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ABSTRACT. We study a chemostat model with an arbitrary number of com-
peting species, one substrate, and constant dilution rates. We allow delays in
the growth rates and additive uncertainties. Using constant inputs of certain
species, we derive bounds on the sizes of the delays that ensure asymptotic
stability of an equilibrium when the uncertainties are zero, which can allow
persistence of multiple species. Under delays and uncertainties, we provide
bounds on the delays and on the uncertainties that ensure input-to-state sta-
bility with respect to uncertainties.

1. Introduction.

1.1. Preliminaries. This paper continues our work (which we began in [8, 9, 22,
25, 26, 27, 28, 30, 39]) on control and other methods to ensure desired asymptotic
behaviors in chemostat models, such as the coexistence of multiple competing spe-
cies, convergence to equilibria, or input delay compensation. Our work is strongly
motivated by the ubiquity of chemostats in biological and engineering settings that
are of compelling ongoing interest. The chemostat is a laboratory device and a
mathematical model for the continuous culture of microorganisms. It was introdu-
ced primarily in the works [34] of Monod and [37] of Novick and Szilard from 1950.
In the past few decades, chemostat models have been studied extensively, because
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of their role in biotechnology, ecology, and microbiology as ideal representations
for modeling cell or microorganism growth, natural environments such as lakes,
and wastewater treatment processes [5]; see [42] for an overview of the chemostat
literature.

The classical model of competition in the chemostat is described by the system

$(t) = Dlsin —s(t)] - ;E_lui(S(t))xi(t) (1)
z;(t) = x;()pi(s(t)) — Dxi(t) for i=1,...,n
where n > 2 microbial species (whose concentrations are denoted by z1,...,z,) are

in competition for a nutrient with concentration s [42]. The positive constants s,
and D are called the input nutrient concentration and the dilution rate, respectively,
and Y; is a positive yield constant related to the conversion rate of the substrate
into new biomass for each ¢. The continuously differentiable functions pu; for ¢ =
1,...,n are strictly increasing, satisfy p;(0) = 0, and describe the consumption of
the nutrient by species i. The model also assumes that the growth of the ith species
is proportional to the consumption of the nutrient.

It is well known (e.g., from [12, 42]) that if the preceding conditions hold, and if

0 < p, (D) < ppty(D) < ... < pg (D) < pi ' (D) < sim, (2)
then _ i ] )
Jim s(t) = p (D), Jimw(6) = Valsi — i (D)) o
and lim z;(¢t)=01if 1<i<n-—1,
t——+o0

which is the competitive exclusion principle [12, 15, 33, 35]. The constant ,ui_l(D) is
called the break-even concentration for the ith species, namely the minimal nutrient
concentration that ensures a positive growth for the ith species. Condition (2) says
that the species can be ordered by their competitive ability, which is determined
by their break-even concentrations. Condition (3) implies that only the nth species
persists, because it only requires the lowest concentration of the nutrient to have
positive growth.

However, it is commonly observed in experiments that multiple competing species
can persist in chemostats with one limiting substrate. Numerous methods and
theories have been developed to generate or explain coexistence in chemostats, such
as crowding effects, feedback controls in which the inputs are functions of the state
variables instead of being constant (e.g., in [8, 27]), flocculation [11], heterogeneity
properties of the medium (as noted in [10, 16, 36, 38]), impulsive use of substrates
(as explained in [31, 32, 47]), intra-species competition [22], multiple substrates
[10, 20], and deterministic or stochastic time-varying inputs (as explained, e.g., in
[2, 3, 7, 14, 19, 29, 30, 41, 45]). In this work, we study another approach, based on
an alternative model that we describe next.

1.2. Description of Our Model. The work [39] modifies the model described by
(1) by introducing microbial inputs of the form

w>=zmrwm—§whmwm@

ii(t) = xi(t)pi(s(t)) + D[z — x;(t)] for i=1,...,n,

in order to promote the coexistence of all species and provides sufficient conditions
on the nonnegative constant species inputs x? for i = 1,...,n that can ensure the
coexistence of multiple species, which puts [39] outside the scope of the previously

(4)
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cited works. One approach that was used in [39] involved polytopic Lyapunov
functions [9], which are related to other types of piecewise continuous or piecewise
differentiable Lyapunov functions such as those in [46].

The system (4) can be seen as a limiting dynamics for a chain of interconnected
chemostats, by the following argument. If we consider the system (1) with n = 2
under condition (2), then the competitive exclusion principle will imply that the
concentration of the first species will converge to 0 as ¢ — +o0o. To promote
the coexistence of the two species, the first species (which is the less advantaged
competitor) is cultivated in a first chemostat, whose dynamics is described by the
system

() = on(tu(si(t) - Do), 5)

whose asymptotic behavior is described by (3) with n = 1, that is

Jm s1(t) = s* = py (D),  dim z11(t) =} = Yi[sin — p1 " (D)].

{ §1(t) = Dlsim — s1(t)] = Y; ' (s1(8)z1a (0),

If the output of (5) becomes the input of (1) with n = 2, then we obtain the coupled
system

$1() Dlsin — s1(£)] = Yy pa (s1(2)) w11 (2),
xu(t) = zu®)m(s1(t)) - Dl“n( ),
$2(t) = Dlsi(t) — sa(t)] = Yy " (s2(t))m12(t) — Yy 'pa(sa(t))zaa(t), (6)
t12(t) = z12(t)pa(s2(t)) + D[ﬂﬁn( ) — z12(t)],
Toa(t) = woa(t)pa(s2(t)) — Draa(t),

where z;; is the concentration of the ith species in the jth chemostat, while s; is the
concentration of the same nutrient in the ith chemostat. The last three equations
of (6) can be written as the perturbed system

() = D[s* —s(®)] = Yy pu(s(t))ar(t) — Ya ' a(s(t))z2(t) + qo(t),
1(t) z1(t)p(s2(t)) + D[t — z1(8)] + 1 (D), (7)
ia(t) = w2(tmlsa()) — Das(t),
where the perturbations go(t) = D[s1(t) — s*] and ¢1(t) = D[z11(t) — x7] converge
to zero as t — 400, so (7) is asymptotlcally autonomous to

s(t) = D[s™ —s(t)] =Yy ' (s(t)z1(t) = Yy pa(s(t))z2(t),
i1(t) = a1(t)p(s2(t)) + Dlat — z1(t)], (8)
ia(t) = wa(t)ua(s2(t)) — Dxa(t),
which is a particular case of (4) with n = 2, s, = s*, 2 = 27 and 25 = 0.

A generalization for a chain of n chemostats can be done in a recursive way, by
considering the competitive abilities described in (2).

In this article, we propose a generalization of the model (4) by taking into in
account (i) the presence of additive perturbations and (ii) the effect of delays in the
growth responses [31, 46]. Therefore, the system (4) is changed to

$(t) = Dlsim—s(t)] - ZY Lpa(s(t))ai(t) + do(t) ()

zi(t) = x(t)pi(s(t TZ)) —|— D[x? — z;(t)] + 6;(t) for i=1,...,n.
The functions &; : [0, +00) — [d;,d;] are measurable and essentially bounded (for
i =0,1,...,n) and have known constant lower and upper bounds d; and d;, re-

spectively. The system (7) is a particular case of (9) but the functions §; can
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describe uncertainties such as unmodeled features (for example, disturbances in the
chain of chemostats mentioned above), external perturbations, or uncertainties in
the input concentrations which commonly occur in applications. For example, a
perturbed biomass input 29 + A;(¢) can be represented by an additive perturbation
0;(t) = DA;(t). Also, a disturbance Ap added to the dilution rate can be captured
by setting 6o(t) = Ap(¢)[sin — s(t)] and 6;(t) = Ap(t)[2? — z;(¢)] for i = 1,2,...,n,
and uncertainties in the uptake functions p; or in sj, can be modeled in an analogous
way using suitable choices of the §;’s.

Our assumptions will imply that d, > —Ds;, and d; > —Dx? for i = 1,2,...,n;
see Section 2 for our assumptions, in which the lower bounds d; are allowed to be
negative for each i > 1 such that 2? > 0 (so the disturbances need not be positive
valued). Therefore, all solutions of (9) with positive valued initial conditions are
in the positive orthant for all positive instants, so (9) has the state space X =
(0,+00)"*1. A key component of our analysis is that we will prove a uniform
persistence condition, where we compute positive lower bounds on the z;(t) values
for all i such that 29 > 0 and for sufficiently large ¢; see Lemma 3.3.

The model (9) assumes the existence of a time interval [0, 7;] necessary for the
ith microbial species metabolize the nutrient. The delays 7; have been reported
experimentally in several works, including [1, 4, 40]. Other delays can arise in our
model but will not be considered in this note (but their effects can be incorporated
into our 9;’s). For example, in [13, 17, 23] it is assumed that there is mortality
of microbial biomass and a fraction is recycled into nutrient with some time delay.
The mortality is also considered in [6, 21, 44], where the growth of biomass term
2 (t)pi(s(t—7;)) of (9) is replaced by e~%7ix;(t —7;)pi(s(t —7;)). Through a change
of coordinates (based on a scaling the z;’s, 2¥’s, and §;’s for i > 1), the model (9)
becomes

$(t) = Dlsin —s(t)] - 2 pi(s(8))2i(t) + do(t) (10)

ii(t) = xi®ui(s(t —7))+ D[ —z;(t)] + 6i(t) for i=1,...,n,

where for simplicity we kept the same notation, and (10) will be the subject of this
paper.

1.3. Structure of Article. In the next section, we provide our theorem for (10),
which we prove in Section 3 and illustrate in an example in Section 4. Our work
is novel in its use of the more general model (10) (which we believe had not been
studied in the presence of nonzero delays or uncertainties) and our use of a new
Lyapunov-Krasovskii functional method that is beyond the scope of our prior Lya-
punov function designs (such as those in [24, 39], which were confined to undelayed
systems). Also, the equilibrium that we stabilize is in the boundary of the state
space X when at least one of the #9’s is 0. Moreover, while our previous work [39]
required that the nth species input be 22 = 0, here we allow a range of possible 2
values, so we cover a much broader class of equilibria than [39].

2. Definitions, Assumptions, and Main Result. Our main result provides
sufficient conditions ensuring input-to-state stability (or ISS) properties for the
dynamics for the error variable

E(t) = (s(t) = 5w, 2(t) — x4) (11)
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with respect to the disturbance vector 6 = (dg, 01, - . ., dp,), for a large class of possible
equilibrium points &, = (s.,x«), where z,. = (T14,...,Tps) and & = (1,...,Zp).
The ISS framework is used extensively across engineering; see [18] for the definition
of ISS for undelayed systems without state constraints. To allow delays and state
constraints, we use a variant of the usual ISS property. To explain this variant, we
first need several definitions. Let Ko be the set of all continuous strictly increasing
unbounded functions v : [0,4+00) — [0, 400) such that v(0) = 0. Also, KL is the
set of all continuous functions 3 : [0, +00) x [0,4+00) — [0, +00) such that (i) for

each t > 0, the function f(s) = 3(s,t) is of class Ko and (ii) for each s > 0, the
function g(t) = B(s,t) is nonincreasing and satisfies lim;_, o, g(t) = 0. We also set
q:(€) = q(t+2) for all £ <0, ¢t > 0, and functions ¢ for which the equality is defined.
By ISS of a delay system of the form ¢(¢t) = F(q:, 6(t)) with respect to a pair (D, S),

we mean that there exist functions § € KL and v € K such that

lg@)| < B(1a(0)],) +7(16]p0,01) (12)

holds for all ¢ > 0, all solutions ¢(t) of the system that have initial states ¢(0) € S,
and all measurable essentially bounded functions 4 : [0,400) — D. Here and in the
sequel, we assume that the initial conditions of our systems are constant, | - | is the
usual Euclidean norm, |- |jp 4 is the essential supremum over [0,], and | - | is the
essential supremum. Later we specialize the preceding definitions to cases where
q = &, and where ¢ is an error vector in a different set of variables that we introduce
later. Our first assumption is:

Assumption 1. The constants s, > 0 and s;; > 0 are such that

wi(s«) <D for i=1,2,...,n, and sinzs*—&—iM, (13)
— D — pi(ss)
and the constants x¥ are all nonnegative. Also, the constant D satisfies 0 < D <
H?L(Sin)-

Assumption 1 can always be satisfied for all choices of the constant

D € (0,sup pn(s)),
s>0

by first fixing s, such that p;(s.) < D for all i, and then choosing the z¥’s such
that D < p,(sin) and s;, > 0, ie., we view the x?’s and s;, as constant controls.
Although this differs from the usual treatment of controls where the controls depend
on time (i.e., open loop controls) or on the state (as in feedback controls), our use of
constant controls is sufficient for our delays and robustness analysis (and is included
in the usual framework of open loop or feedback controls, by specializing the usual
framework to cases where the controls are constant ones). By the symmetry of the
dynamics for the z;’s, we can replace the condition D < u,(si,) by the requirement
that D < p;(sin) for some 4, by renumbering the species. Assumption 1 implies that
when the §;’s and 7;’s are 0, the system (10) admits the equilibrium &, = ($«, 2 ),
where
Dz?

D — pi(ss)
Then &, € [0, +00)" ! and when the 2¥’s are all positive, we have £, € (0, +oo)™ L.
From Assumption 1, we have p,(sx) < fn(Sin), so since u, is strictly increasing,
we have s, € (0,sin). Our assumption on the measurable essentially bounded
uncertainties §;(¢) is as follows, where P = {i € {1,...,n} : 20 > 0}:

Tix fori=1,..,n. (14)
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Assumption 2. We have §(t) € [dy, do] X ... % [d,,,d,] for almost all ¢ > 0, where
the known constants d; and d; > 0 are such that Ds;, +dy > 0, do < 0.5Ds,,
Dz +d; >0forallicP,and d; =0 for all i € {1,2,...,n}\ P.

Assumption 2 allows d; = d; = 0 for i = 0,1,...,n which corresponds to cases
where the §;’s are all zero, but is far more general, e.g., because the d;’s for i > 1
can be as large as we want. Notice that in important cases where the z{’s are all
positive, there is no systematic positive bias in the disturbance values, since for
instance, we can allow § to be take its values in sets such as [dy, do] X ... x [d,,, d,] =
[~ min{0.25Ds.,,0.5Dz%}, min{0.25Ds,, 0.5Dx2}]" ™! where 20 = min{z? : 1 <i <
n} that are symmetric hypercubes centered at the origin. To state our assumption
on the constant delays 7;, we assume that the u;’s have the Monod’s form
m;s

() = 15
pls) = (15)
with m; > 0 and a; > 0 being respectively the maximal growth rate and the half
saturation constants for all i € {1,2,...,n}, and we set
di
st — 20 16
=5+ D (16)

where the constant § > sy, will be specified later. Finally, we use the positive
constants

- 1 = - a;m;x;
C =2 sin Y+ =N 'd;|, To=D i
(8 +;$1+D; ) 0 +1Z a7’_|_5* (ZZ—FSu)

L; = eTz‘(Mi(gu)*lti(S*)),

_amCLypi(3%)em P (@i + 54) (D — pi(s))
T al + S* b ql - az )
_ 17
B, = max {ju () — pu(s.). (5.} 17)
. DSin + do
§; = min ¢ S, )
ml #
D C HZ(S )7'7

d.
and o; = e~ Titi(5+) min {xi*,x? + 5} .

The motivation for the constant I'g is that it is a lower bound for the function

azmzmz*
=D L 18
+; @ T s T (18)

for all s € [0, 5%]. The function (18) will play an important role in the proof of our
theorem, but is not needed to state our theorem. Our main result is:

Theorem 2.1. If Assumptions 1-2 hold, and if there exists a constant § > sin such
that each of the constant delays T; satisfies

Mr; <Ty for i=1,2,...,n, (19)
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where M is defined by

2 1 22 (De“ i m)
S T T 7

M= — 20
2 (I‘Os1 ) (51 +ai) (58 + a;) * Z = qic;(a; + s1)(58+ay) )’ (20)

then for all constants x > 0, the dynamz'cs_for the error _(Z 1) are ISS with respect
to (D, S) with the disturbance set D = [dy, do] X ... %X [d,,,dn] and S ={E : E+E, €
(0,3] x (0,+00)" "t x (x,+00)}.

Our proof of Theorem 2.1 will show how the constants s; and «; described in
(17) are related to the lower bounds of the solutions of (10) for arbitrarily large
values of t. Note also that M depends on the 7;’s for all ¢ = 1,...,n and is equal
to zero when these delays are 0, which implies that there are positive values 7; such
that (19) is satisfied when the delays 7; all satisfy 0 < 7, < 7.

Since E(t) + & = (s(t),x(t)) for all ¢ > 0, our choice of S in Theorem 2.1
corresponds to the requirement that (s(0),z(0)) € (0,35] x (0, 4+00)" ! x (2, +00).
However, since § > s;, and z > 0 are arbitrary, it follows that when the §;’s are zero,
Theorem 2.1 implies that all solutions (s(¢), z(¢)) of (10) starting in X = (0, +-00)"*!
remain in X at all positive times and satisfy lim; .o (s(t),2(t)) = (s«,zs). This
ensures uniform persistence of the ith species for all i € P, i.e., x; has a positive
lower bound (and limy o0 2;(t) = 0 for all ¢ € {1,...,n} \ P). Our results are
new, even in the special cases where the delays 7; or the uncertainties d; are all
zero, because [39] did not include delays or uncertainties. Since we do not restrict
the values of d; > 0 for i > 1, we obtain ISS under arbitrarily large upper bounds
on the disturbances §; in the x subdynamics. The functions 8 € KL and v € K
in the final ISS estimate will depend on 3, z, and the disturbance bounds d; and
d,; from Assumption 2, and our proof of Theorem 2.1 can be used to provide an
algorithm for constructing S and . Moreover, as noted in Section 1.2, several
types of uncertainties (including in the dilution rate or in the concentration of
species input) can be captured by our additive uncertainties d;, so our ISS results
can estimate or measure the effects of these types of uncertainties.

3. Proof of Theorem 2.1.

3.1. Changes of Variables and Preliminary State Bounds. We set 7 =
max; 7;. Since (10) is forward complete on X = (0, 4+00)" !, we can first fix any
solution (s(t),z(t)) of the system all of whose components are positive for all ¢ > 0,
with ,,(0) > z. Then Assumption 2 implies that s(t) < 5% for all t+ > 0, since we
would have §(t) < 0 for all ¢ for which s(t) > 5% and s(0) < 5. We use the new
variables

a;(t) = xi(t)efttfi [rs (s(£)) —pi(sx)]de and A;(t) = 5i(t)€f‘t*7i [1i(s(€))—pi(ss)]de (21)
for alli € {1,2,...,n}. Then we obtain the new system

S(t) = Sln — Z /'[/74 f1 I (ki (s4)—pi(s(€))]de
+Ao(t) (22)
a;(t) = [wi(s(t)) — D]ai(t )+onef, 7 i (s(0) = pi ()] de

+A;(t) for i =1,.

in our new variables, where we also set Ay = dy for consistency. We next prove
three lemmas which produce three functions T; € K, for ¢ = 1,2,3, whose class
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Koo properties will be used later to build an ISS estimate that is valid for all times
t > 0. Set (5,Z) = (s — su, — x4). Our first lemma is:

Lemma 3.1. There is a function Ty € Koo such that s(t) < siy + do/D for all
t > T1([5(0))).

Proof. Assumptions 1-2 imply that for all ¢ > 0, we have s(t) > 0 and «;(t) > 0
for all i € {1,....,n}. If there is a time #; > 0 such that s(t;) < s, + do/D, then
for all t > t;, we have s(t) < siy + do/D, since §(t) < 0 at all times ¢t > 0 such
that s(t) > s, + do/D. Hence, to prove the lemma, it suffices to consider the
case where s(0) > s;, + do/D and consequently 5(0) # 0. In this case, it follows
that for all ¢ > 0 such that s(¢) > sy, + do/D for all £ € [0,¢], we also have
5(¢) < 0. Therefore, for any such ¢, we can use the facts that D < p,(sin) and p, is
nondecreasing, combined with the inequalities Dx%+ d,, > 0and s, < sip, < s(¢) for
all £ € [0,1], to deduce that for all £ € [0,], we have ay,(£) > @, (0) > ze Hn(s)
and D(sin — s(¢)) + Ap(¢) <0, so

T i (i)t (€)= Gin (s0)=hn (5P g
Jo tn(s(£)z ()l (23)
< 5(0) —s(t) < s(0) — s < |5(0)]

thin (5im)ze ™2 ()T

IN

IN

(by integrating $(¢) on [0,¢]) which implies that ¢ < |§(O)|62”"(§ﬁ)”/(,un(sin)g)7
where we used the fact that —u,(s(p)) > —pu,(5%) for all p € [0,¢]). Therefore,
there is a time

to € [0,2050)1e2 ™ (1 (s10)2) (29

such that s(t,) < sy +do/D (since by the preceding argument, the largest possible
time ¢ such that s(t) > siy + do/D is [3(0)]|exp(24n (3%)7)/(tin(5in)x), S0 at any
later times ¢, it must be the case that s(t) < si, + do/D), which by the first part
of the proof, implies that s(t) < si, + do/D for all t > t,. Hence, we can choose

Ty (r) = 2e24n 7/ (1, (si0)2). 0

Consider the operator

o(t) = st + 3. Y,

S (i (s () =pi(s.))de for i=1,2,...,n.

(25)

where L£; =sup,>qe€

Then the constants £; satisfy £; < £; for all i, where the constant £;’s were defined
in (17); this follows from our assumptions that the initial conditions are constant
combined with the facts that p;’s are nondecreasing and s(¢) < & for all £ > 0,
which gives p;(s(€)) < p;(5%) for all £ > —7; and all i. Pick any constant \; > 1
such that our delay upper bounds from (19) are satisfied with C replaced by A1C' in
the formulas from (17). Such a A; exists, because of the strictness of the inequalities
n (19), by picking A; > 1 close enough to 1. We next prove:

Lemma 3.2. If Assumptions 1-2 hold, then there is a Ty € Ko, such that o(t) <
MC for all t > T»(|E(0)]).
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Proof. By (22),

5(t) = Dlsin — (0] = 3 pus(t) s (1) i) oDl
=1 (26)

— [ai(t)pi(s(t Dad [t ((s(6) s (5] A (t
+Z[ ()Li( ) | i I ()= s (5.)] ]+A0(t>+z E(z-)
i=1 i=1

for all ¢ > 0. Next, note that our choices of the £;’s from (25), combined with
(26) and our upper bounds on the J;’s from Assumption 2 and the nonnegative
valuedness of p;(s(t))a;(t) for all i € {1,2,...,n} imply that

()

IN
|

02D — Do(t) + Zui(s(t>)ai(t) [% _olie [m(s*)—m(s(é))]dz} o
i=1

< €2 _Do(t)

for all t > 0. Since A\; > 1, we deduce that o(t) < \C for all t > 0 if 0(0) €
(0, \1C], and that there exists a function T% € K., such that () < A\ C for any
t > T5(c(0)) when o(0) > A\ C.

Therefore, the lemma will follow once we find a function T € K, such that
T2(|€(0)]) > T5(0(0)) for all solutions of (10) such that o(0) > A\ C. To find T,
first notice that (25) and our formula for s;, in (13) give

o(0) < s(0)+ D w(0) = 5(0)+D_F:l0) + 5.+ Y win
n n =1 ,CCO =t n
= 50)+ > #(0) s+ D—Di»z(s) =500+ _#(0) (28
i=1 i=1 P i=1

n

0

+ Sin + E Z;.
=1

We next consider two cases. Case 1: If |E£(0)] < (sin + 29 + ... +29)/(n + 1),
then the last equality in (28) gives o(0) < 2(sin + 2% + ... +29) < A\ C, so this
case does not produce any restriction on the allowable values of To. Case 2: If
1£(0)] > (sin + 29 + ... +22)/(n + 1), then we use the fact that the last equality
in (28) gives T5((n 4 1)[E(0)] + sin + 29 + ... +29) > T5(5(0)). It follows that the

function

T,(f) = Th(0)+

+1)¢ intad+.. .42
T B (2 a4 al)), 0SS e (29)

Sintad 4. +ax?
n+1

TS ((n+ 1)+ sin + 2 +...+20), 0>
satisfies our requirements, where the formula for the restriction of 75 to the interval
[0, (sin + 2% + ... +29)/(n+1)] was chosen to ensure that (29) provides a class Ko,
function. 0
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We now fix a constant Az € (0,1) such that our delay bounds from (19) hold
with C replaced by A\;C in (17) and with s; and the a,’s replaced by

Dsin + dy and

D+ )\102 %em(g")n (30)

i=1

Sy = Agmin ¢ Sy,

. d,
a;, = Age TiHi(5) min {xi*, z? + D}
respectively for all 7 in (17). As in the \; case, the existence of such a Ay follows
from the strictness of the inequalities in our conditions on the delays, by choosing
A2 € (0,1) and A; > 1 both to be close enough to 1. The following lemma provides
useful positive lower bounds on s(t), and on the «;(t)’s for all i € P:

Lemma 3.3. If Assumptions 1-2 hold, then there is a function T3 € Ko such that
s(t) > sy and a; > ayy hold for all t > T5(]E(0)|) — 7 and all i € P.

Proof. For all t > T5(|€(0)[), Lemma 3.2 and our choice of o in (25) give a;(t) <
ML;C for all i € {1,2,...,n}. Hence, for all t > T5(|€(0)]), the (s,a) dynamics
described by (22), and the Monod’s description (15) for the growth functions, give

5(t) > D(sin —s(t)) — /\102 %(t)e”i(s*)“/ji +d, and (31)
i=1
a;(t) > —Day(t) + (Da? + d;)e )7 for all i € P, (32)

where we also used the fact that Dz + d; > 0 for all i € P to get (32). The right
side of (31) is bounded below by the positive value (Dsi, 4+ dy)(1 — A2) if ¢ is such
that s(t) < s,. Also, for each i € P, the right side of (32) is bounded below by
the positive value (1 — X\2)(Da? + d;)e™# ()7 if ¢ is such that a;(t) < a;,. Hence,
for any ¢y > 0 such that s(tg) > s,, we have s(t) > s, for all t > ¢y. Also, for
each i € P, and for any to > 0 such that a;(tg) > a;,, we have a;(t) > a;, for all
t > to. Hence, to construct T3, it suffices to choose T5 € K such that the following
conditions hold: (i) If s(0) < sy, then s(t) > s, for some ¢t € (0,73(|£(0)]) — 7]
(which implies that s(t) > s, for all t > T53(]€(0)|) — 7, by the preceding argu-
ment) and (ii) for each ¢ € P such that «;(0) < a;,, we have «;(t) > a;, for some
t € (0,75(|€(0)]) — 7] (which implies that a;(t) > a;, for all t > T5(]€(0)|) — 7, also
by the preceding argument).

To satisfy the preceding conditions (i)-(ii), first note that if we choose any con-
stant T, > 0 such that

1 Sy eri(s)Tig
T S, . S - A 7
L>1_/\2max{D5in+dO,maX{ DT d ie€Pyro+T (33)

then it follows from the Fundamental Theorem of Calculus and the positive valued-
ness of s and the «;’s that: (A) If s(0) < s,, then s(¢) > s, for some ¢ € [0,T, — 7]
and (B) if ¢ € P is such that a;(0) < @, then «;(¢) > a;, for some ¢ € [0,T, — 7.
Conditions (A)-(B) follow because s(¢) > s(0) + ¢(Dsin + dy)(1 — A2) for all £ such
that max,c[¢ s(r) < sy, and o;(£) > a;(0) + (1 — X2)(Da? + d;)e=#i(=)7i for all ¢
such that max,c[g, i(r) < @y, s0 £ < Tp, — 7. On the other hand, if [£(0)] < T,
where Tpy = (1 — o) min{s., min{xz;. : i € P}}, then s(0) — s. > (A2 — 1)s,, and
for all ¢ € P, we have z;(0) — 2;« > (A2 — 1)a44, so our definition of the «;’s in (21)
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gives s(0) > Ags. > s, and a;(0) > xi(O)e*”’“(s*) > Aomjpe Tiki(se) > a;, for all
i € P, which imply that s(t) > s, and «;(t) > o, all hold for all t > 0 and i € P.
Hence, we can choose

(Te+Tu)z-, 0<r<Ty

; (34)
T+, r> Ty

Tg(?") = TQ(T‘) + {

where the formula for the restriction of T3 to [0, Ths] was chosen to ensure that T3
is of class K. O

3.2. Representing the Error Dynamics. We use the functions

Q3TN L% ~ .
=D+ ; @ T s)ats and &;(t) = a;(t) — @i fori=1,2,...,n. (35)

Then &; = o for all ¢ € {1,2,...,n} \ P. Recall that I'(s(t)) > I'o for all t > 0,
where the constant I’y was defined in (17). We assume that

t > T5(1£(0)]), (36)

which implies that ¢t > max{T1(|£(0)|),72(|€(0)])}. [By our formulas for s;, and
the x;,’s from (13) and (14), we have

Ds;, = Ds, + Z wi(5:)Ts and Dxg, = Dl + (5.7 (37)
i=1
for all ¢ € {1,2,...,n}. Hence, using our formula (22) for the dynamics of s and

the «;’s, and the formulas for the components x;, of the equilibrium from (14), and
reorganizing terms, we obtain:

n

§(t) = _Dg(t) + Z[Uz(s*) xz* Z,uz

1=

1
- ) _ _ ft,n[ui(S*)*m(S(f))]df
+ D m(s(®)as(t) [1 i }+Ao<t> )

Git) = [mi(s(t) — pa(sa)a(t) + @i (B)pi(s.) — Dé(t)
1 Da® {ef:,,i (i (s(0)—pi(s)]dl _ 1} FA), i=1,..n.

For all s > 0, we can use Monod’s description (15) for the growth functions to
obtain

22 ( ) Mz( *)g: ;:Lj:i_ ;:Lj::* = ai(«lﬁs* tZlJl:s (39)
= o ri(s) s = pi(S + s0) — pi(ss)
for all i € {1,2,...,n}. Hence, our formula (35) for the function I can be rewritten
as
D+Z“l = ilse) (40)

S — Sy
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) (which are positive for all

12
Using the constants p; = D — pu,(

for all s # s,. 51
n}, by Assumption 1) and the function I'; we obtain

ief{l,2,...,
i) = —T(s(t)3t }:m
+ Z/M(S(t))a t) [1 _ effﬂ [1i(ss)—pi(s(£))] dq + Ao(t) (41)
i=1
&it) = —pidit) + cioi(t)pa(s(1)) 5
+Dw(1;f (s(0)=pi(s.)]de _ )+Axmz:1,,n,
where ¢; = - for all i € {1,...,n}.
3.3 Constrl}ctlon of a Lyapunov-Like Functional. We define the transformed
error vector &(t) = (3(t),a1(t), ..., @n(t)), and we choose the C! function
(8 + o ) and
Sx

Vi(€) = v(3) + Z c%—qji(&i)’ where v(8) = § — s, In

— Zix In di:$1*>
n} \ P. Since V'(5) = §/s and

i=1

V(&) = &
for all i € P, and ¥,;(&;) = «; for all ¢ € {1
U (&;) = &; /oy hold for all values of §, the &;’s, and ¢ € P, it follows from the chain
rule that along all solutions of (41) and for all ¢ € {1,2,...,n}, we have
S(t
()Ao(t)}

U Z‘gg a0+ {27

v(t) = —I'(s(t
0 = T z
y 3t n { ETMa>mumﬂ
i1 (42)
b ol 0
\I/l(t) = —Di Oél(t) +Cl:ul( (t)) l(t)s(t)
&i(t) 1 o fi Tna(s(0)—mi(s.0lde ai(t)
+EBD%( Q+ i)
It follows that for all ¢ > T5(|£(0)|), the time derivative of V; along the solutions of
(41) satisfies
: 2(t) ~ ait
W < - {r<s<t>> S((t)) Y a af((t))}
i=1 ¢
{1 olir i) = ul(s(e)+s*)]de} (43)

+54 Zuz

z9 & (t) I
+Z ¢ a:t (e - )H 0.
))/ci are defined in (17), and

where the positive constants ¢; = p;/¢; = (D — pi(
Li(MiCai)
oo } (44)

where the formula

= 5t
N = (n+ 1) max { +t5= maxﬁ— max
X ic€P

igp ©i
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follows from Lemmas 3.2-3.3 and the relationship between the A;’s and the §;’s in
(21), and was used to bound the coeflicients of the A;’s in the curly braces in (42).
Our choice of V7 is motivated by the fact that if the delays and uncertainties are
all 0, then V; is a Lyapunov function for the system (41).

By Lemma 3.2, our decay estimate (43) on V; gives

Vi(t) < —N(E(1))

. A HERENE 5(4)]
AC (5 Ei‘l, S lis0) m<s<e>+s*>]de’ |5(
RE {“ (%) ¢ } s(1) (45)

— D &i(t) ( g, G
+;7T (6 —1>+N|6|[0)t],

/(1)

where NV(£(t)) is the quantity in curly braces in (43). By using the Mean Value
Theorem, we can deduce the inequality

|eX -1 < \X|e|X|, (46)

for all X € R. We apply (46) twice, by choosing X to be the integrals in (45). We
deduce that when ¢t > T5(]£(0)]), and if we set

then

and therefore also

Vi(t) < *N(‘f(”)“lie{f?ﬁ’fn {CLu(&)em P 1001}

+Z g 70‘18' 1G:(8)] + N1l

where the B;’s are defined in (17). Using the second equality in (39), and the fact
that the function T' from (35) satisfies I'(s) > Iy for all s € (0,35%], it follows that
for all t > T3(|€(0)]), we have

ORI LA Pty

s )
¢ ~ ~
3(0)] |5(1)]
A i de
* [ ! ie?ll,ax,n} {T /tn a; + s(0) s(t) (48)
i (¢ .
= ai(t) Ji—r, ai+s(l)
where the r;’s are defined in (17) and b; = DeBiz9m,; (and where we used the

formula 1;(s) — pi(s«) = ¢;m;8/(a; +5)). We next use the positive lower bounds s,
and oy from Lemma 3.3, to upper bound the nonnegative valued terms contained
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between the brackets in (48), and then we will convert (48) into a decay condition
on a suitable Lyapunov-like function.

3.4. Converting (48) into a Decay Estimate. We can use Jensen’s inequality
and Lemma 3.3 to check that for all t > T5(|€(0)|), we have

A GIEO]
A7y /t T ¢ )

A — (" 15 de} {méw}
S{ Foﬁ,\(ai+§,\)\/7 t—m: \/8(0) s(t)

22,2 t 2 2
TiAITS ) ’F/ 5 (€)d€ Tos4(t) and
t—T1;

— 5
= 20sy(a; +sy) " Jior s(£) 2s(t) (49)
@) [f 1300
b; d/
ai(t) Ji—r ai+s(0)
bi ¢ )\2q
< s3
b2 t 2 2
< 7:b; 8:/ S (g)dﬁ Aaqi & (t)
Ahaqiain(ai +s5) " Jior s(0) i(t)
for all i € P, where
L_ & 0
YT ra (0)

and where we also applied the inequality cycy < %C% + %cg and then Young’s inequa-

lity c1c0 < ic% + ¢3, with ¢ and ¢y being the corresponding terms in curly braces
n (49) in both applications, and we used the fact that s(¢) < & for all £ > 0 to get

1 1 s(0) 1
< and <\/s
a; +s(0) T a; Fs, \ ai+s8) /s —i—az

for all ¢ and all £ > T5(|£(0)]) — 7.
Using (49) to upper bound the terms in brackets in (48) gives the decay estimate

- ai(1 az(t) R0
< —
Th(t) < — Z s [
where MA( ) (51)
5t 1 27 \Pr? 7 (De™Bi g mz)2
= — max — + .
4 F0§)\ 1<i<n (§A + ai)(sﬂ + ai) P /\2(]1‘*,‘)\(@1' —|—§/\)(Sti + ai)

Our bound (19) from Theorem 2.1 and our choices of the A;’s imply that TM(7)A1 <
T'o/2, by choosing Ay € (0,1) and A; > 1 close enough to 1. Therefore, there is a
constant vy such that along all solutions of (35) in our state space X = (0, 00)"*!
and for all times ¢ > T5(|£(0)]), the time derivative of the function

22

Va (e, ) = Va(3(1), (1)) + MM (T) /t_f /e ss<(:))

drd¢ (52)
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satisfies

. 52 a7 bR (e -
Va1, 6) < —o ( S((tf)) 3 af((:)) +/ /g S((T))drd£> + Mooy, (53)
i=1 ¢ t—T

where we used the relations

ot PO geqr =750 - S0gp and

£ s(r) s(t) — Jt—7 s(0) 54
t t §2(r _ ot 32 ( )
S i s((r)) drdf <7 [ s((e)) e

to find vg. The remainder of the proof consists of converting (53) into an ISS
estimate in the transformed error variable &(t) = (5(), @y (t), ..., dn (t)) that is valid
for all ¢ > 0, which we then convert into an ISS estimate in the original error variable
E = (s,x) — &,; for details for the completion of the proof, see the appendix below.

4. Tlustration. Consider the system (10) with n =2, D = 0.4, s, = 0.5, 20 = 1,
and z9 = 0.55 and the growth functions

s s
=51s and ,ug(s)=2+8. (55)
We apply our theorem with the choice § = s;;,. Then Assumption 1 is satisfied
with s;,, = 1.34412, and the corresponding equilibria (14) are 1, = 1.29412 and
z9. = 1.1. In this illustration, we will use the vectors §(t) to model uncertainties
in applying the constant input concentrations (which may occur in applications,
because it may be difficult to maintain the inputs z¥ at constant levels), so we
can set Jg(t) = 0 and therefore choose d, = dy = 0. To isolate the effects of
delays in one of the species, we assume that 7y is positive but that 72 = 0 (but
analogous results can be obtained if the delay is in the dynamics for the second
species, or in the dynamics for both species). Then Assumption 2 is satisfied with
dy = —d;, = dy = —dy = 0.1, and our requirements (19) on the delays 7; are satisfied
with the choice § = s;,, for all values 7 € [0,0.145).

We simulated the dynamics (10) using the command NDSolve in Mathematica
[43], with the preceding choices of the parameters, the delays 7 = 0.14 and 7o = 0,
and the disturbance vector 6(t) = (do(t),d1(t),d2(t)) = (0, —0.1sin(t),0.1 cos(t)),
to isolate the effects of uncertainties in applying the constant input concentrati-
ons z¥ in the z subdynamics. We report our results in the figures below, with
the initial state (s(0),z1(0),22(0)) = (0.2,0.1,1), and then with the initial state
(s(0),x1(0),22(0)) = (1.3,0.2,0.1). The figures show rapid convergence towards an
oscillatory steady state, with a deviation from the equilibrium point (s., 214, Z2s) =
(0.5,1.29412,1.1) that can be explained by the presence of the uncertainties é; and
02, and therefore help illustrate our theory.

pa(s)

5. Boundedness of Solutions of (10) for All Delays 7;,. Theorem 2.1 leaves
open the question of whether all solutions of (10) are bounded when our Assump-
tions 1-2 are satisfied. Therefore, we prove the following result on boundedness of
solutions of (10):

Proposition 1. Let Assumptions 1-2 hold and the growth functions u; satisfy
wi(0) = 0 and be C' and strictly increasing for all i € {1,2,...,n}. Assume that
D < supgsopi(s) for all i € {1,2,...,n}. Then for all constant delays 7; > 0, all
solutions of (10) starting in (0,+00)"*1 are bounded.
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1.4;

0 5 10 15 20 25
FIGURE 1. Solution Components of (10) Plotted on Time Interval
[0,25]. Species x;1(t) and zo(t) and Substrate s(¢). Initial State:
(s(0),21(0),22(0)) = (0.2,0.1,1).

1.4;
1.2f
1.0¢
0.8}
0.6}

0.4}

0 5 10 15 20 25
FIGURE 2. Solution Components of (10) Plotted on Time Interval
[0,25]. Species x1(t) and zo(t) and Substrate s(¢). Initial State:
(s(0),21(0), z2(0)) = (1.3,0.2,0.1).

Proof. Choose any constant sq > si, + (do/D) such that u;(sq) > D for all
i €{1,2,...,n}, and fix any solution (s(t),z(t)) of (10) whose initial value is compo-
nentwise positive. Then Lemma 3.1 provides a constant ¢, > 0 such that s(t) < s4
for all ¢ > t,, and our assumptions ensure that all components of (s(t),z(t)) are
nonnegative valued for all ¢ > 0. Hence, s(t) is bounded. Set D, = Dsi, +dy. Then
our assumptions give §(t) < D, for all ¢ > 0, which gives

s(mg) < s(mq) + (ma —mq)D, (56)

for all values my > 0 and mg > my. Also, for eachi € {1,2,...,n} and allt > ¢, +7,
we have 3;(t) < ;(t)[pi(sa) — D] + Dz? + d; for all t > 0, which we can integrate
to obtain

Dl‘? + CL‘

zi(az) < elaz=an)(ui(sa)=D) | 4oy 4 2T T %
( 2) > ( 1) ui(Sd) —

(57)



STABILITY AND ROBUSTNESS FOR CHEMOSTAT 17

for all values a; > 0 and ay > 0 such that ¢, + 7 < a1 < ag. Since s(t) is bounded,
it remains to show that z;(f) is a bounded function of ¢ for all i € {1,2,...,n},
which we prove by contradiction.

Suppose that there were a j € {1,...,n} such that x; is unbounded. For later use,
we define the constant so > 0 by p,(so) = D/2. Since x;(t) is unbounded, there is a
sequence of values ty > t, 427+ (so/(2D,) such that tp11 > tx + 27+ s9/(2D,) for
all k£ > 1, and such that the following four conditions hold: (i) z(tx) is increasing,
(ii) limg— oo xj(tk) = +o0, (iii) &;(tx) > 0 for all k£ > 1, and (iv) the inequality

xj(ty) > 2;1:1 (x? + %) (58)

holds for all £ > 1. We can satisfy the preceding conditions (i)-(iv) by first choosing
the tx’s such that (i)-(ii) and (iv) are all satisfied, then replacing to by a value
tox € [t1,t2] such that ;(t24) > 0 (in case &;(t2) < 0, by setting to, = inf{t €
[t1,t2] = 2;(r) < O for all r € (¢,t2]}, and such a to, exists because x;(t1) < z;(t2)),
then replacing t3 by a value t; such that ¢ > 3 and x;(t;) > z;(t2«) and deleting
ta,...,t;—1 from the sequence, then repeating the preceding process with ¢; replaced
by t;, and then reasoning inductively. Since &;(tx) > 0 for all k£ > 1, it follows that
2 (tr)pj(s(te — 7)) 4+ Dl — 2;(t)] 4 0;(tr) > 0, which we can rearrange to obtain
py(s(ti = 7)) = D — 2D (59)
for all k > 1. Then condition (iv) gives p;(s(tx — 7)) > £ = 11j(s0), and therefore
also s(ty, —7) > so for all k > 1.
Consider the intervals

Ik:[tk*Tf;TO*,tk*T}. (60)

Then m > t, + 7 for all m € I}, and k > 1. We deduce from (56) (with the choices
my = £ and mg = t;, — 7) that for all £ € I, we have

sty — )+ (—tg + 7+ £) D, < s(0) . (61)
Also, we deduce from (61) (with the choice ¢ =t; — 7 — 535-) that
B <slts—7)— % =5tk —7) — 55D« < () (62)

for all £ € Iy, where the first inequality used the fact that s(tx — 7) > so. As an
immediate consequence of (10) and (62), we deduce that $(¢t) < D, — p;(so/2)x;(t)
for all ¢t € I, which we can integrate over I; to obtain

te—T
S0 S0
ste=m) s+ P [y () asmam. (63)

k—T—ﬁ

by using the lower bound on the ¢;’s and our choice of s4, and noting that the lower
limit of integration in (63) satisfies tx, — 7 — (s0/(2D4)) > t, to obtain s(ty — 7 —
(s0/(2Dx))) < sa.

We can also use (57) to conclude that for all m € I, we have
Daf+d;
tj(sa)—D
Since pj(sq) — D > 0, we deduce that for all m € I, we also have ¢, —m <
T+ s0/(2D,) and so also

2(t) < et (ks (sa)=D) [xj (m) + (64)

T 20\ (D—1i(s Dz%+d;
e(T+385 ) (D=5 ( d))wj(tk) _ M(x;% < a;(m) . (65)
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Since limg_ 00 2 (tr) = 400, it follows from (65) that there is k, > 0 such that for
all k > k,, we have

SelmH BP0 14) < (om) (66)

for all m € Ij,. Combining (66) with (63), we obtain

_r =20 \(D—p;
ste=7) < st oy (3) Iy bl R0 (1 )am (67)
s

= s+ %y (50) £ e(T+a8: ) D) g (4,

Since limy_,o0 2 (tx) = +00, it follows that there is a k > kj, such that s(t, —7) < 0.
This yields a contradiction with the fact that s(¢) > 0 for all ¢ > 0. O

6. Conclusions. We solved an input-to-state stabilization problem for a chemo-
stat model with one limiting substrate, an arbitrary number of competing species,
a constant dilution rate, delays in the uptake functions, and uncertainties. We used
the constant species inputs and the input nutrient concentration as constant con-
trols, and these controls can be chosen to input-to-state stabilize a large class of
possible equilibria. In the special case where all of the constant inputs x are posi-
tive and the disturbances are zero, we first proved (in Lemma 3.3) that all solutions
whose initial states are in the positive orthant are uniformly persistent, meaning,
there is a positive lower bound on the species levels. Then by using a Lyapunov
functional, we proved that the solutions asymptotically converge towards a posi-
tive equilibrium, which generalizes [39]. We use the 29’s and the input nutrient
concentration s;, as constant controls.

To cope with delays in uptake functions or uncertainties, we used a new Lyapu-
nov functional approach. The decay estimate for our Lyapunov-like function made
it possible to prove robustness to uncertainties. We hope to generalize our work
to larger classes of models with multiple species and multiple limiting substrates.
Our choices of the uptake functions (15) made it possible to obtain lower and upper
bounds in several intermediate steps of the construction of the Lyapunov functi-
onal. The Michaelis-Menten growth functions that we used provide a wide range
of generality for our results, since the growth rates of many species are described
by such functions. A more general result is still unsolved for more general uptake
functions, due to the technical difficulties induced by the lack of monotonicity and
more complex nonlinearities.

Appendix: Completing the Proof of Theorem 2.1. We complete the proof
of Theorem 2.1, by converting the decay estimate (53) into an ISS estimate in the
transformed error variable £(t) = (5(t), a1 (t), ..., an(t)) that is valid for all ¢ > 0,
which we then convert into an ISS estimate in the original error variable £ from the
statement of the theorem. To this end, first note that we can use our three lemmas
to find a function v € K4 such that

v (sj(%) +i f((:)) + /t : /Z t ‘fé?drde) >q(n(&) @

=1

and therefore also Va(&;) < 71(‘/2(5})) + N|b|j0,4) along all trajectories of the £
dynamics starting in our set S of initial states from the statement of our theorem,
and for all ¢t > T3(|€(0)]) (by using the known positive upper and lower bounds for
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s(t) and the a;(t)’s for i € P that are valid for all ¢ > T5(|€(0)|)). One method for
finding v is as follows. First, pick a function Y € K« such that

(n+1v(3) <7,(3) and (n+1)¥;(a;)/c; < v, (|&l) (A.2)
for all i € {1,...,n} and all £ = (5,d,...dy,) such that the following conditions
hold: 5 € [sy — s, MC — s4], & € [\ — Tix, MCL; — x44] for all ¢ € P, and

& € (0,MCL;] for all i € {1,...,n} \ P. Then Vi(£(t)) < 7,(I€(t)]) for all
t > T3(|€(0)]). Hence, Lemma 3.2 gives

(5 EWN) < EmE < Alc@ (it)um?){z, Zg;) (A3)

since max{s(t), max{a;(t)/L; : 1 <i <n}} <\ C for all t > T3(|€(0)]). Therefore,

the function
O(r) = min { (1(;1 (g)) , 2>\1(./\/l:(7')+1)} (A.4)

satisfies

O(V2(&)) < OEVI(E(1))) + O\ Ma(r)Dy (1)
< (3 AEWN) +Ds(t) < MOmas; £, ( Dy & “;) (A.5)

+D1(t),

where D;(t) is the double integral in (A.l), and where the first inequality in
(A.5) used the fact that O(a + b) < O(2a) + ©(20) where a and b are the two
terms in our formula (52) for V3, and where the last inequality in (A.5) used
the fact that max; £L; > 1. Therefore, we can choose 7 = ©Ouy/v,, where v, =
max{\;Cmax; £;,1}. Hence, standard ISS arguments (e.g., from [18]) provide
functions By € KL and 7y € K4 such that

Vo (ét) < Bo (Vz <5T3(|5(o)|)) 7t) +70([0]j0,4) (A.6)

for all ¢ > T3(|€(0)]). Then the structure of V5 provides functions 51 € KL and
Y1 € K& such that

@) < B1(I€n, 2@ =701 ) +71(16]00) (A7)

for all ¢ > T3(|£(0)]).

To extend (A.7) to obtain an ISS estimate that is valid for all ¢ > 0, first note
that the structure (38) of the & dynamics and the Mean Value Theorem estimate
(46), combined with our bounds on the y;’s, s(t), and I' and the global Lipschitzness
of the y;’s, provide a constant L (that is independent of the choice of the solution)
such that

jéé(e)‘ <L (max{\gg(rﬂ re 7,00} + |5|M) (A.8)

for all £ € [0, T5(]€(0)|)]; this can be done by rewriting both occurrences of ;(t) in
the dynamics (38) for £ in the form &;(t) + x., and & is defined over the entire

interval [—7, 0] for all choices of ¢ € [0,75(]€(0)|)] because of our assumption that
the initial functions are constant, which allows us to extend their domains to include
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all negative real values). Integrating (A.8) over [0,] for any ¢ € [0,75(]£(0)|)] and
applying the Fundamental Theorem of Calculus to & gives

F(t) g]—"(O)+L/t]-"(€)d£+LT3(|5(0)|)|6|OO, (A.9)
where ]:(E) = ‘éhg,;’g].

We now apply Gronwall’s inequality to F and use the constantness of the initial
functions to get

E0)| = FO) = (FO) + LTI ) L5 (20D
= eLT3(1€(0)]) LTs(\g(O D
£(0)] +{ I FIOY )
< 6T3(|5<0)|>7t[ (0)‘6LT3<|5<0>\>

+ SLAT3(|E(0))e2ET1€ON] + Ljof2,

for all t € [0,T5(]€(0)])], by applying the triangle inequality to the terms in curly
braces in (A.10). The final ISS estimate in the original error variable £ = (s—$., 2 —
x*) now follows from adding (A.7) and (A.10) (using (A.10) to upper bound the
\€T3(|g ) l[=7,0) in the right side of (A.7), and the fact that &(t) only depends on
values of §(r) for times r < ¢, which allows us to replace |0|oo by |0]0, throughout
(A.7) and (A.10), to get an ISS estimate in the variable & that is valid for all ¢ > 0),
and using the fact that T3 € K, and the fact that there are constants ¢, > 0 and
Cyex > 0 such that for all solutions of that £ dynamics with initial states in S, we
have
IE®)| < canl€lj—r.q forall >0 and |E(0)] < c.|E(0)] . (A.11)
To find values for ¢, and c.., first note that for each ¢ € {1,2,...,n} and ¢t > 0
and any global Lipschitz constant L; for p;, the Mean Value Theorem estimate (46)
and the constantness of the initial functions give

EO] = |asp)eln TN g |
’(&i(t) + xi*)eftﬂi (ki(sx)—pi(s(£)))de Iz*‘

< |64i(t)|62””i(§ﬁ) + Ty ‘eftt—ﬂ' (i(se)=pa(£)de _ 1‘ (4-12)
< @ (t)]e2m ) 4oy, L ST 3]y
and
|a;(0)] = ’xi(o)en(m(s(O))—m(s*)) — T
= |ji(o)eﬂ(ﬂi(5(0))7#1'(5*)) + T (671-(#1'(5(0))*%(5*)) — 1)| (A.13)
< 27 (|74(0)] + 244 LiTi] 5(0)]) -
Then we can check that we can choose
Cox = 1 4 ne27maxi w5 4 pzmax; {Limi*GQTim(gu)} and
(A.14)
e = 1+ nmax; {egnui(éhxi*LiTi} + 2T max; i (),
where the maxima are over all i € {1,2,.. ) n}; this can be checked by comparing

the formulas for the components of £ and £. This proves the theorem.
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