
bility of WTA hashing for very sparse datasets. We found
that WTA hashes are not very informative for sparse
datasets. We further provide a remedy based on the re-
cent idea of Densification [Shrivastava and Li, 2014a]. In
particular, our contributions can be summarized as fol-
lows:

1. We illustrate that the popular WTA hashing scheme
starts losing information for very sparse datasets,
i.e., most of the hash values for very sparse datasets
do not have enough discriminative information.

2. We propose Densified WTA Hashing which com-
bines traditional WTA hashing with the idea of
Densification [Shrivastava, 2017]. We show that
the idea of densification provably fixes the issue
of WTA for sparse datasets. Our proposal makes
novel use of 2-universal hashing, introduced in Sec-
tion 4.1, and requires minimal modifications to the
original WTA hashing. Furthermore, for dense

datasets, our proposal is equivalent to the original
WTA hashes and thus a smooth generalization of
WTA for sparse datasets.

3. We show for the first time that the idea of Densifica-
tion actually leads to significant improvement in the
quality of WTA hashing, informative hashes. Pre-
viously the idea of Densification was only known
to speed up hash functions without losing quality.
Furthermore, this is the first use of densification for
non-binary data.

4. We demonstrate the benefits of our proposal by
showing significant gains in accuracy compared to
WTA on real-world sparse datasets for both retrieval
and classification tasks.

2 REVIEW WTA HASHING

[Parikh and Grauman, 2011] pointed out the impor-
tance of relative attributes in the vision community. It
suggested that for a given vector x, the information
that the attribute xi is dominant over some other at-
tribute xj has stronger discriminative powers compared
to other features. It was further shown in [Yagnik et al.,
2011] that comparative reasoning (or order information)
among attributes is a very informative feature and simi-
larities based on such comparisons lead to superior per-
formances compared to widely adopted measures like L2

distances. However, kernel based (or similarity based)
learning is computationally slow. To mitigate this prob-
lem, WTA (Winner Takes ALL) Hashing was proposed.
The simplicity, scalability, and power of WTA hashing
were quite appealing and it has been successfully used
by commercial big-data companies to scale up the task
of object detection significantly [Dean et al., 2013].

WTA hashing generates a set of random samples of K
attributes, using a random permutation Θ, and stores the
index of the attribute with the maximum weight. It can
be implemented in three lines with Matlab:

f u n c t i o n [maxval , c] = wta (X,K)
t h e t a = randperm (s i z e (X, 2))
[maxval , c] = max (X(: , t h e t a (1 :K)) , [] , 2)

2.1 KEY WTA NOTATIONS

We denote Θ(x) to be the K random samples from x
sampled using permutation Θ. For convenience, we drop
the dependence on K as it will remain a fixed constant.
Hwta(Θ(x)) indicates the corresponding WTA hash. We
will also drop Θ and useHwta(x) when it is clear.

As illustrated in the example shown in Table 1, the orig-
inal input vectors x1, x2, x3, x4 are applied with random

Table 1: WTA Hashing Example with four input vectors x1, x2, x3, x4, K = 3 and one permutation Θ = 4, 1, 2

x1 x2 x3 x4

x 10, 12, 9, 23 8, 9, 1, 12 9, 2, 6, 1 3, 5, 1, 7
Θ(x) 23, 10, 12 12, 8, 9 1, 9, 2 7, 3, 5
Hwta(x) 1 1 2 1

permutation Θ = (4, 1, 2, 3) and first K = 3 attributes
of the permuted vectors are selected (random sample of
size 3), e.g. Vector (a) = [10, 12, 9, 23] will sample
[23, 10, 12]. Then the index of the maximum attribute in
every transformed vector is stored separately, e.g. 1 for
(a), to contribute to the final WTA hash codes. If there
are n such hashes codes for one input vector, we define
Bin i as the space to store the hash code generated
from the ith set of K samples.

It was shown that WTA hashing scheme has locality sen-
sitive hashing property. It implies that collision prob-
ability under this scheme, i.e. for given vectors x and
y, Pr(Hwta(x) = Hwta(y)) = E[IHwta(x)=Hwta(y)] is
some desirable order based similarity measure. It was
later shown that for K = 2 this similarity is the well
known Kendall Tau [Ziegler et al., 2012].

3 SPARSE DATASETS AND ISSUES
WITH WTA HASHING

WTA hashing and the idea of comparative reasoning is
quite appealing and intuitive. In this section, we delve
deeper and show a critical issue with WTA hashing.
We show that for very sparse datasets, which are com-
mon in practice [Li et al., 2011], WTA-based hashes are
not very informative and deviate from the ”relative at-
tribute” intuition. We use the equivalence between hash-
ing and the kernel view to illustrate this issue. With ev-
ery hashing scheme H is an associated positive definite
kernel given by the collision probability Pr(H(x) =
H(y)) = E[IH(x)=H(y)]. For large-scale learning, as
shown in [Yagnik et al., 2011], we can convert these
hashes into random kernel features [Rahimi and Recht,
2007] by converting hash values to indicator vectors.

3.1 SPARSITY MAKES WTA UNINFORMATIVE

Define the sparsity of a dataset X with n samples, with
each sample of dimension d, as

Sx =

∑n
i=1

∑d
j=1[1{Xij = 0}]
n× d

(1)

Note that [1{Xij = 0}] is an indicator for the event
Xij = 0. Sx is also the probability that Pr(Xij = 0).
We will show that the kernel associated with WTA hash-
ing becomes uninformative as the sparsity increases.

Consider the example that is shown in Table 2. Given
very sparse input vectors x1, x2, we generate six WTA
hashes with K = 3. In order to do this, we sample K =
3 attributes six different times so that each different bin is
generated using a different permutation. Due to sparsity,
many of these bins contain all zeros. We can see that
in all the bins except Bin 5, Hwta(x1) and Hwta(x2)
collide and therefore the estimated collision probability,
from the hashes, is roughly 5

6 indicating high similarity
(1 is maximum). This seems misleading.

Due to sparsity, it is very likely that for a given x, all
the sampled attributes Θ(x) are zeros for some samples.
We represent this situation by Θ(x) = E (Empty). Con-
sider Bin 1, 4 and 6, they collide only because they are
all zeros. Note, WTA treats all empty bins as collisions
and two empty bins will always lead to a hash colli-
sion. Sparse datasets are common with Bag-of-Words
(or token-based) representation. Empty Bins (1, 4 and
6) indicate the absence of the randomly chosen K to-
kens which is not a strong indicator of similarity. In
BoW analogy, if two documents concurrently lack the
words ”Hashing”, ”Winner” and ”Take”, it does not indi-
cate strong similarity given the large vocabulary and the
sparse nature of the dataset. In sparse BoW representa-
tion, the absence of features is not informative but only
the presence of features is important. Thus, whenever
the bins in both input vectors, under considerations for
WTA, are empty, we observe undesirable collisions.

However, it is also problematic if we treat empty ones
as mismatches. For two identical sparse vector, ideally
they should always collide as they are identical. But if
we treat zeros as mismatches, then even identical vec-
tors would have low collision probability. If hashes do
not collide, it is an indicator that the input vectors are
not similar. Preventing empty bins from colliding will
treat sparsity as dissimilarity, which is again undesirable.
Thus, there is no straightforward fix to this problem.

If we further observe Bin 3, the collision is even worse
because it is meaningless that an empty Bin of x2 col-
lides with a non-empty bin of x1, simply because the
max value in x1 happens to be at index 1. This is ac-
tually a spurious collision and can be easily eliminated
if we assign special values to all empty bins. Therefore,
from the analysis, we ignore this easily fixable but spuri-
ous collision.

Table 2: WTA with input vectors x1, x2 and six bins generated with six permutations. E denoted an empty sampling.
WTA treats E and E as a match of hash values, which artificially inflates the similarity perceived by the hashes.

x1 0, 0, 5, 0, 0, 7, 6, 0, 0
x2 0, 0, 1, 0, 0, 0, 0, 0, 0

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6
Θ 2, 1, 8 5, 3, 9 6, 2, 4 8, 9, 1 1, 7, 3 2, 4, 5

Θ(x1) 0, 0, 0 (E) 0, 5, 0 7, 0, 0 0, 0, 0 (E) 0, 6, 5 0, 0, 0 (E)
Θ(x2) 0, 0, 0 (E) 0, 1, 0 0, 0, 0 (E) 0, 0, 0 (E) 0, 0, 1 0, 0, 0 (E)
Hwta(x1) 1 (E) 2 1 1 (E) 2 1 (E)
Hwta(x2) 1 (E) 2 1 (E) 1 (E) 3 1 (E)

In Bin 2, neither Θ(x1) nor Θ(x2) are E, so those are in-
formative collisions. This is in line with the original mo-
tivation of WTA. Owing to the presence of empty bins,
sparsity dominates the hash representations of x1, x2 and
leads to high undesirable similarity. We can not simply
ignore empty values because different vectors will have
different occurrences of empty bins. Please refer [Shri-
vastava and Li, 2014a] to see in details why there is no
way to ignore empty values in indexing.

Formally, given vectors x1, x2 and a permutation Θ, de-
fine the indicator vector for empty sampling of both x1

and x2:

Iempty =

{
1 Θ(x1) = Θ(x2) = E
0 otherwise

(2)

Note if any of the Θ(x1) is not empty then Iempty = 0.
Based on this indicator variable, we can define empty and
non-empty collisions as:

kbad(x1, x2) = Pr(Hwta(x1) = Hwta(x2)|Iempty = 1)

kgood(x1, x2) = Pr(Hwta(x1) = Hwta(x2)|Iempty = 0).

As argued, kbad(x1, x2) is not an informative kernel for
very sparse datasets. Using these quantities we can for-
mally write the WTA kernel as

kwta(x1, x2) = Pr(Hwta(x1) = Hwta(x2)) (3)
= akbad(x1, x2) + (1− a)kgood(x1, x2),

where a is the probability of Iempty = 1. Clearly,
for very sparse datasets a will be high and hence
kbad(x1, x2) dominates the WTA kernel making it less
discriminative.

4 OUR PROPOSAL: DENSIFIED WTA
HASHING

4.1 2-UNIVERSAL HASHING

Definition 1. A randomized function hu : [l]→ [k] is 2-
universal if, ∀i, j ∈ [l] with i 6= j, we have the following

property for any z1, z2 ∈ [k]

Pr(hu(i) = z1 and hu(j) = z2) =
1

k2
. (4)

A simple universal hash function example would be, for
random number a and b and a prime number p ≤ k,
compute: hu(x) = (ax + b mod p) mod k.

4.2 PROPOSAL

In [Shrivastava and Li, 2014b] the authors proposed the
idea of Densification of hashes for obtaining a one-pass
hashing scheme which has the same collision probabil-
ity as the traditional minwise hashing. The idea was
to reassign empty bins, having all zero values, by bor-
rowing values from nearest non-empty bins added with
some constant offset. Furthermore, [Shrivastava, 2017]
showed a better densification schema with optimal vari-
ance. Motivated by this idea, we propose a similar re-
assignment of empty bins generated from WTA. We will
show that the modified WTA, which we call ”Densified
WTA” (DWTA) hashing, produces the right kernel. This
is little surprising because Densification was used in the
literature to speed up the hashing scheme with the same
old property. Here we rather show a first example where
densification improves the hashing scheme by making it
more informative. This is also the first use of densifica-
tion over non-binary data.

Vanilla WTA assigns all empty bins a constant value of
1. Using densification, we assign new random values to
all the empty bins. For a given data vector x, we first
generate a set of WTA hashes and place them one after
the other (See Table 3).

The overall procedure of Densification for reassigning
the empty bins is shown in Algorithm 1. We do not touch
non-empty bins, as we know that WTA hashes are infor-
mative enough. Thus, if a bin is non-empty, its WTA
hash value is the DWTA hash value. The key idea in this
algorithm is that when a bin i is empty, instead of as-
signing it with a constant 1 like what WTA does, it chose

Table 3: Example densification of WTA hashes shown in Table 2. All the hash values of empty bins are reassigned
(shown in red) by the values of the mapped (using hu(., .) and lookup table in Table 4) non-empty bins with offset
shown by the arrow. This unusual procedure actually is the right fix for WTA as shown by Theorem 1

HDwta(x1) 1+3*C 2 1 2+1*C 2 2+2*C
HDwta(x2) 3+3*C 2 2+3*C 3+4*C 3 2+2*C

Table 4: Results of empty bins re-assignment mapping in
Table 2 running Algorithm 1. i and attempt are the two
arguments for some 2-universal hash function and map
represents the non-empty bin i is mapped to.

i attempt map

x1

1 3 3
4 1 5
6 2 2

x2

1 3 5
3 3 2
4 4 5
6 2 2

some non-empty bin randomly using a 2-universal hash
function, hu and use the value of the chosen non-empty
bin with some appropriate offset that ensures no spurious
collisions. The 2-universal hash function takes in two ar-
guments: 1) the index of the current empty bin and 2) the
number of attempts to reach the first non-empty bin. The
first argument is to ensure that DWTA will produce good
kernels defined in Section 3. Specifically, for instance, in
Table 2, Bin 1s are both empty for x1 and x2. The ideal
collision probability of such empty bins should be the
same as that of two non-empty bins, derived in Equation
3. The second argument, attempts, is to prevent infi-
nite cycles during the process of reaching the non-empty
bin. For instance, when we compute the non-empty bin
mapping for Bin i, if hu only takes in i as an argument
and i = hu(i), then the algorithm would run into an infi-
nite loop. However, with such monotonically increasing
attempts, even under the same i, the sequence of hash
values generated from hu will not run into infinite cy-
cles. Another scenario that can test the randomness of
our algorithm is when j = hu(i, attempt) and bin i and
j are both empty. Under such circumstance, bin i and
j are not guaranteed to be re-assigned with the value of
the same bin because the re-assignments are independent
due to 2-universality of hu(., .).

For each empty bin i, we locate a random (but con-
sistently chosen) non-empty bin j according to a 2-
universal hash function, call it hu. Formally,

HDwta[i] = Hwta[j] + attempt ∗ C. (5)

Algorithm 1 Densified WTA Hashing

input n hashesHwta[] generated from WTA Hashing
input hu(., .), constant C
InitializeHDwta[] = 0
for i = 1 to n do do

ifHwta[i] 6= E then
HDwta[i] = Hwta[i]

else
attempt = 1
next = hu(i, attempt)
whileHwta[next] = E do

attempt + +
next = hu(i, attempt)

end while
HDwta[i] = Hwta[next] + attempt ∗ C

end if
end for
return HDwta[]

Then the newly assigned value to the empty bin i is ex-
actly the value of j with some appropriate offset. The
offset is mainly the number of attempts such process
make before termination, multiplying by some constant
C > K. Table 3 gives a toy example of how Algo-
rithm 1 works on table 2. For x1, from Table 4, the
mapped non-empty bin for Bin 1 with map function hu

is 3 and Bin 3’s hash value is 1. The total attempts made
for reaching Bin 2 is 3. Therefore, according to equa-
tion 5, the new hash value of Bin 1 would be 1 + 3 ∗ C.
Similarly, Bin 4 is assigned with 2 + 1 ∗ C and Bin 6 is
assigned with 2+2∗C. Reassignments in the same man-
ner happen to x2 but since it is more sparse than x1, more
bins are filled with new hash values. Recall in Issues with
WTA Hashing Section, we discuss that the collisions be-
tweenHwta(x1) andHwta(x2) happened in Bin 1, 4 and
6. After densification, there is no collision in Bin 1 and 4.
Therefore after densification the hash collision similarity
comes down to 2

6 = 0.33.

Formally, let us assume that we want to generate n hash
values. Θi(x) denote bin i. Let hu(i, attempt) be the
first number in the process decribed in Algorithm 1 such
that Θhu(i,attempt)(x) 6= E. We can define the Densified

Table 5: Each entry displays the Sparsity of VOC2010, LabelMe-12-50k and MSRc datasets in 1000 BoW, 5000 BoW
and 10000 BoW representation. Sparsity shows the Raw Data sparsity of original BoW vectors and Empty Codes
shows the ratio of empty hash codes in resulting WTA Hashing encoding (empty codes means empty sampling). By
increasing dictionary size, Sparsity naturally goes up in all three datasets.

1000 BoW (%) 5000 BoW (%) 10000 BoW (%)

Sparsity Empty
Codes Sparsity Empty

Codes Sparsity Empty
Codes

VOC2010 68.63 23.84 88.18 61.39 92.87 74.81
LabelMe-12-50k 58.07 13.63 82.93 48.18 89.49 64.43

MSRc 69.46 24.66 86.83 56.60 91.54 70.07

WTA,HDwta, as follows
HDwta(Θi(x)) ={
Hwta(Θi(x)) if Θi(x) 6= E

Hwta(Θhu(i,attempt)(x)) + attempt ∗ C otherwise.

(6)

Based on this definition, we now show our main result
thatHwta precisely fixes the issue of empty bins and get
rid of the bad kernels. Since the result holds for any bin,
we will drop the subscript i. Formally,

Theorem 1. For any given x and y, the collision proba-
bility of ”Densified WTA”HDwta satisfies:

Pr(HDwta(x1) = HDwta(x2)) = kgood(x1, x2)

= kDwta(x1, x2), (7)

Proof: See supplementary material. �
From Theorem 1, it is clear that the new kernel is pre-
cisely the good kernel kgood(x1, x2) with no contribu-
tion of kbad(x1, x2) in kDwta(x1, x2), irrespective of the
sparsity.

4.3 COST OF DENSIFICATION

We can see that we incur an additional cost of densifi-
cation over the generated WTA hashes. The cost comes
from, as shown in Algorithm 1, if the bin is empty, it re-
quires an additional while loop. Let n be the total num-
ber of bins in HDwta(Θ(x)) and nNE be the number of
non-empty bins. The probability of terminating the while
loop in one iteration is p = nNE

n . Therefore the expected
iterations each while loop need to run before termina-
tion will be 1

p . The computation is negligible because it
only involves 1

p hash lookups for every empty bin. We
will show in Section 5.4 that this negligible cost leads to
huge performance gains in practice. This we believe is
one of the many examples where a careful analysis and
some mathematics goes a long way in designing simple
and significantly better algorithms.

4.4 DEALING WITH LARGE HASH VALUES

It can be seen from Equation 6 that the value of
HDwta(Θi(x)) can become large due to the term
attempt∗C. It turns out that this is not a problem. There
is a significant amount of literature to reduce the final
range of hashing scheme [Li and König, 2011]. The
idea is to randomly shrink the range at an insignificant
cost of small constant random collisions. We found that
if we want to constrain the final hash value to a range R
simply taking mod R of the final hash value suffices in
practice. This is what we use during evaluations.

5 EXPERIMENTS

In this section, we compare the performance of Densified
WTA hashing with Vanilla WTA on two tasks: 1) Image
retrieval and 2) classification. The experiments do not
compare with other hashing algorithms because the goal
of this paper is solving the problem of WTA while main-
taining its superiority over other methods mentioned in
the introduction section. They are important tasks of
evaluating the performance of Hashing algorithms, be-
cause hashing has received increasing interests in effi-
cient large-scale image retrieval with the rapid growth of
web images and the classification accuracy can quantify
the discriminative power in hashes.

5.1 DATASETS AND BASELINES

We use three popular publicly available image datasets,
including VOC2010 [Everingham and Winn, 2010],
LabelMe-12-50k [Russell et al., 2008] and MSRc [msr,
2004]:

• The VOC2010 database contains a total of 10103
annotated images of twenty classes, including peo-
ple, animals, vehicles and indoors. The data has
been split into 50% for training and 50% for test-
ing. One image could belong to different classes.

• The LabelMe-12-50k dataset consists of 50,000

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e

c
is

io
n

VOC2010

DWTA 64

WTA 64

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
r
e

c
is

io
n

LabelMe-12-50k

DWTA 64

WTA 64

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e

c
is

io
n

MSRc

DWTA 64

WTA 64

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e

c
is

io
n

VOC2010

DWTA 256

WTA 256

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
r
e

c
is

io
n

LabelMe-12-50k

DWTA 256

WTA 256

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e

c
is

io
n

MSRc

DWTA 256

WTA 256

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e

c
is

io
n

VOC2010

DWTA 512

WTA 512

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
r
e

c
is

io
n

LabelMe-12-50k

DWTA 512

WTA 512

Retrieval 5000 BoW

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
r
e

c
is

io
n

MSRc

DWTA 512

WTA 512

Retrieval 5000 BoW

Figure 1: Precision and Recall curves comparing the retrieval performance of Densified WTA vs. WTA on VOC2010,
LabelMe-12-50k and MSRc datasets for 1000, 5000 and 10000 BoW feature representations. The semi-dotted lines are
the vanilla WTA hashes and bold lines are our proposed Densified WTA Hashes. Different colors represent different
number of BoW. We only show 5000 BoW with 64, 256 and 512 hashes (number of hashes used for ranking). Densified
WTA significantly outperforms the corresponding WTA consistently.

JPEG images of twelve classes, 80% for training
and 20% for testing. They are 256×256-pixels pic-
tures extracted from LabelMe.

• The MSRc is a database of thousands of labeled,
high-resolution (680x480 pixels) images of eigh-
teen classes.

The authors of WTA paper used LabelMe for retrieval
tasks and VOC2010 datasets for classification tasks. We
demonstrate both retrieval and classification on both of
the datasets as well as a new MSRc dataset. As described
in Section of Large Hash Values, to reduce the space of
Densified WTA Hashing, we apply mod operation on
hash values of all bins as a fix. Table 5 summarizes the
sparsity of Raw Data, input Bag of Words, and the ratio
of Empty Hash codes, the resulting codes after applying
WTA Hashing to input Bag of Words vectors. We can
see that when the number of BoW increases, sparsity,
highest in 10000 BoW, also goes up in all three datasets.

Note here, we are doing the same tasks as WTA paper,
but we do not apply exactly same settings and the spar-
sities of BoW would thereby be different (they did not
reveal sparsity of their datasets as well). Therefore, we
do not expect the same results on VOC2010 dataset due
to the sparsity difference.

5.2 IMAGE RETRIEVAL

We now compare the performance of our Densified WTA
codes with Vanilla WTA by replicating the retrieval
experiments and studying the standard precision-recall
curves. This is our main task of performance comparison
because like we mentioned in the Introduction section,
WTA is quite appealing for information retrieval. We re-
stress that WTA (and our DTWA) are the fastest known
hashing scheme, significantly faster than plain random
projections. Furthermore hashing cost is a critical bottle-
neck in large-scale retrieval system.

10
3

10
4

10
5

Number of Hashes

0.28

0.3

0.32

0.34

0.36

0.38

A
c

c
u

ra
c

y

Number of hashes vs. Average avg precision

DWTA 1000

WTA 1000

BOW 1000

Classification

VOC2010

10
3

10
4

10
5

Number of Hashes

0.54

0.56

0.58

0.6

0.62

0.64

0.66

A
c

c
u

ra
c

y

Number of hashes vs. Average avg precision

DWTA 1000

WTA 1000

BOW 1000

Classification

LabelMe-12-50k

10
3

10
4

10
5

Number of Hashes

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c

c
u

ra
c

y

Number of hashes vs. Average accuracy

DWTA 1000

WTA 1000

BOW 1000
Classification

MSRc

10
3

10
4

10
5

Number of Hashes

0.25

0.3

0.35

0.4

0.45

A
c

c
u

ra
c

y

Number of hashes vs. Average accuracy

DWTA 5000

WTA 5000

BOW 5000

VOC2010

Classification

10
3

10
4

10
5

Number of Hashes

0.5

0.55

0.6

0.65

0.7

A
c

c
u

ra
c

y

Number of hashes vs. Average accuracy

DWTA 5000

WTA 5000

BOW 5000

LabelMe-12-50k

Classification

10
3

10
4

10
5

Number of Hashes

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c

c
u

ra
c

y

Number of hashes vs. Average accuracy

DWTA 5000

WTA 5000

BOW 5000
Classification

MSRc

10
3

10
4

10
5

Number of Hashes

0.25

0.3

0.35

0.4

0.45

A
c

c
u

ra
c

y

Number of hashes vs. Average accuracy

DWTA 10000

WTA 10000

BOW 10000

Classification

VOC2010

10
3

10
4

10
5

Number of Hashes

0.5

0.55

0.6

0.65

0.7

A
c

c
u

ra
c

y

Number of hashes vs. Average accuracy

DWTA 10000

WTA 10000

BOW 10000

Classification

LabelMe-12-50k

10
3

10
4

10
5

Number of Hashes

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

A
c

c
u

ra
c

y

Number of hashes vs. Average accuracy

DWTA 10000

WTA 10000

BOW 10000
Classification

MSRc

Figure 2: Densified WTA vs. WTA on the task of Image Classification on three different vision datasets. We used
1000, 5000 and 10000 BoW representation of the images. The y-axis is the mean accuracy and the x-axis is the number
of hashes used as features. The horizontal lines (dotted) are classification based just on the BoW features. The semi-
dotted lines are the vanilla WTA hashes and bold lines are our proposed Densified WTA Hashes. The colors represent
which BoW was used as features. Densified WTA significantly outperforms the corresponding WTA consistently for
all the choices.

For each query image, the nearest-neighbors of each test
data were ranked among training data based on the Ham-
ming distance of the hash codes. Since we had labeled
datasets, all the images with the same label as the query
were treated as the gold standard neighbors. Note, as
mentioned in our proposal, WTA and Densified WTA
leads to two different similarity measures (or kernel).
Therefore, this experiment is comparing which among
these two kernels agrees with the ground truth labels.

Replicating the setting of the original WTA paper, we
first generated standard BoW of local descriptors, com-
puted from the images, using the publicly available
code [Vedaldi and Fulkerson, 2010]. BoW was gener-
ated by extracting local descriptors from the dense grid
over each image and quantizing them using K-means.
We used DSIFT [Kokkinos et al., 2012] as our descriptor
measuring gradient at each key point pixel. The gradi-
ent was represented by a single 128-dimensional vector,

stacked by a three-dimensional (8 × 4 × 4) elementary
feature vector formed by the pixel location (4 × 4) and
the gradient orientation (8). In this experiment, we con-
sider BoW with 1000, 5000, and 10,000 bins to demon-
strate the effect of sparsity. We then generated WTA and
Densified WTA hashes from these images and produce
feature vectors as suggested in the WTA paper. For the
feature generation, we used the fixed recommended set-
ting of K = 4 for all the datasets which was picked using
the same method described in [Yagnik et al., 2011] and
best for WTA. The precision and recall curves for the
rankings based on different hash codes are shown in Fig-
ure 1. We show plots for 64, 256 and 512 hash codes
of 1000, 5000 and 10000 BoW representations (9 curves
for each dataset per hashing scheme). To average out the
randomness of both Densified and original WTA hash-
ing, every curve on the graphs is averaged from 10 runs.

Densified WTA hashes lead to notably better precision-

recall compared to Vanilla WTA on all combinations ir-
respective of the choices of the dataset. As with classi-
fication, an increase in BoW leads to larger gap due to
increases in sparsity. This again validates our claims. It
is exciting to see that a small but principle modification
to WTA Hashing can lead to drastic benefits.

5.3 CLASSIFICATION

Our motivation for comparing two Hashing algorithms
using classification accuracy is to quantify the discrimi-
native power in hashes. We use Densified WTA codes to
do the classification task on the VOC2010, LabelMe-12-
50k and MSRc datasets. We don’t compare with those
state-of-the-art methods like a particular type of nonlin-
ear Mercer kernels, e.g. the intersection kernel or the
Chi-square kernel [Yang et al., 2009] in classifying these
datasets. Instead, we apply Densified WTA and original
WTA hashes to a baseline method, sparse BoW of local
descriptors and passing to linear SVM classifier, to show
that the Densified WTA achieve superior improvement
on classification tasks on sparse data.

To compute the classification performance we ran a sim-
ple SVM on BoW features, WTA hashed features, and
Densified WTA hashed features. We varied the number
of hash features over a range of values: 5 × 102, 1 ×
103, 5×103, 1×104, 5×104, 1×105. We again choose
K=4. The C parameter of SVM was tuned using cross-
validation, for every individual run, to ensure the best
possible performance on every combination of the num-
ber of features and the hashing scheme. This ensures
fairness of the comparisons.

Figure 2 compares the mean average precision of classi-
fication tasks using Densified WTA codes, WTA codes
and basic sparse BoW on three datasets. The baseline,
mean average precision for the three BoWs with differ-
ent bins is shown by dashed straight lines. The mean
average precision for WTA feature vectors is shown by
dot-dashed curves and for Densified WTA feature vec-
tors is shown by dot-dashed curves. We observe that as
stated in WTA paper, precision increases when original
BoW bin number increases or the number of codes in-
creases with WTA beating BoW in each case. These ob-
servations are in line with the original WTA paper. We
followed the experiment pipeline from the WTA paper,
while generating BoW using standard package [Vedaldi
and Fulkerson, 2010]. It is not surprising to see exactly
the same trends in classification results with a difference
in relative values.

The Densified WTA consistently outperforms Vanilla
WTA significantly on all the three datasets, irrespective
of the choice of BoW or the number of hashes. More-

Table 6: Average running time comparison among
DWTA, and Sparse Random Projection for three datasets
with 10000 BoW representation and 512 hashes.

SRP (ms) DWTA (ms)
VOC2010 8.578 0.032

LabelMe-12-50k 8.62 0.046
MSRc 8.609 0.04

over, the performance gap increases with the number of
BoW. The increase in BoW rises sparsity of the dataset
and hence this trend validates our hypothesis and theory
in this paper. The gains over WTA are significant and our
results clearly push the boundary of classification perfor-
mance with hashing-based kernels significantly outper-
forming BoW. Note that increasing BoW from 5000 to
10000 leads to no gains in accuracy. But with hashing,
especially Densified WTA, the gains keep climbing.

5.4 RUNNING TIME OF DWTA HASHING

As mentioned in Section 4.3, DWTA hashing only in-
duces negligible cost of densification. We implemented
DWTA and another popular algorithm for sparse data,
Sparse Random Projection [Achlioptas, 2001] (SRP) and
empirically show the average running time comparison
of both algorithms for each data point in Table 6. We
used 10000 BoW representation for three datasets and
512 hashes. The results clearly exhibited the advantage
of DWTA over FRP in running time which further proves
the superiority and Practicality of DWTA in general.

6 CONCLUSIONS

In this work, we revisited the problem of WTA Hashing
for very sparse datasets which are ubiquitous in large-
scale applications. We found a particular issue with WTA
hashing in this regime which makes them uninformative
with an increase in sparsity. We provide a principled so-
lution to this problem using the novel 2-universal hashing
for “Densification”. Our solutions leverage the theoreti-
cal benefits of rank correlation methods and at the same
time successfully resolves the concern of uninformative
hash values produced by WTA Hashing for data with
high sparsity. Evaluation results shown confirm the su-
perior performance of Densified WTA Hashing on both
image retrieval and classification task.

ACKNOWLEDGEMENTS

This work was supported by National Science Founda-
tion IIS-1652131, RI-1718478, AFOSR-YIP FA9550-
18-1-0152 and Amazon Research Award.

References

(2004). Microsoft research cambridge object recogni-
tion image database. Microsoft Research.

Achlioptas, D. (2001). Database-friendly random
projections. In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 274–281. ACM.

Caiafa, C. F., Sporns, O., Saykin, A., and Pestilli,
F. (2017). Unified representation of tractography and
diffusion-weighted mri data using sparse multidimen-
sional arrays. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing
Systems 30, pages 4340–4351. Curran Associates, Inc.

Canini, K., Chandra, T., Ie, E., McFadden, J., Goldman,
K., Gunter, M., Harmsen, J., LeFevre, K., Lepikhin, D.,
Llinares, T., et al. (2012). Sibyl: A system for large
scale supervised machine learning. Technical Talk.

Chapelle, O., Haffner, P., and Vapnik, V. N. (1999).
Support vector machines for histogram-based image
classification. Neural Networks, IEEE Transactions on,
10(5):1055–1064.

Chen, B., Shrivastava, A., and Steorts, R. C. (2017).
Unique entity estimation with application to the syrian
conflict. arXiv preprint arXiv:1710.02690.

Chen, B., Xu, Y., and Shrivastava, A. (2018). Lsh-
sampling breaks the computational chicken-and-egg
loop in adaptive stochastic gradient estimation.

Dean, T., Ruzon, M., Segal, M., Shlens, J., Vijaya-
narasimhan, S., and Yagnik, J. (2013). Fast, accurate
detection of 100,000 object classes on a single machine.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1814–1821.

Everingham, M. and Winn, J. (2010). The pascal visual
object classes challenge 2010 (voc2010) development
kit.

Indyk, P. and Motwani, R. (1998). Approximate nearest
neighbors: towards removing the curse of dimensional-
ity. In Proceedings of the thirtieth annual ACM sympo-
sium on Theory of computing, pages 604–613. ACM.

Jiang, A., Bohossian, V., and Bruck, J. (2007). Floating
codes for joint information storage in write asymmet-
ric memories. In Information Theory, 2007. ISIT 2007.
IEEE International Symposium on, pages 1166–1170.
IEEE.

Kokkinos, I., Bronstein, M., and Yuille, A. (2012).
Dense scale invariant descriptors for images and sur-
faces.

Lee, H., Battle, A., Raina, R., and Ng, A. Y. (2006). Ef-
ficient sparse coding algorithms. In Advances in neural
information processing systems, pages 801–808.

Li, P. and König, A. C. (2011). Theory and applications
b-bit minwise hashing. Commun. ACM.

Li, P., Shrivastava, A., Moore, J. L., and König, A. C.
(2011). Hashing algorithms for large-scale learning.
In Advances in neural information processing systems,
pages 2672–2680.

Liu, W., Shen, X., and Tsang, I. (2017). Sparse embed-
ded k-means clustering. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R., editors, Advances in Neural Informa-
tion Processing Systems 30, pages 3319–3327. Curran
Associates, Inc.

Liu, W. and Tsang, I. W. (2016). Sparse perceptron de-
cision tree for millions of dimensions. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelli-
gence, AAAI’16, pages 1881–1887. AAAI Press.

Liu, W. and Tsang, I. W. (2017). Making decision trees
feasible in ultrahigh feature and label dimensions. Jour-
nal of Machine Learning Research, 18(81):1–36.

Parikh, D. and Grauman, K. (2011). Relative attributes.
In Computer Vision (ICCV), 2011 IEEE International
Conference on, pages 503–510. IEEE.

Rahimi, A. and Recht, B. (2007). Random features for
large-scale kernel machines. In Advances in neural in-
formation processing systems, pages 1177–1184.

Russell, B. C., Torralba, A., Murphy, K. P., and Free-
man, W. T. (2008). Labelme: a database and web-based
tool for image annotation. International journal of com-
puter vision, 77(1-3):157–173.

Shrivastava, A. (2015). Probabilistic Hashing Tech-
niques For Big Data. PhD thesis, Cornell University.

Shrivastava, A. (2017). Optimal densification for
fast and accurate minwise hashing. arXiv preprint
arXiv:1703.04664.

Shrivastava, A. and Li, P. (2014a). Densifying one
permutation hashing via rotation for fast near neighbor
search. In Proceedings of the 31st International Confer-
ence on Machine Learning (ICML-14), pages 557–565.

Shrivastava, A. and Li, P. (2014b). Improved densifica-
tion of one permutation hashing. In UAI, Quebec, CA.

Spring, R. and Shrivastava, A. (2017). Scalable and
sustainable deep learning via randomized hashing. In
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 445–454. ACM.

Vedaldi, A. and Fulkerson, B. (2010). Vlfeat: An open
and portable library of computer vision algorithms. In
Proceedings of the 18th ACM international conference
on Multimedia, pages 1469–1472. ACM.

Vijayanarasimhan, S., Shlens, J., Monga, R., and Yag-
nik, J. (2014). Deep networks with large output spaces.
arXiv preprint arXiv:1412.7479.

Weber, R., Schek, H.-J., and Blott, S. (1998). A quan-
titative analysis and performance study for similarity-
search methods in high-dimensional spaces. In Pro-
ceedings of the 24rd International Conference on Very
Large Data Bases, VLDB ’98, pages 194–205, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Yagnik, J., Strelow, D., Ross, D. A., and Lin, R.-s.
(2011). The power of comparative reasoning. In Com-
puter Vision (ICCV), 2011 IEEE International Confer-
ence on, pages 2431–2438. IEEE.

Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Lin-
ear spatial pyramid matching using sparse coding for
image classification. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 1794–1801. IEEE.

Ziegler, A., Christiansen, E., Kriegman, D., and Be-
longie, S. (2012). Locally uniform comparison image
descriptor. In Neural Information Processing Systems
(NIPS), pages 1–9, Lake Tahoe, NV.

	INTRODUCTION
	REVIEW WTA HASHING
	KEY WTA NOTATIONS

	SPARSE DATASETS AND ISSUES WITH WTA HASHING
	SPARSITY MAKES WTA UNINFORMATIVE

	OUR PROPOSAL: DENSIFIED WTA HASHING
	2-UNIVERSAL HASHING
	PROPOSAL
	COST OF DENSIFICATION
	DEALING WITH LARGE HASH VALUES

	EXPERIMENTS
	DATASETS AND BASELINES
	IMAGE RETRIEVAL
	CLASSIFICATION
	RUNNING TIME OF DWTA HASHING

	CONCLUSIONS

