


risks in both situations are different. For example, if Eve aims
to take a photo of the drone, in the �rst case she knows where
to turn her camera (squares1 and2 are close by) while in the
second case, she does not (squares1 and64 are far apart).

Instead, we propose to use an Euclidean distance distortion
measure: how far (in Euclidean distance) is Eve's estimate
from the actual location. We then propose encoding/decoding
schemes which utilize the shared key to maximize this
distance. We �rst consider an “average” distortion measure.
Note that if Eve had not received any of the drone trans-
missions, then the best (adversarial) estimate of the drone's
location at any given time is the center point of the con�ned
region in Fig. 1a. Therefore, a good encryption scheme would
strive to maintain Eve's estimate to be as close to the center
point as possible; and we achieve the maximum possible
distortion, if, after overhearing the drone's transmissions,
Eve's best estimate still remains the center point.

The following scheme can achieve this maximum distor-
tion by using exactly one bit of shared secret key. When
encoding, the drone either sends its actual trajectory, or a
“mirrored” version of it, depending on the value of the secret
key. The mirrored trajectory is obtained by re�ecting the
actual trajectory across a mirroring point in space; in this
example, the mirroring point is the center point as shown in
Fig. 1b. Since Eve does not know the value of the shared
key, its best estimate of the drone's location - after receiving
the drone's transmissions - would be the average location
given the trajectory and its mirrored version, which is exactly
the center point. Our results in Section III extend this idea
of mirroring to dynamical systems in higher dimensional
spaces, and theoretically analyze the performance in terms of
average distortion for a larger variety of distributions (with
certain symmetry conditions).

Next, we consider a worst-case-sense distortion-based
metric. In other words, our security metric is “in the worst
case, how far is Eve's estimate from the actual location?”
That is, the adversary's distortion may be different for
different time instances and different instances of the actual
trajectory, and we are interested in the minimum among
these. In Section IV we provide encryption schemes that
are suitable for maximizing this distortion metric and show
that with3 bits of shared key per dimension (i.e.,9 for three
dimensional motion), our schemes achieve near-perfect worst
case distortion. Our main contributions are as follows:
� We de�ne security measures that are based on assessing
the distortion: in the average sense over time and over data,
and in the minimum sense, providing worst case guarantees
at any time and for any particular instances of data.
� For the expected case distortion, we develop a mirroring
based scheme which uses exactly one bit of key and can
provide maximum possible distortion (equivalent to Eve with
no observations) in some cases. We also discuss the cases
where it is not optimal and give an analytical characterization
of the attained distortion.
� For the worst case distortion, we design a scheme that
uses 3 bits of key per dimension and prove it achieves
the maximum possible distortion (equivalent to Eve with no

observations) when the inputs to the systems are independent
from the previous states.

A. Related Work

Secure data communication where the adversary has
unlimited computational power is studied from the lens
on information theory, most notably by Shannon [5] and
Wyner [6]. The study of secure communication from a
distortion angle is relatively new and is �rst studied by
Yamamoto [7], where the goal is to maximize the distortion
of an eavesdropper's estimate on a message. Schieler and
Cuff [8] later showed that, in the limit of an in�nite block
length (n) code, onlylog(n) bits of secret keys are needed
to achieve the maximum possible distortion. Schemes for
causal encodings (�nite block length) were considered in [9]
for single shot communication and exponential bene�ts for
each additional bit of shared key were discussed. However,
the schemes do not translate to the scenarios where one has
to communicate correlated temporal data like the state of a
control system.

Secure communication in control systems is studied
in [10], [11], [12], [13], [14], [15]. These works either
provide distortion only at the steady state or use measures
such as differential privacy (does not use keys) and weak
information theoretic security; they sometimes also assume
that Eve receives different (a subset of the) information than
Bob. We allow the adversary to have knowledge about the
system dynamics and thus could enable easy generalizations
to cases where the adversary might have other side informa-
tion. We analyze the worst case and expected cases separately
and give distortion guarantees in both cases.

B. Notations

For a matrixA, we denote byA0 the transpose ofA; X and
X a denote random columns, andX b

a = [ X 0
a X 0

a+1 � � � X 0
b]0

for b � a and a; b 2 Z; for any random vectorY , we
denote the mean and covariance matrices ofY by � Y andRY

respectively, thus for example, the mean and the covariance
matrix of X b

a will be denoted by� X b
a

andRX b
a

respectively;
for a matrix A, we denote byA r the r -th power of A;
[m] := f 1; 2; : : : ; mg wherem 2 Z+ .

II. SYSTEM MODEL

System Dynamics.we consider the linear dynamical system,

X t +1 = AX t + BUt + wt ; Yt = CX t + vt ; (1)

whereX t 2 Rn is the state of the system at timet, Ut 2 Rm

is the input to the system at timet, wt 2 Rn is the process
noise, andvt 2 Rp is the observation noise. We denoteX =
X T

1 , U = UT � 1
1 and w = wT � 1

1 . Based on the initial state
X 1 and target stateX T , the controller computes a sequence
of inputs that moves the state fromX 1 to X T .
Communication and Adversary Models. At each time
instance the system transmits information about its state
to a legitimate receiver, which is referred to as Bob, via
a noiseless link. This situation occurs for example when
Bob is remotely monitoring the execution of the system as



in SCADA systems or in the remote operation of drones.
A malicious receiver, referred to as Eve, is assumed to
eavesdrop on the communication between the system and
Bob and is able to receive all transmitted signals. Eve is
assumed to be passive: she does not actively communicate
but is interested in learning the underlying system's states
from t = 1 to T. We assume that the System and Bob
have a shared keyK which they use to encode/decode the
transmitted messages.
Inputs and States Random Process Model.We assume that
both receivers are only aware of the system model, the matri-
cesA; B; C and the statistics of noises. Therefore, from the
perspective of the receivers, the input and output sequences
have random distributions which depend onA; B; C and the
statistics of the noise. In addition to the process noisew,
the joint distributionf (X; U; w ) depends on the initial and
target states and the control law of the system. So, even in
noiseless systems,X and U possess inherent randomness
from a receiver's perspective due to its lack of knowledge
about the control law and the initial and target states. In
general, the control inputsU can be dependent on the system
statesX . However, knowing the marginal distribution ofU
in noiseless systems can specify the marginal distribution of
X . This can be shown asX T

2 = QU + ~QW + Q̂X 1, where

Q =

2

6
6
6
4

B 0 � � � 0
AB B � � � 0

...
...

. . .
...

AT� 2B � � � AB B

3

7
7
7
5
; ~Q =

2

6
6
6
4

I 0 � � � 0
A I � � � 0
...

...
. . .

...
AT� 2 � � � A I

3

7
7
7
5

and Q̂ = [ A0 (A2)0 � � � (AT � 1)0]0. This implies that for
noiseless systems, the marginal distribution ofU would
imply the marginal distribution ofX T

2 for a given initial
stateX 1 and thus the marginal distribution ofX . The mean
and covariance matrix ofX T

2 becomeE(X T
2 ) = � X T

2
=

Q� U + Q̂� X 1 andRX T
2

= QRU QT .
Encoding Model. The system transmits a packetZ t at each
time stept. The t-th transmitted packet can be a function of
all previous observations and the shared keys, thus,Z t :=
Et (Y t

1 ; K ), whereEt is the encoding function used at time
t. We will denoteZ T

1 by Z .
Bob/Eve Models of Decoding.Bob noiselessly receives
the transmitted packets from the system, and decodes them
using the shared key. Then, using the decoded information, it
generates an estimate of the state transmissions of the system
at timest = 1 ; � � � ; T . In this work we always require Bob
to decode in a lossless manner (i.e., with zero distortion).
Formally, H (X t jZ t

1; K ) = 0 ; 8t 2 [T], where H is the
Shannon entropy.

Similarly, Eve also receives all transmissions from the
system. However, unlike Bob, she does not have any knowl-
edge about the keyK . Therefore, Eve's estimate ofX t is
X̂ t := � t

�
Z T

1

�
; t 2 [T], where� t is the decoding function

used by Eve at timet.
Distortion Metrics. We consider a distortion-based security
metric which captures how far (in Euclidean distance) an
estimate is from the actual value. More formally, for a given

time instancet and a transmitted codewordZ T
1 , we de�ne

the following quantity,

D (t; Z T
1 ) := EX t jZ T

1



 X t � X̂ t





2 (a)
= tr

�
RX t jZ T

1

�
; (2)

where (2) captures the distortion incurred by Eve's estimate
of X t . Equality in (a) follows because the best (minimizing)
estimates of Eve at timet are,X̂ t = � t

�
Z T

1

�
= E

�
X t jZ T

1

�
:

Note that Bob is required to successfully estimateX t

knowing Z t
1 and the key. Therefore, for a given realization

of the key, the encoding function can only map oneX t

and that key realization to each value ofZ T
1 . Therefore Eve

realizes that only trajectories from a strict subset can be the
true trajectory for a givenZ T

1 : those are the ones which
correspond to each key realization. Therefore, the expectation
in (2) is in fact taken over the randomness in the key taking
into account posterior probabilities givenZ T

1 . If Eve does
not have observations, the expectation is taken overX t with
prior distribution and will getD (t; Z T

1 ) = tr(RX t ).

As D(t; Z T
1 ) is a function of timet and the transmitted

sequenceZ T
1 , we consider two overall distortion metrics: the

“average case” distortion (denoted byDE ) where we take
expectation over all possibleZ T

1 and average out over time;
and the “worst case” distortion (denoted byDW ) where we
take minimum over all possibleZ T

1 and time instances.

Average
Distortion

� DE := EZ T
1

"
1
T

TX

t =1

D(t; Z T
1 )

#

(3)

Worst Case
Distortion

� DW := min
Z T

1

�
min
t 2 [T ]

D(t; Z T
1 )

�
: (4)

It is worth to note that the de�nitions ofDE and DW

de�ned in (3) and (4) imply that Eve's state estimation must
be associated to a time instance. In other words, making
a random/constant estimation of the state hoping that it
matches the actual state at some time will lead to high
distortion values. Further,DW can be de�ned even when
there is no prior distribution onX T

1 . However, to compare
it to the case when the adversary has no observations, we
assume thatX T

1 always have a known prior distribution.

Design Goals.Our goal is to choose the encoding and decod-
ing functions,Et and � t , so that Bob can decode loselessly
while the distortion is maximized for Eve's estimate. In
addition, we seek to achieve this with the minimum amount
of shared keysK . In absence of any observation by Eve,
these distortions will be,

D max
E =

1
T

TX

t =1

tr(RX t ); D max
W = min

t 2 [T ]
tr(RX t ):



These will serve as upper bounds for our schemes, as

DE =
1
T

EZ T
1

TX

t =1

tr(RX t jZ T
1

)
(a)
�

1
T

TX

t =1

tr(RX t ) = D max
E ;

(5)

DW = min
Z T

1

min
t 2 [T ]

tr(RX t jZ T
1

) � min
t 2 [T ]

EZ T
1

h
tr(RX t jZ T

1
)
i

(b)
� min

t 2 [T ]
tr(RX t ) = D max

W ; (6)

where (a) and (b) follows by noting that the trace of
the conditional covariance matrix is a quadratic (convex)
function inZ T

1 and therefore we can use Jensen's inequality.

III. O PTIMIZING AVERAGE DISTORTION DE

In this section, we assume that the control system in (1) is
noise free, that isvt = wt = 0 . In general, an observer would
be used to reconstruct or estimate the state from observations.
However, to simplify the exposition we assume the state can
be directly measured (C is the identity map) although our
results can be extended to the case of an arbitrary observable
pair (A,C) in (1).

We now discuss our proposed scheme that uses one bit of
shared key and show how the achieved distortion compares
to the upper bound in (5).
Mirroring Scheme. This scheme works as follows:

Z t =
�

X t if K = 0 ;
~X t if K = 1 ;

8t 2 [T]; (7)

where K is the shared bit and~X t is the state vectorX t ,
mirrored across a particular af�ne subspaceSt ,

St = f x 2 Rn j St x = bt g; (8)

whereSt 2 Rst xn andbt 2 Rst . Since every af�ne subspace
can be written in terms of orthogonal vectors, we assume
that St S0

t = I . It can be shown that the mirrored point~X t

is (I � 2S0
t St )X t + 2S0

t bt .
Example. ConsiderX t 2 R2 whereSt = 1p

2
[� 1 1] and

bt = 0 . Then ~X t corresponds to re�ecting across a line that
passes through the origin with a45o angle.

Before performance analysis, we highlight that the en-
coding/decoding complexity of our scheme isO(n2). The
performance of such scheme is given in the next theorem.

Theorem 3.1 (Proof in Appendix V-A):The mirroring
scheme with matricesSt 's and bt 's allows Bob to perfectly
estimateX t 's, and the distortion in Eve's estimate is,

DE =
1
T

TX

t =1

EX

"
2f X ( ~X )

f X (X ) + f X ( ~X )
kSt X t � bt k2

#

; (9)

where ~X := [ ~X 0
1

~X 0
2 � � � ~X 0

T ]0.
Assuming thatf X (x) is known, then Theorem 3.1 pro-

vides a closed-form characterization of the achieved average
distortion for any mirroring scheme with matricesSt and
bt . Moreover, under some symmetry conditions onf X (x),
the expression in (9) admits a simpli�ed version which gives

insights on the maximum achievable distortion. This is shown
in the next corollary.

Corollary 3.2 (Proof in Appendix V-A):If the mirroring
scheme matricesSt andbt in Theorem 3.1 are selected such
that

f X (X ) = f X ( ~X ); for all X 2 RnT ; (10)

then (9) becomes,

DE =
1
T

TX

i =1

tr (St RX t S
0
t + ( bt � St � X t )(bt � St � X t )

0)

(11)
We can interpret (11) as follows. First, note that condition

(10) implies bt = St � X t . To see this, note thatX and ~X
have the same distribution, hence the same mean. Therefore,
we have

EX t = ( I � 2S0
t St )EX t + 2S0

t bt

=) S0
t St � X t = S0

t bt =) St S0
t St � X t = St S0

t bt

(a)
=) St � X t = bt ;

where (a) follows becauseSt S0
t = I . Assuming that con-

dition (10) is met, then the distortion becomesDE =
1
T

TP

i =1
tr(St RX t S

0
t ). The achieved distortion therefore de-

pends on the choice ofSt : if St = I then the maximum
distortion can be achieved by our mirroring scheme. How-
ever, such a choice ofSt may not be a feasible one to ensure
that condition (10) is met, as we will see in the following
examples. One case for whichSt = I satis�es condition (10)
and allows maximum distortion is whenX is symmetrically
distributed around a point. We show this in the next corollary.

Corollary 3.3: For a random vectorX 2 RT n , if there
exists a pointv 2 RT n for which f X (X ) = f X (2v � X ),

8X 2 RT n , thenDE = 1
T tr(RX ) = 1

T

TP

t =1
tr(RX t ).

Proof: SinceX and2v� X have the same distributions,
they will have the same mean. This implies thatv = � X . We
then use the following mirroring scheme:St = I , bt = � X t

for t 2 [1 : T]. With this, we get ~X t = 2 � X t � X t , and
thus ~X = 2 � X � X where ~X := [ ~X 0

1
~X 0

2 � � � ~X 0
T ]0 and

� X := [ � X 1
0 � X 2

0 � � � � X T
0]0. This implies,

f X (X ) = f X ( ~X ); 8X 2 RnT ;

so condition (10) is met. Therefore the distortion becomes
equal toD max

E .

A. Examples

In this section, we show the implications of our results in
the context of a few examples.
Example 1. Consider an example whereU is distributed as
Gaussian with mean� U and covariance matrixRU . Then
for a zero initial state,X T

2 is also Gaussian distributed with
mean� X T

2
= Q� U and varianceRX T

2
= QRU QT , as we

assume noise to be zero. A Gaussian random vector satis�es
the conditions in Corollary 3.3, and therefore we can get
maximum distortion by settingbt = � X t andSt = I .



The next example is based on a Markov-based model for
the dynamical system. For this example, the following lemma
is useful.

Lemma 3.4:Consider the random vectorsX t where the
following conditions hold: 1)f X 1 (x1) = f X 1 (2� 1 � x1) and
2) f X t jX t � 1 (x t jx t � 1) = f X t jX t � 1 (2� t � x t j2� t � 1 � x t � 1).
Then for this case,f X (X ) = f X (2� � X ), where � =
[� 1

0 � 2
0 � � � � T

0]0. Therefore, by virtue of Corollary 3.3,
mirroring schemes can achieve the maximum distortion.

Lemma 3.4 allows us to characterize the performance of
the following example.
Example 2. Consider the following random walk mobility
model. Leta 2 N+ , andX t be its location at timet, then,

X 1 � Uni([� a : a])

X t jX t � 1 � Uni([� a : a] \ f X t � 1 � 1; X t � 1; X t � 1 + 1g):

One can see that these distributions satisfy the conditions
in Lemma 3.4. Therefore, one can setbt = � t = 0 and
St = 1 , which will achieve maximum distortion ofDE .
Example 3. Here we provide a numerical example which
shows how our mirroring scheme performs for situations
where we do not have an analytical handle on the state dis-
tributions. We assume the quadrotor dynamical system pro-
vided in [16,(4)]. The quadrotor moves in a 3-dimensional
cubed space with a width, length and height of 2 meters,
where the origin is the center point of the space. The quadro-
tor starts its trajectory from an initial point(� 1; y1; z1) and
�nishes its trajectory at a target point(1; yT ; zT ) afterT time
steps, where the pointsy1; z1; yT ; zT are picked uniformly
at random in[� 1; 1]4. We assume thatT = 10 time steps,
and that the continuous model in [16,(4)] is discretized
with a sample time ofTs = 0 :5 seconds. We assume that
the quadrotor encodes and transmits only the states which
contain the location information (�rst three elements of the
state vectorX t ). The quadrotor is equipped with an LQR
controller which designs the input sequenceUT � 1

1 as the
solution of the following problem

minimize kUk2 + 10

 X T � 1

2


 2

subject to X t +1 = AquadX t + B quadUt ; 8t 2 [T � 1]
X 1 =

�
� 1 y1 z1 0 � � � 0

� 0
;

X T =
�
1 yT zT 0 � � � 0

� 0
;

(12)
where Aquad and B quad are the quadrotor's discretized sys-
tems matrices. The remaining states ofX 1 andX T are set to
zero to allow the drone to hover at the respective locations.
We perform numerical simulation of the aforementioned
setup: we run2 millions iterations, where in each iteration
a new initial and target points are picked, and the resultant
trajectory is recorded. Based on the recorded data, we con-
sider different mirroring schemes and numerically evaluate
the attained distortion. To facilitate numerical evaluations,
the simulation space is gridded into bins with0:2 meters of
separation, and the location of the drone at each trajectory
is approximated to the nearest space bin.
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Fig. 2: An illustration of some trajectories. The re�ection
plane is shown as a dashed-black line. One trajectory (solid-
black) is shown along with its mirrored image (dotted-black).

Figure 2 shows some of the drone trajectories obtained
from our numerical simulation. It is clear that not all
trajectories are equiprobable, and therefore the distribution
of X t is not uniform across all bins in space. However,
the computation ofEX t shows the expected value of the
position to be the origin. Moreover, since the motion of the
drone is mainly progressive in the positive x-axis direction,
re�ection across the origin results in mirrored trajectories
that are progressing in the opposite direction, and therefore
are identi�ed to be fake automatically. Therefore, mirroring
across a point here is useless: the numerically computed
distortion for this scheme is equal to zero.

Next we consider mirroring across the re�ection plane

shown in Figure 2, wherebt = 0 and St =
�
0 1 0
0 0 1

�
.

As can be seen from the �gure, the re�ection plane is
indeed an axis of symmetry for the distribution of the drones
trajectories, and therefore is expected to provide high distor-
tion values. We numerically evaluate the attained distortion
using the scheme by using equation (9), which evaluates to
DE = 0 :3971. This is slightly less thanD max

E = 0 :3979.
Remark. Optimizing DE requires the use of one bit of key.
However, it may be insuf�cient for some application to allow
the adversary to confuse the actual state between only two
possibilities. For such scenarios, our scheme can be extended
to larger uncertainty sets by using larger keys, along with
symmetric rotations and mirroring.

IV. OPTIMIZING THE WORSTCASE DISTORTION DW

In this section, we present an encryption scheme that
attempts to maximize the worst case distortion for Eve. The
main idea is to obfuscate the initial state in a such a way
that Eve, even if she optimally uses her knowledge about the
dynamics and her observations, her best estimate is close to
the maximal distortion. We start by studying the problem
of distorting the transmission of a single random variable
in Theorems 4.2 and 4.3. These results then form the basis
for maximizing the worst case distortion of a trajectory, as
described in Theorem 4.4.



A. Building Step: Scalar Case

Consider the case where the system wants to communicate
a single scalar random variableX to Bob by transmitting
Z . The worst case distortionDW for Eve will be DW =
minZ Var(X jZ ). Note that if Eve does not overhearZ , Eve
will use as her estimate the minimum mean square estimate
(the mean value), and thus experience a worst case distortion
equal to the variance ofX .

We �rst assume thatX � N (0; 1), and thus, the worst
case distortion can not be larger than1 by (6). We next
develop our scheme progressively, from simple to more
sophisticated steps. We will also use the following lemma.

Lemma 4.1:The variance of two real numbersa and b
with probabilitiespa andpb is given bypapb(a � b)2.
Mirroring or Shifting. Re�ecting around the origin (as we
did for optimizing the average case distortion in Section III)
does not work well whenX takes small values: indeed
Var(X jZ ) is P r (X = Z jZ )(P r (X = � Z jZ ))( Z � (� Z ))2

using Lemma 4.1 and as the plot in Fig. 3a shows has a
worst case value that goes to zero asX approaches zero. To
avoid this, we could try to use a “shifting” scheme where we
add a constant� to X whenever the shared key bit is one;
but now this scheme does not perform well for large values
of X , asX increases Var(X jZ ) goes to zero as in Fig. 3b.
Shifting+Mirroring. We here combine shifting and mirror-
ing, in order to achieve a good performance for both small
and large values ofX . We start from the case where we have
k = 1 bit of key and then go to the casek � 1.
� k = 1 : We select a� 1 2 R that determines a window size
(� 1 is public and known by Eve). The encoding function is

Z = E(X; K ) =

8
>><

>>:

X if K = 0
� X if K = 1 ; jX j > � 1

X + � 1 if K = 1 ; � � 1 � X < 0
X � � 1 if K = 1 ; 0 � X < � 1

We note that there is one particular value ofX , X = � 1,
which we do not transmit. Since this is of zero probability
measure, it can be safely ignored. GivenZ , there are two
possibilities forX :

X 2

8
<

:

f Z; � Z g if jZ j > � 1

f Z; Z + � 1g if � � 1 � Z < 0
f Z; Z � � 1g if 0 � Z < � 1:

Using the fact thatX � N (0; 1), we can calculate the
posterior probabilitiesP r (X jZ ) and use Lemma 4.1 to
compute Var(X jZ ). Fig. 3c plots Var(X jZ ) for � = 1 :76.
The worst case distortion in this case becomes0:4477, which
is the best we can hope for if we have only one bit of shared
key. This follows because for any mapping fromX to Z , a
transmitted symbolZ can have at most two pre-images (as
Bob needs to reliably decode with one bit of key), and if
one of these isX = 0 , then no matter what the second one
is, the distortion corresponding toZ will be at most0:4477.
Equality occurs when the second pre-image ofZ is � 1:76,
which is what our scheme also maps0 to (using� = 1 :76).

� k � 1. For K 2 f 0; 1gk , we use the following encoding:

Z = E(X; K ) (13)

=

8
<

:

�
X if K � 2k � 1

� X if K > 2k � 1 jX j > � k

X + K 2� k
2k mod [� � k ; � k ) X 2 [� � k ; � k );

where the optimal value of the constant� k depends on the
numberk of keys we have,K is the decimal equivalent of
a binary string of lengthk, andr mod [a; b) = r � i (b� a)
is such thati is an integer andr � i (b � a) 2 [a; b) for
r; a; b 2 R. Intuitively, if jX j > � k then for half of the keys,
we re�ect across origin and for other half we do nothing; if
jX j < � k , we divide this window of size2� k into 2k equal
size windows and shift a point from one window to another
by jumpingK (in decimal) windows. An example fork = 2
is shown in Fig. 4a for the key valuesK = 11 andK = 10.
Fig. 4b plotsDW as a function of the number of keysk.
Using k = 3 and � 3 = 4 :84 we achieveDW = 0 :9998
which is very close to1, the best we can hope for.

Theorem 4.2:A Gaussian random variable with mean�
and variance� 2 can be near perfectly (� 0:9998 times the
perfect distortion) distorted in worst case settings by just
using three bits of shared keys.

Proof: Generate the random variableV � N (0; 1) as
V = ( X � � )=� and encrypt it usingk = 3 key bits and the
previously described scheme. Forc = 0 :9998we have

DW = min
Z

Var(X jZ ) = min
Z

Var(�V + � jZ )

= � 2 min
Z

Var(V jZ ) = c� 2:

Remark: We optimized the parameter� k of our scheme
assuming Gaussian distribution. For other distributions, the
optimal choice of � k and the corresponding worst case
distortion would be different.

B. Vector Case and Time Series

Theorem 4.3 (Proof in Appendix V-B):For a Gaussian
random vectorX 2 Rn with mean � and a diagonal
covariance matrix� we can achieveDW within 0:9998 of
the optimal by using3n bits of shared keys.
This theorem uses our 3-bit encryption for each element in
the vector. Assume now that this vector captures the prob-
ability distribution of the initial state of dynamical system;
by encrypting this state we can guarantee the following.

Theorem 4.4 (Complete Proof in Appendix V-C):Using
3n bits of shared keys we can achieveDW within 0:9998
of the optimal for the dynamical systems (1) withC = I ,
vt = 0 , singular values ofA more than1, and initial state
X 1 � N (�; �) , where� is diagonal covariance matrix, and
Ut andwt are independent ofX t .
Remark: Although the independence assumption on the
inputs is rather restrictive, the result serves as a stepping
stone towards understanding general cases.



Proof: The system transmitsZ1 = f (Y1; K ) =
f (X 1; K ) wheref is the encoding in Theorem 4.3, and

Z t +1 = AZ t + ( Yt +1 � AYt )

= AZ t + BUt + wt ; 8t 2 [T � 1]:

Bob can decodeX 1 usingZ1 andK . Then:

X̂ t +1 = Z t +1 � AZ t + AX̂ t

= ( AZ t + BUt + wt ) � AZ t + AX̂ t

= AX t + BUt + wt = X t +1 ; 8t 2 [T � 1]:

Eve's distortion is calculated in the Appendix V-C.
Complexity: O(n2) per time instance for both encoding and
decoding.
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V. A PPENDICES

A. Proof of Theorem 3.1 and Corollary 3.2

We start by computingRX t jZ T
1

. Note that given a sequence
of transmitted symbolZ T

1 there are two possible values of
sequence of message symbolsX T

1 which areX T
1 = Z T

1 and
X T

1 = ~Z T
1 , where ~Z t is the image ofZ t across the af�ne

subspace given bySt x = bt .
With this, the posterior probability ofX t = Z t given

Z T
1 i.e., P r (X t = Z t jZ T

1 ) will be equal to P r (X T
1 =

Z T
1 jZ T

1 ) := pZ . We note thatpZ = f (Z )
f (Z )+ f ( ~Z )

, where
~Z := [ ~Z 0

1
~Z 0

2 � � � ~Z 0
T ]0. ThenE(X t jZ T

1 ),

= pZ Z t + (1 � pZ )( ~Z t ) = Z t + 2(1 � pZ )S0
t (bt � St Z t ) :

RX t jZ T
1

= EX t jZ T
1

h�
X t � E(X t jZ T

1 )
� �

X t � E(X t jZ T
1 )

� 0
i

= pZ
�
4(1 � pZ )2 (S0

t (bt � St Z t )(bt � St Z t )0St )
�

+ (1 � pZ )
�
4pZ

2 (S0
t (bt � St Z t )(bt � St Z t )0St )

�

= 4pZ (1 � pZ )
| {z }

� (Z )

S0
t (bt � St Z t )(bt � St Z t )0St :

DE = EZ
1
T

TX

t =1

tr
�

RX t jZ T
1

�

= EZ
1
T

TX

t =1

tr (� (Z )S0
t (bt � St Z t )(bt � St Z t )0St )

= EZ
1
T

TX

t =1

� (Z )tr (S0
t (bt � St Z t )(bt � St Z t )0St )

=
1
T

EZ

"
TX

t =1

� (Z )kSt Z t � bt k2

#

=
1
T

EZ

"
TX

t =1

4pZ (1 � pZ )kSt Z t � bt k2

#

=
1
T

EZ

"
TX

t =1

4
f X (Z )f X ( ~Z )

(f X (Z ) + f X ( ~Z ))2
kSt Z t � bt k2

#

:

Now, Z T
1 is the transmitted symbols ifX T

1 = Z T
1 and key

was zero or iff X t = ~Z t ; 8t 2 [T]g and key was one. So
f Z (Z ) = f X (Z )+ f X ( ~Z )

2 . ThusDE ,

=
1
T

EZ

"
TX

t =1

4
f X (Z )f X ( ~Z )

(f X (Z ) + f X ( ~Z ))2
kSt Z t � bt k2

#

=
1
T

Z
f Z (Z )

"
TX

t =1

4f X (Z )f X ( ~Z )

(f X (Z ) + f X ( ~Z ))2
kSt Z t � bt k2

#

dZ

=
1
T

Z "
TX

t =1

2f X (Z )f X ( ~Z )

f X (Z ) + f X ( ~Z )
kSt Z t � bt k2

#

dZ

=
1
T

EX

"
TX

t =1

2f X ( ~X )

f X (X ) + f X ( ~X )
kSt X t � bt k2

#

;





prove that we will have worst case distortion at least tr(�) .

D (t + 1 ; Z T
1 ) = tr(RX t +1 jE info) = tr(R(AX t + BU t + w t ) jE info)

= tr(R(AX t ) jE info) = tr(AR X t jE infoA
0) = tr(A0AR X t jE info)

(a)
= tr(V � V 0RX t jE info) = tr(� V 0RX t jE infoV)

(b)
=

nX

i =1

� i di (V 0RX t jE infoV)
(c)
�

X

i 2 [n ]

di (V 0RX t jE infoV)

(d)
=

X

i 2 [n ]

� i (V 0RX t jE infoV)
(e)
=

X

i 2 [n ]

� i (RX t jE info)

= tr(RX t jE info)
( f )
� c tr(�) ;

where in (a), we do eigenvalue decomposition ofA0A which
is a positive de�nite matrix and thus will have non negative
eigenvalues; in (b)di (V 0RX t jE infoV) is the i -th diagonal
entry of V 0RX t jE infoV; (c) is true becauseV 0RX t jE infoV is
a positive de�nite matrix and all the diagonal entries of a
positive semi de�nite matrix are non-negative and because
of our assumption that singular values ofA, i.e. the square
root of eigenvalues ofA0A are all more than one; (d)
is because summation of eigenvalues is equal to the sum
of all the diagonal entries for any square matrix, where
� i (V 0RX t jE infoV) is the i -th eigenvalue ofV 0RX t jE infoV;
(e) is because a unitary transform preserve the eigenvalues.
Finally (f) is because of the induction step.


