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a b s t r a c t 

We provide new bounded backstepping results that ensure global asymptotic stability for a large class of 

partially linear systems with an arbitrarily large number of integrators. We use a dynamic extension that 

contains one artificial delay, and a converging-input-converging-state assumption. When the nonlinear 

subsystem is control affine, we provide sufficient conditions for our converging-input-converging-state 

assumption to hold. We also show input-to-state stability with respect to a large class of model uncer- 

tainties, and robustness to delays in the measurements of the state of the nonlinear subsystem. We illus- 

trate our result in a first example that has a nondifferentiable vector field and so is beyond the scope of 

classical backstepping, and then in a nonlinear example that illustrates how one can combine Lyapunov 

and trajectory based methods to check our assumptions. 
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. Introduction 

Backstepping is probably the most important, most celebrated,

nd most commonly used technique for constructing controls for

onlinear systems. This paper continues our group’s quest (be-

un in [17–20,23] , and [24] ) for novel backstepping results that

elp overcome the obstacles to using classical backstepping; see

13] and [15] for traditional backstepping. Classical backstepping 

ntails synthesizing globally asymptotically stabilizing feedback

ontrols, by recursively building globally asymptotically stabilizing

ontrols and corresponding Lyapunov functions for subsystems; see

8,13] , and [16] for improved backstepping theory that includes

onlinearities and uncertainties, and [4,5] , and [6] for backstep-

ing applied to adaptive, aerospace, and robotic systems. However,

here are significant instances that call for backstepping where the

xisting backstepping literature does not apply, e.g., systems with

eneral nonlinear subsystems having bounds on the allowable sup

orms of the controls, which produce challenges that we overcome
� A preliminary version was presented at the 2017 IEEE Conference on Decision 

nd Control; see Section 1 for the differences between the conference version and 

his paper. Supported by NSF -ECCS Grants 1102348 and 1408295 . 
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˙ x (t) = F(t , x (t ) , z(t ) , η(t )) 
˙ z i (t) = z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 

˙ z k (t) = u (t) + 

k ∑ 

j=1 

v j z j (t) 

(1) 

ith a scalar valued control u and any number k of integrators,

here x is valued in R 

n for any n , F is known, the v j ’s are known

eal constants, the unknown measurable essentially bounded func-

ion η represents model uncertainty, and the nonlinear x sub-

ystem will satisfy a converging-input-converging-state condition 

hat we specify below. Many nonlinear systems admit changes of

ariables that produce the form (1) ; see the well known results

7 , Section 9.1] for formulas for the changes of coordinates, and

ection 6 for examples that illustrate the value of our theory. We

rite our controls as u ( t ) to simplify notation, but they will be

eedbacks that depend on t through their dependence on states of

1) and of a dynamic extension. 

In most of what follows, we assume that the current values of

he state are available for measurement, but our main result will

till use a delay in the state values in our feedback control since

his so-called artificial delay is needed to design a bounded con-

rol; see Section 5 for an extension to cases where there are also

elays in the measurements of the values x ( t ) of the nonlinear
rved. 
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subsystem of (1) . Our work [20] also used both the converging-

input-converging-state assumption and artificial delays, but one

notable improvement in the present work as compared with [20] is

that here we allow an arbitrarily large number k of integrators,

while [19,20] only allowed one integrator, but our results in the

present work are novel and notable even in the special case where

there is only one integrator. This is because we allow nonzero val-

ues of the v i in (1) and uncertainties η that were not present

in [19,20] , thereby allowing uncertain nonlinear subsystems and

drift terms in the z subsystem that were not allowed in [19,20] .

The effects of nonzero v i ’s cannot be cancelled by a change of

feedback, owing to the boundedness requirements on u . Although

our bounded backstepping work [23] also allowed an arbitrarily

large number of integrators, a notable advantage of the present

work over [23] is that we produce a globally bounded control for

(1) while the controls for the original systems in [23] were not

globally bounded. Also, whereas [23] required k artificial delays in

the control and did not use dynamic extensions, here we only re-

quire one artificial delay, so in this sense we obtain a simpler feed-

back. 

Our works [17–19] and [24] did not use converging-input-

converging-state conditions or artificial delays. Moreover, our work

differs from the backstepping works [18] (which uses a forward-

ing method to cover the one integrator case), [17] (which also only

covers one integrator), [24] (which produces unbounded controls),

and [31,32] , and [33] (which use Lie derivatives without satisfy-

ing the input constraints that we satisfy here). Therefore, our novel

combination of converging-input-converging-state conditions with

artificial delays and bounded controllers for (1) is valuable. The

work to follow improves on our conference version [21] by also

incorporating measurement delays and input-to-state stability with

respect to the uncertainties η, and allowing the nonlinear subsys-

tem to depend on all components of the vector z . These three fea-

tures were not present in [21] , which was confined to cases where

F was a function of only ( t , x , z 1 ) and where there were no mea-

surement delays and no input-to-state stability analysis. 

The specific controllers in our main result are sums of three

pieces, namely, (1) a saturation applied to a new auxiliary vari-

able M , (2) a second part that uses a nominal stabilizing control

for an auxiliary system from our converging-input-converging-state

assumption, and (3) a bounded stabilizing controller ϑ for the z

subsystem from (1) . This control structure is motivated by three

main considerations. First, it is well known that it is not sufficient

to solve the corresponding unbounded control design problem for

(1) (i.e., without considering input constraints) and then to apply

a saturation operator to the control that is obtained, because of

the potentially destabilizing effects of states that have large norms.

This motivates our applying a saturation to M . Second, a neces-

sary condition for globally asymptotically stabilizing (1) to 0 when

η = 0 is that the z ( t ) components of (1) converge to 0 as t → + ∞ ,

hence our use of ϑ in the control. Third, our auxiliary variable M is

designed so that for large enough times, the z subsystem of (1) (in

closed loop with the control u in our theorem) is transformed into

the globally asymptotically stabilized z subsystem with the con-

trol ϑ( z ), which ensures that the z components of (1) converge to

0 exponentially fast as t → + ∞ , and then the desired stabilization

result can be obtained from our converging-input-converging-state

condition. 

We use standard notation and definitions. We omit arguments

of functions when they are clear, and the dimensions of our Eu-

clidean spaces are arbitrary unless otherwise noted. We use | · | to

denote the usual Euclidean norm and the induced matrix norm,

and | φ| ∞ 

(resp., | φ| I ) is the essential supremum (resp., supre-

mum over any interval I) for any bounded R 

n valued measur-

able function φ. We set N = { 1 , 2 , . . . } . Given any constant T > 0,

let C in denote the set of all continuous functions φ : [ −T , 0] → R 

a ,
hich we call the set of all initial functions . We define �t ∈ C in and
˙ t ∈ C in by �t (s ) = �(t + s ) and 

˙ �t (s ) = �′ (t + s ) for all choices

f �, s ≤ 0, and t ≥ 0 for which the equalities are defined. We use

he convention 0! = 1 , and assume for simplicity that the initial

imes for our solutions are t 0 = 0 and that the initial functions are

onstant at time 0 (e.g., the states are constant on [ −T , 0] , where

 will denote the artificial delay). Let f ( i ) denote the i th derivative

f a function f : [0 , + ∞ ) → R with f (0) = f, and σr : R → [ −r, r] is

he saturation that is defined for all constants r > 0 by σr (s ) = s for

ll s ∈ [ −r, r] and σr (s ) = r sign (s ) otherwise. An integral ∫ a J ( � )d �

f a continuous column vector valued function J = (J 1 , . . . J L ) 

 on

n interval a is defined to be the column vector whose i th en-

ry is ∫ a J i ( � )d � for all i . We use the standard definitions of global

symptotic and input-to-state stability (or ISS, which we also use

o mean input-to-state stable) [13] . We also use the following stan-

ard definitions. A function W : R 

n → [0 , + ∞ ) is called positive def-

nite provided W (0) = 0 and W ( x ) > 0 for all x ∈ R 

n \ { 0 } . A func-

ion V : [0 , + ∞ ) × R 

n → [0 , + ∞ ) is called uniformly proper and pos-

tive definite provided there are functions α0 ∈ K ∞ 

and α1 ∈ K ∞ 

uch that the inequalities α0 (| x |) ≤ V ( t , x ) ≤α1 (| x |) hold for all t ≥ 0

nd x ∈ R 

n . This agrees with the proper ness condition in the special

ase where V is independent of t . Here, K ∞ 

is the set of all con-

inuous functions γ : [0 , + ∞ ) → [0 , + ∞ ) such that γ (0) = 0 , γ is

trictly increasing, and lim s → + ∞ 

γ (s ) = + ∞ . 

. Lemmas and main result 

We require the following two lemmas, the first of which is

hown in the appendix below: 

emma 1. Let T > 0 be a constant, and μ0 : [ −T , + ∞ ) → R be any

ontinuous function, and set 

ζ (t) = 

∫ t 

t−T 

e � −t Q(t, �, � + T ) μ0 (� )d �, 

j (t) = ζ ( j−1) (t) and μi (t) = 

1 

T 

∫ t 

t−T 

e � −t (t − � ) i −1 

(i − 1)! 
μ0 ( � )d � (2)

or all j ∈ { 1 , . . . , k + 1 } and i ∈ N , where Q(t, a, b) = (t − a ) k −1 (t −
b) k −1 for all a ∈ R and b ∈ R , and where k ∈ N with k ≥ 2 . Then

here are constants c i, j (T ) ∈ R for all i ∈ { 1 , . . . , 2 k − 1 } and all j ∈
 1 , . . . , k } , and constants g i (T ) ∈ R for all i ∈ {−1 , 0 , . . . , 2 k − 1 } ,
uch that 


 j (t) = 

2 k −1 ∑ 

i =1 

c i, j (T ) μi (t) and 

k +1 (t) = 

2 k −1 ∑ 

i =0 

g i (T ) μi (t) + g −1 (T ) μ0 (t − T ) (3)

old for all t ≥ 0. 

In the next lemma (which was shown in [30] ), we say that a

inear system is not exponentially unstable provided its poles are all

n the closed left-half plane: 

emma 2. Let k ≥ 2 be an integer and v = (v 1 , . . . , v k ) be any vector

f k real constants such that 
 

 

 

 

 

˙ z i (t) = z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 

˙ z k (t) = u + 

k ∑ 

i =1 

v i z i 
(4)

s not exponentially unstable when u = 0 . Then there is a bounded lo-

ally Lipschitz function ϑ : R 

k → R such that (4) , in closed loop with

 = ϑ(Z) where Z = (z 1 , . . . , z k ) 

 , is globally asymptotically and lo-

ally exponentially stable to 0. 
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We can now fix functions �j such that the 
j ’s from

emma 1 can be written as 

j (t) = 

∫ t 

t−T 

� j (�, t) μ0 (� )d � for 1 ≤ j ≤ k and all t ≥ 0 (5)

or all choices of the continuous function μ0 : [ −T , + ∞ ) → R ,

here we omit the dependence of the �j ’s on T for brevity. By

 simple induction on the index j that we omit, we can prove that

ach function �j ( � , t ) can be written as a function D j (t − �, t − � −
 ) of the differences t − � and t − � − T . For instance, we have 

1 (�, t) = D 1 (t − �, t − � − T ) 

= e � −t (t − � ) k −1 (t − � − T ) k −1 and (6) 

2 (�, t) = D 2 (t − �, t − � − T ) 

= e � −t 
[
−(t − � ) k −1 (t − � − T ) k −1 

+ (k − 1)(t − � ) k −2 (t − � − T ) k −1 

+ (k − 1)(t − � ) k −1 (t − � − T ) k −2 
]

o we can choose D 1 (a, b) = e −a a k −1 b k −1 and D 2 (a, b) =
 

−a [ −a k −1 b k −1 + (k − 1) a k −2 b k −1 + (k − 1) a k −1 b k −2 ] , and the

ormulas for the other �j ’s and D j ’s can be computed from

emma 1 . Note for later use that for each T > 0 and j , the function

up {| � j (�, t) | : t − T ≤ � ≤ t} is a bounded function of t ≥ 0. For

nstance, when k = 2 , 

ax {| � j (�, t) | : 1 ≤ j ≤ 2 , � ∈ [ t − T , t] , t ≥ 0 } ≤ T (T + 2) . (7)

e will assume the following, where � = (�1 , . . . , �k ) 

 : 

ssumption 1. (i) The function F in (1) is continuous in t and η,

lobally Lipschitz in ( x , z ), and satisfies 

(t, 0 , 0 , 0) = 0 for all t ≥ 0 . (8)

ii) There are a globally Lipschitz bounded function ω : R 

n →
 −ω̄ , ω̄ ] having some bound ω̄ > 0 such that ω(0) = 0 and a con-

tant T > 0 such that for each continuous function δ : [0 , + ∞ ) → R 

k 

hat exponentially converges to 0, the following is true: All solu-

ions ξ : [0 , + ∞ ) → R 

n of the system 

˙ (t) = F 

(
t, ξ (t) , 

∫ t 

t−T 

�(�, t) ω(ξ (� ))d � + δ(t) , 0 

)
(9) 

atisfy lim t→ + ∞ 

ξ (t) = 0 . 

We refer to part (ii) of Assumption 1 as our converging-input-

onverging-state assumption ; see Section 5 for a generalization in-

olving measurement delays in the ξ measurements in the func-

ion ω. An important special case is where F has the form

(t, x, z, η) = F d (t, x ) + F c (t, x )[ z + η] for some drift term F d and

ome control term F c , i.e., affineness with respect to z and η.

n this special case, our condition (8) is the requirement that

 d (t, 0) = 0 for all t ≥ 0, and (9) has the form 

˙ (t) = F d (t , ξ (t )) + F c (t , ξ (t )) 

[∫ t 

t−T 

�(�, t ) ω(ξ (� ))d � + δ(t) 

]
. 

ee Section 3 for readily checked sufficient conditions for the re-

uired converging-input-converging-state condition in the preced-

ng affine case. The system (9) differs from the nonlinear subsys-

em of (1) because the third argument of F in (1) has been re-

laced by the sum of an integral term and δ( t ), and because η has

een set to 0. In terms of the Jordan matrix 

 2 k −1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−1 1 0 . . . 0 

0 −1 1 . . . 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . −1 1 

0 . . . . . . 0 −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∈ R 

(2 k −1) ×(2 k −1) , (10)
ur main result is as follows; see Section 3 for sufficient conditions

or ISS of (15) . 

heorem 1. Let k ≥ 2, and T > 0 and F and ω be such that

ssumption 1 holds, where k ∈ N . Let ϑ and v satisfy the requirements

rom Lemma 2 . Consider the ( x , Z , Y ) system, consisting of (1) and 

˙ 
 (t) = J 2 k −1 Y (t ) + 

e 2 k −1 

T 
ω(x (t )) (11)

here e 2 k −1 = (0 , 0 , . . . , 1) 
 ∈ R 

2 k −1 is the (2 k − 1) -st standard basis

ector, in closed loop with the control 

 (Z(t) , Y t , x t ) = σc̄ ( M (Y t ) ) + g 0 (T ) ω(x (t)) 

+ g −1 (T ) ω(x (t − T )) + ϑ(Z � (t)) (12) 

ith the saturation level 

¯
 = 

∣∣∣∣∣
k ∑ 

j=1 

v j C j (T ) − G(T ) 

∣∣∣∣∣e | J 2 k −1 | T ω̄ (13) 

here Z � (t) = (z 1 (t) − C 1 (T )�(Y t ) , . . . , z k (t) − C k (T )�(Y t )) 

 ,

(Y t ) = Y (t) − e T J 2 k −1 Y (t − T ) , G(T ) = [ g 2 k −1 (T ) , . . . , g 1 (T )] , and 

 (Y t ) = 

(
G(T ) −

k ∑ 

j=1 

v j C j (T ) 
)
�(Y t ) and 

C j (T ) = [ c 2 k −1 , j (T ) , . . . , c 1 , j (T )] , 1 ≤ j ≤ k (14) 

nd where the constants c i , j and g i satisfy the requirements from

emma 1 for the function μ0 (t) = ω(x (t)) . Then all maximal solu-

ions ( x , Z , Y )( t ) of the ( x , Z , Y ) system, consisting of (1) and (11) and

ith (12) as the control, satisfy lim t→ + ∞ 

(x, Z, Y )(t) = 0 when η = 0 .

f, in addition, the system 

˙ (t) = F 

(
t, ξ (t) , 

∫ t 

t−T 

�(�, t) ω(ξ (� ))d � + δ(t) , η(t) 

)
(15) 

s ISS with respect to ( δ, η), then the ( x , Z ) system (1) in closed loop

ith (12) is ISS with respect to η. 

emark 1. As in [23] , we can extend Theorem 1 to cases where

n addition to the artificial delay T , there is a delay in the mea-

urements of x ( t ) from the original system (1) . However, as we

oted above, [23] does not provide a bounded control for (1) even

f the v i ’s are all zero, and the converging-input-converging-state

ssumption in [23] has a k -fold integral instead of the simpler sin-

le integral we have in (9) . 

We next provide sufficient conditions for our converging-

nput-converging-state assumption to hold, and then we prove

heorem 1 in Section 4 . See also Section 5 for extensions under

easurement delays. 

. Checking Assumption 1 

We provide sufficient conditions for our converging-input-

onverging-state conditions on (9) to hold, and for the ISS property

f (15) from Theorem 1 to hold, based on Lyapunov functions. We

se the system 

˙ 
 (t) = F(t , x (t ) , �∗(T ) ω(x (t )) , η(t )) , (16)

here F is from (1) , �∗ : [0 , ∞ ) → R 

p is defined by 

∗(T ) = 

∫ t 

t−T 

(�1 (�, t) , . . . , �p (�, t)) 

 d �, (17)

he constant T > 0 will be specified, the �i satisfy the require-

ents from (5) , and p ∈ [1, k ] is such that F is a function of

(t, x, z 1 , . . . , z p , η) , where z 1 , . . . , z p are the first p components of

he state z of the linear subsystem of (1) . The definition (17) is jus-

ified by the fact that each function � ( � , t ) for i = 1 , 2 , . . . , p can
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a

be written as a function D i of t − � − T and t − �, so the right side

of (17) can be written as ∫ t 

t−T 

(�1 (�, t) , . . . , �p (�, t)) 

 d � 

= 

∫ t 

t−T 

(D 1 (t − �, t − � − T ) , . . . , D p (t − �, t − � − T )) 
 d � 

= 

∫ 0 

−T 

(D 1 (−�, −� − T ) , . . . , D p (−�, −� − T )) 
 d � 

and so does not depend on t ; see Section 2 . In the next assump-

tion, V t and V x are the partial derivative with respect to t and the

gradient with respect to x , respectively, and the uniform global Lip-

schitzness in x means that the global Lipschitz constants can be

chosen independently of the other variable t : 

Assumption 2. There are functions f : [0 , + ∞ ) × R 

n → R 

n and g :

[0 , + ∞ ) × R 

n → R 

n ×p that are uniformly globally Lipschitz in x

and continuous on [0 , + ∞ ) × R 

n , such that F(t, x, q, η) = f (t, x ) +
g(t, x )(q + η) holds for all t ≥ 0, x ∈ R 

n , q ∈ R 

p , and η ∈ R 

p . Also,

there exist a C 1 uniformly proper and positive definite function

 : [0 , + ∞ ) × R 

n → [0 , + ∞ ) ; a uniformly continuous positive def-

inite function W : R 

n → [0 , + ∞ ) ; positive constants T , r 1 , and r 3 ;

and a constant r 2 ≥ 0 such that for all (t, x ) ∈ [0 , + ∞ ) × R 

n , we

have 

 t (t, x ) + V x (t , x ) 
(

f (t , x ) + g(t, x )�∗(T ) ω(x ) 
)

≤ −W (x ) , (18a)

| V x (t, x ) g(t, x ) | ≤
√ 

W (x ) , (18b)

| ω(x ) | ≤ r 1 
√ 

W (x ) , (18c)

| f (t, x ) | ≤ r 2 
√ 

W (x ) , (18d)

and | g(t, x ) | ≤ r 3 , (18e)

where ω : R 

n → R is bounded, satisfies ω(0) = 0 , and admits a

global Lipschitz constant C > 0 on R 

n . 

We emphasize that the linearity of F in the q and η variables

will play a key role in this section. See [22] for conditions under

which (18) can be satisfied. Set 

�a (T ) = 

∫ t 

t−T 

| (�1 , . . . , �p )(�, t) | d �, (19)

which is independent of t because the �i ’s can be written as func-

tions of t − � and t − � − T ; the proof that the right side of (19) is

independent of t is the same as the argument we used to show

that the right side of (17) is independent of t except with a norm

on the p tuples in the earlier argument. We also set �+ (T ) =
sup t≥0 {| (�1 (�, t) , . . . , �p (�, t)) | : t − T ≤ � ≤ t} , which is finite be-

cause of our choice of �. 

Proposition 1. If Assumption 2 holds, then for all integers k ≥ 2, and

for all constants T > 0 such that 

4 

(
T �a (T ) C 

)2 
[ 

2 r 2 2 + 

5 

2 

(
r 1 r 3 T �+ (T ) 

)2 
] 

< 1 , (20)

Assumption 1 is satisfied. If, in addition, W is proper, then (15) is ISS

with respect to ( δ, η) . 

Proof. We first prove the first assertion of the proposition (where

η = 0 ), and then we indicate the additional arguments needed

to prove the second assertion. Fix any continuous function δ :

[0 , + ∞ ) → R 

p that exponentially converges to 0. Along all solu-

tions x ( t ) of (9) , the control affine structure of F gives 
˙ 
 (t) = { f (t, x (t)) + g(t, x (t))�∗(T ) ω(x (t)) } 

+ g(t, x (t)) 
[ 
δ(t) + 

∫ t 

t−T 

�� (�, t)(ω(x (� )) − ω(x (t)))d � 

] 
(21)

here �� = (�1 , . . . , �p ) 

 . Combining (21) with (18a) - (18b) now

ives 

˙ 
 (t) ≤ −W (x (t)) + | V x (t, x (t)) g(t, x (t)) | 

×
[∣∣∣∣
∫ t 

t−T 

�� (�, t)(ω(x (� )) − ω(x (t)))d � 

∣∣∣∣+ | δ(t) | 
]

≤ −W (x (t)) + 

√ 

W (x (t)) ({ �a (T ) sup 

� ∈ [ t −T,t ] 

| ω( x ( � )) 

− ω(x (t)) |} + | δ(t) | ) (22)

or all t ≥ 0, where the first inequality used the fact that the por-

ion of the dynamics (21) contained in the curly braces agrees with

he dynamics from (18a) , combined with the triangle inequality

nd the fact that (18a) holds for all t ≥ 0 and x ∈ R 

n , and where

he second inequality in (22) used our bound on the function | V x ( t ,

 ) g ( t , x )| from (18b) and our formula (19) for �a ( T ) after moving

he norm inside the integral. 

We next use the global Lipschitz constant C on ω and apply the

undamental Theorem of Calculus to find a useful upper bound

n the supremum that is contained in (22) . To this end, we first

se inequalities (18d) –(18e) from Assumption 2 to obtain the up-

er bound 

 ̇

 x (t) | ≤ r 2 
√ 

W (x (t)) + r 3 

{
| �+ (T ) | 

∫ t 

t−T 

| ω(x (� )) | d � + | δ(t) | 
}
(23)

long all solutions of (9) . Applying (a + b) 2 ≤ 2(a 2 + b 2 ) with a =
 2 

√ 

W (x (t)) and b being the rest of the right side of (23) , and then

pplying (a + b) 2 ≤ (5 / 4) a 2 + 5 b 2 where a and b are the terms be-

ng added together in curly braces in (23) and then Jensen’s in-

quality, it follows that along all solutions of (21) : 

 ̇

 x (t) | 2 ≤ 2 r 2 2 W (x (t)) 

+ 2 r 2 3 

(
5 | δ(t) | 2 + 

5 

4 

T r 2 1 �
2 
+ (T ) 

∫ t 

t−T 

W (x (� ))d � 

)
, (24)

here W ( x ( � )) in the integrand is present because of our condition

18c) relating ω to W . 

We can now combine (22) and (24) and then use Jensen’s and

oung’s inequalities 
√ 

W (x (t)) b ≤ 1 
4 W (x (t)) + b 2 , with b = | δ(t) |

nd then b being the quantity in curly braces in (22) , to get 

˙ 
 (t) ≤ −1 

2 

W (x (t)) + | δ(t) | 2 + �2 
a (T ) C 2 sup 

� ∈ [ t −T,t ] 

| x ( � ) − x (t) | 2 

≤ −1 

2 

W (x (t)) + | δ(t) | 2 + �2 
a (T ) C 2 T 

∫ t 

t−T 

| ̇ x (q ) | 2 d q 

≤ −1 

2 

W (x (t)) + | δ(t) | 2 

+ �2 
a (T ) C 2 T 

(
2 r 2 2 

∫ t 

t−T 

W (x (� ))d � + 10 r 2 3 T | δ| 2 [ max { 0 ,t −T } ,t ] 

+ 

5 

2 

r 2 3 T 
2 �2 

+ (T ) r 2 1 

∫ t 

t−2 T 

W (x (� ))d � 

)
≤ −1 

2 

W (x (t)) + N 1 

∫ t 

t−2 T 

W (x (� ))d � 

+ N 2 | δ| 2 [ max { 0 ,t −T } ,t ] (25)

long all solutions of (9) for all t ≥ 0, where 
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 1 = T (�a (T ) C) 2 
(

2 r 2 2 + 

5 

2 

( r 1 r 3 �+ (T ) T ) 
2 
)

and 

 2 = 10(T �a (T ) r 3 C) 2 (a + 1) , (26) 

y using the Fundamental Theorem of Calculus and Jensen’s in-

quality to obtain the bounds 

sup 

 ∈ [ t −T,t ] 

| x (� ) − x (t) | 2 ≤
(∫ t 

t−T 

| ̇ x (q ) | d q 

)2 

≤ T 

∫ t 

t−T 

| ̇ x (q ) | 2 d q 

nd 

∫ s 
s −T W (x (� ))d � ≤ ∫ t 

t−2 T W (x (� ))d � for all s ∈ [ t − T , t] . Then our

ondition (20) implies that 4 T N 1 < 1 , so we can find a constant

> 1 that is close enough to 1 so that 2 T N 1 λ < 1 / 2 . Then 

 1 (t, x t ) = V (t , x (t )) + λN 1 

∫ t 

t−2 T 

∫ t 

s 

W (x (� ))d � d s (27)

atisfies 

˙ 
 1 ≤ −c ∗W (x (t)) − (λ − 1) N 1 

∫ t 

t−2 T 

W (x (� ))d � 

+ N 2 | δ| 2 [ max { 0 ,t −T } ,t ] (28) 

or all t ≥ 0 along all solutions of (9) where c ∗ = 

1 
2 − 2 T N 1 λ, since

or all t ≥ 0, we have 

d 

dt 

∫ t 

t−2 T 

∫ t 

s 

W (x (� ))d � d s = 2 T W (x (t)) −
∫ t 

t−2 T 

W (x (� ))d �. (29)

By our assumption on δ, we can find positive constants δ̄1 and
¯
2 such that | δ(t) | ≤ δ̄1 e 

−δ̄2 t for all t ≥ 0. Since c ∗ > 0 and λ> 1, we

an integrate (28) on [0, M ] for any constant M > 0 to get 

up 

t≥0 

V 1 (t, x t ) ≤ V 1 (0 , x 0 ) + N 2 

∫ + ∞ 

0 

| δ| 2 [ max { � −T, 0 } ,� ] d � 

≤ V 1 (0 , x 0 ) + N 2 ̄δ
2 
1 T + δ̄2 

1 N 2 

∫ + ∞ 

T 

e −2 ̄δ2 (� −T ) d � 

≤ V 1 (0 , x 0 ) + N 2 ̄δ
2 
1 T + N 2 ̄δ

2 
1 / (2 ̄δ2 ) < + ∞ . 

ince V is uniformly proper and positive definite, we conclude that

 x ( t )| is bounded, so x ( t ) is uniformly continuous, by the structure

f the dynamics (9) when η = 0 . Since W is uniformly continuous,

t follows that W ( x ( t )) is a uniformly continuous function of t , and

ntegrating (28) gives 
 + ∞ 

0 

W (x (� ))d � < + ∞ . (30)

herefore, Barbalat’s Lemma implies that lim t→ + ∞ 

W (x (t)) = 0 , so

ince W is positive definite, we conclude that lim t→ + ∞ 

x (t) = 0 .

his proves the first assertion of the proposition. 

To prove the second assertion of the proposition, fix a choice of

he measurable essentially bounded function η. Then the preced-

ng analysis applies to the corresponding system (15) , save for the

act that we must add the additional term V x ( t , x ( t )) g ( t , x ( t )) η( t ) to

he right sides of the decay estimates on V . We can use (18b) and

ensen’s inequality to check that this additional term is bounded

bove by 

 

W (x (t)) | η(t) | ≤ c ∗
2 

W (x (t)) + 

1 

2 c ∗
| η(t) | 2 . (31)

dding the right sides of (31) and (28) and using the fact that 
 t 

t−2 T 

∫ t 

s 

W (x (� ))d � d s ≤ 2 T 

∫ t 

t−2 T 

W (x (� ))d � (32)

or all t ≥ 0, we can find a function γ0 ∈ K ∞ 

and a constant k ∗ > 0

uch that 

˙ 
 1 ≤ −γ0 (V 1 (t, x t )) + k ∗| (δ, η) | 2 [0 ,t] (33)

long all solutions of (9) , using the properness of V and W to find

 γ ∈ K ∞ 

such that γ ( V ( t , x )) ≤ ( c ∗ /2) W ( x ) for all t ≥ 0 and x ∈ R 

n ,
1 1 
hen choosing γ0 (� ) = min { γ1 (�/ 2) , r ∗� } with r ∗ = (λ − 1) / (4 T λ)

by the relation γ0 (a + b) ≤ γ0 (2 a ) + γ0 (2 b) where a and b are the

erms being added in the formula (27) ). Hence, V 1 is an ISS Lya-

unov function for (9) , so the ISS properties follow by standard

rguments [13] . �

emark 2. Proposition 2 requires T > 0 to be small enough, but

ue to the structure of our control (12) , we cannot pick T = 0 . In

ection 5 , we will see how picking T small enough can ensure that

SS is maintained under measurement delays. Conditions (18) agree

ith the sufficient conditions in [23] , except that instead of (18b) ,

23] required a constant r 0 > 0 such that | V x (t, x ) g(t, x ) | ≤ r 0 
√ 

W (x )

or all t and x . However, one may assume that r 0 = 1 , by replacing

 , ω, r 1 , and r 3 by g / r 0 , r 0 ω, r 1 r 0 , and r 3 / r 0 , respectively. �

. Proof of Theorem 1 

The forward completeness of the closed loop systems defined

n the statement of the theorem will follow from the Lyapunov

nalysis to follow, which will ensure that finite time blowups can-

ot occur. Theorem 1 will now follow from three more lemmas,

hich we state next. The first of these lemmas follows from [29,

emma A.3.2] (applied to the entire function E(x ) = e xt for any

 ∈ R to compute E(J 2 k −1 ) ): 

emma 3. For the Jordan matrix J 2 k −1 defined in (10) , the equality 

 

J 2 k −1 t = e −t 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 t t 2 

2 
. . . t 2(k −1) 

(2(k −1))! 

0 1 t . . . t 2 k −3 

(2 k −3)! 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 1 t 
0 . . . . . . 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(34) 

olds for all t ∈ R and integers k ≥ 2 . 

Later in the proof of Theorem 1 , we specialize the following

emma to the case where μ0 (t) = ω(x (t)) : 

emma 4. Let μ0 : [ −T , + ∞ ) → [ −μ̄, μ̄] be any continuous function

aving a bound μ̄. Then the functions μi from (2) in Lemma 1 , and

he functions �(Y t ) = Y (t) − e T J 2 k −1 Y (t − T ) for all solutions Y of 

˙ 
 (t) = J 2 k −1 Y (t ) + 

e 2 k −1 

T 
μ0 (t ) , (35)

re such that for all t ≥ 0, we have 

ν2 k −1 (t) = �(Y t ) and | �(Y t ) | ≤ e | J 2 k −1 | T μ̄, (36) 

here ν2 k −1 (t) = (μ2 k −1 (t ) , . . . , μ1 (t )) 
 for all t ≥ 0 . �

roof. By integrating (35) over [ t − T , t] for any t ≥ 0, we deduce

hat 

(Y t ) = Y (t) − e T J 2 k −1 Y (t − T ) = �(t) , where 

(t) = 

∫ t 

t−T 

e J 2 k −1 (t−� ) e 2 k −1 

T 
μ0 (� )d � (37) 

or all t ≥ 0. On the other hand, using (34) , we obtain 

(t) = 

1 

T 

∫ t 

t−T 

e −(t−� ) 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

(t − � ) 2(k −1) 

(2(k − 1))! 

. . . 
t − � 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

μ0 ( � ) d� = ν2 k −1 ( t) , (38)

hich proves the first conclusion of the lemma. The second con-

lusion of the lemma follows since (37) gives 
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∣∣Y (t) − e T J 2 k −1 Y (t − T ) 
∣∣ = | �(t) | 

≤
∫ t 

t−T 

∣∣∣e J 2 k −1 (t−� ) e 2 k −1 

T 

∣∣∣| μ0 (� ) | d � 

≤
∫ t 

t−T 

∣∣∣e J 2 k −1 (t−� ) e 2 k −1 

T 

∣∣∣μ̄d � (39)

for all t ≥ 0, because of the bound μ̄ on μ0 , which proves the

lemma. 

Lemma 5. Let μ0 : [ −T , + ∞ ) → [ −μ̄, μ̄] be any continuous function

having a bound μ̄, and let the constants v i and the function ϑ satisfy

the requirements from Lemma 2 . Consider the linear system ⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ z i (t) = z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 

˙ z k (t) = u (t) + 

k ∑ 

j=1 

v j z j (t) 
(40)

in closed loop with the control 

u (Z(t) , Y t , x t ) = σc̄ ( M (Y t ) ) + g 0 (T ) μ0 (t) 

+ g −1 (T ) μ0 (t − T ) + ϑ(Z � (t)) (41)

with the saturation level c̄ for σc̄ defined by 

c̄ = 

∣∣∣∣∣
k ∑ 

j=1 

v j C j (T ) − G(T ) 

∣∣∣∣∣e | J 2 k −1 | T μ̄ (42)

and where Y satisfies (35) and M , Z � , G, and the C j ’s and g j ’s are

defined as in Theorem 1 . Then the dynamics for the vector ˜ Z (t) =
( ̃ z 1 (t) , . . . , ̃  z k (t)) are globally asymptotically and locally exponentially

stable to the origin, where ˜ z i (t) = z i (t) − 
i (t) for i = 1 , 2 , . . . , k and

the 
i ’s are defined in (2) in Lemma 1 . 

Proof. The fact that ˙ 
i = 
i +1 for all i ∈ { 1 , 2 , . . . , k } and the struc-

ture of the dynamics (40) allow us to conclude that the dynamics

for the functions ˜ z i (t) = z i (t) − 
i (t) are ⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ ˜ z i (t) = 

˜ z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 
˙ ˜ z k (t) = u (t) − 
k +1 (t) + 

k ∑ 

j=1 

v j [ ̃ z j (t) + 
 j (t)] 
. (43)

Using our conclusion from Lemma 4 that 

ν2 k −1 (t) = �(Y t ) (44)

where ν2 k −1 (t) = (μ2 k −1 (t ) , . . . , μ1 (t )) 
 as before, it follows from

(3) that: 

˙ ˜ z k (t) = u (t) − G(T ) ν2 k −1 (t) − g 0 (T ) μ0 (t) 

− g −1 (T ) μ0 (t − T ) + 

k ∑ 

j=1 

v j ̃  z j (t) + 

k ∑ 

j=1 

v j C j (T ) ν2 k −1 . (45)

Hence, (44) gives ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

˙ ˜ z i (t) = 

˜ z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 
˙ ˜ z k (t) = u (t) + 

k ∑ 

j=1 

v j ̃  z j (t) − g 0 (T ) μ0 (t) 

− g −1 (T ) μ0 (t − T ) + ḡ �(Y t ) 

(46)

where 

ḡ = 

k ∑ 

j=1 

v j C j (T ) − G(T ) . (47)

Next note that since Lemma 1 gives 
 j = C j (T ) ν2 k −1 for j =
1 , . . . , k, it follows that: 
˜ 
 i (t) = z i (t) − 
i (t) = z i (t) − C i (T ) ν2 k −1 (t) for i ∈ { 1 , . . . , k } . 

(48)

hus, (44) gives ˜ z i (t) = z i (t) − C i (T )�(Y t ) for all t ≥ 0 and all

 ∈ { 1 , . . . , k } , so Z � (t) = 

˜ Z (t) = ( ̃ z 1 (t ) , . . . , ̃  z k (t )) for all t ≥ 0. Also,

 (Y t ) = −ḡ �(Y t ) . Therefore, our choice (41) of the control gives 
 

 

 

 

 

˙ ˜ z i (t) = 

˜ z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 
˙ ˜ z k (t) = 

k ∑ 

j=1 

v j ̃  z j (t) + σc̄ ( −ḡ �(Y t ) ) + ḡ �(Y t ) + ϑ(Z � (t)) . 
(49)

ccording to (36) , we have 

 ̄

g �(Y t ) | ≤ | ̄g | e | J 2 k −1 | T μ = c̄ (50)

or all t ≥ 0. From the definition of the saturation level c̄ of σc̄ , it

ollows that for all t ≥ 0, we have 
 

 

 

 

 

˙ ˜ z i (t) = 

˜ z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 
˙ ˜ z k (t) = ϑ( ̃  Z (t)) + 

k ∑ 

i =1 

v i ̃  z i (t) 
(51)

o the lemma follows from our choice of ϑ in Lemma 2 . �

We now combine the preceding lemmas to prove Theorem 1 .

e begin by proving the first conclusion of the theorem, in which

= 0 . In this case, the closed loop system defined in our theorem

s 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ x (t) = F(t , x (t ) , z(t ) , 0) 

˙ z i (t) = z i +1 (t) , i ∈ { 1 , . . . , k − 1 } 

˙ z k (t) = u (Z(t) , Y t , x t ) + 

k ∑ 

j=1 

v j z j (t) 

˙ Y (t) = J 2 k −1 Y (t ) + 

e 2 k −1 

T 
ω(x (t )) . 

(52)

sing the fact that the control (41) from Lemma 5 agrees with our

ontrol (12) from Theorem 1 when we select μ0 (t) = ω(x (t)) , it

ollows from using Lemma 5 with the choice μ0 (t) = ω(x (t)) that:

lim 

→ + ∞ 

| z i (t) − 
i (t) | = 0 (53)

or all i = 1 to k , and ˜ z i = z i − 
i exponentially converges to 0 for

ll i . 

Next notice that the x subsystem of (52) can be written as 

˙ 
 (t) = F(t, x (t) , 
(t) + ̃

 z (t) , 0) (54)

where 
 = (
1 , . . . , 
k ) 

 

hen we choose the bounded function μ0 (t) = ω(x (t)) . Hence,

e can use the converging-input-converging-state portion of our

ssumption 1 (with the choices δ = ˜ z and η = 0 ) to conclude that

im t→ + ∞ 

| x (t) | = 0 and therefore that for all i ∈ { 1 , 2 , . . . , k } , we

ave lim t→ + ∞ 


i (t) = 0 , since ω(0) = 0 and ω is continuous at 0.

t follows that: 

lim 

→ + ∞ 

z(t) = lim 

t→ + ∞ 

(z(t) − 
(t)) + lim 

t→ + ∞ 


(t) = 0 . (55)

n the other hand, 

˙ 
 = J 2 k −1 Y + ε (56)

s ISS with respect to ε, by the Hurwitzness of J 2 k −1 as we de-

ned this matrix in (10) , which makes it possible to use a Riccati

quation to find a quadratic Lyapunov function for ˙ Y = J 2 k −1 Y of

he form Y 
 PY for some positive definite matrix P which is then

n ISS Lyapunov function for (56) with ε playing the role of the

ncertainty. This provides positive constants c a and c b such that

 Y (t) | ≤ c a (| Y (t/ 2) | e −c b t + sup {| ε(� ) | : t/ 2 ≤ � ≤ t} ) along all solu-

ions of (56) for all t ≥ 0. Specializing the preceding argument
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o the function ε(t) = e 2 k −1 ω(x (t)) /T which converges to 0 as

 → + ∞ now gives the first conclusion of Theorem 1 . This follows

ecause all solutions of (56) for bounded choices of ε are bounded,

o for each constant δ0 > 0, we can find a constant T 0 > 0 that is

arge enough so that max {| Y (t/ 2) | e −c b t , sup {| ε(� ) | : t/ 2 ≤ � ≤ t}} <
0 / (2 c a ) for all t > T 0 , which gives | Y ( t )| ≤ δ0 for all t ≥ T 0 . 

It remains to prove the second conclusion of the theorem. To

his end, first note that with the notation from our proof of the

rst conclusion of the theorem, the dynamics for ˜ z are globally

symptotically stable to 0, so the interconnection of the perturbed

ynamics ˙ x (t) = F(t , x (t ) , 
(t ) + ̃  z (t ) , η(t )) with μ0 (t ) = ω(x (t))

nd the ˜ z dynamics will be ISS with respect to η, by standard

mall gain arguments. Then the structure of the function 
 im-

lies that the (x, z) = (x, ̃  z + 
) dynamics are ISS with respect to

. This completes the proof of our theorem. 

. Extension to systems with measurement delays 

This section is connected with, and provides a nontrivial

xtension of, Section 2 , by explaining how the framework of

heorem 1 is general enough to allow cases where current val-

es x ( t ) are not available for measurement or for use in the con-

rol. Such cases occur in engineering applications where the con-

rol must be computed on a computer that is far from the actual

lant, which was the case for instance in the work [26] which

sed small marine robots to search for oil pollution. Our strategy

n this section is to find values of T that ensure that the required

onverging-input-converging-state assumption is satisfied for cases

here current values x ( t ) are not available for use in the control.

ee Remark 3 for a detailed description of how our work in this

ection adds value relative to the existing delay compensation lit-

rature. 

Although [23] did not provide a bounded backstepping con-

roller for the original system (1) , it allowed cases where cur-

ent values of the x components of the state of the original sys-

em were not available for use in the control, leading to feedback

ontrols in which x ( t ) must be replaced by time delayed values

 (t − D ) of x for a constant delay D > 0. In the same way, we can

xtend Theorem 1 above to allow cases where one must use time

agged values of x instead of current ones. This is done by replac-

ng ω( x ( � )) in the preceding analysis by ω(x (� − D )) for constant

alues of the delay D , so instead of placing a converging-input-

onverging-state assumption on (9) in Assumption 1 , we must re-

lace (9) by the delayed version 

˙ (t) = F 

(
t, ξ (t) , 

∫ t 

t−T 

�(�, t) ω(ξ (� − D ))d � + δ(t) , 0 

)
, (57) 

nd then the conclusions of the theorem remain true with x ( � )

eplaced by x (� − D ) in the feedback control. However, our suffi-

ient conditions from Proposition 1 do not apply in cases such as

57) with measurement delays. This motivates the following analog

f Proposition 1 that provides sufficient conditions for our delayed

ersion of the converging-input-converging-state condition to hold,

nd which can therefore facilitate checking the requirements of our

heorem when constant measurement delays D are introduced in

he x measurements. In what follows, we use the same choices

f �a ( T ) from (19) and �+ (T ) = sup t≥0 {| (�1 (�, t) , . . . , �p (�, t)) | :
 − T ≤ � ≤ t} as in Section 3 , which are still independent of t (by

he argument we gave in Section 3 ), and which also do not depend

n D . 

roposition 2. If Assumption 2 holds, and if the constants T > 0 and

 > 0 are such that 

 (T ) < 1 and (58a) 
w  
�a (T )(r 2 + r 3 �+ (T ) r 1 (D + T ))(D + T ) < 

1 − R (T ) 

8 

√ 

2 

, where 

(58b) 

 (T ) = 4(T �a (T ) C) 2 
[ 

2 r 2 2 + 

5 

2 

(r 1 r 3 T �+ (T )) 2 
] 

(58c) 

hen the following is true: For each continuous function δ :

0 , + ∞ ) → R 

p that exponentially converges to zero, all solutions of

57) converge to 0 as t → + ∞ . If, in addition, the function W from

ssumption 2 is proper, then the system 

˙ (t) = F 

(
t, ξ (t) , 

∫ t 

t−T 

�(�, t) ω(ξ (� − D ))d � + δ(t) , η(t) 

)
(59) 

s ISS with respect to ( δ, η) . 

roof. We indicate the changes needed in the proof of

roposition 1 . We let c ∗ > 0 be the constant from (28) as be-

ore, where λ is chosen as in the proof of Proposition 1 . We

ay assume that λ> 1 is close enough to 1 so that the re-

uirements from (58) are still true if we replace R (T ) by

 (T ) = 4 λ(T �a (T ) C) 2 [2 r 2 
2 

+ 2 . 5(r 1 r 3 T �+ (T )) 2 ] (by the strict-

ess of the inequalities in (58)), and we make this replacement

n the rest of the proof. Then, using our notation from the proof

f Proposition 1 , we have c ∗ = 0 . 5(1 − R (T )) = 0 . 5(1 − 4 T N 1 λ) .

n what follows, we use �a and �+ to mean �a ( T ) and �+ (T ) ,

espectively, to keep our notation simple. Using the function V

rom Assumption 2 and Young’s Inequality, the additional term

hat must be added to the decay estimate on V can be bounded

bove as follows: 

 x (t, x (t)) g(t, x ) 

∫ t 

t−T 

�� (�, t)[ ω(x (� − D )) − ω(x (� ))]d � 

≤ C�a 

√ 

W (x (t)) 

∫ t 

t−T −D 

| ̇ x (s ) | d s 

≤ C�a 

√ 

W (x (t)) 

∫ t 

t−T −D 

{ 
| f (s, x (s )) | 

+ | g(s, x (s )) | 
[ 
�+ 

∫ s 

s −T 

| ω(x (� − D )) | d � + | η(s ) | 
] } 

d s 

≤ C�a 

√ 

W (x (t)) 

∫ t 

t−T −D 

(
r 2 
√ 

W (x (s )) 

+ r 3 �+ 
∫ t 

t−D −2 T 

| ω(x (� − D )) | d � + r 3 | η(s ) | 
)

d s 

≤ C�a 

√ 

W (x (t)) 
[ 
(r 2 + r 3 �+ r 1 (D + T )) 

∫ t 

t−2 D −2 T 

×
√ 

W (x (� )) d � + r 3 (D + T ) | η| [0 ,t] 

] 
≤ c ∗

4 

W (x (t)) + 

1 

c ∗

(
C�a 

[ 
(r 2 + r 3 �+ r 1 (D + T )) 

∫ t 

t−2(D + T ) 

×
√ 

W (x (� )) d � + r 3 (D + T ) | η| [0 ,t] 

] )
2 

≤ c ∗
4 

W (x (t)) + 

4 

c ∗
{ C�a (r 2 + r 3 �+ r 1 (D + T )) } 2 (D + T ) 

×
∫ t 

t−2 D −2 T 

W (x (� ))d � 

+ 

2 

c ∗
(Cr 3 �a (D + T )) 2 | η| 2 [0 ,t] , 

here the last inequality also used Young’s inequality, the rela-

ions ab ≤ a 2 / 4 + b 2 and (a + b) 2 ≤ 2 a 2 + 2 b 2 for suitable nonneg-

tive values of a and b , and then Jensen’s inequality. Using the in-

quality (58b) and choosing λ> 1 close enough to 1, it follows that

e can find a constant λ∗ > 1 that is close enough to 1 and which
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is such that 

8 λ∗
c ∗ { C�a (D + T ) ( r 2 + r 3 �+ r 1 (D + T ) ) } 2 < 

c ∗
4 
, (60)

since c ∗ = 0 . 5(1 − R (T )) . Then reasoning analogously to the argu-

ment that produced (28) shows that the time derivative of 

 2 (t, x t ) = V 1 (t, x t ) + 

4 λ∗
c ∗

{ C�a (r 2 + r 3 �+ r 1 (D + T )) } 2 

× (D + T ) 

∫ t 

t−2(D + T ) 

∫ t 

� 

W (x (s ))d s d � (61)

along all solutions of (59) admits positive constants c ∗∗ and c ∗∗∗
such that 

˙ 
 2 ≤ −c ∗∗W (x (t)) + c ∗∗∗| (δ, η) | 2 [0 ,t] . (62)

If, in addition, W is proper, then we can argue as in the proof of

Proposition 1 to find a function γa ∈ K ∞ 

and a positive constant k a 
such that 

˙ 
 2 ≤ −γa (V 2 (t, x t )) + k a | (δ, η) | 2 [0 ,t] (63)

(by using the bound (32) except with T in (32) replaced by D + T ).

Then the rest of the proof is the same as in the last part of the

proof of Proposition 1 except with V 1 replaced by V 2 . �

Remark 3. There is a large recent literature on delay compensat-

ing control design for nonlinear systems, largely involving predic-

tion, which replaces time lagged state values in controls by pre-

dicted state values [2,3,9–12,25,27,28,35] . While prediction is use-

ful for eliminating delays from control variables, it generally leads

to dynamic controls that contain distributed terms (i.e., terms that

use all values of the control or the state along certain time inter-

vals), which can be difficult to implement in practice [12] . See also

the reduction model controls [14] which are expressed implicitly

as solutions of integral equations that do not admit explicit solu-

tions. Hence, potential advantages of the controls that can be ob-

tained using our approach from this section include (a) the lack

of distributed terms in our controls, (b) our ability to satisfy con-

trol bounds, (c) our ability to prove global asymptotic stability of

the closed loop system from Theorem 1 under any measurement

delay D > 0 for which (57) satisfies the required converging-input-

converging-state condition (with no other restriction on the size

of D ), and (d) the robust performance of our controls in terms

of ISS. 

6. Illustrations 

Our Lyapunov function based sufficient conditions are conve-

nient for checking our assumptions from Theorem 1 . We illustrate

this point in this section, in two examples. In our first example,

we apply our Lyapunov sufficient conditions directly. In our second

example, our Lyapunov sufficient conditions do not apply directly,

but we use a mixture of our Lyapunov and trajectory based meth-

ods to check our converging-input-converging-state conditions. Our

second example illustrates the point that it may only be necessary

to check our sufficient conditions locally in a neighborhood of the

equilibrium, instead of globally, which eliminates the need to find

a global Lyapunov function as required in Assumption 2 . For sim-

plicity, this section only considers cases where there are no mea-

surement delays D , but we can apply the methods from the pre-

ceding section to cover measurement delays as well. 
.1. First Illustration 

Consider the three-dimensional system 

 

 

 

 

 

˙ x (t) = 

| x (t) | 
1 + | x (t) | + z 1 ( t) 

˙ z 1 (t) = z 2 (t) 
˙ z 2 (t) = u (t) 

(64)

hich is not amenable to classical backstepping, because the right

ide of ˙ x (t) in the dynamics is not differentiable. In terms of our

otation from Section 3 , we choose k = 2 , n = 1 , p = 1 , and 

(t, x, z 1 ) = 

| x | 
1 + | x | + z 1 and 

ω(x ) = − 1 

�∗(T ) 

( | x | 
1 + | x | + 2 

x 

1 + | x | 
)

, (65)

here 

∗(T ) = 

∫ 0 

−T 

�1 (� + t , t )d � = 

∫ 0 

−T 

e � � k −1 (� + T ) k −1 d � 

= 2 − T − e −T (2 + T ) . (66)

e compute a constant T > 0 such that Assumption 1 is satisfied.

irst note that since p = 1 , and since �1 ( � , t ) ≤ 0 for all t ≥ 0 and

 ∈ [ t − T , t] , we have �a (T ) = −�∗(T ) = | �∗(T ) | . Since (65) are

lobally Lipschitz functions and F is an affine function of z 1 and ω
s bounded, it suffices to find constants r i for i = 1 , 2 , 3 and func-

ions V and W such that Assumption 2 is satisfied with 

f (t, x ) = 

| x | 
1 + | x | and g( t, x ) = 1 (67)

nd then to choose T such that our condition (20) holds. 

To this end, we check that Assumption 2 is satisfied using the

unctions 

 (t, x ) = 

∫ x 

0 

σ1 (� )d � and W (x ) = 

2 σ1 (x ) x 

1 + | x | . (68)

ince (67) give 

f (t, x ) + g(t, x )�∗(T ) ω(x ) = − 2 x 

1 + | x | (69)

ur conditions (18) on the r i ’s from Assumption 2 for the preceding

hoices of f , g , V , and W will be satisfied if 

 σ1 (x ) | ≤
√ 

2 σ1 (x ) x 

1 + | x | , 
1 

| �∗(T ) | 
3 | x | 

1 + | x | ≤ r 1 

√ 

2 σ1 (x ) x 

1 + | x | , 

| x | 
1 + | x | ≤ r 2 

√ 

2 σ1 (x ) x 

1 + | x | , and 1 ≤ r 3 . (70)

y separately considering points x ∈ [ −1 , 1] and points x �∈ [ −1 , 1] ,

t follows easily that Assumption 2 is satisfied with the choices 

 = 

3 

| �∗(T ) | , r 1 = 

3 √ 

2 | �∗(T ) | , r 2 = 1 , and r 3 = 1 . (71)

ence, our requirement (20) on T > 0 from Proposition 1 holds if 

 > 4(3 T ) 2 

[ 

2 + 

5 

2 

(
3 T 3 √ 

2 | 2 − T − e −T (2 + T ) | 
)2 
] 

(72)

nd we can use Mathematica [34] to check that the right side of

72) takes the value 0.912536 at T = 0 . 11 . Hence, Assumption 1 is

atisfied with T = 0 . 11 , and then the desired controller is provided

y Theorem 1 . 
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.2. Second Illustration 

We can sometimes apply Theorem 1 by checking

ssumption 1 through a mixture of Lyapunov and direct tra-

ectory analyses. For instance, consider the three dimensional

ystem 

 

˙ x = x 2 − x 3 + z 1 
˙ z 1 = z 2 
˙ z 2 = u. 

(73) 

s noted in [ 13 , pages 593–594], the system (73) is globally

symptotically stabilized to 0 by the control 

 (x, z) = −∂V 0 

∂z 1 
(x, z 1 ) + 

∂φ

∂z 1 
(x, z 1 ) z 2 − z 2 

+ 

∂φ

∂x 
(x, z 1 )(x 2 − x 3 + z 1 ) + φ(x, z 1 ) , 

where V 0 (x, z 1 ) = 

1 

2 

x 2 + 

1 

2 

(z 1 + x + x 2 ) 2 

and φ(x, z 1 ) = −2 x − (1 + 2 x )(x 2 − x 3 + z 1 ) − z 1 − x 2 , 

hich is unbounded since it satisfies lim x →∞ 

u (x, 0) = −∞ . Our

ork [23] provided the unbounded control 

 (t) = 

1 

(1 − e −τ ) 2 

× { J(x (t)) − 2 e −τ J(x (t − τ )) + e −2 τ J(x (t − 2 τ )) } 
− 2 z 2 (t) − z 1 (t) , (74) 

where J(x ) = − sin 

(
πx 

2 

)
1 [ −2 , 2] (x ) 

hat rendered (73) globally asymptotically stable to 0, where the

ndicator function 1 [ −2 , 2] is defined to be 1 on [ −2 , 2] , and 0 on

 \ [ −2 , 2] . Here we show how our new Theorem 1 provides a

lobally bounded globally asymptotically stabilizing controller for

73) , using the choice of ω = J/ �∗(T ) with J as defined in (74) , and

ith p = 1 , and k = 2 and with the artificial T > 0 to be specified. 

To verify Assumption 1 with the preceding choices, first note

hat for each continuous function δ : R → R that exponentially

onverges to 0 and each initial state x 0 ∈ R , we can find a value

 

∗ ( x 0 , δ) ∈ [0, ∞ ) such that the corresponding solution of 

˙ 
 (t) = x 2 (t) − x 3 (t) + 

∫ t 

t−T 

�1 (�, t) ω(x (� ))d � + δ(t) (75)

atisfies x (t) ∈ [ −0 . 8 , 3 / 2] for all t ≥ T ∗ ( x 0 , δ). This can be done by

oting that the integral in (75) is bounded by 1 (since �a (T ) =
 �∗(T ) | ), that x 2 − x 3 ≤ −1 . 125 for all x ≥ 3/2, and that x 2 − x 3 ≥
 . 152 for all x ≤ −0 . 8 , so the right side terms x 2 (t) − x 3 (t) in

75) dominate the other right side terms, since we may as-

ume that t is large enough so that | δ( t )| ≤ 0.12. Hence, it suf-

ces to check the inequalities (18) from Assumption 2 for all x ∈
 −0 . 8 , 3 / 2] , by only considering time values t ≥ T ∗ ( x 0 , δ). 

We now check the estimates from (18) for all x ∈ [ −0 . 8 , 3 / 2]

sing V (x ) = 

1 
2 x 

2 , W (x ) = x 2 , f (x ) = x 2 − x 3 , and g(x ) = 1 . First

ote that simple calculations (e.g., using Mathematica [34] ) give

 

2 − x 3 − sin (πx/ 2) ≤ −x (resp., ≥ −x ) for all x ∈ [0, 3/2] (resp., x ∈
 −0 . 8 , 0] ) which gives ∇V (x )( f (x ) + �∗(T ) ω(x )) ≤ −W (x ) , | x 2 −
 

3 | ≤ 1 . 44 | x | , and |sin ( πx /2)| ≤ ( π /2)| x | when x ∈ [ −0 . 8 , 3 / 2] , so

e can choose r 1 = π/ (2 | �∗(T ) | ) , r 2 = 1 . 44 , r 3 = 1 , and C =
/ (2 | �∗(T ) | ) . Hence, we can use our formula (66) for �∗ ( T ) to

heck that the sufficient condition (20) from Proposition 1 (for

im t→∞ 

x (t) = 0 to hold) is satisfied if 

 > ( T π) 
2 

( 

2(1 . 44) 2 + 

5 π2 

8 

(
T 3 

2 − T − e −T (2 + T ) 

)2 
) 

(76) 
hich is satisfied for all T ∈ (0, 0.0209]. Therefore, we can satisfy

ur requirements with T = 0 . 0209 , and then the desired bounded

ontrol is provided by Theorem 1 . 

. Conclusions 

We provided a new bounded backstepping technique for a large

lass of cascaded partially linear systems with arbitrarily large

umbers of integrators, under a converging-input-converging-state

ssumption involving the nonlinear subsystems. For many cases

here the nonlinear part of the system is control affine, we

sed Lyapunov functions to provide sufficient conditions for our

onverging-input-converging-state assumption to be satisfied. Al- 

hough our controller involves a dynamic extension, it has an ad-

antage that it provides bounded controllers for the original sys-

em, which would not have been possible under our assumptions

f we had instead relied on previous results. We plan to combine

ur new methods with the time delay methods in [1] and [14] to

lso allow arbitrarily long measurement delays. 

ppendix A. Proof of Lemma 1 

For each j ∈ { 1 , 2 , . . . , k } , 
j will be a linear combination

f integrals, each of which having an integrand of the form

 

� −t (t − � ) α(t − � − T ) β with integers α ∈ { 0 , 1 , . . . , k − 1 } and β ∈
 0 , 1 , . . . , k − 1 } , so the required constants c i , j can be obtained by

pplying the binomial formula 

(a + b) β = 

β∑ 

j=0 

β! 

j!(β − j)! 
a j b β− j (A.1)

ith the choices a = t − � and b = −T for those integrals in the

ums having positive β values. If j < k , then all of the α’s and β ’s

n the sums will be positive integers. On the other hand, if j = k,

hen the linear combination of integrals in the formula for 
k will

nclude multiples of the integrals 

 t 

t−T 

e � −t (t − � ) k −1 μ0 (� )d � and 

∫ t 

t−T 

e � −t (t − � − T ) k −1 μ0 (� )d � 

(A.2) 

nd the derivatives of (A.2) in the formula for 
k +1 = 
′ 
k 

will be

inear combinations of terms that include −e −T T k −1 μ0 (t − T ) and

(−T ) k −1 μ0 (t) , which will provide the constants g −1 and g 0 in the

emma. The remaining terms T i ( t ) in the linear combination in the

ormula for 
k will only have positive powers α and β , and com-

uting their derivatives T ′ 
i 
(t) will produce the g i ’s in the formula

or 
k +1 for i = 1 , 2 , . . . , 2 k − 1 , by again applying the binominal

ormula (A.1) to the integrand factors (t − � − T ) β with positive in-

egers β . 
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