


risks in both situations are different. For example, if Eve aimsbservations) when the inputs to the systems are independent
to take a photo of the drone, in the rst case she knows wheffeom the previous states.
to turn her camera (squargésind?2 are close by) while in the
second case, she does not (squdresd 64 are far apart). A. Related Work
Instead, we propose to use an Euclidean distance distortionSecure data communication where the adversary has
measure: how far (in Euclidean distance) is Eve's estimatglimited computational power is studied from the lens
from the actual location. We then propose encoding/decodirgn information theory, most notably by Shannon [5] and
schemes which utilize the shared key to maximize thi¥Vyner [6]. The study of secure communication from a
distance. We rst consider an “average” distortion measurglistortion angle is relatively new and is rst studied by
Note that if Eve had not received any of the drone trans¥famamoto [7], where the goal is to maximize the distortion
missions, then the best (adversarial) estimate of the dron@§ an eavesdropper's estimate on a message. Schieler and
location at any given time is the center point of the con nedCuff [8] later showed that, in the limit of an in nite block
region in Fig. 1a. Therefore, a good encryption scheme wouléngth f1) code, onlylog(n) bits of secret keys are needed
strive to maintain Eve's estimate to be as close to the centtsr achieve the maximum possible distortion. Schemes for
point as possible; and we achieve the maximum possibt@usal encodings ( nite block length) were considered in [9]
distortion, if, after overhearing the drone's transmissiondor single shot communication and exponential bene ts for
Eve's best estimate still remains the center point. each additional bit of shared key were discussed. However,
The following scheme can achieve this maximum distorthe schemes do not translate to the scenarios where one has
tion by using exactly one bit of shared secret key. Wheto communicate correlated temporal data like the state of a
encoding, the drone either sends its actual trajectory, orcantrol system.
“mirrored” version of it, depending on the value of the secret Secure communication in control systems is studied
key. The mirrored trajectory is obtained by re ecting thein [10], [11], [12], [13], [14], [15]. These works either
actual trajectory across a mirroring point in space; in thiprovide distortion only at the steady state or use measures
example, the mirroring point is the center point as shown iauch as differential privacy (does not use keys) and weak
Fig. 1b. Since Eve does not know the value of the sharddformation theoretic security; they sometimes also assume
key, its best estimate of the drone's location - after receivinthat Eve receives different (a subset of the) information than
the drone's transmissions - would be the average locatiddob. We allow the adversary to have knowledge about the
given the trajectory and its mirrored version, which is exactlgystem dynamics and thus could enable easy generalizations
the center point. Our results in Section 11l extend this ideto cases where the adversary might have other side informa-
of mirroring to dynamical systems in higher dimensionation. We analyze the worst case and expected cases separately
spaces, and theoretically analyze the performance in termsasfd give distortion guarantees in both cases.
average distortion for a larger variety of distributions (with
certain symmetry conditions).
Next, we consider a worst-case-sense distortion-basedFor a matrixA, we denote byA°the transposeofk X and
metric. In other words, our security metric is “in the worstXa denote random columns, and® = [X 2 X 2,; Xg°
case, how far is Eve's estimate from the actual location®or b a and a;b 2 Z; for any random vectoly, we
That is, the adversary's distortion may be different foldenote the mean and covariance matriceé ofy y andRy
different time instances and different instances of the actukgspectively, thus for example, the mean and the covariance
trajectory, and we are interested in the minimum amon@atrix of X £ will be denoted by x » andRy » respectively;
these. In Section IV we provide encryption schemes th&er a matrix A, we denote byA™" the r-th  power of A;
are suitable for maximizing this distortion metric and showm] := f1;2;:::;mg wherem 2 Z*.
that with 3 bits of shared key per dimension (i.8.for three
dimensional motion), our schemes achieve near-perfect worst
case distortion. Our main contributions are as follows: ~ System Dynamicswe consider the linear dynamical system,
We. de ne sgcurity measures that are b.ased on assessing Xts1 = AX¢+ BUp+ W, Vi = CXe+ v (D)
the distortion: in the average sense over time and over data,
and in the minimum sense, providing worst case guarantee$iereX; 2 R" is the state of the system at timeU; 2 R™
at any time and for any particular instances of data. is the input to the system at tintew; 2 R" is the process
For the expected case distortion, we develop a mirroringoise, and, 2 RP is the observation noise. We denote=
based scheme which uses exactly one bit of key and ¢y , U = U] * andw= w] !. Based on the initial state
provide maximum possible distortion (equivalent to Eve withX ; and target statX 1, the controller computes a sequence
no observations) in some cases. We also discuss the caséiputs that moves the state froxy to X+.
where it is not optimal and give an analytical characterizatio@ommunication and Adversary Models. At each time
of the attained distortion. instance the system transmits information about its state
For the worst case distortion, we design a scheme that a legitimate receiver, which is referred to as Bob, via
uses 3 bits of key per dimension and prove it achievesa noiseless link. This situation occurs for example when
the maximum possible distortion (equivalent to Eve with ndob is remotely monitoring the execution of the system as

B. Notations

Il. SYSTEM MODEL



in SCADA systems or in the remote operation of dronegime instancet and a transmitted codewoid] , we de ne
A malicious receiver, referred to as Eve, is assumed tine following quantity,

eavesdrop on the communication between the system and

Bob and is able to receive all transmitted signals. Eve is )

assqmgd to be passive: ;he does not a_ctlvely comlmumcateD tz7) = Ex,jzr Xt X, @ tr Ry, zr ; (2)
but is interested in learning the underlying system's states ! !

fromt = 1 to T. We assume that the System and Bob

have a shared kelt which they use to encode/decode the,nere (2) captures the distortion incurred by Eve's estimate

transmitted messages. of X;. Equality in (a) follows because the best (minimizing)
Inputs and States Random Process ModellVe assume that estimates of Eve at timeare, X, = ( Z] = E X(Z]

both receivers are only aware of the system model, the matri- ) ) ]
cesA;B;C and the statistics of noises. Therefore, from the Noté that Bob is required to successfully estimate
perspective of the receivers, the input and output sequenc&¥Wing Z} and the key. Therefore, for a given realization
have random distributions which depend&yB;C and the of the key, the encoding function can only map oXe
statistics of the noise. In addition to the process neige and that key realization to each valueb_f. Therefore Eve
the joint distributionf (X; U;w) depends on the initial and reallzes. that only trajec_:torles from a strict subset can pe the
target states and the control law of the system. So, even /€ trajectory for a g|verz_lT : those are the ones which
noiseless systemg{ and U possess inherent randomnes§°rre§pqnd to each key realization. Thereforg, the expectqtlon
from a receiver's perspective due to its lack of knowledgd’ (2) is in fact taken over the randomness in the key taking
about the control law and the initial and target states. If1t0 account posterior probab|I|t|es_g|v@1T. If Eve does
general, the control inputs can be dependent on the systen{0t have observations, the expectation is taken 2yewith
statesX . However, knowing the marginal distribution of ~ Prior distribution and will geD (tZ{)= tr(Rx.).
in noiseless systems can specify the marginal distribution of As D(t;Z]) is a function of timet and the transmitted
X . This can be shown as] = QU + QW + QX 1, where sequencé, we consider two overall distortion metrics: the

5 3 5 3 “average case” distortion (denoted Byt) where we take

B 0 0 I 0 0 expectation over all possib@; and average out over time;
_E AB B 02 _E A Oz and the “worst case” distortion (denoted Byy ) where we
Q= : Lo h Q= : Do take minimum over all possiblZ{ and time instances.
A" B AB B AT 2 Al
S " #

and @ = [A°(A2)0 (AT 190 This implies that for Average 1 X
noiseless systems, the marginal distribution Wfwould Distortion ~ PE = EzI T D(tZ{) @)
imply the marginal distribution ofX] for a given initial t=1
stateX 1 aljd thus the_marngnaI d|str|but|onTa£f ._The me_an Worst Case Dw =min minD(tZ]) : (4)
and covariance matrix oK; becomeE(X;) = x; = Distortion zI  t2[T]

Q u+ Q x, andRyy = QRyQ".

Encoding Model. The system transmits a packét at each

time stept. Thet-th transmitted packet can be a function of It is worth to note that the de nitions oDg and Dy

all previous observations and the shared keys, tByus= de ned in (3) and (4) imply that Eve's state estimation must
E(Y{;K), whereE is the encoding function used at timebe associated to a time instance. In other words, making
t. We will denotezZ by Z. a random/constant estimation of the state hoping that it
Bob/Eve Models of Decoding.Bob noiselessly receives matches the actual state at some time will lead to high
the transmitted packets from the system, and decodes thelstortion values. FurtheD,y can be de ned even when
using the shared key. Then, using the decoded information titere is no prior distribution oX . However, to compare
generates an estimate of the state transmissions of the sysieno the case when the adversary has no observations, we
at timest =1; ;T. In this work we always require Bob assume thak | always have a known prior distribution.

to decode in a lossless manner (i.e., with zero Q|stort|onbesign GoalsOur goal is to choose the encoding and decod-
Formally, H (XjZ1;K) = 0; 8t 2 [T], whereH is the iny functions,E and ., so that Bob can decode loselessly
Sha_nnpn entropy. . o while the distortion is maximized for Eve's estimate. In

Similarly, Eve also receives all transmissions from theqgition, we seek to achieve this with the minimum amount

system. However, unlike Bob, she does not have any knowls chared keyK . In absence of any observation by Eve,
edge about the keK . Therefore, Eve's estimate of: IS hase distortions will be

Xi= ¢ Z! ; t2][T], where . isthe decoding function
used by Eve at timé.

Distortion Metrics. We consider a distortion-based security

metric which captures how far (in Euclidean distance) an DE®=

tr(Rx,); DW= min tr(Rx,):
estimate is from the actual value. More formally, for a given 12Tl

T t=1



These will serve as upper bounds for our schemes, as  insights on the maximum achievable distortion. This is shown

N N in the next corollary.
De = EEzT tr(Ry . 77) @1 tr(Rx,) = DI, Corollary 3.2 (Proof in Appendix V-A)If the mirroring
T " U T.a [ scheme matriceS; andh in Theorem 3.1 are selected such
h i (5) that
— . nT .
Dw =min mintr(Ry 1) minEyr tr(Ry, i77) Px(X) = Tx(X); - forall X 2 R™; (10)
ZT t2[T] Rk t2[T] “t e
" ! then (9) becomes,
min tr(Rx,) = D™ (6)
t2[T] 1 X
where (a) and (b) follows by noting that the trace of De = T tr(SiRx, S2+ (b St x (b St x,)9
the conditional covariance matrix is a quadratic (convex) i=1 (11)
T " )
functioninZ; and therefore we can use Jensen's inequality. We can interpret (11) as follows. First, note that condition
lIl. OPTIMIZING AVERAGE DISTORTION D¢ (10) impliesh = S x,. To see this, note tha&X and X
In this section, we assume that the control system in (1) Eave the same distribution, hence the same mean. Therefore,

noise free, that ig; = w; = 0. In general, an observer would ¢ have

be used to reconstruct or estimate the state from observations. EX, = (| ZStOSt)EXt + 23&1
However, to simplify the exposition we assume the state can ~ _y g _ _ _
be directly measured (C is the identity map) although our )) S x, = Sh =) SIS X = SiSh
results can be extended to the case of an arbitrary observable é? St x, = by
pair (A,C) in (1). 0_ .
We now discuss our proposed scheme that uses one bitéﬁtﬁere (f()) fqllows tbet%ausstthst (; tl : tAssutr)nlng that Cfn'
shared key and show how the achieved distortion compar fion (10) is met, then the distortion becomes: =
to the upper bound in (5). Ti tr(StRx, SY). The achieved distortion therefore de-

Mirroring Scheme. This scheme works as follows: pelﬁtljs on the choice o&: if S = | then the maximum
; -0n- distortion can be achieved by our mirroring scheme. How-
Xy if K =0; . ; .
Zy = X, ifK=1: 8t 2 [T]; (7)  ever, such a choice & may not be a feasible one to ensure

that condition (10) is met, as we will see in the following
where K is the shared bit an&; is the state vectoX,, examples. One case for whi&h = | satis es condition (10)

mirrored across a particular af ne subspdge, and allows maximum distortion is whef is symmetrically
. distributed around a point. We show this in the next corollary.
— n - .
St = fx 2R Sx = b ®) Corollary 3.3: For a random vectoX 2 R'", if there

whereS; 2 RS andh 2 R®t. Since every af ne subspace €xists a pointv 2 R™ for which fx (é) = fx(2v  X),
can be written in terms of orthogonal vectors, we assumgy - R™", thenDg = %tr(Rx)= 1 tr(Ry, ).

T

that S;S? = 1. It can be shown that the mirrored poidy, ) t=1 o
is (I 2S%S)X; +2S%. Proof: SinceX and2v X have the same distributions,
Example. ConsiderX; 2 R? whereS; = p£[ 1 1] and they will have the same mean. This implies that x . We
' 2

_ . . then use the following mirroring schems&; = |, b = x,
hh =0. ThenX; corresponds to re ecting across a line tha or t 2 [1: T]. With this, we geti = 2 x, X, and

passes through the origin with_ltﬂ.’ﬁ0 anglg. _ thusX = 2 x X whereX = [X? X9 X01° and
Before performance analysis, we highlight that the en- - 0 0 90 This implies
coding/decoding complexity of our scheme@¥n?). The X "~ ' X1 Xz Xr 1+ plies,
performance of such scheme is given in the next theorem. fx (X)=fx(X); 8X 2 R"T;
Theorem 3.1 (Proof in Appendix V-AThe mirroring
scheme with matriceS;'s and by's allows Bob to perfectly
estimateX.'s, and the distortion in Eve's estimate is,

so condition (10) is met. Therefore the distortion becomes
equal toD . [

" # A. Examples

1 X 2fx (X) 5 In this section, we show the implications of our results in
Pe=+ E X (X)+ fx (X) SiXe Bk® 5 () the context of a few examples.
Example 1. Consider an example whete is distributed as
whereX :=[X? X2 x2are. Gaussian with meany and covariance matriRy. Then
Assuming thatf x (x) is known, then Theorem 3.1 pro- for a zero initial stateX] is also Gaussian distributed with
vides a closed-form characterization of the achieved averagesan x] = Q u and varianceRXZT = QRyQT, as we
distortion for any mirroring scheme with matric& and assume noise to be zero. A Gaussian random vector satis es
k. Moreover, under some symmetry conditions fan(x), the conditions in Corollary 3.3, and therefore we can get
the expression in (9) admits a simpli ed version which givesnaximum distortion by settiny = x, andS; = 1.

t=1



The next example is based on a Markov-based model for
the dynamical system. For this example, the following lemma
is useful.

Lemma 3.4:Consider the random vectods; where the
following conditions hold: 1¥x,(x1) = fx,(2 1 Xx1) and
2) Fxiix, (Xexe 1) = fxix, (2 ¢ X2 ¢ 1 Xt 1)
Then for this casefx (X) = fx (2 X), where =
[ 0 0 19° Therefore, by virtue of Corollary 3.3,
mirroring schemes can achieve the maximum distortion.

Lemma 3.4 allows us to characterize the performance of
the following example.

Example 2. Consider the following random walk mobility
model. Leta 2 N*, andX; be its location at time, then,

Fig. 2. An illustration of some trajectories. The re ection
X1 Uni( a:a)) plane is shown as a dashed-black line. One trajectory (solid-
XXy 1 Uni([ a:a]\f Xy 1 L)Xy 15Xy 1+10): black) is shown along with its mirrored image (dotted-black).

One can see that these distributions satisfy the conditions
in Lemma 3.4. Therefore, one can dgt= ; = 0 and
S; =1, which will achieve maximum distortion dDg .

Figure 2 shows some of the drone trajectories obtained
from our numerical simulation. It is clear that not all
Example 3. Here we provide a numerical example Whichtrajecto_nes are (_equrobable, and .ther.efore the distribution

f X is not uniform across all bins in space. However,

shows how our mirroring scheme performs for situation .

where we do not have an analytical handle on the state di 1€ _qomputatlon OTE.XF shows the e>_<pected valu_e of the
tributions. We assume the quadrotor dynamical system pr psmo_n 0 b_e the origin. _Mor_eover, since the m_ot|0_n of _the
vided in [16,(4)]. The quadrotor moves in a 3-dimensional rone is mainly progressive in the positive x-axis direction,

cubed space with a width, length and height of 2 meter e ection across the origin results in mirrored trajectories
where the origin is the centler point of the space. The quadr 1at are progressing in the opposite direction, and therefore

tor starts its trajectory from an initial poirit 1:y:z;) and are identi ed to be fake automatically. Therefore, mirroring

nishes its trajectory at a target poift; yr; zr) afterT time 39205? a fpo"t}:_ herelzq IS u;eless: lt?e numerically computed
steps, where the pointg;z,;yr;zr are picked uniformly ISNZZ(LOCveorcor:zijgr en??re}olfineql;acroossz etLoé re ection plane
at random in[ 1;1]*. We assume thaf = 10 time steps, 9 0 1 Op

and that the continuous model in [164)] is discretized shown in Figure 2, wheré = 0 andS = o o ;.
with a sample time offs = 0:5 seconds. We assume thatag can be seen from the gure, the re ection plane is

the quadrotor encodes and transmits only the states Whigfyeed an axis of symmetry for the distribution of the drones
contain the location information (rst three elements of thgaiectories, and therefore is expected to provide high distor-
state vectorX.). The quadrotor is equipped W'tlh an LQR¢jon values. We numerically evaluate the attained distortion
controller which designs the input sequeridg * as the using the scheme by using equation (9), which evaluates to
solution of the following problem De =0:3971 This is slightly less thaD ™ = 0:3979
L 2 2 Remark. Optimizing Dg requires the use of one bit of key.
minimize KUk +10 uz(; : ua However, it may be insuf cient for some application to allow
subject to Xq = AMEX, + B, 8t02 r 1 the adversary to confuse the actual state between only two
Xp2= 1lyi 220 0 possibilities. For such scenarios, our scheme can be extended
Xr=1yr zr O 0 to larger uncertainty sets by using larger keys, along with

i i (12) symmetric rotations and mirroring.
where A%4ad gnd BA4ad gre the quadrotor's discretized sys-

tems matrices. The remaining statesXaf andX 1 are setto V. OPTIMIZING THE WORST CASE DISTORTION Dw

zero to allow the drone to hover at the respective locations. In this section, we present an encryption scheme that
We perform numerical simulation of the aforementionedttempts to maximize the worst case distortion for Eve. The
setup: we run2 millions iterations, where in each iteration main idea is to obfuscate the initial state in a such a way
a new initial and target points are picked, and the resultatitat Eve, even if she optimally uses her knowledge about the
trajectory is recorded. Based on the recorded data, we caynamics and her observations, her best estimate is close to
sider different mirroring schemes and numerically evaluatihe maximal distortion. We start by studying the problem
the attained distortion. To facilitate numerical evaluationgf distorting the transmission of a single random variable
the simulation space is gridded into bins wiif2 meters of in Theorems 4.2 and 4.3. These results then form the basis
separation, and the location of the drone at each trajectofgr maximizing the worst case distortion of a trajectory, as
is approximated to the nearest space bin. described in Theorem 4.4.



A. Building Step: Scalar Case k 1. ForK 2f0;1g, we use the following encoding:

Consider the case where the system wants to communicate-, _ .
. ) o Z = E(X;K) (13)
a single scalar random variab¥ to Bob by transmitting ) C 1
Z. The worst case distortioby for Eve will be Dy = < X !f K 2k 1 iXji> «
minz Var(XjZ). Note that if Eve does not overhear, Eve = Xz if K> 2
will use as her estimate the minimum mean square estimate X+Kgemod[ ;) X2[ & «);

(the mean value), and thus experience a worst case distortio .
equal to the variance o . wﬂere the optimal value of the constant depends on the

We rst assume tha N (0:1), and thus, the worst numberk of keys we haveK is the decimal equivalent of

case distortion can not be larger thanby (6). We next gblnary St”f‘g. of Iengt  andr “Od. [a:b) = v '(b 2)
? ; is such thati is an integer and i(b a) 2 [a;b) for
develop our scheme progressively, from simple to morg

o ; : ria;b 2 R. Intuitively, if jXj >  then for half of the keys,

sophisticated steps. We will also use the following Iemma.We re ect across origin and for other half we do nothing; if

.ermms é:ﬂiThe vaniance of tWObrea' ”“mb‘;‘ﬁ andb i< . we divide this window of size  into 2¢ equal
W'_t p.ro a "“e_SPa andpy 1S glven YPapy(a ) )_ ) size windows and shift a point from one window to another
Mirroring or Shifting. Re ecting around the origin (as we by jumpingK (in decimal) windows. An example fdt = 2
did for optimizing the average case distortion in Section Ill)g shown in Fig. 4a for the key valuds = 11 andK = 10.
does not work well whenX takes small values: indeed Fig. 4b plotsDy as a function of the number of keys
Var(Xjz) is Pr(X = ZjZ)(Pr(X = ZjZ)}(Z  ( Z))*> ysingk = 3 and ; = 4:84 we achieveDy = 0:9998
using Lemma 4.1 and as the plot in Fig. 3a shows has gich is very close td, the best we can hope for.
worst case value that goes to zeroxasapproaches zero. To Theorem 4.2:A Gaussian random variable with mean

avoid this, we could try to use a “shifting” scheme where W& 4 variance 2 can be near perfectly (0:9998times the

add a constant to X whenever the shared key bit is ON€:herfect distortion) distorted in worst case settings by just

but now this scheme does not perform well for large value

i : e ﬁsing three bits of shared keys.
of X, asX increases VX jZ) goes to zero as in Fig. 3b. Proof: Generate the random variale N (0:1) as
Shifting+Mirroring. We here combine shifting and mirror-,, _ (X )= and encrypt it using = 3 key bits z;nd the

ing, in order to achieve a good performance for both Sm:yreviously described scheme. For 0:9998we have
and large values o . We start from the case where we hav ' '
k =1 bit of key and then go to the cage 1.

) _ ) Dw =min Var(XjZ) =min Var(V + jZ)
k =1: We select a; 2 Rthat determines a window size z z

( 1 is public and known by Eve). The encoding function is = 2 mzin Var(Vjz) = ¢ %
8
3 X if K=0 -

= K = X ifK=17jXj> 1 Remark: We optimized the parameter, of our scheme
Z = E(X:K) fKo1
3 X+ 1 ! K :1f 1 X<0 assuming Gaussian distribution. For other distributions, the
X 1 TK=170 X< 4 optimal choice of ¢ and the corresponding worst case
We note that there is one particular value f X = 1, distortion would be different.

which we do not transmit. Since this is of zero probability ) )
measure, it can be safely ignored. Givén there are two B. Vector Case and Time Series

possibilities forX:: Theorem 4.3 (Proof in Appendix V-BFor a Gaussian

g fz; zg ifjzj> 1 randqm vectorX_ 2 R" with mean ano_l a diagonal

X 2 £2:Z + 1g if . Z<0 covariance matrlx_ we can achievd,y within 0:9998 of

: f2:7 g if0 Z< 4 the optimal by usingn bits of shared keys.
This theorem uses our 3-bit encryption for each element in

Using the fact thatX N (0;1), we can calculate the the vector. Assume now that this vector captures the prob-
posterior probabilitiesPr(XjZ) and use Lemma 4.1 to ability distribution of the initial state of dynamical system;
compute VafX jZ). Fig. 3c plots VafXjzZ) for = 1:76. by encrypting this state we can guarantee the following.
The worst case distortion in this case becoiidg 77, which Theorem 4.4 (Complete Proof in Appendix V-CT)sing
is the best we can hope for if we have only one bit of share8n bits of shared keys we can achiefzgy within 0:9998
key. This follows because for any mapping frotmto Z, a  of the optimal for the dynamical systems (1) with= 1,
transmitted symboF can have at most two pre-images (as/t = 0, singular values oA more thanl, and initial state
Bob needs to reliably decode with one bit of key), and iX1 N (; ) , where is diagonal covariance matrix, and
one of these iX = 0, then no matter what the second onéJ; andw; are independent oX.
is, the distortion corresponding ® will be at most0:4477. Remark: Although the independence assumption on the
Equality occurs when the second pre-imageZofs 1:76, inputs is rather restrictive, the result serves as a stepping
which is what our scheme also mapgo (using =1:76). stone towards understanding general cases.



Proof: The system transmit&Z; = f(Y;;K) =
f (X1;K) wheref is the encoding in Theorem 4.3, and

Zivp = AZ +(Yier  AYY)

AZ:+ BU;+w; 8t2[T 1]

Bob can decod&; usingZ; andK . Then:

Xis1 = Zisw AZy + AX,
(AZ{ + BU; + wy)

AX ¢+ BU; + wy

AZ + AX,
Xis1; 8t2[T

1]:

Eve's distortion is calculated in the Appendix V-C. =

Complexity: O(n?) per time instance for both encoding and = Pz Zt + (1

decoding.
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prove that we will have worst case distortion at lea6) tr

D(t + l’ZI) = tr(RX1+1 jEinfo) = tr(R(Ax t+ BUl+Wt)jEinfo)
= tr(Reax jeme) = AR jg,,A%) = tr(A%ARY je,,)

(@)
= tr(V VoinjEme): tr( VOthjE V)

info

(b) X (c) X

= idi (VOthjEinfoV) di (VORijEinfDV)
i):(l )i(2[n]

d) )

(: i(VOIQXt]'EinfoV) (:e i(I:QXIJ'Einfo)
i2[n] i2[n]

(f)
= tr(RXIJE\nfo) Ctr() ’

where in (a), we do eigenvalue decompositior’AGA which

is a positive de nite matrix and thus will have non negative
eigenvalues; in (b)d; (VORXU-EWOV) is the i-th diagonal
entry of VRy je,,V; (C) is true becaus® Ry e,V is

a positive de nite matrix and all the diagonal entries of a
positive semi de nite matrix are non-negative and because
of our assumption that singular values &f i.e. the square
root of eigenvalues ofAA are all more than one; (d)

is because summation of eigenvalues is equal to the sum
of all the diagonal entries for any square matrix, where
i(VRx jewV) is the i-th eigenvalue ofVRy je,.V;

(e) is because a unitary transform preserve the eigenvalues.
Finally (f) is because of the induction step.



