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We provide new bounded backstepping results that ensure global asymptotic stability for a large class of
partially linear systems with an arbitrarily large number of integrators. We use a dynamic extension that
contains one artificial delay, and a converging-input-converging-state assumption. When the nonlinear
subsystem is control affine, we provide sufficient conditions for our converging-input-converging-state
assumption to hold. We also show input-to-state stability with respect to a large class of model uncer-
tainties, and robustness to delays in the measurements of the state of the nonlinear subsystem. We illus-
trate our result in a first example that has a nondifferentiable vector field and so is beyond the scope of
classical backstepping, and then in a nonlinear example that illustrates how one can combine Lyapunov
and trajectory based methods to check our assumptions.
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1. Introduction

Backstepping is probably the most important, most celebrated,
and most commonly used technique for constructing controls for
nonlinear systems. This paper continues our group’s quest (be-
gun in [17-20,23], and [24]) for novel backstepping results that
help overcome the obstacles to using classical backstepping; see
[13] and [15] for traditional backstepping. Classical backstepping
entails synthesizing globally asymptotically stabilizing feedback
controls, by recursively building globally asymptotically stabilizing
controls and corresponding Lyapunov functions for subsystems; see
[8,13], and [16] for improved backstepping theory that includes
nonlinearities and uncertainties, and [4,5], and [6] for backstep-
ping applied to adaptive, aerospace, and robotic systems. However,
there are significant instances that call for backstepping where the
existing backstepping literature does not apply, e.g., systems with
general nonlinear subsystems having bounds on the allowable sup
norms of the controls, which produce challenges that we overcome
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in this work. In this work, we focus on systems of the form

X(t) = F(t, x(t), z(t), n(t))

Zi(t) =z (t), ie{l,....k—1}
k (1)

Ze(t) = u(t) + Y v;z;(t)

Jj=1

with a scalar valued control u and any number k of integrators,
where x is valued in R" for any n, F is known, the v;’s are known
real constants, the unknown measurable essentially bounded func-
tion n represents model uncertainty, and the nonlinear x sub-
system will satisfy a converging-input-converging-state condition
that we specify below. Many nonlinear systems admit changes of
variables that produce the form (1); see the well known results
[7, Section 9.1] for formulas for the changes of coordinates, and
Section 6 for examples that illustrate the value of our theory. We
write our controls as u(t) to simplify notation, but they will be
feedbacks that depend on t through their dependence on states of
(1) and of a dynamic extension.

In most of what follows, we assume that the current values of
the state are available for measurement, but our main result will
still use a delay in the state values in our feedback control since
this so-called artificial delay is needed to design a bounded con-
trol; see Section 5 for an extension to cases where there are also
delays in the measurements of the values x(t) of the nonlinear

0947-3580/© 2018 European Control Association. Published by Elsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.ejcon.2018.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2018.02.005&domain=pdf
https://doi.org/10.13039/501100001809
mailto:frederic.mazenc@12s.centralesupelec.fr
mailto:malisoff@lsu.edu
mailto:lburlion@onera.fr
mailto:jwesto3@lsu.edu
https://doi.org/10.1016/j.ejcon.2018.02.005

16 E Mazenc et al./European Journal of Control 42 (2018) 15-24

subsystem of (1). Our work [20] also used both the converging-
input-converging-state assumption and artificial delays, but one
notable improvement in the present work as compared with [20] is
that here we allow an arbitrarily large number k of integrators,
while [19,20] only allowed one integrator, but our results in the
present work are novel and notable even in the special case where
there is only one integrator. This is because we allow nonzero val-
ues of the v; in (1) and uncertainties 1 that were not present
in [19,20], thereby allowing uncertain nonlinear subsystems and
drift terms in the z subsystem that were not allowed in [19,20].
The effects of nonzero v;’s cannot be cancelled by a change of
feedback, owing to the boundedness requirements on u. Although
our bounded backstepping work [23] also allowed an arbitrarily
large number of integrators, a notable advantage of the present
work over [23] is that we produce a globally bounded control for
(1) while the controls for the original systems in [23] were not
globally bounded. Also, whereas [23] required k artificial delays in
the control and did not use dynamic extensions, here we only re-
quire one artificial delay, so in this sense we obtain a simpler feed-
back.

Our works [17-19] and [24] did not use converging-input-
converging-state conditions or artificial delays. Moreover, our work
differs from the backstepping works [18] (which uses a forward-
ing method to cover the one integrator case), [17] (which also only
covers one integrator), [24] (which produces unbounded controls),
and [31,32], and [33] (which use Lie derivatives without satisfy-
ing the input constraints that we satisfy here). Therefore, our novel
combination of converging-input-converging-state conditions with
artificial delays and bounded controllers for (1) is valuable. The
work to follow improves on our conference version [21] by also
incorporating measurement delays and input-to-state stability with
respect to the uncertainties 7, and allowing the nonlinear subsys-
tem to depend on all components of the vector z. These three fea-
tures were not present in [21], which was confined to cases where
F was a function of only (¢, X, z;) and where there were no mea-
surement delays and no input-to-state stability analysis.

The specific controllers in our main result are sums of three
pieces, namely, (1) a saturation applied to a new auxiliary vari-
able M, (2) a second part that uses a nominal stabilizing control
for an auxiliary system from our converging-input-converging-state
assumption, and (3) a bounded stabilizing controller 9 for the z
subsystem from (1). This control structure is motivated by three
main considerations. First, it is well known that it is not sufficient
to solve the corresponding unbounded control design problem for
(1) (i.e., without considering input constraints) and then to apply
a saturation operator to the control that is obtained, because of
the potentially destabilizing effects of states that have large norms.
This motivates our applying a saturation to M. Second, a neces-
sary condition for globally asymptotically stabilizing (1) to 0 when
n = 0 is that the z(t) components of (1) converge to 0 as t — +oo,
hence our use of § in the control. Third, our auxiliary variable M is
designed so that for large enough times, the z subsystem of (1) (in
closed loop with the control u in our theorem) is transformed into
the globally asymptotically stabilized z subsystem with the con-
trol 9(z), which ensures that the z components of (1) converge to
0 exponentially fast as t — +oo, and then the desired stabilization
result can be obtained from our converging-input-converging-state
condition.

We use standard notation and definitions. We omit arguments
of functions when they are clear, and the dimensions of our Eu-
clidean spaces are arbitrary unless otherwise noted. We use |-| to
denote the usual Euclidean norm and the induced matrix norm,
and ||« (resp., |@|z) is the essential supremum (resp., supre-
mum over any interval Z) for any bounded R" valued measur-
able function ¢. We set N={1,2,...}. Given any constant T> 0,
let C;, denote the set of all continuous functions ¢ : [-T, 0] — RY,

which we call the set of all initial functions. We define E; € C;, and
Bt e Gy by E¢(s) = E(t+5) and E(s) = E/(t +5) for all choices
of E, s<0, and t>0 for which the equalities are defined. We use
the convention 0! =1, and assume for simplicity that the initial
times for our solutions are ty = 0 and that the initial functions are
constant at time O (e.g., the states are constant on [T, 0], where
T will denote the artificial delay). Let ) denote the ith derivative
of a function f : [0, +o0) — R with f© = f, and o, : R — [—r, 1] is
the saturation that is defined for all constants r> 0 by oy (s) = s for
all se[-r,r] and or(s) = rsign(s) otherwise. An integral fqj(¢)d¢
of a continuous column vector valued function J = (J;,...J;)T on
an interval a is defined to be the column vector whose ith en-
try is fqj;(¢)de for all i. We use the standard definitions of global
asymptotic and input-to-state stability (or ISS, which we also use
to mean input-to-state stable) [13]. We also use the following stan-
dard definitions. A function W : R" — [0, +o0) is called positive def-
inite provided W(0) =0 and W(x)> 0 for all x e R" \ {0}. A func-
tion V : [0, +00) x R" — [0, +00) is called uniformly proper and pos-
itive definite provided there are functions oy € Koo and oq € Ko
such that the inequalities ag(|x]) < V(t, x) <q(|x]) hold for all t>0
and x € R". This agrees with the properness condition in the special
case where V is independent of t. Here, K, is the set of all con-
tinuous functions y : [0, +o0) — [0, +00) such that y(0) =0, y is
strictly increasing, and lims_, 1 ¥ (S) = +o0.

2. Lemmas and main result

We require the following two lemmas, the first of which is
shown in the appendix below:

Lemma 1. Let T>0 be a constant, and g : [T, +o0) — R be any
continuous function, and set

L) = f[; e tQ(t, ¢, € + T)po(0)de,

(-1 [ (Ol
2i(0) = 90 and () = 7 [ e no(0de (2)
T Ji_r i-1n!
forall je{1,....k+1} and i € N, where Q(t,a,b) = (t —a)*'(t —
b)*-1 for all acR and be R, and where k € N with k>2. Then
there are constants ¢; j(T) eR for all ie{1,..., 2k —1} and all j e
{1,....k}, and constants g;(T) e R for all ie{-1,0,...,2k—1},
such that
2k-1
Qj(t) = ) ¢ j(THwi(t) and
i=1
2k-1
Q1 () = Y &(Mpi(t) + g1 (Mot —T) 3)
i=0
hold for all t> 0.

In the next lemma (which was shown in [30]), we say that a
linear system is not exponentially unstable provided its poles are all
in the closed left-half plane:

Lemma 2. Let k>2 be an integer and v = (vq, ..
of k real constants such that
if(t) =Zi+1(l'), ie {1, oo k- 1}

k
2I<(t) =Uu-+ ZV,'Z,‘ (4)

i=1

., V) be any vector

is not exponentially unstable when u = 0. Then there is a bounded lo-
cally Lipschitz function ¥ : R — R such that (4), in closed loop with
u=19() where Z = (z1, ..., z) T, is globally asymptotically and lo-
cally exponentially stable to 0.
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We can now fix functions A; such that the €j’s from
Lemma 1 can be written as

t
Q;(t) :/t AEDRo@dE for 1< j<kandall £0  (5)

for all choices of the continuous function wg:[-T,+o0) - R,
where we omit the dependence of the A;'s on T for brevity. By
a simple induction on the index j that we omit, we can prove that
each function Aj(¢, t) can be written as a function D;(t —¢,t — € —
T) of the differences t — ¢ and t — ¢ — T. For instance, we have

A, t) =Dt —t,t—¢—-T)
=ett—o) 1t —¢—T)"and (6)
Ay(0,t) =Dyt —t,t —¢—T)
=e[-(t-0F Tt —e-T)H!
+ k=Dt -0"2t—¢-T)K!
+ (k=1)(t - 0"t —e-T)2]

so we can choose Dj(a,b)=e %k 1pk-1 and D,(a,b) =
e 9 [—a*1p-1 4+ (k — 1)ak=2b*1 + (k — 1)a*~'b*-2], and  the
formulas for the other A;'s and Dj’s can be computed from
Lemma 1. Note for later use that for each T> 0 and j, the function
sup{|A;(¢,t)] :t —T < ¢ <t} is a bounded function of t>0. For
instance, when k = 2,

max{|A;(¢, )| :1<j<2,£e[t-Tt],t>=0}<T(T+2). (7)

We will assume the following, where A = (Aq,..., A)7:

Assumption 1. (i) The function F in (1) is continuous in t and 7,
globally Lipschitz in (x, z), and satisfies

F(t,0,0,0)=0for allt > 0. (8)

(ii) There are a globally Lipschitz bounded function w :R" —
[—®, @] having some bound @ > 0 such that w(0) =0 and a con-
stant T> 0 such that for each continuous function & : [0, +00) — Rk
that exponentially converges to 0, the following is true: All solu-
tions £ : [0, +00) — R" of the system

. t
§(t) = f(t (1), fH AL o (§(£))de +5(t), 0) 9

satisfy lim¢_, ;o £E(t) = 0.

We refer to part (ii) of Assumption 1 as our converging-input-
converging-state assumption; see Section 5 for a generalization in-
volving measurement delays in the & measurements in the func-
tion w. An important special case is where F has the form
F(t,x,z,n) = Fy4(t,x) + Fe(t,x)[z + n] for some drift term F; and
some control term F, i.e., affineness with respect to z and 7.
In this special case, our condition (8) is the requirement that
F4(t,0) =0 for all t>0, and (9) has the form

E(t) = Fq(t. E(t)) + Fe(t, §(1)) [[T AL D& (0)de+ 5(0}.

See Section 3 for readily checked sufficient conditions for the re-
quired converging-input-converging-state condition in the preced-
ing affine case. The system (9) differs from the nonlinear subsys-
tem of (1) because the third argument of 7 in (1) has been re-
placed by the sum of an integral term and 4(t), and because 1 has
been set to 0. In terms of the Jordan matrix

-1 1 0o ... 0
o -1 1 0

.]Zk—l — c R(Zk—l)x(Zk—l)’ (10)
-1 1

our main result is as follows; see Section 3 for sufficient conditions
for ISS of (15).

Theorem 1. Let k>2, and T>0 and F and w be such that
Assumption 1 holds, where k € N. Let § and v satisfy the requirements
from Lemma 2. Consider the (x, Z, Y) system, consisting of (1) and

. Ve

V() =Y (6) + 2o (x(1)) (1)

where ey, = (0,0,...,1)T e R2-1 is the (2k — 1)-st standard basis

vector, in closed loop with the control

u(Z(t), Ye. X) = oe(M(Yr)) + o (Tw (x(t))
+g1(Nok(t -T)) + P (Z.(1)) (12)

with the saturation level

k

E= > vci(T) — 6(T) el (13)
j=1
where Z.(t) = (21 () =1 (DY Yp). ... 2(0) = (D (V) T,

W(Y) =Y(t) — ey - T), G(T) = ga1(T) ... .&(T)], and

MYe) = (Q(T) - ilujcj(r))\lf(y[) and
Jj=

Ci(T) = [copn,j(T) o .ns ¢ (D] 1< j<k (14)

and where the constants c; ; and g satisfy the requirements from
Lemma 1 for the function g (t) = w(x(t)). Then all maximal solu-
tions (x, Z, Y)(t) of the (x, Z, Y) system, consisting of (1) and (11) and
with (12) as the control, satisfy lim;_ - (x,Z,Y)(t) =0 when n = 0.
If, in addition, the system

. t
§(t) = f(t £(t). /H A, D (0)de+5(¢), n(t)) (15)

is ISS with respect to (8, n), then the (x, Z) system (1) in closed loop
with (12) is ISS with respect to n.

Remark 1. As in [23], we can extend Theorem 1 to cases where
in addition to the artificial delay T, there is a delay in the mea-
surements of x(t) from the original system (1). However, as we
noted above, [23] does not provide a bounded control for (1) even
if the v;’s are all zero, and the converging-input-converging-state
assumption in [23] has a k-fold integral instead of the simpler sin-
gle integral we have in (9).

We next provide sufficient conditions for our converging-
input-converging-state assumption to hold, and then we prove
Theorem 1 in Section 4. See also Section 5 for extensions under
measurement delays.

3. Checking Assumption 1

We provide sufficient conditions for our converging-input-
converging-state conditions on (9) to hold, and for the ISS property
of (15) from Theorem 1 to hold, based on Lyapunov functions. We
use the system

x(t) = F(t, x(t), A(T(x(t)), n(t)), (16)
where F is from (1), A, : [0, 00) — RP is defined by

t
A(T) = /H(Al(e,t),...,A,,(e,t))Tde, (17)

the constant T>0 will be specified, the A; satisfy the require-
ments from (5), and pe|1, k] is such that F is a function of
(t,X,z1,...,zp,m), where z;,...,z, are the first p components of
the state z of the linear subsystem of (1). The definition (17) is jus-
tified by the fact that each function A;(¢, t) fori=1,2,...,p can
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be written as a function D; of t —¢ —T and t — ¢, so the right side
of (17) can be written as

/t (Ar(6 ). ... Ap(e.0)Tde
t-T

t
= (D1t —e,t—¢-T),....,Dp(t —¢,t —¢—T)) de
t-T

= /0 (D1(—t,—¢—T),...,Dp(—L,—£—T))"de
-T

and so does not depend on t; see Section 2. In the next assump-
tion, V; and Vy are the partial derivative with respect to t and the
gradient with respect to x, respectively, and the uniform global Lip-
schitzness in x means that the global Lipschitz constants can be
chosen independently of the other variable t:

Assumption 2. There are functions f : [0, +00) x R" — R" and g:
[0, +00) x R" — R™P that are uniformly globally Lipschitz in x
and continuous on [0, +00) x R", such that F(t,x,q,n) = f(t,x) +
g(t,x)(q+n) holds for all t>0, x € R", g € RP, and n € RP. Also,
there exist a C! uniformly proper and positive definite function
V [0, +o0) x R" — [0, +00); a uniformly continuous positive def-
inite function W : R" — [0, +o00); positive constants T, ry, and r3;
and a constant r, >0 such that for all (t,x) € [0, +00) x R", we
have

Ve(t, %) + Ve (t, 0) (£, %) + (6, ) A (T (X)) < -W(x),  (18a)
Ve (e, x)g(. X)| < VW (). (18b)
lo®)] < rivWx). (18c)
If(t.%)] < r2y/W (%), (18d)
and |g(t,x)| <13, (18e)

where w : R" — R is bounded, satisfies w(0) =0, and admits a
global Lipschitz constant C>0 on R".

We emphasize that the linearity of F in the q and 7 variables
will play a key role in this section. See [22] for conditions under
which (18) can be satisfied. Set

Ao = [ (A1 Ap (DI, (19)

which is independent of t because the A;’s can be written as func-
tions of t — ¢ and t — ¢ — T; the proof that the right side of (19) is
independent of t is the same as the argument we used to show
that the right side of (17) is independent of t except with a norm
on the p tuples in the earlier argument. We also set A, (T) =
supeof[(A1(€,0), ..., Ap(e,t))| : t = T < ¢ < t}, which is finite be-
cause of our choice of A.

Proposition 1. If Assumption 2 holds, then for all integers k > 2, and
for all constants T> 0 such that

4(T Aq(T)C)’ [2r§ n g(r1r3TA+(T))2] <1, (20)
Assumption 1 is satisfied. If, in addition, W is proper, then (15) is ISS
with respect to (8, n).

Proof. We first prove the first assertion of the proposition (where
n =0), and then we indicate the additional arguments needed
to prove the second assertion. Fix any continuous function § :
[0, +00) — RP that exponentially converges to 0. Along all solu-
tions x(t) of (9), the control affine structure of F gives

x(t) = {f(£.x(6)) +g(t. x(O) A (T (x(E))}
t
+ g(ax(t))[a(o + / A () (@(x(0)) — w(x(t)))de]
t-T
(21)

where A” = (Aq, ...
gives

V(£) = =W (x(t)) + [Va(t, x(£))g(t, X(0))]

,Ap)T. Combining (21) with (18a)-(18b) now

t
x [ ”A’(ﬁ,t)(w(x(ﬁ))—w(X(t)))dﬁ +|5(t)|}
= -Wx()) + \/W(X(t))({Aa(T)[ ?ﬁ?r] lw(x(€))
— o)} + 80 (22)

for all t>0, where the first inequality used the fact that the por-
tion of the dynamics (21) contained in the curly braces agrees with
the dynamics from (18a), combined with the triangle inequality
and the fact that (18a) holds for all t>0 and x € R", and where
the second inequality in (22) used our bound on the function |Vi(t,
x)g(t, x)| from (18b) and our formula (19) for A4(T) after moving
the norm inside the integral.

We next use the global Lipschitz constant C on w and apply the
Fundamental Theorem of Calculus to find a useful upper bound
on the supremum that is contained in (22). To this end, we first
use inequalities (18d)-(18e) from Assumption 2 to obtain the up-
per bound

t
[X()] < ray/ W(x()) + r3{|A+(T)| /t_T lo(x(6))|de + |3(t)|}
(23)

along all solutions of (9). Applying (a+ b)? < 2(a? + b%) with a =
/W (x(t)) and b being the rest of the right side of (23), and then
applying (a + b)? < (5/4)a? + 5b%> where a and b are the terms be-
ing added together in curly braces in (23) and then Jensen’s in-
equality, it follows that along all solutions of (21):

X(®)* < 2r3W (x(t))

+zr§<5|a<r)|2+2rr%z\i<r> [ W<x(5)>dz>, 24)
t—-T

where W(x(¢)) in the integrand is present because of our condition
(18c) relating w to W.

We can now combine (22) and (24) and then use Jensen’s and
Young's inequalities /W (x(t))b < 2W (x(t)) + b2, with b= |5(t)|
and then b being the quantity in curly braces in (22), to get

V(O) = —3WEE) +18OP + AU sup [x(0) —x(OP
Lelt-T,t]
1 t
<~ We®)+ BOP + AXDCT [ 1%(@)dg
t-T
= WD) + 8O

t
+ Ag(r)czr(zrg /[ W)+ 105TI3 01y

t
+gr§T2A2+(T)r§/ W(x(e))de)
t-2T

1 t
< WD) + Vi /HTW(X(Z))de

+ Nal8 [ axioe-1)0) =

along all solutions of (9) for all t> 0, where
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Ny = T(Aa(T)C)2(2r§ n g(r1 r3A+(T)T)2) and
Ny = 10(TA(T)r30)%(a + 1), (26)

by using the Fundamental Theorem of Calculus and Jensen’s in-
equality to obtain the bounds

t 2 t
sup [x(£) —x(8)]* < (/ IX(q)qu) < T/ %(q)|*dq
Le[t-T,t] t-T t-T

and fssfr W(x(¢))de < /‘LZTW(x(Z))dé for all s € [t — T, t]. Then our
condition (20) implies that 4TA7 <1, so we can find a constant
A >1 that is close enough to 1 so that 2TA7A < 1/2. Then

t t
Vit %) = V(£ X(0)) + AN, /{_21/ W (x(¢))deds 27)
satisfies

Vi < —aW&(@©) — (b= DA /[_ZTW(X(K))dZ

+ Nal8 [axio-1).0) -

for all t>0 along all solutions of (9) where c, = % — 2TN7 A, since
for all t>0, we have

d t t t
E/[_zr/s W(x(z))dﬁds:2TW(x(t))—/t_2TW(x(€))d£. (29)

By our assumption on §, we can find positive constants 5, and
8, such that |§(t)| < §;e=%¢ for all t>0. Since ¢« >0 and A > 1, we
can integrate (28) on [0, M] for any constant M > 0 to get

+o0
SU(I)—"V1 (t.x) < V1(0,%) +Nz[0 |8 Fmaxie_.0).014¢
t>

_ _ +00 -
<V (0, XO) +N2(S%T + (S%Nz / e‘z‘SZ“‘T)de
T

< V1(0,X0) + NaS3T + N282/(28;) < +oc.

Since V is uniformly proper and positive definite, we conclude that
|x(t)] is bounded, so x(t) is uniformly continuous, by the structure
of the dynamics (9) when 1 = 0. Since W is uniformly continuous,
it follows that W(x(t)) is a uniformly continuous function of t, and
integrating (28) gives

+o0

W (x(£))de < +oo. (30)

Therefore, Barbalat’s Lemma implies that lim;_, .o, W (x(t)) =0, so
since W is positive definite, we conclude that lim;_ . x(t) = 0.
This proves the first assertion of the proposition.

To prove the second assertion of the proposition, fix a choice of
the measurable essentially bounded function 7. Then the preced-
ing analysis applies to the corresponding system (15), save for the
fact that we must add the additional term Vy(t, x(t))g(t, x(t))n(t) to
the right sides of the decay estimates on V. We can use (18b) and
Jensen’s inequality to check that this additional term is bounded
above by

Cy 1
VWEEO)INO] = WD) +5-InOF. (31)
Adding the right sides of (31) and (28) and using the fact that
t t t
/ / W (x(¢))deds < ZT/ W (x(£))de (32)
t-2T Js t-2T

for all t>0, we can find a function yy € K and a constant k« >0
such that

Vi < —po(Vi(t, %)) + k.| (8, 77)|[20,r] (33)

along all solutions of (9), using the properness of V and W to find
a ¥1 € Koo such that y1(V(¢, x)) <(c+[/2)W(x) for all t>0 and x € R",

then choosing yp(¢) = min{y;(£/2), £} with r, = (A —1)/(4TX)
(by the relation yy(a + b) < y9(2a) + yo(2b) where a and b are the
terms being added in the formula (27)). Hence, V; is an ISS Lya-
punov function for (9), so the ISS properties follow by standard
arguments [13]. O

Remark 2. Proposition 2 requires T>0 to be small enough, but
due to the structure of our control (12), we cannot pick T = 0. In
Section 5, we will see how picking T small enough can ensure that
ISS is maintained under measurement delays. Conditions (18) agree
with the sufficient conditions in [23], except that instead of (18b),
[23] required a constant ry > 0 such that |Vi(t, x)g(t, x)| < ro/W (x)
for all t and x. However, one may assume that ry = 1, by replacing
g, w, 1, and r3 by g[rgy, row, 11, and r3/rg, respectively. O

4. Proof of Theorem 1

The forward completeness of the closed loop systems defined
in the statement of the theorem will follow from the Lyapunov
analysis to follow, which will ensure that finite time blowups can-
not occur. Theorem 1 will now follow from three more lemmas,
which we state next. The first of these lemmas follows from [29,
Lemma A.3.2] (applied to the entire function £(x) =X for any
t € R to compute £(Jp_1)):

Lemma 3. For the Jordan matrix J,,_, defined in (10), the equality

_ 2 201
1 t 2 T 2(k-1))!
(2k-3
0 1 t . a1
@t — o=t (34)
: . 1 t
| 0 ... ... 0 1

holds for all t € R and integers k > 2.

Later in the proof of Theorem 1, we specialize the following
lemma to the case where g (t) = w(x(t)):

Lemma 4. Let g : [-T, +o0) — [—[4, L] be any continuous function
having a bound fi. Then the functions w; from (2) in Lemma 1, and
the functions W (Y;) =Y (t) — ey (t — T) for all solutions Y of

V(O =i Y (O + 2000, (35)
are such that for all t >0, we have

Va1 (t) = W(Yy) and |[W(Y,)| < el fz, (36)
where vy (t) = (Uor_1 (D), ..., w7 forallt > 0. O

Proof. By integrating (35) over [t —T,t] for any t>0, we deduce
that

W (Y,) =Y(t) — eM1Y(t — T) = o(t), where

t
o) = [0y e (37)
¢-T T
for all t>0. On the other hand, using (34), we obtain
(t _ Z)Z(k—])
t @k-1)!
1
o= [ e Ho(OdE = vy s (O, (38)
t— .
t—¢
1

which proves the first conclusion of the lemma. The second con-
clusion of the lemma follows since (37) gives
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Y (t) — ey (£ —T)| = |o(t)]
=/
=/

for all t>0, because of the bound @ on g, which proves the
lemma.

el 1O 2L 0) de

i1 -0 21 |y (39)

Lemma 5. Let g : [T, +00) — [—fi, ft] be any continuous function
having a bound [1, and let the constants v; and the function 9 satisfy
the requirements from Lemma 2. Consider the linear system

Zi(t) =z (8), iefl,....k—1}

k 40
Ze(t) = u(t) + Y v;z;(t) (40)

j=1
in closed loop with the control
u(Z(t), Ye. ) = oe(M(Yr)) + 8o (T) po ()
+ & 1(Mpo(t =T) + P (Z.(1)) (41)

with the saturation level ¢ for o; defined by

C= eUle\TpL (42)

k
> vici(T) = 6(T)
=1

and where Y satisfies (35) and M, Z,, G, and the C;’s and g;’s are
defined as in Theorem 1. Then the dynamics for the vector Z(t) =
(Z1(t), ..., Z(t)) are globally asymptotically and locally exponentially
stable to the origin, where Z;(t) = z;(t) — Q;(t) fori=1,2,...,k and
the ;s are defined in (2) in Lemma 1.

Proof. The fact that ©; = Q;, for allie {1,2,...,k} and the struc-
ture of the dynamics (40) allow us to conclude that the dynamics
for the functions Z;(t) = z;(t) — ;(t) are

5(t) =Ziq (). ie{l.... k—1)

. k . 43
Zi(£) = u(t) = Quer (O + Y vj1Z(0) + 2;(0)] @

j=1
Using our conclusion from Lemma 4 that
Vo1 () = W (%) (44)

where vy (t) = (Uor_1(t),..., 11 (t))T as before, it follows from
(3) that:

Ze(®) = u(t) — G(T)vg_1 () — Zo(T) o (t)

k Kk
—ga(Mpot =T) + Y vZi(t) + Y viCj(T) vy 1. (45)

=1 j=1
Hence, (44) gives
5() =z (t), ie{l.... k—1}
k
Ze(t) = u(t) + Zvjfj(f) —8o(T) o (t) (46)

j=1
— 81D ot =T) +g¥ (V)

where
k

g=">"v,c;(T) - G(T). (47)
j=1

Next note that since Lemma 1 gives Q; =C;j(T)vy_¢ for j=
1,...,k, it follows that:

Zi(t) = zi(t) — Qi(t) = z;(t) — Ci(T)vy_1 (t) forie {1,...,k}.
(48)
Thus, (44) gives Z;j(t) =z;(t) —C;(T)W(Y;) for all t>0 and all

ie{l,....k}, so Z,(t) = Z(t) = (Z;(t)....,Z(t)) for all t>0. Also,
M(Y:) = —gW (Y;). Therefore, our choice (41) of the control gives

Z(t) =Z4(t), ie{l,... k—=1}
s koo _ _ (49)
Zi(t) = Y viZi(t) + 0e(—8¥ (V1)) + &Y (Vo) + U (Z.(1)).
j=1
According to (36), we have
1g¥ (Yo)| < |gleVThw = ¢ (50)

for all t>0. From the definition of the saturation level ¢ of o, it
follows that for all t>0, we have

5(t) =Zi (1), ie{l,....k—1)

. - koo (51)
Z(t) =0 (Z(t) + Y _viZi(t)

i=1
so the lemma follows from our choice of 9 in Lemma 2. O

We now combine the preceding lemmas to prove Theorem 1.
We begin by proving the first conclusion of the theorem, in which
n = 0. In this case, the closed loop system defined in our theorem
is

x(t) = F(t,x(t),z(t),0)

2(0) =211 (0), ie{l,....k—1}
k

20 = u@Z(O), Yo x) + Y vjz;(0) (52)
j=1

V(O =ha Y O + Zox(0),

Using the fact that the control (41) from Lemma 5 agrees with our
control (12) from Theorem 1 when we select wug(t) = w(x(t)), it
follows from using Lemma 5 with the choice q(t) = w(x(t)) that:

Jim zi(t) - ()] =0 (53)

for all i=1 to k, and Z; = z; — ; exponentially converges to 0 for
all i.
Next notice that the x subsystem of (52) can be written as

x(t) = F(t,x(t), Q(t) + 2(t), 0) (54)
where Q = (Q1,..., %) "

when we choose the bounded function wg(t) = w(x(t)). Hence,
we can use the converging-input-converging-state portion of our
Assumption 1 (with the choices § = Z and 1 = 0) to conclude that
lim;_, ;o [x(t)| =0 and therefore that for all ie{1,2,..., k}, we
have lim;_, 1 ©;(t) = 0, since w(0) =0 and w is continuous at 0.
It follows that:

lim z(t) = lim (z(t) — Q(¢t)) + lim Q) = 0. (55)
t—+4o00 t—+4o00 t—+4o00

On the other hand,
Y =ju Y +e (56)

is ISS with respect to &, by the Hurwitzness of J,,_; as we de-
fined this matrix in (10), which makes it possible to use a Riccati
equation to find a quadratic Lyapunov function for Y = J,,_{Y of
the form YTPY for some positive definite matrix P which is then
an ISS Lyapunov function for (56) with ¢ playing the role of the
uncertainty. This provides positive constants ¢, and ¢, such that
[Y(t)] < ca(|Y(t/2)]|e~t + sup{|e(¢)] : t/2 < ¢ <t}) along all solu-
tions of (56) for all t>0. Specializing the preceding argument
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to the function &(t) = ey,_jw(x(t))/T which converges to 0 as
t — +o00 now gives the first conclusion of Theorem 1. This follows
because all solutions of (56) for bounded choices of ¢ are bounded,
so for each constant §y >0, we can find a constant Ty > 0 that is
large enough so that max{|Y (t/2)|e~%¢, sup{|e(¢)| : t/2 <t <t}} <
89/ (2¢cq) for all t> Ty, which gives |Y(t)| <8¢ for all t>Ty.

It remains to prove the second conclusion of the theorem. To
this end, first note that with the notation from our proof of the
first conclusion of the theorem, the dynamics for Z are globally
asymptotically stable to 0, so the interconnection of the perturbed
dynamics x(t) = F(t,x(t), Q(t) + Z(t), n(t)) with pg(t) = w(x(t))
and the Z dynamics will be ISS with respect to 7, by standard
small gain arguments. Then the structure of the function 2 im-
plies that the (x,z) = (x,Z+ 2) dynamics are ISS with respect to
7. This completes the proof of our theorem.

5. Extension to systems with measurement delays

This section is connected with, and provides a nontrivial
extension of, Section 2, by explaining how the framework of
Theorem 1 is general enough to allow cases where current val-
ues x(t) are not available for measurement or for use in the con-
trol. Such cases occur in engineering applications where the con-
trol must be computed on a computer that is far from the actual
plant, which was the case for instance in the work [26] which
used small marine robots to search for oil pollution. Our strategy
in this section is to find values of T that ensure that the required
converging-input-converging-state assumption is satisfied for cases
where current values x(t) are not available for use in the control.
See Remark 3 for a detailed description of how our work in this
section adds value relative to the existing delay compensation lit-
erature.

Although [23] did not provide a bounded backstepping con-
troller for the original system (1), it allowed cases where cur-
rent values of the x components of the state of the original sys-
tem were not available for use in the control, leading to feedback
controls in which x(t) must be replaced by time delayed values
x(t — D) of x for a constant delay D> 0. In the same way, we can
extend Theorem 1 above to allow cases where one must use time
lagged values of x instead of current ones. This is done by replac-
ing w(x(¢)) in the preceding analysis by w(x(¢ — D)) for constant
values of the delay D, so instead of placing a converging-input-
converging-state assumption on (9) in Assumption 1, we must re-
place (9) by the delayed version

. t
E(t) = .7-'<t, E(t), fPT A, t)w(E( —D))de +65(t), 0), (57)

and then the conclusions of the theorem remain true with x(¢)
replaced by x(¢ — D) in the feedback control. However, our suffi-
cient conditions from Proposition 1 do not apply in cases such as
(57) with measurement delays. This motivates the following analog
of Proposition 1 that provides sufficient conditions for our delayed
version of the converging-input-converging-state condition to hold,
and which can therefore facilitate checking the requirements of our
theorem when constant measurement delays D are introduced in
the x measurements. In what follows, we use the same choices
of Aq(T) from (19) and AL (T) = supo{[(Aq(L,t), ..., Ap(e,t))]:
t —T <¢ <t} as in Section 3, which are still independent of t (by
the argument we gave in Section 3), and which also do not depend
on D.

Proposition 2. If Assumption 2 holds, and if the constants T> 0 and
D> 0 are such that

R(T) <1 and (58a)

R(T)

CA(T)(ry + 13 AL (T)ry(D+T))(D+T) < % where
(58b)
R(T) = 4(TAu(T)C)2[2r§ + g(mgrm(r))z] (58¢)

then the following is true: For each continuous function & :
[0, +00) — RP that exponentially converges to zero, all solutions of
(57) converge to 0 as t — +oo. If, in addition, the function W from
Assumption 2 is proper, then the system

£(t) =f<t,$(t),/”1\(13,t)w(§(€D))d/i+5(t),77(t)) (59)

is ISS with respect to (8, n7).

Proof. We indicate the changes needed in the proof of
Proposition 1. We let ¢- >0 be the constant from (28) as be-
fore, where A is chosen as in the proof of Proposition 1. We
may assume that A >1 is close enough to 1 so that the re-
quirements from (58) are still true if we replace R(T) by
R(T) = 4A(TAa(T)C)?[2r2 + 2.5(r113TA(T))?] (by the strict-
ness of the inequalities in (58)), and we make this replacement
in the rest of the proof. Then, using our notation from the proof
of Proposition 1, we have c, =0.5(1 —R(T)) = 0.5(1 — 4TN7A).
In what follows, we use A, and A, to mean Aq(T) and A (T),
respectively, to keep our notation simple. Using the function V
from Assumption 2 and Young’s Inequality, the additional term
that must be added to the decay estimate on V can be bounded
above as follows:

Vi(t, x(£)g(E. %) /H A (@ D[w(X(E D)) — w(x(¢)]de
< CA/W (D) f l(s)|ds
t—-T-D
< CA/W (D) f {|f(s,x(s>>|
t—-T-D
+ 186, xDI[ A [l —D)lde+ ) [Jas
< CAay/W (D)) / . (rZ\/W<x(s>>
+ r3A+/ [(x(¢ D)) [de + 13 (5)] ) ds
t—D-2T
<CA, w<x<r)>[(r2 + 1AL (D+T))
x W (x(0))de + 15D + T)|77|[o.r]]
C. 1 t
W)+ (CAa[(rz snAn@+m) [
x W X(0)de + r3(D + T)|77|[o.t]]>2

EWGO) + O + 1A (D + T+ T)

t—2D-2T

IA

IA

« /r W (x(£))de
t—-2D-2T

2
+ C—*(Cr3Aa(D + T))2|77|[20.t]’

where the last inequality also used Young’s inequality, the rela-
tions ab < a%/4 + b* and (a + b)? < 2a® + 2b?* for suitable nonneg-
ative values of a and b, and then Jensen’s inequality. Using the in-
equality (58b) and choosing A > 1 close enough to 1, it follows that
we can find a constant A« > 1 that is close enough to 1 and which
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is such that
B fCAa(D+T)(r + 1A (D+T)Y < §. (60)

since ¢, = 0.5(1 — R(T)). Then reasoning analogously to the argu-
ment that produced (28) shows that the time derivative of

ZyW

Cy
t

Va(t, xe) = Vi(t, xe) + {CAq(r; +13A,11(D+T))}?

« (D+T) /et W (x(s))dsd¢ (61)

t—2(D+T)

along all solutions of (59) admits positive constants c«« and Cexs
such that

VZ = _C**W(X(t)) + C***' (87 n)|[20[] (62)

If, in addition, W is proper, then we can argue as in the proof of
Proposition 1 to find a function y, € Ko and a positive constant kq
such that

VZ = _VG(VZ(L xt)) + ka|(8’ 77)|[20,t] (63)

(by using the bound (32) except with T in (32) replaced by D + T).
Then the rest of the proof is the same as in the last part of the
proof of Proposition 1 except with V; replaced by V,. O

Remark 3. There is a large recent literature on delay compensat-
ing control design for nonlinear systems, largely involving predic-
tion, which replaces time lagged state values in controls by pre-
dicted state values [2,3,9-12,25,27,28,35]. While prediction is use-
ful for eliminating delays from control variables, it generally leads
to dynamic controls that contain distributed terms (i.e., terms that
use all values of the control or the state along certain time inter-
vals), which can be difficult to implement in practice [12]. See also
the reduction model controls [14]| which are expressed implicitly
as solutions of integral equations that do not admit explicit solu-
tions. Hence, potential advantages of the controls that can be ob-
tained using our approach from this section include (a) the lack
of distributed terms in our controls, (b) our ability to satisfy con-
trol bounds, (c) our ability to prove global asymptotic stability of
the closed loop system from Theorem 1 under any measurement
delay D > 0 for which (57) satisfies the required converging-input-
converging-state condition (with no other restriction on the size
of D), and (d) the robust performance of our controls in terms
of ISS.

6. Illustrations

Our Lyapunov function based sufficient conditions are conve-
nient for checking our assumptions from Theorem 1. We illustrate
this point in this section, in two examples. In our first example,
we apply our Lyapunov sufficient conditions directly. In our second
example, our Lyapunov sufficient conditions do not apply directly,
but we use a mixture of our Lyapunov and trajectory based meth-
ods to check our converging-input-converging-state conditions. Our
second example illustrates the point that it may only be necessary
to check our sufficient conditions locally in a neighborhood of the
equilibrium, instead of globally, which eliminates the need to find
a global Lyapunov function as required in Assumption 2. For sim-
plicity, this section only considers cases where there are no mea-
surement delays D, but we can apply the methods from the pre-
ceding section to cover measurement delays as well.

6.1. First Illustration

Consider the three-dimensional system

[x(t)]

x(t) = T O] +2z1(t) 60
z1(t) = z,()
Z(t) = u(t)

which is not amenable to classical backstepping, because the right
side of x(t) in the dynamics is not differentiable. In terms of our
notation from Section 3, we choose k=2, n=1, p=1, and

X
F(t,x,z1) = T +2z; and
1 |X] X
w(x)__A*(T)(IHXl+21+|X|)’ ()
where

0 0
A*(T) = /TA1(Z+t,f)d£:‘/Te/ée"*l(e_i_'r)kfld[

—2-T-eT@+T). (66)

We compute a constant T> 0 such that Assumption 1 is satisfied.
First note that since p=1, and since A¢(¢, t)<0 for all t>0 and
te[t—T,t], we have Agq(T) = —A,(T) = |A.(T)|. Since (65) are
globally Lipschitz functions and F is an affine function of z; and w
is bounded, it suffices to find constants r; for i = 1,2,3 and func-
tions V and W such that Assumption 2 is satisfied with

x|
1+ x|

f(t,x) = and g(t,x) =1 (67)
and then to choose T such that our condition (20) holds.

To this end, we check that Assumption 2 is satisfied using the
functions

V(t.x) = [O " o1(0)de and W (x) = zlajr(f)zr. (68)
Since (67) give
F(€20 +8E DAt =~ (69)

our conditions (18) on the r;’s from Assumption 2 for the preceding
choices of f, g, V, and W will be satisfied if

201 (x)x 1 3|x| 201 (x)x
) =n )
T+Ix] 7 [AD)] T+ x| — 1+ x|
x| 201 (X)X
<r
T+x] =2V 1T+ x

lon ()] <

,and 1 <r3. (70)

By separately considering points x € [-1, 1] and points x & [-1, 1],

it follows easily that Assumption 2 is satisfied with the choices

_ 3 N 3
A V21A,M

Hence, our requirement (20) on T> 0 from Proposition 1 holds if

. , 5 373 i
1> 4(@3T) |:2+2<ﬁ|2_T_eT(2+T)|> :| =

and we can use Mathematica [34] to check that the right side of
(72) takes the value 0.912536 at T = 0.11. Hence, Assumption 1 is
satisfied with T = 0.11, and then the desired controller is provided
by Theorem 1.

C =1 andr; =1. (71)
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6.2. Second Illustration

We can sometimes apply Theorem 1 by checking
Assumption 1 through a mixture of Lyapunov and direct tra-
jectory analyses. For instance, consider the three dimensional
system

x=x2-x3+7
L1=2 (73)
22 =u.
As noted in [13, pages 593-594|, the system (73) is globally
asymptotically stabilized to 0 by the control

99

2P (x,21)2y — Z
821( 12— 2

WV
u(x,z) = —a—z?(x,zl) +

9
0x

where Vy(x,z1) = %xz + %(zl +x +x2)?

+ X2 - +21) + 9. 71),

and ¢(x,z1) = —2x— (1 +2X)(X* = x> +21) — 71 — %%,

which is unbounded since it satisfies limy_, o u(x,0) = —co. Our
work [23] provided the unbounded control

1
U = gy
x {J(x(t)) —2e7TJ(x(t — 7)) + e 2T J(x(t — 27))}
—2z,(t) —z1 (1), (74)

where J(x) = —sin (%X)hfz,z](x)

that rendered (73) globally asymptotically stable to 0, where the
indicator function 1;_; 5 is defined to be 1 on [-2,2], and 0 on
R\ [-2,2]. Here we show how our new Theorem 1 provides a
globally bounded globally asymptotically stabilizing controller for
(73), using the choice of w = J/A.(T) with J as defined in (74), and
with p=1, and k = 2 and with the artificial T> 0 to be specified.

To verify Assumption 1 with the preceding choices, first note
that for each continuous function § : R — R that exponentially
converges to 0 and each initial state xy € R, we can find a value
T«(Xg, 6) €[0, oo) such that the corresponding solution of

x(t) =x2(t)fx3(t)+ft Aq1(e, Hox(e))de +8(t) (75)
t-T

satisfies x(t) € [-0.8,3/2] for all t>T«(xg, §). This can be done by
noting that the integral in (75) is bounded by 1 (since Aq(T) =
|A.(T)]), that x2 —x3 < —1.125 for all x>3/2, and that x2 —x3 >
1.152 for all x < —0.8, so the right side terms x2(t) —x3(t) in
(75) dominate the other right side terms, since we may as-
sume that t is large enough so that [6(t)] <0.12. Hence, it suf-
fices to check the inequalities (18) from Assumption 2 for all x €
[-0.8,3/2], by only considering time values t > T:(xg, §).

We now check the estimates from (18) for all x € [-0.8,3/2]
using V(x) = 3x2, W(x) =x%, f(x) =x*> —x3, and g(x) = 1. First
note that simple calculations (e.g., using Mathematica [34]) give
x2 —x3 —sin(wx/2) < —x (resp., > —x) for all x<[0, 3/2] (resp., x €
[-0.8,0]) which gives VV(X)(f(x) + A, (Tw(x)) < -W(x), |x%—
x3| <1.44|x|, and |sin(7x/2)| <(7/2)|x| when x € [-0.8,3/2], so
we can choose 1y =7/Q2|A(T)|), =144, r3=1, and C=
7 /(2|A«(T)|). Hence, we can use our formula (66) for A«(T) to
check that the sufficient condition (20) from Proposition 1 (for
lim;_, o X(t) = 0 to hold) is satisfied if

2 3 2
1> (Tn)? 2(1.44)2+5’;<2_T_6T_,(2+T)> (76)

which is satisfied for all Te (0, 0.0209]. Therefore, we can satisfy
our requirements with T = 0.0209, and then the desired bounded
control is provided by Theorem 1.

7. Conclusions

We provided a new bounded backstepping technique for a large
class of cascaded partially linear systems with arbitrarily large
numbers of integrators, under a converging-input-converging-state
assumption involving the nonlinear subsystems. For many cases
where the nonlinear part of the system is control affine, we
used Lyapunov functions to provide sufficient conditions for our
converging-input-converging-state assumption to be satisfied. Al-
though our controller involves a dynamic extension, it has an ad-
vantage that it provides bounded controllers for the original sys-
tem, which would not have been possible under our assumptions
if we had instead relied on previous results. We plan to combine
our new methods with the time delay methods in [1] and [14] to
also allow arbitrarily long measurement delays.

Appendix A. Proof of Lemma 1

For each je{1,2,..., k}, €2; will be a linear combination
of integrals, each of which having an integrand of the form
ettt —e)*(t — ¢ — T)P with integers « € {0,1,....,k—1} and B €
{0,1,...,k—1}, so the required constants ¢; ; can be obtained by
applying the binomial formula

(a+b)‘3:§:7. BU_ qipp-i
= INB =D

with the choices a=t —¢ and b= -T for those integrals in the
sums having positive 8 values. If j <k, then all of the «’s and B’s
in the sums will be positive integers. On the other hand, if j =k,
then the linear combination of integrals in the formula for €2, will
include multiples of the integrals

(A1)

t t
/ et (t — )1 o (¢)de and [ et (t — 0 — T g (€)de
t—T t=T

(A2)

and the derivatives of (A.2) in the formula for € 4 = €2, will be

linear combinations of terms that include —e~TTk=1y,(t — T) and
(=T)*11g(t), which will provide the constants g_; and gy in the
lemma. The remaining terms T;(t) in the linear combination in the
formula for €2, will only have positive powers « and g, and com-
puting their derivatives T/(t) will produce the g;'s in the formula
for ., for i=1,2,...,2k—1, by again applying the binominal
formula (A.1) to the integrand factors (t — ¢ — T)# with positive in-
tegers .
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