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Abstract. We study a chemostat model with an arbitrary number of com-

peting species, one substrate, and constant dilution rates. We allow delays in
the growth rates and additive uncertainties. Using constant inputs of certain

species, we derive bounds on the sizes of the delays that ensure asymptotic

stability of an equilibrium when the uncertainties are zero, which can allow
persistence of multiple species. Under delays and uncertainties, we provide

bounds on the delays and on the uncertainties that ensure input-to-state sta-

bility with respect to uncertainties.

1. Introduction.

1.1. Preliminaries. This paper continues our work (which we began in [8, 9, 22,
25, 26, 27, 28, 30, 39]) on control and other methods to ensure desired asymptotic
behaviors in chemostat models, such as the coexistence of multiple competing spe-
cies, convergence to equilibria, or input delay compensation. Our work is strongly
motivated by the ubiquity of chemostats in biological and engineering settings that
are of compelling ongoing interest. The chemostat is a laboratory device and a
mathematical model for the continuous culture of microorganisms. It was introdu-
ced primarily in the works [34] of Monod and [37] of Novick and Szilard from 1950.
In the past few decades, chemostat models have been studied extensively, because
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of their role in biotechnology, ecology, and microbiology as ideal representations
for modeling cell or microorganism growth, natural environments such as lakes,
and wastewater treatment processes [5]; see [42] for an overview of the chemostat
literature.

The classical model of competition in the chemostat is described by the system ṡ(t) = D[sin − s(t)]−
n∑
i=1

Y −1
i µi(s(t))xi(t)

ẋi(t) = xi(t)µi(s(t))−Dxi(t) for i = 1, . . . , n
(1)

where n ≥ 2 microbial species (whose concentrations are denoted by x1, . . . , xn) are
in competition for a nutrient with concentration s [42]. The positive constants sin

and D are called the input nutrient concentration and the dilution rate, respectively,
and Yi is a positive yield constant related to the conversion rate of the substrate
into new biomass for each i. The continuously differentiable functions µi for i =
1, . . . , n are strictly increasing, satisfy µi(0) = 0, and describe the consumption of
the nutrient by species i. The model also assumes that the growth of the ith species
is proportional to the consumption of the nutrient.

It is well known (e.g., from [12, 42]) that if the preceding conditions hold, and if

0 < µ−1
n (D) < µ−1

n−1(D) < . . . < µ−1
2 (D) < µ−1

1 (D) < sin, (2)

then
lim

t→+∞
s(t) = µ−1

n (D), lim
t→+∞

xn(t) = Yn[sin − µ−1
n (D)],

and lim
t→+∞

xi(t) = 0 if 1 ≤ i ≤ n− 1,
(3)

which is the competitive exclusion principle [12, 15, 33, 35]. The constant µ−1
i (D) is

called the break-even concentration for the ith species, namely the minimal nutrient
concentration that ensures a positive growth for the ith species. Condition (2) says
that the species can be ordered by their competitive ability, which is determined
by their break-even concentrations. Condition (3) implies that only the nth species
persists, because it only requires the lowest concentration of the nutrient to have
positive growth.

However, it is commonly observed in experiments that multiple competing species
can persist in chemostats with one limiting substrate. Numerous methods and
theories have been developed to generate or explain coexistence in chemostats, such
as crowding effects, feedback controls in which the inputs are functions of the state
variables instead of being constant (e.g., in [8, 27]), flocculation [11], heterogeneity
properties of the medium (as noted in [10, 16, 36, 38]), impulsive use of substrates
(as explained in [31, 32, 47]), intra-species competition [22], multiple substrates
[10, 20], and deterministic or stochastic time-varying inputs (as explained, e.g., in
[2, 3, 7, 14, 19, 29, 30, 41, 45]). In this work, we study another approach, based on
an alternative model that we describe next.

1.2. Description of Our Model. The work [39] modifies the model described by
(1) by introducing microbial inputs of the form ṡ(t) = D[sin − s(t)]−

n∑
i=1

Y −1
i µi(s(t))xi(t)

ẋi(t) = xi(t)µi(s(t)) +D[x0
i − xi(t)] for i = 1, . . . , n,

(4)

in order to promote the coexistence of all species and provides sufficient conditions
on the nonnegative constant species inputs x0

i for i = 1, . . . , n that can ensure the
coexistence of multiple species, which puts [39] outside the scope of the previously
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cited works. One approach that was used in [39] involved polytopic Lyapunov
functions [9], which are related to other types of piecewise continuous or piecewise
differentiable Lyapunov functions such as those in [46].

The system (4) can be seen as a limiting dynamics for a chain of interconnected
chemostats, by the following argument. If we consider the system (1) with n = 2
under condition (2), then the competitive exclusion principle will imply that the
concentration of the first species will converge to 0 as t → +∞. To promote
the coexistence of the two species, the first species (which is the less advantaged
competitor) is cultivated in a first chemostat, whose dynamics is described by the
system {

ṡ1(t) = D[sin − s1(t)]− Y −1
i µ1(s1(t))x11(t),

ẋ11(t) = x11(t)µ1(s1(t))−Dx11(t),
(5)

whose asymptotic behavior is described by (3) with n = 1, that is

lim
t→+∞

s1(t) = s∗ = µ−1
1 (D), lim

t→+∞
x11(t) = x∗1 = Y1[sin − µ−1

1 (D)].

If the output of (5) becomes the input of (1) with n = 2, then we obtain the coupled
system

ṡ1(t) = D[sin − s1(t)]− Y −1
1 µ1(s1(t))x11(t),

ẋ11(t) = x11(t)µ1(s1(t))−Dx11(t),

ṡ2(t) = D[s1(t)− s2(t)]− Y −1
1 µ1(s2(t))x12(t)− Y −1

2 µ2(s2(t))x22(t),

ẋ12(t) = x12(t)µ1(s2(t)) +D[x11(t)− x12(t)],

ẋ22(t) = x22(t)µ2(s2(t))−Dx22(t),

(6)

where xij is the concentration of the ith species in the jth chemostat, while si is the
concentration of the same nutrient in the ith chemostat. The last three equations
of (6) can be written as the perturbed system ṡ(t) = D[s∗ − s(t)]− Y −1

1 µ1(s(t))x1(t)− Y −1
2 µ2(s(t))x2(t) + q0(t),

ẋ1(t) = x1(t)µ1(s2(t)) +D[x∗1 − x1(t)] + q1(t),
ẋ2(t) = x2(t)µ2(s2(t))−Dx2(t),

(7)

where the perturbations q0(t) = D[s1(t) − s∗] and q1(t) = D[x11(t) − x∗1] converge
to zero as t→ +∞, so (7) is asymptotically autonomous to ṡ(t) = D[s∗ − s(t)]− Y −1

1 µ1(s(t))x1(t)− Y −1
2 µ2(s(t))x2(t),

ẋ1(t) = x1(t)µ1(s2(t)) +D[x∗1 − x1(t)],
ẋ2(t) = x2(t)µ2(s2(t))−Dx2(t),

(8)

which is a particular case of (4) with n = 2, sin = s∗, x0
1 = x∗1 and x0

2 = 0.
A generalization for a chain of n chemostats can be done in a recursive way, by
considering the competitive abilities described in (2).

In this article, we propose a generalization of the model (4) by taking into in
account (i) the presence of additive perturbations and (ii) the effect of delays in the
growth responses [31, 46]. Therefore, the system (4) is changed to ṡ(t) = D[sin − s(t)]−

n∑
i=1

Y −1
i µi(s(t))xi(t) + δ0(t)

ẋi(t) = xi(t)µi(s(t− τi)) +D[x0
i − xi(t)] + δi(t) for i = 1, . . . , n.

(9)

The functions δi : [0,+∞) → [di, d̄i] are measurable and essentially bounded (for
i = 0, 1, . . . , n) and have known constant lower and upper bounds di and d̄i, re-
spectively. The system (7) is a particular case of (9) but the functions δi can
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describe uncertainties such as unmodeled features (for example, disturbances in the
chain of chemostats mentioned above), external perturbations, or uncertainties in
the input concentrations which commonly occur in applications. For example, a
perturbed biomass input x0

i + ∆i(t) can be represented by an additive perturbation
δi(t) = D∆i(t). Also, a disturbance ∆D added to the dilution rate can be captured
by setting δ0(t) = ∆D(t)[sin− s(t)] and δi(t) = ∆D(t)[x0

i − xi(t)] for i = 1, 2, . . . , n,
and uncertainties in the uptake functions µi or in sin can be modeled in an analogous
way using suitable choices of the δi’s.

Our assumptions will imply that d0 > −Dsin and di ≥ −Dx0
i for i = 1, 2, . . . , n;

see Section 2 for our assumptions, in which the lower bounds di are allowed to be
negative for each i ≥ 1 such that x0

i > 0 (so the disturbances need not be positive
valued). Therefore, all solutions of (9) with positive valued initial conditions are
in the positive orthant for all positive instants, so (9) has the state space X =
(0,+∞)n+1. A key component of our analysis is that we will prove a uniform
persistence condition, where we compute positive lower bounds on the xi(t) values
for all i such that x0

i > 0 and for sufficiently large t; see Lemma 3.3.
The model (9) assumes the existence of a time interval [0, τi] necessary for the

ith microbial species metabolize the nutrient. The delays τi have been reported
experimentally in several works, including [1, 4, 40]. Other delays can arise in our
model but will not be considered in this note (but their effects can be incorporated
into our δi’s). For example, in [13, 17, 23] it is assumed that there is mortality
of microbial biomass and a fraction is recycled into nutrient with some time delay.
The mortality is also considered in [6, 21, 44], where the growth of biomass term
xi(t)µi(s(t−τi)) of (9) is replaced by e−diτixi(t−τi)µi(s(t−τi)). Through a change
of coordinates (based on a scaling the xi’s, x

0
i ’s, and δi’s for i ≥ 1), the model (9)

becomes ṡ(t) = D[sin − s(t)]−
n∑
i=1

µi(s(t))xi(t) + δ0(t)

ẋi(t) = xi(t)µi(s(t− τi)) +D[x0
i − xi(t)] + δi(t) for i = 1, . . . , n,

(10)

where for simplicity we kept the same notation, and (10) will be the subject of this
paper.

1.3. Structure of Article. In the next section, we provide our theorem for (10),
which we prove in Section 3 and illustrate in an example in Section 4. Our work
is novel in its use of the more general model (10) (which we believe had not been
studied in the presence of nonzero delays or uncertainties) and our use of a new
Lyapunov-Krasovskii functional method that is beyond the scope of our prior Lya-
punov function designs (such as those in [24, 39], which were confined to undelayed
systems). Also, the equilibrium that we stabilize is in the boundary of the state
space X when at least one of the x0

i ’s is 0. Moreover, while our previous work [39]
required that the nth species input be x0

n = 0, here we allow a range of possible x0
n

values, so we cover a much broader class of equilibria than [39].

2. Definitions, Assumptions, and Main Result. Our main result provides
sufficient conditions ensuring input-to-state stability (or ISS) properties for the
dynamics for the error variable

E(t) = (s(t)− s∗, x(t)− x∗) (11)
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with respect to the disturbance vector δ = (δ0, δ1, . . . , δn), for a large class of possible
equilibrium points E∗ = (s∗, x∗), where x∗ = (x1∗, . . . , xn∗) and x = (x1, . . . , xn).
The ISS framework is used extensively across engineering; see [18] for the definition
of ISS for undelayed systems without state constraints. To allow delays and state
constraints, we use a variant of the usual ISS property. To explain this variant, we
first need several definitions. Let K∞ be the set of all continuous strictly increasing
unbounded functions γ : [0,+∞) → [0,+∞) such that γ(0) = 0. Also, KL is the
set of all continuous functions β̄ : [0,+∞) × [0,+∞) → [0,+∞) such that (i) for
each t ≥ 0, the function f(s) = β̄(s, t) is of class K∞ and (ii) for each s ≥ 0, the
function g(t) = β̄(s, t) is nonincreasing and satisfies limt→+∞ g(t) = 0. We also set
qt(`) = q(t+ `) for all ` ≤ 0, t ≥ 0, and functions q for which the equality is defined.
By ISS of a delay system of the form q̇(t) = F(qt, δ(t)) with respect to a pair (D,S),
we mean that there exist functions β ∈ KL and γ ∈ K∞ such that

|q(t)| ≤ β(|q(0)|, t) + γ(|δ|[0,t]) (12)

holds for all t ≥ 0, all solutions q(t) of the system that have initial states q(0) ∈ S,
and all measurable essentially bounded functions δ : [0,+∞)→ D. Here and in the
sequel, we assume that the initial conditions of our systems are constant, | · | is the
usual Euclidean norm, | · |[0,t] is the essential supremum over [0, t], and | · |∞ is the
essential supremum. Later we specialize the preceding definitions to cases where
q = E , and where q is an error vector in a different set of variables that we introduce
later. Our first assumption is:

Assumption 1. The constants s∗ > 0 and sin > 0 are such that

µi(s∗) < D for i = 1, 2, . . . , n, and sin = s∗ +
n∑
i=1

µi(s∗)x
0
i

D − µi(s∗)
, (13)

and the constants x0
i are all nonnegative. Also, the constant D satisfies 0 < D <

µn(sin).

Assumption 1 can always be satisfied for all choices of the constant

D ∈ (0, sup
s≥0

µn(s)),

by first fixing s∗ such that µi(s∗) < D for all i, and then choosing the x0
i ’s such

that D < µn(sin) and sin > 0, i.e., we view the x0
i ’s and sin as constant controls.

Although this differs from the usual treatment of controls where the controls depend
on time (i.e., open loop controls) or on the state (as in feedback controls), our use of
constant controls is sufficient for our delays and robustness analysis (and is included
in the usual framework of open loop or feedback controls, by specializing the usual
framework to cases where the controls are constant ones). By the symmetry of the
dynamics for the xi’s, we can replace the condition D < µn(sin) by the requirement
that D < µi(sin) for some i, by renumbering the species. Assumption 1 implies that
when the δi’s and τi’s are 0, the system (10) admits the equilibrium E∗ = (s∗, x∗),
where

xi∗ =
Dx0

i

D − µi(s∗)
for i = 1, ..., n. (14)

Then E∗ ∈ [0,+∞)n+1, and when the x0
i ’s are all positive, we have E∗ ∈ (0,+∞)n+1.

From Assumption 1, we have µn(s∗) < µn(sin), so since µn is strictly increasing,
we have s∗ ∈ (0, sin). Our assumption on the measurable essentially bounded
uncertainties δi(t) is as follows, where P = {i ∈ {1, . . . , n} : x0

i > 0}:
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Assumption 2. We have δ(t) ∈ [d0, d̄0]× . . .× [dn, d̄n] for almost all t ≥ 0, where
the known constants di and d̄i ≥ 0 are such that Dsin + d0 > 0, d̄0 < 0.5Ds∗,
Dx0

i + di > 0 for all i ∈ P, and di = 0 for all i ∈ {1, 2, . . . , n} \ P.

Assumption 2 allows di = d̄i = 0 for i = 0, 1, . . . , n which corresponds to cases
where the δi’s are all zero, but is far more general, e.g., because the d̄i’s for i ≥ 1
can be as large as we want. Notice that in important cases where the x0

i ’s are all
positive, there is no systematic positive bias in the disturbance values, since for
instance, we can allow δ to be take its values in sets such as [d0, d̄0]× . . .× [dn, d̄n] =
[−min{0.25Ds∗, 0.5Dx

0
∗},min{0.25Ds∗, 0.5Dx

0
∗}]n+1 where x0

∗ = min{x0
i : 1 ≤ i ≤

n} that are symmetric hypercubes centered at the origin. To state our assumption
on the constant delays τi, we assume that the µi’s have the Monod’s form

µi(s) =
mis

ai + s
(15)

with mi > 0 and ai > 0 being respectively the maximal growth rate and the half
saturation constants for all i ∈ {1, 2, . . . , n}, and we set

s̄] = s̄+
d̄0

D
, (16)

where the constant s̄ ≥ sin will be specified later. Finally, we use the positive
constants

C = 2

(
sin +

n∑
i=1

x0
i +

1

D

n∑
i=0

d̄i

)
, Γ0 = D +

n∑
i=1

aimixi∗
(ai + s∗)(ai + s̄])

,

L̄i = eτi(µi(s̄
])−µi(s∗)),

ri =
aimiCL̄iµi(s̄])eτiBi

ai + s∗
, qi =

(ai + s∗) (D − µi(s∗))
ai

,

Bi = max
{
µi(s̄

])− µi(s∗), µi(s∗)
}
,

s1 = min

s∗,
Dsin + d0

D + C
n∑
i=1

mi

ai
eµi(s̄

])τi

 ,

and αi = e−τiµi(s∗) min

{
xi∗, x

0
i +

di
D

}
.

(17)

The motivation for the constant Γ0 is that it is a lower bound for the function

Γ(s) = D +
n∑
i=1

aimixi∗
(ai + s∗)(ai + s)

(18)

for all s ∈ [0, s̄]]. The function (18) will play an important role in the proof of our
theorem, but is not needed to state our theorem. Our main result is:

Theorem 2.1. If Assumptions 1-2 hold, and if there exists a constant s̄ ≥ sin such
that each of the constant delays τi satisfies

Mτi < Γ0 for i = 1, 2, . . . , n, (19)
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where M is defined by

M =
s̄]

2

(
1

Γ0s1

max
1≤i≤n

2r2
i τi

(s1 + ai)(s̄] + ai)
+
∑
i∈P

τi
(
DeτiBix0

imi

)2
qiαi(ai + s1)(s̄] + ai)

)
, (20)

then for all constants x > 0, the dynamics for the error (11) are ISS with respect
to (D,S) with the disturbance set D = [d0, d̄0]× . . .× [dn, d̄n] and S = {E : E + E∗ ∈
(0, s̄]× (0,+∞)n−1 × (x,+∞)}.

Our proof of Theorem 2.1 will show how the constants s1 and αi described in
(17) are related to the lower bounds of the solutions of (10) for arbitrarily large
values of t. Note also that M depends on the τi’s for all i = 1, . . . , n and is equal
to zero when these delays are 0, which implies that there are positive values τ̄i such
that (19) is satisfied when the delays τi all satisfy 0 ≤ τi ≤ τ̄i.

Since E(t) + E∗ = (s(t), x(t)) for all t ≥ 0, our choice of S in Theorem 2.1
corresponds to the requirement that (s(0), x(0)) ∈ (0, s̄] × (0,+∞)n−1 × (x,+∞).
However, since s̄ ≥ sin and x > 0 are arbitrary, it follows that when the δi’s are zero,
Theorem 2.1 implies that all solutions (s(t), x(t)) of (10) starting in X = (0,+∞)n+1

remain in X at all positive times and satisfy limt→+∞(s(t), x(t)) = (s∗, x∗). This
ensures uniform persistence of the ith species for all i ∈ P, i.e., xi has a positive
lower bound (and limt→+∞ xi(t) = 0 for all i ∈ {1, . . . , n} \ P). Our results are
new, even in the special cases where the delays τi or the uncertainties δi are all
zero, because [39] did not include delays or uncertainties. Since we do not restrict
the values of d̄i ≥ 0 for i ≥ 1, we obtain ISS under arbitrarily large upper bounds
on the disturbances δi in the x subdynamics. The functions β ∈ KL and γ ∈ K∞
in the final ISS estimate will depend on s̄, x, and the disturbance bounds d̄i and
di from Assumption 2, and our proof of Theorem 2.1 can be used to provide an
algorithm for constructing β and γ. Moreover, as noted in Section 1.2, several
types of uncertainties (including in the dilution rate or in the concentration of
species input) can be captured by our additive uncertainties δi, so our ISS results
can estimate or measure the effects of these types of uncertainties.

3. Proof of Theorem 2.1.

3.1. Changes of Variables and Preliminary State Bounds. We set τ̄ =
maxi τi. Since (10) is forward complete on X = (0,+∞)n+1, we can first fix any
solution (s(t), x(t)) of the system all of whose components are positive for all t ≥ 0,
with xn(0) > x. Then Assumption 2 implies that s(t) ≤ s̄] for all t ≥ 0, since we
would have ṡ(t) < 0 for all t for which s(t) > s̄] and s(0) ≤ s̄. We use the new
variables

αi(t) = xi(t)e
∫ t
t−τi

[µi(s(`))−µi(s∗)]d`
and ∆i(t) = δi(t)e

∫ t
t−τi

[µi(s(`))−µi(s∗)]d`
(21)

for all i ∈ {1, 2, . . . , n}. Then we obtain the new system
ṡ(t) = D[sin − s(t)]−

n∑
i=1

µi(s(t))αi(t)e
∫ t
t−τi

[µi(s∗)−µi(s(`))]d`

+ ∆0(t)

α̇i(t) = [µi(s(t))−D]αi(t) +Dx0
i e

∫ t
t−τi

[µi(s(`))−µi(s∗)]d`

+ ∆i(t) for i = 1, ..., n

(22)

in our new variables, where we also set ∆0 = δ0 for consistency. We next prove
three lemmas which produce three functions Ti ∈ K∞ for i = 1, 2, 3, whose class
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K∞ properties will be used later to build an ISS estimate that is valid for all times
t ≥ 0. Set (s̃, x̃) = (s− s∗, x− x∗). Our first lemma is:

Lemma 3.1. There is a function T1 ∈ K∞ such that s(t) ≤ sin + d̄0/D for all
t ≥ T1(|s̃(0)|).

Proof. Assumptions 1-2 imply that for all t ≥ 0, we have s(t) > 0 and αi(t) > 0
for all i ∈ {1, ..., n}. If there is a time tl ≥ 0 such that s(tl) ≤ sin + d̄0/D, then
for all t > tl, we have s(t) ≤ sin + d̄0/D, since ṡ(t) < 0 at all times t ≥ 0 such
that s(t) ≥ sin + d̄0/D. Hence, to prove the lemma, it suffices to consider the
case where s(0) > sin + d̄0/D and consequently s̃(0) 6= 0. In this case, it follows
that for all t ≥ 0 such that s(`) > sin + d̄0/D for all ` ∈ [0, t], we also have
ṡ(`) < 0. Therefore, for any such t, we can use the facts that D < µn(sin) and µn is
nondecreasing, combined with the inequalities Dx0

n+dn ≥ 0 and s∗ < sin ≤ s(`) for
all ` ∈ [0, t], to deduce that for all ` ∈ [0, t], we have αn(`) ≥ αn(0) ≥ xe−µn(s∗)τn

and D(sin − s(`)) + ∆0(`) ≤ 0, so

tµn(sin)xe−2µn(s̄])τn ≤
∫ t

0
µn(sin)αn(`)e

∫ `
`−τn

(µn(s∗)−µn(s(p)))dp d`

≤
∫ t

0
µn(s(`))xn(`)d`

≤ s(0)− s(t) ≤ s(0)− s∗ ≤ |s̃(0)|

(23)

(by integrating ṡ(`) on [0, t]) which implies that t ≤ |s̃(0)|e2µn(s̄])τn/(µn(sin)x),
where we used the fact that −µn(s(p)) ≥ −µn(s̄]) for all p ∈ [0, t]). Therefore,
there is a time

t∗ ∈
[
0, 2|s̃(0)|e2µn(s̄])τn/(µn(sin)x)

]
(24)

such that s(t∗) ≤ sin + d̄0/D (since by the preceding argument, the largest possible
time t such that s(t) > sin + d̄0/D is |s̃(0)|exp(2µn(s̄])τn)/(µn(sin)x), so at any
later times t, it must be the case that s(t) ≤ sin + d̄0/D), which by the first part
of the proof, implies that s(t) ≤ sin + d̄0/D for all t ≥ t∗. Hence, we can choose

T1(r) = 2e2µn(s̄])τnr/(µn(sin)x).

Consider the operator

σ(t) = s(t) +
n∑
i=1

αi(t)

Li
,

where Li = supp≥0 e
∫ p
p−τi

(µi(s(`))−µi(s∗))d`
for i = 1, 2, . . . , n .

(25)

Then the constants Li satisfy Li ≤ L̄i for all i, where the constant L̄i’s were defined
in (17); this follows from our assumptions that the initial conditions are constant
combined with the facts that µi’s are nondecreasing and s(`) ≤ s̄] for all ` ≥ 0,
which gives µi(s(`)) ≤ µi(s̄

]) for all ` ≥ −τi and all i. Pick any constant λ1 > 1
such that our delay upper bounds from (19) are satisfied with C replaced by λ1C in
the formulas from (17). Such a λ1 exists, because of the strictness of the inequalities
in (19), by picking λ1 > 1 close enough to 1. We next prove:

Lemma 3.2. If Assumptions 1-2 hold, then there is a T2 ∈ K∞ such that σ(t) ≤
λ1C for all t ≥ T2(|E(0)|).
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Proof. By (22),

σ̇(t) = D[sin − σ(t)]−
n∑
i=1

µi(s(t))αi(t)e
∫ t
t−τi

[µi(s∗)−µi(s(`))]d`

+
n∑
i=1

[
αi(t)µi(s(t))

Li
+
Dx0

i

Li
e
∫ t
t−τi

[µi(s(`))−µi(s∗)]d`

]
+ ∆0(t) +

n∑
i=1

∆i(t)

Li

(26)

for all t ≥ 0. Next, note that our choices of the Li’s from (25), combined with
(26) and our upper bounds on the δi’s from Assumption 2 and the nonnegative
valuedness of µi(s(t))αi(t) for all i ∈ {1, 2, . . . , n} imply that

σ̇(t) ≤ CD
2 −Dσ(t) +

n∑
i=1

µi(s(t))αi(t)
[

1
Li − e

∫ t
t−τi

[µi(s∗)−µi(s(`))]d`
]

≤ CD
2 −Dσ(t)

(27)

for all t ≥ 0. Since λ1 > 1, we deduce that σ(t) ≤ λ1C for all t ≥ 0 if σ(0) ∈
(0, λ1C], and that there exists a function T [2 ∈ K∞ such that σ(t) ≤ λ1C for any
t ≥ T [2(σ(0)) when σ(0) > λ1C.

Therefore, the lemma will follow once we find a function T2 ∈ K∞ such that
T2(|E(0)|) ≥ T [2(σ(0)) for all solutions of (10) such that σ(0) > λ1C. To find T2,
first notice that (25) and our formula for sin in (13) give

σ(0) ≤ s(0) +
n∑
i=1

xi(0) = s̃(0) +
n∑
i=1

x̃i(0) + s∗ +
n∑
i=1

xi∗

= s̃(0) +

n∑
i=1

x̃i(0) + s∗ +

n∑
i=1

Dx0
i

D − µi(s∗)
= s̃(0) +

n∑
i=1

x̃i(0)

+ sin +

n∑
i=1

x0
i .

(28)

We next consider two cases. Case 1: If |E(0)| ≤ (sin + x0
1 + . . . + x0

n)/(n + 1),
then the last equality in (28) gives σ(0) ≤ 2(sin + x0

1 + . . . + x0
n) ≤ λ1C, so this

case does not produce any restriction on the allowable values of T2. Case 2: If
|E(0)| > (sin + x0

1 + . . . + x0
n)/(n + 1), then we use the fact that the last equality

in (28) gives T [2((n+ 1)|E(0)|+ sin + x0
1 + . . .+ x0

n) ≥ T [2(σ(0)). It follows that the
function

T2(`) = T1(`)+
(n+1)`

sin+x0
1+...+x0

n
T [2
(
2(sin + x0

1 + . . .+ x0
n)
)
, 0 ≤ ` ≤ sin+x0

1+...+x0
n

n+1

T [2
(
(n+ 1)`+ sin + x0

1 + . . .+ x0
n

)
, ` >

sin+x0
1+...+x0

n

n+1

(29)

satisfies our requirements, where the formula for the restriction of T2 to the interval
[0, (sin +x0

1 + . . .+x0
n)/(n+ 1)] was chosen to ensure that (29) provides a class K∞

function.
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We now fix a constant λ2 ∈ (0, 1) such that our delay bounds from (19) hold
with C replaced by λ1C in (17) and with s1 and the αi’s replaced by

sλ = λ2 min

s∗,
Dsin + d0

D + λ1C
n∑
i=1

mi

ai
eµi(s̄

])τi

 and

αiλ = λ2e
−τiµi(s∗) min

{
xi∗, x

0
i +

di
D

} (30)

respectively for all i in (17). As in the λ1 case, the existence of such a λ2 follows
from the strictness of the inequalities in our conditions on the delays, by choosing
λ2 ∈ (0, 1) and λ1 > 1 both to be close enough to 1. The following lemma provides
useful positive lower bounds on s(t), and on the αi(t)’s for all i ∈ P:

Lemma 3.3. If Assumptions 1-2 hold, then there is a function T3 ∈ K∞ such that
s(t) ≥ sλ and αi ≥ αiλ hold for all t ≥ T3(|E(0)|)− τ̄ and all i ∈ P.

Proof. For all t ≥ T2(|E(0)|), Lemma 3.2 and our choice of σ in (25) give αi(t) ≤
λ1L̄iC for all i ∈ {1, 2, . . . , n}. Hence, for all t ≥ T2(|E(0)|), the (s, α) dynamics
described by (22), and the Monod’s description (15) for the growth functions, give

ṡ(t) ≥ D(sin − s(t))− λ1C
n∑
i=1

mis(t)

ai
eµi(s∗)τiL̄i + d0 and (31)

α̇i(t) ≥ −Dαi(t) + (Dx0
i + di)e

−µi(s∗)τi for all i ∈ P, (32)

where we also used the fact that Dx0
i + di > 0 for all i ∈ P to get (32). The right

side of (31) is bounded below by the positive value (Dsin + d0)(1− λ2) if t is such
that s(t) ≤ sλ. Also, for each i ∈ P, the right side of (32) is bounded below by
the positive value (1− λ2)(Dx0

i + di)e
−µi(s∗)τi if t is such that αi(t) ≤ αiλ. Hence,

for any t0 ≥ 0 such that s(t0) ≥ sλ, we have s(t) ≥ sλ for all t ≥ t0. Also, for
each i ∈ P, and for any t0 ≥ 0 such that αi(t0) ≥ αiλ, we have αi(t) ≥ αiλ for all
t ≥ t0. Hence, to construct T3, it suffices to choose T3 ∈ K∞ such that the following
conditions hold: (i) If s(0) < sλ, then s(t) ≥ sλ for some t ∈ (0, T3(|E(0)|) − τ̄ ]
(which implies that s(t) ≥ sλ for all t ≥ T3(|E(0)|) − τ̄ , by the preceding argu-
ment) and (ii) for each i ∈ P such that αi(0) < αiλ, we have αi(t) ≥ αiλ for some
t ∈ (0, T3(|E(0)|)− τ̄ ] (which implies that αi(t) ≥ αiλ for all t ≥ T3(|E(0)|)− τ̄ , also
by the preceding argument).

To satisfy the preceding conditions (i)-(ii), first note that if we choose any con-
stant TL > 0 such that

TL >
1

1− λ2
max

{
sλ

Dsin + d0

,max

{
eµi(s∗)τiαiλ
Dx0

i + di
: i ∈ P

}}
+ τ̄ (33)

then it follows from the Fundamental Theorem of Calculus and the positive valued-
ness of s and the αi’s that: (A) If s(0) < sλ, then s(`) ≥ sλ for some ` ∈ [0, TL− τ̄ ]
and (B) if i ∈ P is such that αi(0) < αiλ, then αi(`) ≥ αiλ for some ` ∈ [0, TL − τ̄ ].
Conditions (A)-(B) follow because s(`) ≥ s(0) + `(Dsin + d0)(1− λ2) for all ` such
that maxr∈[0,`] s(r) < sλ, and αi(`) ≥ αi(0) + `(1−λ2)(Dx0

i + di)e
−µi(s∗)τi for all `

such that maxr∈[0,`] αi(r) < αiλ, so ` ≤ TL − τ̄ . On the other hand, if |E(0)| ≤ TM
where TM = (1 − λ2) min{s∗,min{xi∗ : i ∈ P}}, then s(0) − s∗ ≥ (λ2 − 1)s∗, and
for all i ∈ P, we have xi(0)− xi∗ ≥ (λ2 − 1)xi∗, so our definition of the αi’s in (21)
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gives s(0) ≥ λ2s∗ ≥ sλ and αi(0) ≥ xi(0)e−τiµi(s∗) ≥ λ2xi∗e
−τiµi(s∗) ≥ αiλ for all

i ∈ P, which imply that s(t) ≥ sλ and αi(t) ≥ αiλ all hold for all t ≥ 0 and i ∈ P.
Hence, we can choose

T3(r) = T2(r) +

{
(TL + TM ) r

TM
, 0 ≤ r ≤ TM

TL + r, r > TM
, (34)

where the formula for the restriction of T3 to [0, TM ] was chosen to ensure that T3

is of class K∞.

3.2. Representing the Error Dynamics. We use the functions

Γ(s) = D +
n∑
i=1

aimixi∗
(ai + s∗)(ai + s)

and α̃i(t) = αi(t)− xi∗ for i = 1, 2, . . . , n. (35)

Then α̃i = αi for all i ∈ {1, 2, . . . , n} \ P. Recall that Γ(s(t)) ≥ Γ0 for all t ≥ 0,
where the constant Γ0 was defined in (17). We assume that

t ≥ T3(|E(0)|), (36)

which implies that t ≥ max{T1(|E(0)|), T2(|E(0)|)}. [By our formulas for sin and
the xi∗’s from (13) and (14), we have

Dsin = Ds∗ +
n∑
i=1

µi(s∗)xi∗ and Dxi∗ = Dx0
i + µi(s∗)xi∗ (37)

for all i ∈ {1, 2, . . . , n}. Hence, using our formula (22) for the dynamics of s and
the αi’s, and the formulas for the components xi∗ of the equilibrium from (14), and
reorganizing terms, we obtain:

˙̃s(t) = −Ds̃(t) +

n∑
i=1

[µi(s∗)− µi(s(t))]xi∗ −
n∑
i=1

µi(s(t))α̃i(t)

+
n∑
i=1

µi(s(t))αi(t)
[
1− e

∫ t
t−τi

[µi(s∗)−µi(s(`))]d`
]

+ ∆0(t)

˙̃αi(t) = [µi(s(t))− µi(s∗)]αi(t) + α̃i(t)µi(s∗)−Dα̃i(t)

+Dx0
i

[
e
∫ t
t−τi

[µi(s(`))−µi(s∗)]d` − 1
]

+ ∆i(t), i = 1, ..., n.

(38)

For all s > 0, we can use Monod’s description (15) for the growth functions to
obtain

µi(s)− µi(s∗) = mis
ai+s

− mis∗
ai+s∗

= ai
ai+s∗

mis̃
ai+s

= ai
ai+s∗

µi(s)
s̃
s = µi(s̃+ s∗)− µi(s∗)

(39)

for all i ∈ {1, 2, . . . , n}. Hence, our formula (35) for the function Γ can be rewritten
as

Γ(s) = D +
n∑
i=1

µi(s)− µi(s∗)
s− s∗

xi∗ (40)
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for all s 6= s∗. Using the constants pi = D − µi(s∗) (which are positive for all
i ∈ {1, 2, . . . , n}, by Assumption 1) and the function Γ, we obtain

˙̃s(t) = −Γ(s(t))s̃(t)−
n∑
i=1

µi(s(t))α̃i(t)

+
n∑
i=1

µi(s(t))αi(t)
[
1− e

∫ t
t−τi

[µi(s∗)−µi(s(`))]d`
]

+ ∆0(t)

˙̃αi(t) = −piα̃i(t) + ciαi(t)µi(s(t))
s̃(t)
s(t)

+Dx0
i

(
e
∫ t
t−τi

[µi(s(`))−µi(s∗)]d` − 1
)

+ ∆i(t), i = 1, ..., n ,

(41)

where ci = ai
ai+s∗

for all i ∈ {1, ..., n}.

3.3. Construction of a Lyapunov-Like Functional. We define the transformed
error vector Ê(t) = (s̃(t), α̃1(t), ..., α̃n(t)), and we choose the C1 function

V1(Ê) = ν(s̃) +
n∑
i=1

1

ci
Ψi(α̃i), where ν(s̃) = s̃− s∗ ln

(
s̃+ s∗
s∗

)
and

Ψi(α̃i) = α̃i − xi∗ ln
(
α̃i+xi∗
xi∗

)
for all i ∈ P, and Ψi(α̃i) = αi for all i ∈ {1, . . . , n} \ P. Since ν′(s̃) = s̃/s and
Ψ′i(α̃i) = α̃i/αi hold for all values of s̃, the α̃i’s, and i ∈ P, it follows from the chain
rule that along all solutions of (41) and for all i ∈ {1, 2, . . . , n}, we have

ν̇(t) = −Γ(s(t))
s̃2(t)

s(t)
−

n∑
i=1

s̃(t)

s(t)
µi(s(t))α̃i(t) +

{
s̃(t)

s(t)
∆0(t)

}
+ s̃(t)

s(t)

n∑
i=1

µi(s(t))αi(t)
[
1− e

∫ t
t−τi

[µi(s∗)−µi(s(`))]d`
]

Ψ̇i(t) = −pi
α̃2
i (t)

αi(t)
+ ciµi(s(t))α̃i(t)

s̃(t)

s(t)

+
α̃i(t)

αi(t)
Dx0

i

(
e
∫ t
t−τi

[µi(s(`))−µi(s∗)]d` − 1
)

+

{
α̃i(t)

αi(t)
∆i(t)

}
.

(42)

It follows that for all t ≥ T3(|E(0)|), the time derivative of V1 along the solutions of
(41) satisfies

V̇1(t) ≤ −

{
Γ(s(t))

s̃2(t)

s(t)
+

n∑
i=1

qi
α̃2
i (t)

αi(t)

}

+ s̃(t)
s(t)

n∑
i=1

µi(s(t))αi(t)
[
1−e

∫ t
t−τi

[µi(s∗)−µi(s̃(`)+s∗)]d`
]

+
n∑
i=1

D
x0
i

ci

α̃i(t)

αi(t)

(
eGi(t) − 1

)
+ N̄ |δ|[0,t],

(43)

where the positive constants qi = pi/ci = (D − µi(s∗))/ci are defined in (17), and
where the formula

N̄ = (n+ 1) max

{
s̄]+s∗
sλ

,max
i6∈P

L̄i
ci
,max
i∈P

L̄i(λ1C+xi∗)
ciαiλ

}
(44)
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follows from Lemmas 3.2-3.3 and the relationship between the ∆i’s and the δi’s in
(21), and was used to bound the coefficients of the ∆i’s in the curly braces in (42).
Our choice of V1 is motivated by the fact that if the delays and uncertainties are
all 0, then V1 is a Lyapunov function for the system (41).

By Lemma 3.2, our decay estimate (43) on V1 gives

V̇1(t) ≤ −N
(
Ê(t)

)
+λ1C max

i∈{1,...,n}

{
µi
(
s̄]
)
Li
∣∣∣1− e∫ tt−τi [µi(s∗)−µi(s̃(`)+s∗)]d`

∣∣∣} |s̃(t)|
s(t)

+
n∑
i=1

Dx0
i

ci

α̃i(t)

αi(t)

(
eGi(t) − 1

)
+ N̄ |δ|[0,t],

(45)

where N (Ê(t)) is the quantity in curly braces in (43). By using the Mean Value
Theorem, we can deduce the inequality

|eX − 1| ≤ |X|e|X|, (46)

for all X ∈ R. We apply (46) twice, by choosing X to be the integrals in (45). We
deduce that when t ≥ T3(|E(0)|), and if we set

Gi(t) =

∫ t

t−τi
[µi(s̃(`) + s∗)− µi(s∗)]d`,

then

V̇1(t) ≤ −N
(
Ê(t)

)
+

n∑
i=1

Dx0
i

ci

|α̃i(t)|
αi(t)

|Gi(t)| e|Gi(t)|

+λ1C max
i∈{1,...,n}

{
Liµi(s̄]) |Gi(t)| e|Gi(t)|

} |s̃(t)|
s(t)

+ N̄ |δ|[0,t]

and therefore also

V̇1(t) ≤ −N
(
Ê(t)

)
+ λ1 max

i∈{1,...,n}

{
CL̄iµi(s̄])eτiBi |Gi(t)|

} |s̃(t)|
s(t)

+
n∑
i=1

eτiBi
Dx0

i

ci

|α̃i(t)|
αi(t)

|Gi(t)|+ N̄ |δ|[0,t]

(47)

where the Bi’s are defined in (17). Using the second equality in (39), and the fact
that the function Γ from (35) satisfies Γ(s) ≥ Γ0 for all s ∈ (0, s̄]], it follows that
for all t ≥ T3(|E(0)|), we have

V̇1(t) ≤ −Γ0
s̃2(t)

s(t)
−

n∑
i=1

qi
α̃2
i (t)

αi(t)

+

[
λ1 max

i∈{1,...,n}

{
ri

∫ t

t−τi

|s̃(`)|
ai + s(`)

d`

}
|s̃(t)|
s(t)

+
∑
i∈P

bi
|α̃i(t)|
αi(t)

∫ t

t−τi

|s̃(`)|
ai + s(`)

d`

]
+ N̄ |δ|[0,t],

(48)

where the ri’s are defined in (17) and bi = DeτiBix0
imi (and where we used the

formula µi(s)−µi(s∗) = cimis̃/(ai + s)). We next use the positive lower bounds sλ
and αiλ from Lemma 3.3, to upper bound the nonnegative valued terms contained
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between the brackets in (48), and then we will convert (48) into a decay condition
on a suitable Lyapunov-like function.

3.4. Converting (48) into a Decay Estimate. We can use Jensen’s inequality
and Lemma 3.3 to check that for all t ≥ T3(|E(0)|), we have

λ1ri

∫ t

t−τi

|s̃(`)|
ai + s(`)

d`
|s̃(t)|
s(t)

≤

{
λ1ri√

Γ0sλ(ai + sλ)

√
s∗i

∫ t

t−τi

|s̃(`)|√
s(`)

d`

}{√
Γ0|s̃(t)|√
s(t)

}

≤ τiλ
2
1r

2
i

2Γ0sλ(ai + sλ)
s∗i

∫ t

t−τi

s̃2(`)

s(`)
d`+

Γ0s̃
2(t)

2s(t)
and

bi
|α̃i(t)|
αi(t)

∫ t

t−τi

|s̃(`)|
ai + s(`)

d`

≤

{
bi√

λ2qiαiλ(ai + sλ)

√
s∗i

∫ t

t−τi

|s̃(`)|√
s(`)

d`

}{√
λ2qi|α̃i(t)|√
αi(t)

}

≤ τib
2
i

4λ2qiαiλ(ai + sλ)
s∗i

∫ t

t−τi

s̃2(`)

s(`)
d`+

λ2qiα̃
2
i (t)

αi(t)

(49)

for all i ∈ P, where

s∗i =
s̄]

s̄] + ai
(50)

and where we also applied the inequality c1c2 ≤ 1
2c

2
1 + 1

2c
2
2 and then Young’s inequa-

lity c1c2 ≤ 1
4c

2
1 + c22, with c1 and c2 being the corresponding terms in curly braces

in (49) in both applications, and we used the fact that s(`) ≤ s̄] for all ` ≥ 0 to get

1

ai + s(`)
≤ 1
√
ai + sλ

√
s(`)

ai + s(`)

1√
s(`)

and

√
s(`)

s(`) + ai
≤
√
s∗i

for all i and all ` ≥ T3(|E(0)|)− τ̄ .
Using (49) to upper bound the terms in brackets in (48) gives the decay estimate

V̇1(t) ≤ −Γ0s̃
2(t)

2s(t)
−

n∑
i=1

qi(1− λ2)α̃2
i (t)

αi(t)
+Mλ(τ)

∫ t

t−τ̄

s̃2(`)

s(`)
d`+ N̄ |δ|[0,t],

where Mλ(τ)

=
s̄]

4

(
1

Γ0sλ
max

1≤i≤n

2τiλ
2
1r

2
i

(sλ + ai)(s̄] + ai)
+
∑
i∈P

τi
(
DeτiBix0

imi

)2
λ2qiαiλ(ai + sλ)(s̄] + ai)

)
.

(51)

Our bound (19) from Theorem 2.1 and our choices of the λi’s imply that τ̄Mλ(τ)λ1 <
Γ0/2, by choosing λ2 ∈ (0, 1) and λ1 > 1 close enough to 1. Therefore, there is a
constant v0 such that along all solutions of (35) in our state space X = (0,∞)n+1

and for all times t ≥ T3(|E(0)|), the time derivative of the function

V2(s̃t, α̃t) = V1(s̃(t), α̃(t)) + λ1Mλ(τ)

∫ t

t−τ̄

∫ t

`

s̃2(r)

s(r)
dr d` (52)
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satisfies

V̇2(s̃t, α̃t) ≤ −v0

(
s̃2(t)

s(t)
+

n∑
i=1

α̃2
i (t)

αi(t)
+

∫ t

t−τ̄

∫ t

`

s̃2(r)

s(r)
dr d`

)
+ N̄ |δ|[0,t], (53)

where we used the relations

d
dt

∫ t
t−τ̄

∫ t
`
s̃2(r)
s(r) dr d` = τ̄ s̃

2(t)
s(t) −

∫ t
t−τ̄

s̃2(`)
s(`) d` and∫ t

t−τ̄
∫ t
`
s̃2(r)
s(r) dr d` ≤ τ̄

∫ t
t−τ̄

s̃2(`)
s(`) d`

(54)

to find v0. The remainder of the proof consists of converting (53) into an ISS

estimate in the transformed error variable Ê(t) = (s̃(t), α̃1(t), ..., α̃n(t)) that is valid
for all t ≥ 0, which we then convert into an ISS estimate in the original error variable
E = (s, x)− E∗; for details for the completion of the proof, see the appendix below.

4. Illustration. Consider the system (10) with n = 2, D = 0.4, s∗ = 0.5, x0
1 = 1,

and x0
2 = 0.55 and the growth functions

µ1(s) =
s

5 + s
and µ2(s) =

s

2 + s
. (55)

We apply our theorem with the choice s̄ = sin. Then Assumption 1 is satisfied
with sin = 1.34412, and the corresponding equilibria (14) are x1∗ = 1.29412 and
x2∗ = 1.1. In this illustration, we will use the vectors δ(t) to model uncertainties
in applying the constant input concentrations (which may occur in applications,
because it may be difficult to maintain the inputs x0

i at constant levels), so we
can set δ0(t) = 0 and therefore choose d0 = d̄0 = 0. To isolate the effects of
delays in one of the species, we assume that τ1 is positive but that τ2 = 0 (but
analogous results can be obtained if the delay is in the dynamics for the second
species, or in the dynamics for both species). Then Assumption 2 is satisfied with
d̄1 = −d1 = d̄2 = −d2 = 0.1, and our requirements (19) on the delays τi are satisfied
with the choice s̄ = sin for all values τ1 ∈ [0, 0.145).

We simulated the dynamics (10) using the command NDSolve in Mathematica
[43], with the preceding choices of the parameters, the delays τ1 = 0.14 and τ2 = 0,
and the disturbance vector δ(t) = (δ0(t), δ1(t), δ2(t)) = (0,−0.1 sin(t), 0.1 cos(t)),
to isolate the effects of uncertainties in applying the constant input concentrati-
ons x0

i in the x subdynamics. We report our results in the figures below, with
the initial state (s(0), x1(0), x2(0)) = (0.2, 0.1, 1), and then with the initial state
(s(0), x1(0), x2(0)) = (1.3, 0.2, 0.1). The figures show rapid convergence towards an
oscillatory steady state, with a deviation from the equilibrium point (s∗, x1∗, x2∗) =
(0.5, 1.29412, 1.1) that can be explained by the presence of the uncertainties δ1 and
δ2, and therefore help illustrate our theory.

5. Boundedness of Solutions of (10) for All Delays τi. Theorem 2.1 leaves
open the question of whether all solutions of (10) are bounded when our Assump-
tions 1-2 are satisfied. Therefore, we prove the following result on boundedness of
solutions of (10):

Proposition 1. Let Assumptions 1-2 hold and the growth functions µi satisfy
µi(0) = 0 and be C1 and strictly increasing for all i ∈ {1, 2, . . . , n}. Assume that
D < sups≥0 µi(s) for all i ∈ {1, 2, . . . , n}. Then for all constant delays τi ≥ 0, all

solutions of (10) starting in (0,+∞)n+1 are bounded.
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0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 1. Solution Components of (10) Plotted on Time Interval
[0, 25]. Species x1(t) and x2(t) and Substrate s(t). Initial State:
(s(0), x1(0), x2(0)) = (0.2, 0.1, 1).
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Figure 2. Solution Components of (10) Plotted on Time Interval
[0, 25]. Species x1(t) and x2(t) and Substrate s(t). Initial State:
(s(0), x1(0), x2(0)) = (1.3, 0.2, 0.1).

Proof. Choose any constant sd ≥ sin + (d̄0/D) such that µi(sd) > D for all
i ∈ {1, 2, . . . , n}, and fix any solution (s(t), x(t)) of (10) whose initial value is compo-
nentwise positive. Then Lemma 3.1 provides a constant ta ≥ 0 such that s(t) ≤ sd
for all t ≥ ta, and our assumptions ensure that all components of (s(t), x(t)) are
nonnegative valued for all t ≥ 0. Hence, s(t) is bounded. Set D∗ = Dsin + d̄0. Then
our assumptions give ṡ(t) ≤ D∗ for all t ≥ 0, which gives

s(m2) ≤ s(m1) + (m2 −m1)D∗ (56)

for all values m1 ≥ 0 and m2 ≥ m1. Also, for each i ∈ {1, 2, . . . , n} and all t ≥ ta+τ ,
we have ẋi(t) ≤ xi(t)[µi(sd) −D] + Dx0

i + d̄i for all t ≥ 0, which we can integrate
to obtain

xi(a2) ≤ e(a2−a1)(µi(sd)−D)

[
x(a1) +

Dx0
i + d̄i

µi(sd)−D

]
(57)
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for all values a1 ≥ 0 and a2 ≥ 0 such that ta + τ ≤ a1 ≤ a2. Since s(t) is bounded,
it remains to show that xi(t) is a bounded function of t for all i ∈ {1, 2, . . . , n},
which we prove by contradiction.

Suppose that there were a j ∈ {1, ..., n} such that xj is unbounded. For later use,
we define the constant s0 > 0 by µj(s0) = D/2. Since xj(t) is unbounded, there is a
sequence of values tk ≥ ta+ 2τ + (s0/(2D∗) such that tk+1 ≥ tk + 2τ + s0/(2D∗) for
all k ≥ 1, and such that the following four conditions hold: (i) x(tk) is increasing,
(ii) limk→∞ xj(tk) = +∞, (iii) ẋj(tk) ≥ 0 for all k ≥ 1, and (iv) the inequality

xj(tk) ≥ 2
n∑
i=1

(
x0
i +

d̄j
D

)
(58)

holds for all k ≥ 1. We can satisfy the preceding conditions (i)-(iv) by first choosing
the tk’s such that (i)-(ii) and (iv) are all satisfied, then replacing t2 by a value
t2∗ ∈ [t1, t2] such that ẋj(t2∗) ≥ 0 (in case ẋj(t2) < 0, by setting t2∗ = inf{t ∈
[t1, t2] : ẋj(r) < 0 for all r ∈ (t, t2]}, and such a t2∗ exists because xj(t1) ≤ xj(t2)),
then replacing t3 by a value ti such that i > 3 and xj(ti) > xj(t2∗) and deleting
t2, . . . , ti−1 from the sequence, then repeating the preceding process with t1 replaced
by ti, and then reasoning inductively. Since ẋj(tk) ≥ 0 for all k ≥ 1, it follows that
xj(tk)µj(s(tk − τ)) +D[x0

j − xj(tk)] + δj(tk) ≥ 0, which we can rearrange to obtain

µj(s(tk − τ)) ≥ D − D(x0
j+(d̄j/D))

xj(tk)
(59)

for all k ≥ 1. Then condition (iv) gives µj(s(tk − τ)) ≥ D
2 = µj(s0), and therefore

also s(tk − τ) ≥ s0 for all k ≥ 1.
Consider the intervals

Ik =
[
tk − τ − s0

2D∗
, tk − τ

]
. (60)

Then m ≥ ta + τ for all m ∈ Ik and k ≥ 1. We deduce from (56) (with the choices
m1 = ` and m2 = tk − τ) that for all ` ∈ Ik, we have

s(tk − τ) + (−tk + τ + `)D∗ ≤ s(`) . (61)

Also, we deduce from (61) (with the choice ` = tk − τ − s0
2D∗

) that

s0
2 ≤ s(tk − τ)− s0

2 = s(tk − τ)− s0
2D∗

D∗ ≤ s(`) (62)

for all ` ∈ Ik, where the first inequality used the fact that s(tk − τ) ≥ s0. As an
immediate consequence of (10) and (62), we deduce that ṡ(t) ≤ D∗− µj(s0/2)xj(t)
for all t ∈ Ik, which we can integrate over Ik to obtain

s(tk − τ) ≤ sd +
s0

2
−
∫ tk−τ

tk−τ−
s0

2D∗

µj

(s0

2

)
xj(m)dm, (63)

by using the lower bound on the tk’s and our choice of sd, and noting that the lower
limit of integration in (63) satisfies tk − τ − (s0/(2D∗)) ≥ ta to obtain s(tk − τ −
(s0/(2D∗))) ≤ sd.

We can also use (57) to conclude that for all m ∈ Ik, we have

xj(tk) ≤ e(tk−m)(µj(sd)−D)
[
xj(m) +

Dx0
j+d̄j

µj(sd)−D

]
. (64)

Since µj(sd) − D ≥ 0, we deduce that for all m ∈ Ik, we also have tk − m ≤
τ + s0/(2D∗) and so also

e(τ+
s0

2D∗ )(D−µj(sd))xj(tk)− Dx0
j+d̄j

µj(sd)−D ≤ xj(m) . (65)
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Since limk→∞ xj(tk) = +∞, it follows from (65) that there is kp > 0 such that for
all k ≥ kp, we have

1

2
e(τ+

s0
2D∗ )(D−µj(sd))xj(tk) ≤ xj(m) (66)

for all m ∈ Ik. Combining (66) with (63), we obtain

s(tk − τ) ≤ sd + s0
2 − µj

(
s0
2

) ∫ tk−τ
tk−τ−

s0
2D∗

1
2e

(τ+
s0

2D∗ )(D−µj(sd))xj(tk)dm

= sd + s0
2 − µj

(
s0
2

)
s0

4D∗
e(τ+

s0
2D∗ )(D−µj(sd))xj(tk) .

(67)

Since limk→∞ xj(tk) = +∞, it follows that there is a k ≥ kp such that s(tk−τ) < 0.
This yields a contradiction with the fact that s(t) ≥ 0 for all t ≥ 0.

6. Conclusions. We solved an input-to-state stabilization problem for a chemo-
stat model with one limiting substrate, an arbitrary number of competing species,
a constant dilution rate, delays in the uptake functions, and uncertainties. We used
the constant species inputs and the input nutrient concentration as constant con-
trols, and these controls can be chosen to input-to-state stabilize a large class of
possible equilibria. In the special case where all of the constant inputs x0

i are posi-
tive and the disturbances are zero, we first proved (in Lemma 3.3) that all solutions
whose initial states are in the positive orthant are uniformly persistent, meaning,
there is a positive lower bound on the species levels. Then by using a Lyapunov
functional, we proved that the solutions asymptotically converge towards a posi-
tive equilibrium, which generalizes [39]. We use the x0

i ’s and the input nutrient
concentration sin as constant controls.

To cope with delays in uptake functions or uncertainties, we used a new Lyapu-
nov functional approach. The decay estimate for our Lyapunov-like function made
it possible to prove robustness to uncertainties. We hope to generalize our work
to larger classes of models with multiple species and multiple limiting substrates.
Our choices of the uptake functions (15) made it possible to obtain lower and upper
bounds in several intermediate steps of the construction of the Lyapunov functi-
onal. The Michaelis-Menten growth functions that we used provide a wide range
of generality for our results, since the growth rates of many species are described
by such functions. A more general result is still unsolved for more general uptake
functions, due to the technical difficulties induced by the lack of monotonicity and
more complex nonlinearities.

Appendix: Completing the Proof of Theorem 2.1. We complete the proof
of Theorem 2.1, by converting the decay estimate (53) into an ISS estimate in the

transformed error variable Ê(t) = (s̃(t), α̃1(t), ..., α̃n(t)) that is valid for all t ≥ 0,
which we then convert into an ISS estimate in the original error variable E from the
statement of the theorem. To this end, first note that we can use our three lemmas
to find a function γ ∈ K∞ such that

v0

(
s̃2(t)

s(t)
+

n∑
i=1

α̃2
i (t)

αi(t)
+

∫ t

t−τ̄

∫ t

`

s̃2(r)

s(r)
dr d`

)
≥ γ

(
V2

(
Êt
))

(A.1)

and therefore also V̇2(Êt) ≤ −γ(V2(Êt)) + N̄ |δ|[0,t] along all trajectories of the E
dynamics starting in our set S of initial states from the statement of our theorem,
and for all t ≥ T3(|E(0)|) (by using the known positive upper and lower bounds for
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s(t) and the αi(t)’s for i ∈ P that are valid for all t ≥ T3(|E(0)|)). One method for
finding γ is as follows. First, pick a function γ

0
∈ K∞ such that

(n+ 1)ν(s̃) ≤ γ
0
(|s̃|) and (n+ 1)Ψi(α̃i)/ci ≤ γ0

(|α̃i|) (A.2)

for all i ∈ {1, . . . , n} and all Ê = (s̃, α̃1, . . . α̃n) such that the following conditions
hold: s̃ ∈ [sλ − s∗, λ1C − s∗], α̃i ∈ [αiλ − xi∗, λ1CL̄i − xi∗] for all i ∈ P, and

α̃i ∈ (0, λ1CL̄i] for all i ∈ {1, . . . , n} \ P. Then V1(Ê(t)) ≤ γ
0
(|Ê(t)|) for all

t ≥ T3(|E(0)|). Hence, Lemma 3.2 gives(
γ−1

0
(V1(Ê(t)))

)2

≤ |Ê(t)|2 ≤ λ1C

(
s̃2(t)

s(t)
+ max

i
L̄i

n∑
i=1

α̃2
i (t)

αi(t)

)
, (A.3)

since max{s(t),max{αi(t)/L̄i : 1 ≤ i ≤ n}} ≤ λ1C for all t ≥ T3(|E(0)|). Therefore,
the function

Θ(r) = min

{(
γ−1

0

(r
2

))2

,
r

2λ1(Mλ(τ) + 1)

}
(A.4)

satisfies

Θ(V2(Êt)) ≤ Θ(2V1(Ê(t))) + Θ(2λ1Mλ(τ)DI(t))

≤
(
γ−1

0
(V1(Ê(t)))

)2

+DI(t) ≤ λ1C maxi L̄i

(
s̃2(t)

s(t)
+

n∑
i=1

α̃2
i (t)

αi(t)

)
+DI(t),

(A.5)

where DI(t) is the double integral in (A.1), and where the first inequality in
(A.5) used the fact that Θ(a + b) ≤ Θ(2a) + Θ(2b) where a and b are the two
terms in our formula (52) for V2, and where the last inequality in (A.5) used
the fact that maxi L̄i ≥ 1. Therefore, we can choose γ = Θv0/va, where va =

max{λ1C maxi L̄i, 1}. Hence, standard ISS arguments (e.g., from [18]) provide
functions β0 ∈ KL and γ0 ∈ K∞ such that

V2

(
Êt
)
≤ β0

(
V2

(
ÊT3(|E(0)|)

)
, t
)

+ γ0(|δ|[0,t]) (A.6)

for all t ≥ T3(|E(0)|). Then the structure of V2 provides functions β1 ∈ KL and
γ1 ∈ K∞ such that

|Ê(t)| ≤ β1

(
|ÊT3(|E(0)|)|[−τ̄ ,0], t

)
+ γ1

(
|δ|∞

)
(A.7)

for all t ≥ T3(|E(0)|).
To extend (A.7) to obtain an ISS estimate that is valid for all t ≥ 0, first note

that the structure (38) of the Ê dynamics and the Mean Value Theorem estimate
(46), combined with our bounds on the µi’s, s(t), and Γ and the global Lipschitzness
of the µi’s, provide a constant L̄ (that is independent of the choice of the solution)
such that ∣∣∣∣ dd` Ê(`)

∣∣∣∣ ≤ L̄(max{|Ê`(r)| : r ∈ [−τ̄ , 0]}+ |δ|[0,`]
)

(A.8)

for all ` ∈ [0, T3(|E(0)|)]; this can be done by rewriting both occurrences of αi(t) in

the dynamics (38) for Ê in the form α̃i(t) + xi∗, and Ê` is defined over the entire
interval [−τ̄ , 0] for all choices of ` ∈ [0, T3(|E(0)|)] because of our assumption that
the initial functions are constant, which allows us to extend their domains to include
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all negative real values). Integrating (A.8) over [0, t] for any t ∈ [0, T3(|E(0)|)] and

applying the Fundamental Theorem of Calculus to Ê gives

F(t) ≤ F(0) + L̄

∫ t

0

F(`)d`+ L̄T3(|E(0)|)|δ|∞, (A.9)

where F(`) = |Ê |[`−τ̄ ,`].
We now apply Gronwall’s inequality to F and use the constantness of the initial

functions to get∣∣∣Ê(t)
∣∣∣ ≤ F(t) ≤

(
F(0) + L̄T3(|E(0)|)|δ|∞

)
eL̄T3(|E(0)|)

= |Ê(0)|eL̄T3(|E(0)|) +
{
L̄T3(|E(0)|)eL̄T3(|E(0)|)

}
{|δ|∞}

≤ eT3(|E(0)|)−t
[∣∣∣Ê(0)

∣∣∣ eL̄T3(|E(0)|)

+ 1
2 L̄

2T 2
3 (|E(0)|)e2L̄T3(|E(0)|)

]
+ 1

2 |δ|
2
∞

(A.10)

for all t ∈ [0, T3(|E(0)|)], by applying the triangle inequality to the terms in curly
braces in (A.10). The final ISS estimate in the original error variable E = (s−s∗, x−
x∗) now follows from adding (A.7) and (A.10) (using (A.10) to upper bound the

|ÊT3(|E(0)|)|[−τ̄ ,0] in the right side of (A.7), and the fact that Ê(t) only depends on
values of δ(r) for times r ≤ t, which allows us to replace |δ|∞ by |δ|[0,t] throughout

(A.7) and (A.10), to get an ISS estimate in the variable Ê that is valid for all t ≥ 0),
and using the fact that T3 ∈ K∞ and the fact that there are constants c∗ > 0 and
c∗∗ > 0 such that for all solutions of that E dynamics with initial states in S, we
have

|E(t)| ≤ c∗∗|Ê |[t−τ̄ ,t] for all t ≥ 0 and |Ê(0)| ≤ c∗|E(0)| . (A.11)

To find values for c∗ and c∗∗, first note that for each i ∈ {1, 2, . . . , n} and t ≥ 0
and any global Lipschitz constant Li for µi, the Mean Value Theorem estimate (46)
and the constantness of the initial functions give

|x̃i(t)| =
∣∣∣αi(t)e∫ tt−τi (µi(s∗)−µi(s(`)))d` − xi∗

∣∣∣
=

∣∣∣(α̃i(t) + xi∗)e
∫ t
t−τi

(µi(s∗)−µi(s(`)))d` − xi∗
∣∣∣

≤ |α̃i(t)|e2τiµi(s̄
]) + xi∗

∣∣∣e∫ tt−τi (µi(s∗)−µi(`))d` − 1
∣∣∣

≤ |α̃i(t)|e2τiµi(s̄
]) + xi∗Lie

2µi(s̄
])τ̄τi|s̃|[t−τi,t]

(A.12)

and

|α̃i(0)| =
∣∣xi(0)eτi(µi(s(0))−µi(s∗)) − xi∗

∣∣
=

∣∣x̃i(0)eτi(µi(s(0))−µi(s∗)) + xi∗
(
eτi(µi(s(0))−µi(s∗)) − 1

)∣∣
≤ e2µi(s̄

])τi (|x̃i(0)|+ xi∗Liτi|s̃(0)|) .

(A.13)

Then we can check that we can choose

c∗∗ = 1 + ne2τ̄ maxi µi(s̄
]) + nτ̄ maxi

{
Lixi∗e

2τiµi(s̄
])
}

and

c∗ = 1 + nmaxi

{
e2τiµi(s̄

])xi∗Liτi

}
+ ne2τ̄ maxi µi(s̄

]),

(A.14)

where the maxima are over all i ∈ {1, 2, . . . , n}; this can be checked by comparing

the formulas for the components of E and Ê . This proves the theorem.
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Pasteur, 79 (1950), 390-410.

[35] C. Neill, T. Daufresne, and C. Jones, A competitive coexistence principle?, Oikos, 118 (2009),
1570-1578.

[36] H. Nie and J. Wu, Coexistence of an unstirred chemostat model with Beddington-De Angelis

functional response and inhibitor, Nonlinear Analysis: Real World Applications, 11 (2010),
3639-3652.

[37] A. Novick and L. Szilard, Description of the chemostat, Science, 112 (1950), 715-716.

[38] S. Pavlou, Microbial competition in bioreactors, Chemical Industry and Chemical Engineering
Quarterly, 12 (2006), 71-81.
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