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Abstract We show that some natural output conventions
for error-free computation in chemical reaction networks
(CRN) lead to a common level of computational expres-
sivity. Our main results are that the standard consensus-
based output convention have equivalent computational
power to (1) existence-based and (2) democracy-based
output conventions. The CRNs using the former output
convention have only “yes” voters, with the interpretation
that the CRN’s output is yes if any voters are present and
no otherwise. The CRNs using the latter output convention
define output by majority vote among “yes” and “no”
voters. Both results are proven via a generalized framework
that simultaneously captures several definitions, directly
inspired by a Petri net result of Esparza, Ganty, Leroux,
and Majumder [CONCUR 2015]. These results support the
thesis that the computational expressivity of error-free
CRNs is intrinsic, not sensitive to arbitrary definitional
choices.
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1 Introduction

Turing machines solve exactly the same class of yes/no
decision problems whether they report output via accept/
reject states, or if instead they write a 1 or O on a worktape
before halting. Similarly, finite-state transducers compute
the same class of functions whether they emit output on a
state (Moore machine, Moore 1956) or a transition (Mealy
machine, Mealy 1955). In general, if the power of a model
of computation is insensitive to minor changes in the def-
inition, this lends evidence to the claim that the model is
robust enough to apply to many real situations, and that
theorems proven in the model reflect fundamental truths
about reality, rather than being artifacts of arbitrary defi-
nitional choices.

The theory of chemical reaction networks (CRNs)
studies the general behavior of chemical reactions in well-
mixed solutions, abstracting away spatial properties of the
molecules. Formally, a CRN is defined as a finite set of
reactions such as 2A + C — 2B, where A, B, and C are
abstract chemical species. In a discrete CRN the state of the
system is given by molecule counts of each species and the
system updates by application of individual reactions.

CRNs have only recently been considered as a model of
computation (Soloveichik et al. 2008), motivated partially
by the ability to implement them using a basic experi-
mental technique called DNA strand displacement
(Soloveichik et al. 2010). Discrete CRNs with standard
stochastic kinetics are Turing complete if allowed an
arbitrary small, but nonzero, probability of error (Solove-
ichik et al. 2008), improved to error probability O in
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Cummings et al. (2016)." It is known that an error-free
computational model of CRNs inspired by the theory of
population protocols (Angluin et al. 2006a, b) decides
exactly the semilinear sets (that do not contain the zero
vector) (Angluin et al. 2007).2

We study the computational robustness of error-free
CRNs under different output conventions. The original
output convention (Angluin et al. 2006a) for deciding
predicates (0/1-valued functions) is that each species is
classified as voting either 0 (“no”) or 1 (“yes”), and a
configuration (vector of nonnegative integer counts of each
species) o has output i € {0, 1} if all species present in
positive count are i-voters, i.e., there is a consensus on vote
i. As an example, the CRN with reactions X; + N — Y and
X, + Y — N, with initial configuration {x;X;,x,Xz, IN},
where N, X, vote 0 and Y, X; vote 1, decides if x; > x,; Y
and N alternate being present as each reacts with an input,
so the first input to run out determines whether we stop at Y
or N. More formally, we say o is output-stable if every
configuration o’ reachable from o has the same output as o
(i.e., the system need not halt, but it stops changing its
output). Finally, it is required that a correct output-
stable configuration is reachable not only from the initial
configuration i, but also from any configuration reachable
from i; under mild assumptions (e.g., conservation of
mass), this implies that a correct stable configuration is
actually reached with probability 1 under the standard
stochastic kinetic model (Gillespie 1977). It has been
shown in Angluin et al. (2006a) that the computational
power is not reduced, that is, it still decides precisely all
semilinear sets, when we restrict to those CRNs where (1)
each reaction has two reactants and two products (e.g.,
disallowing reactions such as 2A+C — 2B and
A — B+ C, a model known as a population protocol
Angluin et al. 2006a) and (2) the system eventually halts
for every possible input (see also Brijder 2014).

One can imagine alternative output conventions, i.e.,
ways to interpret what is the output of a configuration,
while retaining the requirement that a correct output-
stable configuration is reachable from any reachable con-
figuration. Rather than requiring every species to vote O or
1, for example, allow the CRN to designate some species as

! We always assume that the given CRN reactions are obeyed
perfectly; even so if reactions happen to occur in a certain
inauspicious order, an incorrect output might be obtained. It is
beyond the scope of this paper to consider imperfect physical
realizations of CRNs, in which spurious reactions outside of the
desired CRN can occur (see e.g. Alistarh et al. 2017).

2 When the set of configurations reachable from an initial configu-
ration is always finite (for instance, with population protocols, or
more generally mass-conserving CRNs), then error-freeness coincides
with error probability 0. See Cummings et al. (2016) for an in-depth
discussion of how these notions can diverge when the set of
configurations reachable from an initial configuration is infinite.
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nonvoters. It is not difficult to show (see “Appendix”) that
such CRNs have equivalent computational power: They are
at least as powerful since one can always choose all species
to be voters. The reverse direction follows by converting a
CRN with a subset of voting species into one in which
every species votes, by replacing every nonvoting species S
with two variants Sy and S;, whose voting bit is swayed by
reactions with the original voting species, and which are
otherwise both functionally equivalent to S.

We investigate two output conventions that are not so
easily seen to be convertible to the original convention.
The first convention is existence-based, in which there are
only 1-voters, whose presence or absence indicates a con-
figuration-wide output of 1 or O, respectively. It is not
obvious how to convert such an existential CRN into a
consensus-based CRN, since this appears to require pro-
ducing O-voters if and only if 1-voters are absent. The
second convention is democracy-based, in which there are
0- and 1-voters, but the output of a configuration is given
by the majority vote rather than being defined only with
consensus. Intuitively, the difficulty in converting such a
democratic CRN into a consensus-based CRN is that,
although the democratic CRN may stabilize on a majority
of, for example, 1-voters over O-voters, the exact numerical
gap between them may never stabilize. A straightforward
attempt to convert a democratic CRN into a consensus
CRN results in a CRN that changes the output every time a
new 0- or 1-voter appears. For instance, suppose we use the
previously described CRN for computing whether x; > xj,
where x; and xj respectively represent the count of 1- and
O-voters. If the original democratic CRN repeatedly
increments xo and then x;, the resulting CRN flips between
Y and N indefinitely—thus never stabilizing in the con-
sensus model—even if x; > xp remains true indefinitely.

We show that these conventions have equivalent power
as the original definition. Our techniques further establish
that the class of predicates computable by CRNs is robust
to two additional relaxations of the classical notion of
stable computation (Angluin et al. 2006a): (1) a correct
output configuration need not be reachable from every
reachable configuration, only the initial configuration, and
(2) the set of output configurations need not be “stable”
(i.e., closed under application of reactions), so long as each
initial configuration can reach only a correct output.

After defining existing notions of computation by CRNs
in Sect. 2, we introduce in Sect. 3 a very general compu-
tational model for CRNs, called a generalized chemical
reaction decider (gen-CRD). Its definition is directly
inspired by a recent powerful result from Petri net theory
(Esparza et al. 2015, 2017), restated here as Theorem 3.3.
Using this result we show that under mild conditions, gen-
CRDs decide only semilinear sets. We then show that the
original consensus-based model, the existence-based
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model, and the democracy-based model all fit into this
framework, establishing their common expressivity.

One reason to consider the democracy-based output
convention is due to its propitious composition properties.
Analogous to wiring up pre-built circuit-boards in elec-
tronics, we would like to be able to create larger chemical
computation by composing two pre-existing CRN modules.
Note that in the strand displacement implementation,
mixing together two solutions implementing two different
CRNs amounts to concatenating the CRNs: i.e., a new
CRN that is the union of the chemical reactions of the two.
The problem is that given two error-free CRNs, such that
the output species of one are the input species of the other,
it is not in general meaningful to concatenate them. Intu-
itively there are two issues: (1) the downstream CRN may
consume the output of the upstream CRN before the
upstream CRN finishes, and interfere with the upstream
computation; (2) the upstream CRN may change the output
before it stabilizes, but the downstream CRN may use the
previous incorrect answer. Both problems can be avoided if
the upstream CRN never consumes its output species (Chen
et al. 2014a). For boolean inputs/outputs, avoiding con-
suming output species naturally leads to the democracy-
based output convention, where the 0/1 value can be
changed by producing more of the opposite output.

A conference version of this paper was presented at
DNA 22 (Brijder et al. 2016).

2 Chemical reaction networks and deciders
2.1 Chemical reaction networks

Let Z and N denote the integers and nonnegative integers,
respectively. Let A be a finite set. The set of vectors over N
indexed by A (i.e., the set of functions ¢: A — N) is
denoted by N“.. The zero vector is denoted 0. For ¢, ¢’ €
N we write ¢ < ¢’ if and only if ¢(S) < ¢/(S) for all S € A.
For ¢ € N and X C A, the projection of ¢ to X, denoted
by ¢[y, is an element in N* such that ¢[(S) = ¢(S) for all
Se X Let|lc]| = ||c|l; = > g, ¢(S) denote the L; norm of
c. We sometimes use multiset notation, e.g., ¢ = {14,2C}
to denote ¢(A) = 1,¢(C) =2,¢(S) =0for S € A\ {A, C},
or when defining reactions, additive notation, i.e., A 4+ 2C.

A reaction o over A is an ordered pair (r,p) with
r,p € N/, where r and p are the reactants and products of
o, respectively. We write r — p to denote a reaction (r, p),
e.g., A+B—2A4+C denotes the reaction
({A,B},{24,C}).

Definition 2.1 A chemical reaction network (CRN) is an
ordered pair N' = (A, R) with A a finite set and R a finite
set of reactions over A.

The elements of A are called the species of N'. The
elements of N* are called the configurations of N.
Viewing ¢ as a multiset, each element of c¢ is called a
molecule. For ¢,¢’ € N, we write ¢ =, ¢ if there is a
reaction « = (r,p) € Rsuch thatr<cand¢ =c—r+p.
The transitive and reflexive closure of =,/ is denoted by
=y It N is clear from the context, then we simply write
= and =" for = and =, respectively. If ¢ =" ¢/, then
we say ¢ is reachable from c.

For ¢ € N, we define pre,(c) ={c € N4 | ¢ =y c}
and post, (¢) = {¢ e N | ¢ = ¢'}. Again we omit the
subscript A if the CRN N is clear from the context. Note
that for ¢, ¢’ € N, we have ¢ € pre(c’) if and only if ¢/ €
post(c) if and only if ¢ =" ¢/. We extend pre(c) and
post(c) to sets X C N in the natural way: pre(X) =
Ueex Pre(e) and post(X) = Uz post(c).

Petri net theory is a very well established theory of
concurrent computation (Peterson 1977). We recall here
that CRNs are essentially equivalent to Petri nets. In Petri
net terminology, molecules are called “tokens”, species are
called “places”, reactions are called “transitions”, and
configurations are called “markings”. Due to this corre-
spondence, we can apply results from Petri net theory to
CRNs (which we will do in this paper, cf. Theorem 3.3).
Conversely, the results shown in this paper can be refor-
mulated straightforwardly in terms of Petri nets. Vector
addition systems (Karp and Miller 1969) form a model
nearly equivalent to CRNs and Petri nets, where reactions
roughly correspond to vectors with integer entries.’ In the
special case of population protocols (Angluin et al. 2006a),
each reaction o = (r, p) obeys ||r| = ||p|| = 2. As a result,
for each configuration ¢ of a population protocol, both
pre(c) and post(c) are finite (because there are only a
finite number of configurations ¢’ with ||¢/|| = ||¢||). In that
model, molecules are called “agents”, species are called
“states”, and reactions are called “transitions”.

2.2 Consensus-based output-stable deciders

We now recall how one can compute using CRNs. Say we
want to decide whether or not the number n of molecules of
species X is even. One way to do this is by introducing the
reaction X +X — Q.4 If n is even, then eventually all

3 The only difference is caralysts: reactants that are also products,
e.g., C+X — C+Y, are allowed in CRNs and Petri nets but not in
vector addition systems. Most results for these models are insensitive
to this difference.

4 Notation J indicates that this reaction has no products.

@ Springer
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molecules are consumed, and if n is odd, then eventually
there is exactly one molecule of species X present. Once
the CRN has stabilized, the presence of a molecule of
species X signals that n is odd (i.e., there were an odd
number of molecules of species X present initially). Note
that in this example there is no molecule of any species that
signals that n is even. One may think of a more elaborate
example where the presence of say, a molecule of species
Veven, signals (once the CRN has stabilized) that n is even.
In this way, once the CRN has stabilized, X “votes” that n
is odd, while Ve, “votes” that n is even.

A chemical reaction decider D (introduced in Chen et al.
2014a) is a reformulation in terms of CRNs of the notion of
population protocol (Angluin et al. 2006a) from the field of
distributed computing. We define a set of input configura-
tions Z and two sets of “trap configurations”, called output-
stable configurations, Oy and O;. We then say that D is
output-stable and decides the set T C Z (withZo =Z \ Z,)
if for each i € {0, 1} (1) starting from a configuration in Z;,
the CRN remains always within reach of a configuration in
O; (i.e.,post(Z;) C pre(0;)), and (2) once a configuration is
in O;, it is stuck in O; (i.e., post(O;) = O)).

The sets Z, Oy, and Oy are all of a specific form. There
is a subset of input species X C A; 7 consists of nonzero
configurations where the all molecules present are in X.
The output is based on consensus: all the molecules present
in an output configuration must agree on the output. More
precisely, there is a partition {I'g, I'; } of A (called O-voters
and I-voters, respectively),” such that configuration ¢ has
output i € {0, 1} if all molecules present in ¢ are from I';
(i.e., el . = 0) and ¢ # 0). A configuration o is defined to
be in O,—it is output-stable—if all configurations of
post(o) also have output i.

Our definition, though equivalent, is phrased differently
from the usual one (Angluin et al. 2006a), being defined in
terms of Z,0y, and O, instead of X, Iy, and I'|. This
simplifies our generalization of this notion in Sect. 3.

Definition 2.2 A consensus-based output-stable chemical
reaction decider (con-CRD) is a 4-tuple D= (N,Z,
O, O1), where N' = (A, R) is a CRN and there are ¥ C A
and a partition {I'g, I'; } of A such that

. I={ceN"|eclyns=0}\{0},
2. O;={eceN"|post(c) C £;\ Ly ;}, with £; = {c €
N4 | elp, # 0} fori € {0, 1}.
3. There is a partition {Zy,Z;} of Z such that post(Z;) C
pre(0;) for i € {0,1}.

5 The definition of Chen et al. (2014a) allows only a subset of A to
be voters, i.e., [0 U I'| C A. This convention is more easily shown to
define equivalent computational power than our main results about
existential and democratic voting. See “Appendix” for details.
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Condition 1 states that only species in 2 may be present
initially, and at least one must be present. Condition 2
defines £; to be configurations with an i-voter, so those in
L;\ £1—; unanimously vote i, and those in O; are
stable (“stuck” in the set £; \ £1_;). Condition 3 states that
from every configuration reachable from an initial config-
uration, a “correct” output-stable configuration is reach-
able from there; this is the usual way of expressing
stable computation (Angluin et al. 2007; Chen et al.
2014a). The relationships between these sets are illustrated
in Fig. 1.

Remark 2.3 A different definition is found in Chen et al.
(2014a) and a number of other papers. That definition relaxes
ours in two ways: (1) having both voting and non-voting
species, (2) allowing non-input species in the input config-
uration (e.g., { IN} in the Introduction). In “Appendix”, we
show that (1) does not affect the computational power of the
model. It is also known (Angluin et al. 2006a) that (2) does
not alter the computational power (though it may affect the
time complexity Angluin et al. 2008; Doty and Soloveichik
2015).

Remark 2.4 We can equivalently define O; = N\
pre(L;_; U {0}), a form that will be useful later. To see
that this definition is equivalent, observe that N4 \ O; is
the set of configurations from which it is possible either to
reach L£;_;, or to reach outside of L;, and the only point
outside both is 0, so N1\ O; = pre(£, ;U {0}). Thus
O; = N1\ pre(£;_; U {0}).

Remark 2.5 The O; are disjoint and closed under appli-
cation of reactions: Oy N O; = & and post(0;) = O;.

Remark 2.6  Definition 2.2 implies the (weaker) condition
that Z; = Z N pre(O;). This can be shown as follows. First,
Z;,CZ and Z;Cpost(Z;) Cpre(0;), so Z;CInN
pre(O;). To see the reverse containment, assume
ceZnpre(O;), but c¢Z;, ie., c€Z;_;Npre(O;). Let
o € post(c) be such that o € O;; such o exists since
c € pre(0;). Since o € post(Z,_;) C pre(O;_;), we have
o< O;npre(0,;). Let o' € post(o) such that o' € O, _;.
Then o € post(O;) N O;_,—a contradiction because
post(O;) = O; is disjoint from O, _;.

Since Zo =Z Npre(Qy) and I, =Z Npre(O,) are
disjoint, we say that a con-CRD D decides the set Z;. If a
con-CRD D decides the set X C N“, then the entries
indexed by A\ X are zero for each ¢ € X. Therefore, by
abuse of notation, we also say that D decides the set
X[s € N*. We will use this convention for all chemical
reaction deciders with Z of the given form.

Example 2.7 We construct a con-CRD D that decides the
set x %y mod m where x and y are non-negative integer
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variables, not both zero, and m > 2 is an integer constant.
The variables x and y represent initial counts of species X
and Y, respectively. Let X ={X,Y},T'o={Vo},I1 =
{X,Y}, and A =Ty UT be as in Definition 2.2, with the
following reactions:

mX — Vo, mY — Vo, X+Y— Vo, (1)

Y+Vo—Y, X+Vy—X. (2)

We argue that D decides the set {c<c N*\ {0}
| ¢(X) # ¢(Y) mod m}. Indeed, if x=y mod m, then
eventually all X and Y molecules are consumed by the
reactions of (1). The last time one of these reactions occurs
introduces a V; molecule (there is a last reaction since x
and y are not both zero). So eventually we obtain a con-
figuration ¢ € £y \ £; for which no reaction can be applied
anymore. Thus ¢ € Oy. If x #Z y mod m, then eventually
we reach a configuration with one of X or Y, but not both,
remaining. The remaining X or ¥ molecules consume all Vj
molecules by the reactions of (2), without the possibility of
producing any more. So eventually we obtain a configu-
ration ¢’ € £; \ £, for which no reaction can be applied
anymore. Thus ¢’ € O;.

2.3 Semilinear sets

We say that X C N4 is linear if there is a finite set
{Vi,.. Wi} C N4 and be N4 such that X = {b+
Zf;l nv; | ny,...,m € N}. We say that X C N is semi-
linear if X is the union of a finite number of linear sets.
Semilinear sets are precisely the sets definable in Pres-
burger arithmetic, which is the first-order theory of natural
numbers with addition. As a consequence, the class of
semilinear sets is closed under union, intersection, com-
plementation, and projection (Ginsburg and Spanier 1966).

A useful characterization of semilinear sets is that they are
exactly the sets expressible as finite unions, intersections,
and complements of sets of one of the following two forms:
threshold sets of the form {x € N* | 3"._ a; - x(i) <b} for
some constants a; € Z, with i € A, or mod sets of the form
{xeN* |, a-x(i)=bmod ¢} for some constants
a; € Z, withi € A, and b,c € N.

The following result was shown in Angluin et al.
(2006a, b). In fact, the result was shown for output-
stable population protocols, which form a subclass of the
con-CRDs. However, the proof is sufficiently general to
hold for con-CRDs as well.®

Theorem 2.8 (Angluin etal. 2006a, b) Let
X C N*\ {0}. Then X is semilinear if and only if there is a
con-CRD that decides X.

For a configuration ¢ € N*, pre(c) and post(c) are in
general not semilinear (Hopcroft and Pansiot 1979). Hence
the semilinearity of Theorem 2.8 is due to additional
“computational structure” of a con-CRD. We repeatedly
use the following notion of upwards closure to prove that
certain sets are semilinear. The results below were shown
or implicit in earlier papers (Dickson 1913; Angluin et al.
2006b). We say X C N is closed upwards if, for all ¢ €
X,c¢ > c implies ¢’ € X.

6 Indeed, the negative result of Angluin et al. (2006b) that con-CRDs
decide only semilinear sets is more general than stated in Theo-
rem 2.8, applying to any reachability relation =* on N“ that is
reflexive, transitive, and “additive” (x =" y implies X + ¢ =*y + ¢).
Also, the negative result of Angluin et al. (2006b) implicitly assumes
that the zero vector 0 is not reachable (ie., pre(0) = {0}). This
assumption is manifest for population protocols (if the population size
is non-zero). For CRNs, this assumption can be readily removed; see
Lemma 2.12.

@ Springer
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For X C N/, define min(X) ={ceX | (V¢ €X) ¢
<c=c = c} to be the minimal elements of X.

Lemma 2.9 (Dickson’s lemma 1913) For all X C
N, min(X) is finite.

Lemma 2.10 Every closed upwards set X C N” is
semilinear.

Proof For each b € min(X) we consider the linear set
Lp={b+ Zli‘l niv; | ny,...,n € N} where the v;’s are
the |A| unit vectors of N*. Now, X = Upcpin(x) Lb- Since

min(X) is finite by Lemma 2.9, X is semilinear. O

Lemma 2.11 [If X C N* is closed upwards, then so are
pre(X) and post(X).

Proof Let cepre(X) and ¢ >c¢. We show that
¢ € pre(X). Letd = ¢ — c. Since ¢ € pre(X), there exists
¢” such that c¢=*¢” and ¢’ €X. Thus
¢=c+d=*c"+d Since X is closed upwards,
¢’ +deX,soc €pre(X). The post(X) case is symmet-
ric. O

Our results require pre(0) to be semilinear.” Observe
that pre(0) = {0} if and only if for each reaction o =
(r,p),p = 0 implies r = 0. The next lemma shows that we
can assume this holds for con-CRDs without loss of
generality.

Lemma 2.12 For every con-CRD D, there is a con-CRD
D deciding the same set such that, for each reaction o =

(r,p) of D',p #0.

Proof Let D be a con-CRD that decides a set X. Add to D
two new species Dy and D;. Species D; will function as a
“dummy” i-voter. Remove the useless reaction 0 — 0 if it
exists in D. Replace each reaction o:r — 0, where r
contains only i-voters, by o' : r — D;. Replace each reac-
tion o : r — 0, where r contains both 0 and 1-voters, by
o :r — Dy. (The choice for Dy here instead of D; is
arbitrary.) Moreover, for every species S we add the

7 pre(0) is not semilinear for every CRN. Hopcroft and Pan-
siot Hopcroft and Pansiot (1979) show that post(c) may be non-
semilinear: they define ¢ = {lP,1Y} and reactions P+Y —
P+X,P—Q0,0+X—Q0+2Y,0—P+A, with post(c)=
{e|0<e(X) +c(¥) <2™Wor0 <2¢(X) + ¢(Y) <2™+11 which is
not semilinear. To see that post(0) can be non-semilinear, modify this
CRN by adding a fifth reaction ¢ — P+ Y, which applied to 0
reaches ¢ = {1P, 1Y}. Moreover, the set S = {x | x(P) +x(Q) = 1}
is semilinear, so if post(0) were semilinear, S N post(0) would be as
well. Since a second execution of ¢§ — P + Y permanently exits S,
we have that S N post(0) = post(c), i.e., non-semilinear. By replac-
ing all reactions with their reverse, we obtain a CRN such that pre(0)
is not semilinear.

@ Springer

reactions S+Dy — S and S+ D; — S. Let D' be the
obtained system.

We see that D and D' operate similarly. The only
difference is that in the latter D;’s may be produced and
consumed. Now, in D, once a configuration o0 € O; is
reached, we have that for each o' € posty(0), every
molecule of o' is an i-voter (this holds in particular for
the case o' =0). A corresponding configuration d in D’
may have some additional dummy molecules of species
D;_;. But eventually, these molecules will all be removed
by the reactions S + D;_; — S. So, it suffices to verify that
no D;_; molecule may be produced in some
d' € post;y (d). Now, D;_; can only be produced if there
is at least one (1 — i)-voter (distinct from D;_;) present.
But such a molecule does not occur in any o' € posty(0)
and therefore also does not occur in any d’ € post, (d). O

3 Generalized chemical reaction deciders

In this section, we formulate a more generalized definition
of CRDs that captures the original consensus-based defi-
nition (con-CRD) in Sect. 2.2 and the new existence-based
definition (exi-CRD) in Sect. 4, as well as the “demo-
cratic” definition (dem-CRD) in Sect. 5. In this section we
show how to use a result of Esparza et al. (2015) and
Esparza et al. (2017) to re-prove the result of Angluin
et al. (2006b) that con-CRDs decide only semilinear sets.
This is a warmup to our main results, shown in Sects. 4
and 35, that exi-CRDs and dem-CRDs decide exactly the
semilinear sets.

In the generalized notion defined below we have drop-
ped the specific structure of Z, Oy, and O; (they are now
arbitrary subsets of N“) and we have replaced the
requirement that post(Z;) C pre(O;) by the weaker con-
dition that Z; = Z N pre(0;) (recall Remark 2.6). Also, we
do not use the term “stable” in reference to this generalized
notion, since there is no requirement that the sets of output
configurations O; are closed under application of reactions
(i.e., we allow O;Cpost(O;)).

The relationships among the sets relevant to the defini-
tion below are illustrated in Fig. 2.

Definition 3.1 A generalized chemical reaction decider
(gen-CRD) is a 4-tuple D = (N,Z,0,,O;), where N =
(A,R) is a CRN, Z,0,, O; C N“, and there is a partition
{Zo,Z:} of T such that Z; = Z N pre(O;) for i € {0,1}.

Observe that every con-CRD is a gen-CRD. However,
the requirements to be a gen-CRD are weaker than for con-
CRDs: (1) the condition post(O;) = O; need not hold for
gen-CRDs, so it may be possible to “escape” from O;, and
(2) since post(Z;) C pre(O;) need not hold for gen-CRDs,
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Fig. 2 Venn diagram of configurations that define generalized
chemical reaction decider (gen-CRD). Like con-CRD, pre(QOp) and
pre(O;) partition the input set Z =ZoUZ;. The arrows, again
depicting possible trajectories in the set of configurations when
reactions take place, illustrate important differences with con-CRD:

it is possible to take a “wrong” route starting from Z; such
that O; becomes unreachable.®

Example 3.2 Consider again the con-CRD D=
(N, Z, 00, Oy) from Example 2.7 (for some fixed constant
m>2).Let N = (AU {G},R U {a}) be the CRN obtained
from N = (A4,R) by adding a new species G ¢ A and
adding the reaction « =X — X + G. Also, let 7', 0, O,
be obtained from Z, Oy, Oy, respectively, by padding for
each configuration a zero entry for species G. Then D' =
(N, 7',0,,0)) is a gen-CRD where post(Z,) Z pre
(O;)—indeed, once reaction o has taken place we cannot
reach any O;. So, we have taken a “wrong” route once
reaction o has taken place at least once. We also have
post(O;) # O, since there are configurations of O; for
which reaction o can take place and once o has taken place
we are outside O;.

Despite these relaxations, observe that the following
property of con-CRDs is retained in gen-CRDs: 7 is the
disjoint union of Zo=ZnNpre(Oy) and Z,=7ZnN
pre(Oy), i.e., from each input configuration, exactly one of
the two output sets Oy or O is reachable. We say that a
gen-CRD D decides the set 7.

Definition 3.1 is inspired by the following key Petri net
result from (Esparza et al. 2017, Theorem 10) [announced
in (Esparza et al. 2015, Theorem 10)], formulated here in
terms of CRNs.

8 While Definition 3.1 appears almost too general to be useful,
Corollary 3.4 says that if Z, Oy, O, are semilinear, then so are Zy, 7,
which implies that any CRD definition that can be framed as such a
gen-CRD must decide only semilinear sets.

(1) possibly O;Cpost(O;) (output is not necessarily “stable”) and (2)
although Z; C pre(O;) (correct output reachable initially), yet
possibly post(Z;) € pre(O;) (correct output could become
unreachable)

Theorem 3.3 (Esparza et al. 2015, 2017) Let N be a
CRN and T,0y,0; C N4 be semilinear. Let T; =T N
pre(O;) for i € {0,1}. If {Zo,Z.} is a partition of T, then
To and I, are semilinear.

We say that a gen-CRD D = (N,Z,0, O1) is semi-
linear if T, 0y, and O, are all semilinear. We immediately
have the following corollary to Theorem 3.3.

Corollary 3.4 If a semilinear gen-CRD decides X C N/,
then X is semilinear.

As a by-product of the results shown in Esparza et al.
(2015, 2017), the reverse direction of Theorem 2.8 (which
is the most difficult implication) was reproven in Esparza
et al. (2015, 2017) for the case of population protocols.
That proof however essentially uses the fact that, for
population protocols, post(c) is finite for all configurations
¢, which is not true for CRNs in general. Fortunately, one
may still obtain the full reverse direction of Theorem 2.8
by showing that every con-CRD is semilinear (cf. the proof
of Theorem 3.5 below) and then invoking Corollary 3.4.

We now use this machinery to re-prove the result, due
originally to Angluin et al. (2006b), that con-CRDs decide
only semilinear sets.

Theorem 3.5 Every con-CRD decides a semilinear set.

Proof Let D= (N,Z,0y,0;) be a con-CRD. Let
I'={ceN"|c[yy =0}. The complement of I’ is
closed upwards, thus Z' is semilinear, as is Z = Z" \ {0}.

We now show that each O; is semilinear. Let £; = {c €
N4 | c[r, # 0} as in Definition 2.2. By Remark 2.4, O; =
N4 \pre(£i—; U {0}) = N\ (pre(£,_;) Upre(0)). By
Lemma 2.12 we may assume that each reaction o = (r, p)
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of Dhas p # 0, so pre(0) = {0}, which is semilinear. Since
L_; is closed upwards, by Lemma 2.11, pre(£;_;) is also
closed upwards, so semilinear by Lemma 2.10. Since semi-
linear sets are closed under union and complement, O is also
semilinear, so D is a semilinear gen-CRD. The theorem
follows by Corollary 3.4. O

Remark 3.6 From the hypothesis post(Z;) C pre(Q;) in
Definition 2.2, we used only the weaker conclusion
Z; = Z npre(O;). In other words, we need merely that O;
is initially reachable from Z; itself (and that O;_; is
unreachable from Z;, since pre(Qy) and pre(O,) partition
7). We do not require that O; remains reachable from
every configuration reachable from Z; (i.e., post(Z;)).
Hence one could weaken part 3 of Definition 2.2 to use the
condition Z; = Z N pre(0;), and Theorem 3.5 still holds.”

Despite Remark 3.6, if a gen-CRD does obey the
stronger condition post(Z;) C pre(®;), then a convenient
property holds: each O; may be enlarged without altering
the set 7; decided by the gen-CRD, so long as O;_;
remains unreachable from O;. The following lemma for-
malizes this.

Lemma 3.7 Let D= (N,Z,0,01) be a gen-CRD that
decides T\ and let To =T \Z,. For i € {0,1}, assume
that  post(Z;) C pre(0;), and let .2 0O; with
post(O) N O1_; = &. Then D' = (N, I, 0, O)) is a gen-
CRD deciding T,.

Proof We have Z;=pre(0;)NZ Cpre(O)NZ for
i € {0,1}. To show that this inclusion is an equality, it
suffices to show that pre(Oy) NZ and pre(O)) NI are
disjoint.

Leti € Z;. Then i € pre(O;) C pre(O;). Assume to the
contrary i € pre(0|_;). Let o € O|_;Npost(i), so o€
post(i) C post(Z;) C pre(0;). Thus O)_, Npre(O;) ed.
In other words, post(O|_;)NO; # Z—a contradiction.
Hence pre(Op) NZ and pre(O)) N T are disjoint. O

4 Existential output-stability

We now give a natural alternative output convention for
CRDs, which we call an existential output-stable CRD
(exi-CRD). Whereas the output i of a con-CRD is based on
both the presence of species of one type I'; and the absence
of a species of a different type I';_;, the output of an exi-
CRD is based solely on the presence or absence of a single
species type I';.

° In contrast, the proof of Angluin et al. (2006b) crucially requires
the hypothesis post(Z;) C pre(O;).
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For each i € 7 the CRD can either (1) reach a config-
uration o so that for each configuration o’ reachable from o
(including o itself) we have o'[, # 0 or (2) reach a con-
figuration o so that for each configuration o’ reachable from
o we have o'[ = 0. Similarly to gen-CRDs, and unlike
con-CRDs,' it is not required that such a configuration o is
reachable from any configuration ¢ reachable from the
initial i, merely that such a o is reachable from i itself. Even
this more liberal assumption does not allow the CRD to
decide a non-semilinear set.

Definition 4.1 An existential output-stable chemical
reaction decider (exi-CRD) is a gen-CRD D=
(N,Z,00,0y), where there are X C A and voting species
I'y € A such that

I. T={ceN"[clns=0}\{0}, and
2. O;={ceN"|post(c) CV;} for ic{0,1}, with
Vi={ceN"|c[p, #0}and Vo= N"\p."

Condition 1 states that only species in 2~ may be present
initially, and at least one must be present. Condition 2
defines V; and V) to be configurations with and without I
voters, and O; to be the stable subsets of V.

Example 4.2 Consider the following exi-CRD T, where
A=2X=T,;={X,Y}, which decides the same set as in
Example 2.7 (i.e., x Z y mod m).

mX - @, mY—g, X+Y—J. (3)

If x = y mod m, then eventually all X and Y molecules are
consumed and we obtain the configuration ¢ =0 € 0.
Otherwise, all X and Y molecules cannot be consumed, and
we are in O;. This example illustrates that the exi-CRD
computing convention may permit a simpler implementa-
tion in some cases. Indeed, compared with Example 2.7,
(3) has 2 fewer reactions and 1 fewer species (and is also
faster since fewer reactions need to occur).

We first observe that exi-CRDs have at least the com-
putational power of con-CRDs.

Observation 4.3 Let D = (N,Z,0p, Oy) be a con-CRD
deciding X, with voter partition {Io,I1}. Then
D' =(N,Z,0,,0,), where, for i€{0,1},0.={ce
N4 | post(ec) C V;}, with Vi as in Definition 4.1 (with
respect to 1'1), is an exi-CRD deciding X.

10" As noted, con-CRDs could be defined by replacing the requirement
post(Z;) C pre(O;) with Z; =Z Npre(O;) and retain the same
power, but for clarity we retain the original definition.

' Just as for con-CRDs, post(O;) = O;. Note that V; above is the
same as £ in Definition 2.2, but £y # V), since £; and £, can have
nonempty intersection if there are conflicting voters present in some
configuration.
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Proof This follows from Lemma 3.7 since (1) O; C O;
and (2) post(0) = O! is disjoint from O;_; for i € {0,1}.
O

We now show that exi-CRDs have no greater compu-
tational power than con-CRDs. This is not as immediate as
the other direction. First, observe that an exi-CRD may not
be a con-CRD; if we interpret species Vo € A\ T'; as
voting “0”, then a con-CRD is required to eliminate them
to output “1”, but not an exi-CRD. Moreover, a direct
transformation of an exi-CRD into a con-CRD appears
difficult. Intuitively, the problem is that the absence of
molecules in I'; is not detectable by a CRN, so there is no
obvious way to ensure that a species Vo € A\ I'y is pro-
duced only if all V| € I'} are absent. The next obvious
proof strategy would be to show, as in the proof of Theo-
rem 3.5, that every exi-CRD is a semilinear gen-CRD.
However, it is not clear whether O; is semilinear.
Nonetheless, due to the generality of Definition 3.1 and
Theorem 3.3, we can define a semilinear gen-CRD that
decides the same set, by taking a subset of O; that is
provably semilinear and still satisfies the necessary reach-
ability constraints, even though the gen-CRD we define is
not in fact an exi-CRD (in particular, its “output” set O, is
not closed under application of reactions).

Recall that a homomorphism f : N' — Z obeys f(c +
¢) =f(c) +f(¢) for all ¢,¢’ € N1, Some examples
include f(c¢) = ¢(S) for some S € A,f(c) = ||c[4|| for some
A C 4, or f(e) = ¢(S1) — ¢(S,) for some Sy, S, € A.

For a CRN N and a function f : N4 — Z, we define
nondec; - = {¢ € N | V¢’ € post(c),f(¢/) > f(c)} as the
set of configurations ¢ in which f is minimal among all the
configurations reachable from c.

We now prove a key lemma, which will be used for
characterizing both exi-CRDs in this section and dem-
CRDs in Sect. 5.

Lemma 4.4 Let N be a CRN and f : N* — 7 a homo-
morphism.  Let O = {c € N' |post(ec) CV}  with
V={ce N1|f(c)>0}. Then ONW is semilinear and
pre(ON W) = pre(O), where W = nondecy .

Proof We first prove pre(O N W) = pre(O). Obviously,
pre(O N W) C pre(O). To prove the reverse containment,
let ¢ € pre(O). Hence ¢ € pre(o) for some o € O. Since
every o' € post(o) satisfies f(0') > 0, there is an o’ €
post(o) such that f(o’) is minimal among all configurations
in post(o). Thus o' € W. Since post(O) = O, we have
o' €O. Hence, o € ONW. Now, o€ pre(o) and
c € pre(o), and SO c € pre(o). Therefore,
c € pre(ONW), so pre(O) C pre(ONW).

We now show that O N W is semilinear. Observe that
the set N1\ W = {c € N | 3¢’ € post(e),f(¢/) <f(c)} is
closed upwards. Indeed, if ¢ € N\ W and ¢ € post(c)
with f(¢/) <f(c), then for all d € N* | ¢/ + d € post(c + d)
and  f(c'+d) =f(c) +f(d)<f(c) +f(d) =f(c+d).
Thus N4\ W is semilinear by Lemma 2.10, and hence
also W. Since O CV, we have ONW CVNW. Con-
versely, if ¢ € VN W, then f(¢) > 0 since ¢ € V, and for
all ¢ € post(c),f(c¢')>f(c) >0 since ¢€ W. Thus
c € ONW, showing ONW =Y N W, which is semilinear
since V and W are. O

Using Lemma 4.4 we show that every exi-CRD can be
changed into a semilinear gen-CRD by choosing O; N W,
rather than Oy, as its “output 1” set of configurations. Note
that unlike in the definition of con-CRD and exi-CRD,
O;NW is not in general closed under application of
reactions.

Lemma 4.5 Let D= (N,Z,0y,0,) be an exi-CRD
deciding X and I'y be as in Definition 4.1. Let W =

nondec; - with f : N* — Z defined as f(c) = ||c[p, || for
all ¢ € N Then D' = (N, T, 09,01 N W) is a semilinear
gen-CRD deciding X.

Proof Observe that f is a homomorphism. Now,
Lemma 4.4 tells us that pre(O; N W) = pre(O,); thus 7’
decides X.

To complete the proof, it suffices to show that D’ is
semilinear. 7 is obtained from the closed-upwards set N* \
{0} by padding zeros for the species of A\ X, so Z is
semilinear. O; N W is semilinear by Lemma 4.4. To see
that Oy is semilinear, let V, and V; be as in Definition 4.1.
Clearly V; is closed upwards, so semilinear. So, (1)
pre(V:) is also closed upwards and therefore semilinear
(by Lemmas 2.11 and 2.10) and (2) Vy = NA\Vl is
semilinear. Thus, Oy =V, \ pre(V,) is semilinear since
the class of semilinear sets is closed under set difference. [

The following is the first of two main results of this
paper. It says that the computational power of con-CRDs
equals that of exi-CRDs; they both decide exactly the
semilinear sets.

Theorem 4.6 Ler X C N* \ {0}. Then X is semilinear if
and only if there is an exi-CRD that decides X.

Proof The forward direction follows from Observa-
tion 4.3 and Theorem 2.8. For the reverse direction, let D
be an exi-CRD deciding X. By Lemma 4.5, there is a
semilinear gen-CRD D’ deciding X, which is semilinear by
Corollary 3.4. O
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5 Democratic output-stability

Another reasonable alternative output convention is the one
most naturally associated with the term “voting”: a
democratic output convention in which, rather than
requiring a consensus, we define output by majority vote.
In this case, for sets of voting species I'y and I'y, the only
undefined outputs occur in “tie” configurations ¢ where
llelr, |l = [lelr, ||. In this section we show that such CRDs
have equivalent computing power to con-CRDs.

Definition 5.1 A democratic output-stable chemical
reaction  decider  (dem-CRD) is a  gen-CRD
D = (N,Z,0y,0,), where there are ¥ C A and a partition
{ly,I'1} of A such that

I IT={ceN"[clns=0}\{0},
2. O;={eeN"|post(c) C M;}, with M, ={ce
N letr |l > lletr, |} for i € {0,1}.

Note that Mo N M; = ¢, and that O; is stable, i.e.,
O; = post(O;). A con-CRD reaches a consensus, the
strongest kind of majority, leading to the following
observation implying that dem-CRDs are at least as pow-
erful as con-CRDs.

Observation 5.2 Let D = (N,Z,0y,0;) be a con-CRD
deciding X, with voter partition {Io,I'1}. Then
D = (N,Z,0,,0)), where O,={cecN"|post(c)C
M;} fori € {0, 1}, with M; as in Definition 5.1, is a dem-
CRD deciding X.

Proof This follows from Lemma 3.7 since (1) O; C O
and (2) post(0;) = O! is disjoint from O;_; for i € {0,1}.
O

The converse result, that dem-CRDs are no more pow-
erful than con-CRDs, implies the second main result of this

paper.

Theorem 5.3 Let X C N* \ {0}. Then X is semilinear if
and only if there is a dem-CRD that decides X.

In order to prove Theorem 5.3, we first show the fol-
lowing lemma.

Lemma 54 Let D= (N,Z,0y,O;) be a dem-CRD rthat
decides X and M; for i € {0,1} be as in Definition 5.1.
Let, for i€ {0,1},W; = nondec; » with f;: Nt — 7
such that fi(e) = |lel|| — |lelr, || for all ¢ € N". Then
D = (N,Z,00NWy,O,NW,) is a semilinear gen-CRD
deciding X.

Proof Leti € {0,1}. Observe that f; is a homomorphism.
Lemma 4.4 says that pre(O;NW;) =pre(O;), so D
decides X. To see that D’ is semilinear, note that Z is
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semilinear, and for i € {0,1},O0; NW; is semilinear by
Lemma 4.4. |

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3 The forward direction follows from
Observation 5.2 and Theorem 2.8. For the reverse direc-
tion, let D be a dem-CRD deciding X. By Lemma 5.4, there
is a semilinear gen-CRD T’ deciding X, which is semi-
linear by Corollary 3.4. O

6 Discussion

Using a recent result about Petri nets (Esparza et al.
2015, 2017) (cf. Theorem 3.3) we have presented a
framework able to capture different output conventions for
computational CRNs. The original consensus-based defi-
nition (Angluin et al. 2006a) can be fitted in this frame-
work, giving a new proof that such CRNs are limited to
computing only semilinear sets. Two additional definitions,
an existence-based convention, and a majority-vote con-
vention, can be fitted in this framework, and thus have the
same expressive power as the original.

We show that exi-CRDs and dem-CRDs are no more
powerful than con-CRDs by showing that they are limited
to deciding semilinear sets, which is known also to apply to
con-CRDs. It would be informative, however, to find a
proof that uses a direct simulation argument, showing how
to transform an arbitrary exi-CRD or dem-CRD into a con-
CRD deciding the same set. Along a similar line of
thinking, we have defined the computational ability of
CRDs without regard to time complexity, which is poten-
tially sensitive to definitional choices, even if the class of
decidable sets remains the same (Angluin et al. 2008; Doty
and Hajiaghayi 2015; Doty and Soloveichik 2015; Alistarh
et al. 2016; Alistarh and Gelashvili 2015). It would be
interesting to find cases in which exi-CRDs or dem-CRDs
are be able to compute faster than any equivalent con-
CRD.

An open problem is to consider other output conven-
tions, where we possibly step out of semilinearity. For
example, consider a designated species V; such that for
each input configuration d € Z, (1) d € Z; if we always
eventually reach a configuration ¢ such that all configura-
tions reachable from ¢ has a V| molecule, and (2) d € Z if
we can never reach such a configuration c¢. Hence the
output of a configuration is then based on a behavioral
property of the system (whether it is stable) instead of a
syntactic property of the configuration (whether it contains
a particular molecule). It is not clear how to apply Theo-
rem 3.3, which requires that Zo = Z N pre(S) for some
semilinear set S.
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It would be interesting to find generalizations of Theo-
rem 3.3 beyond semilinearity of the sets 7, Oy, O;, show-
ing that if they satisfy some condition, then so do Z, and
7.

In addition to predicates (functions with binary output),
computation by CRNs computing integer-valued functions
has also been extensively investigated (Chen et al.
2014a, b; Doty and Hajiaghayi 2015; Cook et al. 2009;
Soloveichik et al. 2008; Cummings et al. 2016). It remains
to investigate alternative output conventions for such
functions, and in particular how composable such con-
ventions are with each other, since the output of a function
f:N—=N can be the input of another function
g: N —N.
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Appendix: Consensus-based CRDs with nonvoters

A slightly modified definition of a con-CRD is found in the
literature (Chen et al. 2014a), in which only a subset of
species is designated as voters, and nonvoting species do
not affect the output. Unlike exi-CRDs, which also have
only a subset of voting species, these CRDs treat “yes” and
“no” votes symmetrically with respect to interpreting what
is the “output” of a configuration. We refer to this as a
delegating CRD (in analogy to delegates who vote on
behalf of others).

Definition A.1 A delegating output-stable chemical reac-
tion decider (del-CRD) is a gen-CRD D = (N, Z, 0y, Oy)
where N = (A4,R) is a CRN and there are ¥ C A and
disjoint subsets of voting species Iy, I’} C A such that

. I:{CGNMCM\ZZO}\{O}’
2. O;= {C S NA | pOSt(C) CL; \ ,C],l‘}, with £; = {C S
N4 | el # 0} fori € {0,1}.
3. There is a partition {Zy,Z;} of Z such that post(Z;) C
pre(0;) for i € {0,1}.

The only difference between a con-CRD and a del-CRD
is that the latter omits the requirement that I'¢ U I'} = 4, so
each con-CRD is a del-CRD. To show they have equivalent
computational power, it then suffices to show that any del-
CRD can be turned into a con-CRD deciding the same set.
This equivalence is simpler to establish than for exi-CRDs
and dem-CRDs, using a direct simulation argument that
does not require the machinery of gen-CRDs.

Lemma A.2 For each del-CRD, there is a con-CRD
deciding the same set.

Proof Let D = (N,Z, 0y, ;) be an del-CRD deciding X,
with N = (A,R) and voting species I'g,I'y C A as in
Definition A.1. Let A= A\ (I'yUI';) be the nonvoting
species. Intuitively, we define a CRN N in which all
nonvoting species S € A of N have an additional bit that
determines whether S is a O-voter or a 1-voter. We add
reactions so that species in I'; flip this bit to i in any
molecule in A. More precisely, let A’ be obtained from N
by first replacing every species S € A by two species Sy
and S;. Let A’ be the obtained set of species of N”. Replace
every reaction o = (r,p) of A/ by reactions o = (r/,p’)
with ', p’ € N*' such that 7(r’) = r and n(p') = p, where
n: A — A sends every species S; to S and sends each
Vie I to itself (and = is applied component-wise to
vectors). Moreover, for i€ {0,1}, add reactions V;+
Si_;—Vi+S;forall Se€ Aand V; € T;.

Let D' = (N',7',0,,0)), with Z’, O}, and O, defined
as in Definition 2.2 and Z’ defined with respect to X' =
{81 | S € 2} where X corresponds to Z. (The choice of 1
instead of 0 is arbitrary.) We observe that D’ is a con-CRD.
Indeed, once a configuration ¢ € O; in D is reached from
an input configuration, we have that for each ¢ €
post(c), ¢’ contains at least one molecule of species V;
and none of V;_;. A configuration d in D’ corresponding to
¢ will turn every molecule into a i-voter. In other words, we
eventually reach a configuration d' € O.. Hence D' is a
con-CRD deciding X. O

Although the converse is trivial since, in creating a del-
CRD from a con-CRD, one can choose the voting species
I'y, I'; to be the same, in some cases it is preferable to have
a strict subset. One case in particular, in which there are
exactly two voting species, i.e., |I'g| = |I'1| = 1, merits
mention since this is often a convenient assumption to
make about a CRD. The following lemma shows that we
can make this assumption without loss of generality.

Lemma A.3 For each con-CRD, there is a del-CRD with
exactly two voting species deciding the same set.

Proof Let D = (N,Z,00,O;) be a con-CRD that decides
X, with voting species Iy, I'; that partition A. Let N’ be
the CRN obtained from N by adding two new species
Vo, V1 to D and adding, for each S € I';, the reactions S —
S+Vi,and S+ V,_; — S. Let D' = (N, T',0), 0)), with
7', O, and O defined as in Definition A.1 and Z’ defined
with respect to the same 2. Indeed, once an output-
stable configuration ¢ € O; in D is reached from an input
configuration, we have that for each ¢’ € post(c), every
molecule of ¢’ is an i-voter and ¢’ has at least one molecule.
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A configuration d in D’ corresponding to ¢ may have some
additional molecules of species Vj or V;. The i-voters will
eventually remove all molecules of species V;_; and will
produce molecules of species V;, but no molecules of
species Vi_;. Hence, eventually we reach a configuration d’
with no molecules of species V|_; and at least one molecule
of species V;. We have that each configuration in post(d’)
has this property. In other words, d' € O.. Hence D' is a
del-CRD. O
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