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Abstract We show that some natural output conventions

for error-free computation in chemical reaction networks

(CRN) lead to a common level of computational expres-

sivity. Our main results are that the standard consensus-

based output convention have equivalent computational

power to (1) existence-based and (2) democracy-based

output conventions. The CRNs using the former output

convention have only ‘‘yes’’ voters, with the interpretation

that the CRN’s output is yes if any voters are present and

no otherwise. The CRNs using the latter output convention

define output by majority vote among ‘‘yes’’ and ‘‘no’’

voters. Both results are proven via a generalized framework

that simultaneously captures several definitions, directly

inspired by a Petri net result of Esparza, Ganty, Leroux,

and Majumder [CONCUR 2015]. These results support the

thesis that the computational expressivity of error-free

CRNs is intrinsic, not sensitive to arbitrary definitional

choices.

Keywords Population protocols � Chemical reaction

networks � Stable computation � Semilinear predicates

1 Introduction

Turing machines solve exactly the same class of yes/no

decision problems whether they report output via accept/

reject states, or if instead they write a 1 or 0 on a worktape

before halting. Similarly, finite-state transducers compute

the same class of functions whether they emit output on a

state (Moore machine, Moore 1956) or a transition (Mealy

machine, Mealy 1955). In general, if the power of a model

of computation is insensitive to minor changes in the def-

inition, this lends evidence to the claim that the model is

robust enough to apply to many real situations, and that

theorems proven in the model reflect fundamental truths

about reality, rather than being artifacts of arbitrary defi-

nitional choices.

The theory of chemical reaction networks (CRNs)

studies the general behavior of chemical reactions in well-

mixed solutions, abstracting away spatial properties of the

molecules. Formally, a CRN is defined as a finite set of

reactions such as 2Aþ C ! 2B, where A, B, and C are

abstract chemical species. In a discrete CRN the state of the

system is given by molecule counts of each species and the

system updates by application of individual reactions.

CRNs have only recently been considered as a model of

computation (Soloveichik et al. 2008), motivated partially

by the ability to implement them using a basic experi-

mental technique called DNA strand displacement

(Soloveichik et al. 2010). Discrete CRNs with standard

stochastic kinetics are Turing complete if allowed an

arbitrary small, but nonzero, probability of error (Solove-

ichik et al. 2008), improved to error probability 0 in
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Cummings et al. (2016).1 It is known that an error-free

computational model of CRNs inspired by the theory of

population protocols (Angluin et al. 2006a, b) decides

exactly the semilinear sets (that do not contain the zero

vector) (Angluin et al. 2007).2

We study the computational robustness of error-free

CRNs under different output conventions. The original

output convention (Angluin et al. 2006a) for deciding

predicates (0/1-valued functions) is that each species is

classified as voting either 0 (‘‘no’’) or 1 (‘‘yes’’), and a

configuration (vector of nonnegative integer counts of each

species) o has output i 2 f0; 1g if all species present in

positive count are i-voters, i.e., there is a consensus on vote

i. As an example, the CRN with reactions X1 þ N ! Y and

X2 þ Y ! N, with initial configuration fx1X1; x2X2; 1Ng,

where N;X2 vote 0 and Y ;X1 vote 1, decides if x1 [ x2; Y

and N alternate being present as each reacts with an input,

so the first input to run out determines whether we stop at Y

or N. More formally, we say o is output-stable if every

configuration o0 reachable from o has the same output as o

(i.e., the system need not halt, but it stops changing its

output). Finally, it is required that a correct output-

stable configuration is reachable not only from the initial

configuration i, but also from any configuration reachable

from i; under mild assumptions (e.g., conservation of

mass), this implies that a correct stable configuration is

actually reached with probability 1 under the standard

stochastic kinetic model (Gillespie 1977). It has been

shown in Angluin et al. (2006a) that the computational

power is not reduced, that is, it still decides precisely all

semilinear sets, when we restrict to those CRNs where (1)

each reaction has two reactants and two products (e.g.,

disallowing reactions such as 2Aþ C ! 2B and

A ! Bþ C, a model known as a population protocol

Angluin et al. 2006a) and (2) the system eventually halts

for every possible input (see also Brijder 2014).

One can imagine alternative output conventions, i.e.,

ways to interpret what is the output of a configuration,

while retaining the requirement that a correct output-

stable configuration is reachable from any reachable con-

figuration. Rather than requiring every species to vote 0 or

1, for example, allow the CRN to designate some species as

nonvoters. It is not difficult to show (see ‘‘Appendix’’) that

such CRNs have equivalent computational power: They are

at least as powerful since one can always choose all species

to be voters. The reverse direction follows by converting a

CRN with a subset of voting species into one in which

every species votes, by replacing every nonvoting species S

with two variants S0 and S1, whose voting bit is swayed by

reactions with the original voting species, and which are

otherwise both functionally equivalent to S.

We investigate two output conventions that are not so

easily seen to be convertible to the original convention.

The first convention is existence-based, in which there are

only 1-voters, whose presence or absence indicates a con-

figuration-wide output of 1 or 0, respectively. It is not

obvious how to convert such an existential CRN into a

consensus-based CRN, since this appears to require pro-

ducing 0-voters if and only if 1-voters are absent. The

second convention is democracy-based, in which there are

0- and 1-voters, but the output of a configuration is given

by the majority vote rather than being defined only with

consensus. Intuitively, the difficulty in converting such a

democratic CRN into a consensus-based CRN is that,

although the democratic CRN may stabilize on a majority

of, for example, 1-voters over 0-voters, the exact numerical

gap between them may never stabilize. A straightforward

attempt to convert a democratic CRN into a consensus

CRN results in a CRN that changes the output every time a

new 0- or 1-voter appears. For instance, suppose we use the

previously described CRN for computing whether x1 [ x0,

where x1 and x0 respectively represent the count of 1- and

0-voters. If the original democratic CRN repeatedly

increments x0 and then x1, the resulting CRN flips between

Y and N indefinitely—thus never stabilizing in the con-

sensus model—even if x1 [ x0 remains true indefinitely.

We show that these conventions have equivalent power

as the original definition. Our techniques further establish

that the class of predicates computable by CRNs is robust

to two additional relaxations of the classical notion of

stable computation (Angluin et al. 2006a): (1) a correct

output configuration need not be reachable from every

reachable configuration, only the initial configuration, and

(2) the set of output configurations need not be ‘‘stable’’

(i.e., closed under application of reactions), so long as each

initial configuration can reach only a correct output.

After defining existing notions of computation by CRNs

in Sect. 2, we introduce in Sect. 3 a very general compu-

tational model for CRNs, called a generalized chemical

reaction decider (gen-CRD). Its definition is directly

inspired by a recent powerful result from Petri net theory

(Esparza et al. 2015, 2017), restated here as Theorem 3.3.

Using this result we show that under mild conditions, gen-

CRDs decide only semilinear sets. We then show that the

original consensus-based model, the existence-based

1 We always assume that the given CRN reactions are obeyed

perfectly; even so if reactions happen to occur in a certain

inauspicious order, an incorrect output might be obtained. It is

beyond the scope of this paper to consider imperfect physical

realizations of CRNs, in which spurious reactions outside of the

desired CRN can occur (see e.g. Alistarh et al. 2017).
2 When the set of configurations reachable from an initial configu-

ration is always finite (for instance, with population protocols, or

more generally mass-conserving CRNs), then error-freeness coincides

with error probability 0. See Cummings et al. (2016) for an in-depth

discussion of how these notions can diverge when the set of

configurations reachable from an initial configuration is infinite.
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model, and the democracy-based model all fit into this

framework, establishing their common expressivity.

One reason to consider the democracy-based output

convention is due to its propitious composition properties.

Analogous to wiring up pre-built circuit-boards in elec-

tronics, we would like to be able to create larger chemical

computation by composing two pre-existing CRN modules.

Note that in the strand displacement implementation,

mixing together two solutions implementing two different

CRNs amounts to concatenating the CRNs: i.e., a new

CRN that is the union of the chemical reactions of the two.

The problem is that given two error-free CRNs, such that

the output species of one are the input species of the other,

it is not in general meaningful to concatenate them. Intu-

itively there are two issues: (1) the downstream CRN may

consume the output of the upstream CRN before the

upstream CRN finishes, and interfere with the upstream

computation; (2) the upstream CRN may change the output

before it stabilizes, but the downstream CRN may use the

previous incorrect answer. Both problems can be avoided if

the upstream CRN never consumes its output species (Chen

et al. 2014a). For boolean inputs/outputs, avoiding con-

suming output species naturally leads to the democracy-

based output convention, where the 0/1 value can be

changed by producing more of the opposite output.

A conference version of this paper was presented at

DNA 22 (Brijder et al. 2016).

2 Chemical reaction networks and deciders

2.1 Chemical reaction networks

Let Z and N denote the integers and nonnegative integers,

respectively. Let K be a finite set. The set of vectors over N

indexed by K (i.e., the set of functions c : K ! N) is

denoted by NK. The zero vector is denoted 0. For c; c0 2
NK we write c� c0 if and only if cðSÞ� c0ðSÞ for all S 2 K.

For c 2 NK and R � K, the projection of c to R, denoted

by c�R, is an element in NR such that c�RðSÞ ¼ cðSÞ for all

S 2 R. Let kck ¼ kck1 ¼
P

S2K cðSÞ denote the L1 norm of

c. We sometimes use multiset notation, e.g., c ¼ f1A; 2Cg
to denote cðAÞ ¼ 1; cðCÞ ¼ 2; cðSÞ ¼ 0 for S 2 K n fA;Cg,

or when defining reactions, additive notation, i.e., Aþ 2C.

A reaction a over K is an ordered pair ðr; pÞ with

r; p 2 NK, where r and p are the reactants and products of

a, respectively. We write r ! p to denote a reaction ðr; pÞ,
e.g., Aþ B ! 2Aþ C denotes the reaction

ðfA;Bg; f2A;CgÞ.

Definition 2.1 A chemical reaction network (CRN) is an

ordered pair N ¼ ðK;RÞ with K a finite set and R a finite

set of reactions over K.

The elements of K are called the species of N . The

elements of NK are called the configurations of N .

Viewing c as a multiset, each element of c is called a

molecule. For c; c0 2 NK, we write c )N c0 if there is a

reaction a ¼ ðr; pÞ 2 R such that r� c and c0 ¼ c� rþ p.

The transitive and reflexive closure of )N is denoted by

)�
N . If N is clear from the context, then we simply write

) and )� for )N and )�
N , respectively. If c )� c0, then

we say c0 is reachable from c.

For c 2 NK, we define preN ðcÞ ¼ fc0 2 NK j c0 )�
N cg

and postN ðcÞ ¼ fc0 2 NK j c )�
N c0g. Again we omit the

subscript N if the CRN N is clear from the context. Note

that for c; c0 2 NK, we have c 2 preðc0Þ if and only if c0 2
postðcÞ if and only if c )� c0. We extend preðcÞ and

postðcÞ to sets X � NK in the natural way: preðXÞ ¼
S

c2X preðcÞ and postðXÞ ¼
S

c2X postðcÞ.
Petri net theory is a very well established theory of

concurrent computation (Peterson 1977). We recall here

that CRNs are essentially equivalent to Petri nets. In Petri

net terminology, molecules are called ‘‘tokens’’, species are

called ‘‘places’’, reactions are called ‘‘transitions’’, and

configurations are called ‘‘markings’’. Due to this corre-

spondence, we can apply results from Petri net theory to

CRNs (which we will do in this paper, cf. Theorem 3.3).

Conversely, the results shown in this paper can be refor-

mulated straightforwardly in terms of Petri nets. Vector

addition systems (Karp and Miller 1969) form a model

nearly equivalent to CRNs and Petri nets, where reactions

roughly correspond to vectors with integer entries.3 In the

special case of population protocols (Angluin et al. 2006a),

each reaction a ¼ ðr; pÞ obeys krk ¼ kpk ¼ 2. As a result,

for each configuration c of a population protocol, both

preðcÞ and postðcÞ are finite (because there are only a

finite number of configurations c0 with kc0k ¼ kck). In that

model, molecules are called ‘‘agents’’, species are called

‘‘states’’, and reactions are called ‘‘transitions’’.

2.2 Consensus-based output-stable deciders

We now recall how one can compute using CRNs. Say we

want to decide whether or not the number n of molecules of

species X is even. One way to do this is by introducing the

reaction X þ X ! £.4 If n is even, then eventually all

3 The only difference is catalysts: reactants that are also products,

e.g., C þ X ! C þ Y , are allowed in CRNs and Petri nets but not in

vector addition systems. Most results for these models are insensitive

to this difference.
4 Notation £ indicates that this reaction has no products.
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molecules are consumed, and if n is odd, then eventually

there is exactly one molecule of species X present. Once

the CRN has stabilized, the presence of a molecule of

species X signals that n is odd (i.e., there were an odd

number of molecules of species X present initially). Note

that in this example there is no molecule of any species that

signals that n is even. One may think of a more elaborate

example where the presence of say, a molecule of species

Veven, signals (once the CRN has stabilized) that n is even.

In this way, once the CRN has stabilized, X ‘‘votes’’ that n

is odd, while Veven ‘‘votes’’ that n is even.

A chemical reaction decider D (introduced in Chen et al.

2014a) is a reformulation in terms of CRNs of the notion of

population protocol (Angluin et al. 2006a) from the field of

distributed computing. We define a set of input configura-

tions I and two sets of ‘‘trap configurations’’, called output-

stable configurations, O0 and O1. We then say that D is

output-stable and decides the set I 1 � I (with I0 ¼ I n I 1)

if for each i 2 f0; 1g (1) starting from a configuration in I i,

the CRN remains always within reach of a configuration in

Oi (i.e., postðI iÞ � preðOiÞ), and (2) once a configuration is

in Oi, it is stuck in Oi (i.e., postðOiÞ ¼ Oi).

The sets I ;O0, and O1 are all of a specific form. There

is a subset of input species R � K; I consists of nonzero

configurations where the all molecules present are in R.

The output is based on consensus: all the molecules present

in an output configuration must agree on the output. More

precisely, there is a partition fC0;C1g of K (called 0-voters

and 1-voters, respectively),5 such that configuration c has

output i 2 f0; 1g if all molecules present in c are from Ci

(i.e., c�C1�i
¼ 0) and c 6¼ 0). A configuration o is defined to

be in Oi—it is output-stable—if all configurations of

postðoÞ also have output i.

Our definition, though equivalent, is phrased differently

from the usual one (Angluin et al. 2006a), being defined in

terms of I ;O0, and O1 instead of R;C0, and C1. This

simplifies our generalization of this notion in Sect. 3.

Definition 2.2 A consensus-based output-stable chemical

reaction decider (con-CRD) is a 4-tuple D ¼ ðN ; I ;
O0;O1Þ, where N ¼ ðK;RÞ is a CRN and there are R � K
and a partition fC0;C1g of K such that

1. I ¼ fc 2 NK j c�KnR ¼ 0g n f0g,

2. Oi ¼ fc 2 NK j postðcÞ � Li n L1�ig, with Li ¼ fc 2
NK j c�Ci

6¼ 0g for i 2 f0; 1g.

3. There is a partition fI0; I 1g of I such that postðI iÞ �
preðOiÞ for i 2 f0; 1g.

Condition 1 states that only species in R may be present

initially, and at least one must be present. Condition 2

defines Li to be configurations with an i-voter, so those in

Li n L1�i unanimously vote i, and those in Oi are

stable (‘‘stuck’’ in the set Li n L1�i). Condition 3 states that

from every configuration reachable from an initial config-

uration, a ‘‘correct’’ output-stable configuration is reach-

able from there; this is the usual way of expressing

stable computation (Angluin et al. 2007; Chen et al.

2014a). The relationships between these sets are illustrated

in Fig. 1.

Remark 2.3 A different definition is found in Chen et al.

(2014a) and a number of other papers. That definition relaxes

ours in two ways: (1) having both voting and non-voting

species, (2) allowing non-input species in the input config-

uration (e.g., f1Ng in the Introduction). In ‘‘Appendix’’, we

show that (1) does not affect the computational power of the

model. It is also known (Angluin et al. 2006a) that (2) does

not alter the computational power (though it may affect the

time complexity Angluin et al. 2008; Doty and Soloveichik

2015).

Remark 2.4 We can equivalently define Oi ¼ NKn
preðL1�i [ f0gÞ, a form that will be useful later. To see

that this definition is equivalent, observe that NK n Oi is

the set of configurations from which it is possible either to

reach L1�i, or to reach outside of Li, and the only point

outside both is 0, so NK n Oi ¼ preðL1�i [ f0gÞ. Thus

Oi ¼ NK n preðL1�i [ f0gÞ.

Remark 2.5 The Oi are disjoint and closed under appli-

cation of reactions: O0 \ O1 ¼ £ and postðOiÞ ¼ Oi.

Remark 2.6 Definition 2.2 implies the (weaker) condition

that I i ¼ I \ preðOiÞ. This can be shown as follows. First,

I i � I and I i � postðI iÞ � preðOiÞ, so I i � I \
preðOiÞ. To see the reverse containment, assume

c 2 I \ preðOiÞ, but c 62 I i, i.e., c 2 I1�i \ preðOiÞ. Let

o 2 postðcÞ be such that o 2 Oi; such o exists since

c 2 preðOiÞ. Since o 2 postðI1�iÞ � preðO1�iÞ, we have

o 2 Oi \ preðO1�iÞ. Let o0 2 postðoÞ such that o0 2 O1�i.

Then o0 2 postðOiÞ \ O1�i—a contradiction because

postðOiÞ ¼ Oi is disjoint from O1�i.

Since I 0 ¼ I \ preðO0Þ and I 1 ¼ I \ preðO1Þ are

disjoint, we say that a con-CRD D decides the set I 1. If a

con-CRD D decides the set X � NK, then the entries

indexed by K n R are zero for each c 2 X. Therefore, by

abuse of notation, we also say that D decides the set

X�R � NR. We will use this convention for all chemical

reaction deciders with I of the given form.

Example 2.7 We construct a con-CRD D that decides the

set x 6� y mod m where x and y are non-negative integer

5 The definition of Chen et al. (2014a) allows only a subset of K to

be voters, i.e., C0 [ C1 � K. This convention is more easily shown to

define equivalent computational power than our main results about

existential and democratic voting. See ‘‘Appendix’’ for details.
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variables, not both zero, and m� 2 is an integer constant.

The variables x and y represent initial counts of species X

and Y, respectively. Let R ¼ fX; Yg;C0 ¼ fV0g;C1 ¼
fX; Yg, and K ¼ C0 [ C1 be as in Definition 2.2, with the

following reactions:

mX ! V0; mY ! V0; X þ Y ! V0; ð1Þ

Y þ V0 ! Y; X þ V0 ! X: ð2Þ

We argue that D decides the set fc 2 NR n f0g
j cðXÞ 6� cðYÞ mod mg. Indeed, if x � y mod m, then

eventually all X and Y molecules are consumed by the

reactions of (1). The last time one of these reactions occurs

introduces a V0 molecule (there is a last reaction since x

and y are not both zero). So eventually we obtain a con-

figuration c 2 L0 n L1 for which no reaction can be applied

anymore. Thus c 2 O0. If x 6� y mod m, then eventually

we reach a configuration with one of X or Y, but not both,

remaining. The remaining X or Y molecules consume all V0

molecules by the reactions of (2), without the possibility of

producing any more. So eventually we obtain a configu-

ration c0 2 L1 n L0 for which no reaction can be applied

anymore. Thus c0 2 O1.

2.3 Semilinear sets

We say that X � NK is linear if there is a finite set

fv1; . . .; vkg � NK and b 2 NK such that X ¼ fbþ
Pk

i¼1 nivi j n1; . . .; nk 2 Ng. We say that X � NK is semi-

linear if X is the union of a finite number of linear sets.

Semilinear sets are precisely the sets definable in Pres-

burger arithmetic, which is the first-order theory of natural

numbers with addition. As a consequence, the class of

semilinear sets is closed under union, intersection, com-

plementation, and projection (Ginsburg and Spanier 1966).

A useful characterization of semilinear sets is that they are

exactly the sets expressible as finite unions, intersections,

and complements of sets of one of the following two forms:

threshold sets of the form fx 2 NK j
P

i2K ai � xðiÞ\bg for

some constants ai 2 Z, with i 2 K, or mod sets of the form

fx 2 NK j
P

i2K ai � xðiÞ � b mod cg for some constants

ai 2 Z, with i 2 K, and b; c 2 N.

The following result was shown in Angluin et al.

(2006a, b). In fact, the result was shown for output-

stable population protocols, which form a subclass of the

con-CRDs. However, the proof is sufficiently general to

hold for con-CRDs as well.6

Theorem 2.8 (Angluin et al. 2006a, b) Let

X � NR n f0g. Then X is semilinear if and only if there is a

con-CRD that decides X.

For a configuration c 2 NR; preðcÞ and postðcÞ are in

general not semilinear (Hopcroft and Pansiot 1979). Hence

the semilinearity of Theorem 2.8 is due to additional

‘‘computational structure’’ of a con-CRD. We repeatedly

use the following notion of upwards closure to prove that

certain sets are semilinear. The results below were shown

or implicit in earlier papers (Dickson 1913; Angluin et al.

2006b). We say X � NK is closed upwards if, for all c 2
X; c0 � c implies c0 2 X.

Fig. 1 Venn diagram of

configurations that define con-

CRD. Subset relationships

depicted in their most general

form: I i � postðI iÞ � preðOiÞ,
and Oi � Li n L1�i. preðO0Þ
and preðO1Þ partition the set

I ¼ I0 [ I 1. The arrows,

depicting possible trajectories in

the set of configurations when

reactions take place, illustrate

that, once inside Oi, we cannot

escape from this set

6 Indeed, the negative result of Angluin et al. (2006b) that con-CRDs

decide only semilinear sets is more general than stated in Theo-

rem 2.8, applying to any reachability relation )� on NK that is

reflexive, transitive, and ‘‘additive’’ (x )� y implies xþ c )� yþ c).

Also, the negative result of Angluin et al. (2006b) implicitly assumes

that the zero vector 0 is not reachable (i.e., preð0Þ ¼ f0g). This

assumption is manifest for population protocols (if the population size

is non-zero). For CRNs, this assumption can be readily removed; see

Lemma 2.12.
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For X � NK, define minðXÞ ¼ fc 2 X j ð8c0 2 XÞ c0
� c)c0 ¼ cg to be the minimal elements of X.

Lemma 2.9 (Dickson’s lemma 1913) For all X �
NK;minðXÞ is finite.

Lemma 2.10 Every closed upwards set X � NK is

semilinear.

Proof For each b 2 minðXÞ we consider the linear set

Lb ¼ fbþ
PjKj

i¼1 nivi j n1; . . .; njKj 2 Ng where the vi’s are

the jKj unit vectors of NK. Now, X ¼
S

b2minðXÞ Lb. Since

minðXÞ is finite by Lemma 2.9, X is semilinear. h

Lemma 2.11 If X � NK is closed upwards, then so are

preðXÞ and postðXÞ.

Proof Let c 2 preðXÞ and c0 � c. We show that

c0 2 preðXÞ. Let d ¼ c0 � c. Since c 2 preðXÞ, there exists

c00 such that c )� c00 and c00 2 X. Thus

c0 ¼ cþ d )� c00 þ d. Since X is closed upwards,

c00 þ d 2 X, so c0 2 preðXÞ. The postðXÞ case is symmet-

ric. h

Our results require preð0Þ to be semilinear.7 Observe

that preð0Þ ¼ f0g if and only if for each reaction a ¼
ðr; pÞ; p ¼ 0 implies r ¼ 0. The next lemma shows that we

can assume this holds for con-CRDs without loss of

generality.

Lemma 2.12 For every con-CRD D, there is a con-CRD

D0 deciding the same set such that, for each reaction a ¼
ðr; pÞ of D0; p 6¼ 0.

Proof Let D be a con-CRD that decides a set X. Add to D
two new species D0 and D1. Species Di will function as a

‘‘dummy’’ i-voter. Remove the useless reaction 0 ! 0 if it

exists in D. Replace each reaction a : r ! 0, where r

contains only i-voters, by a0 : r ! Di. Replace each reac-

tion a : r ! 0, where r contains both 0 and 1-voters, by

a0 : r ! D0. (The choice for D0 here instead of D1 is

arbitrary.) Moreover, for every species S we add the

reactions Sþ D0 ! S and Sþ D1 ! S. Let D0 be the

obtained system.

We see that D and D0 operate similarly. The only

difference is that in the latter Di’s may be produced and

consumed. Now, in D, once a configuration o 2 Oi is

reached, we have that for each o0 2 postDðoÞ, every

molecule of o0 is an i-voter (this holds in particular for

the case o0 ¼ o). A corresponding configuration d in D0

may have some additional dummy molecules of species

D1�i. But eventually, these molecules will all be removed

by the reactions Sþ D1�i ! S. So, it suffices to verify that

no D1�i molecule may be produced in some

d0 2 postD0ðdÞ. Now, D1�i can only be produced if there

is at least one ð1 � iÞ-voter (distinct from D1�i) present.

But such a molecule does not occur in any o0 2 postDðoÞ
and therefore also does not occur in any d0 2 postD0ðdÞ. h

3 Generalized chemical reaction deciders

In this section, we formulate a more generalized definition

of CRDs that captures the original consensus-based defi-

nition (con-CRD) in Sect. 2.2 and the new existence-based

definition (exi-CRD) in Sect. 4, as well as the ‘‘demo-

cratic’’ definition (dem-CRD) in Sect. 5. In this section we

show how to use a result of Esparza et al. (2015) and

Esparza et al. (2017) to re-prove the result of Angluin

et al. (2006b) that con-CRDs decide only semilinear sets.

This is a warmup to our main results, shown in Sects. 4

and 5, that exi-CRDs and dem-CRDs decide exactly the

semilinear sets.

In the generalized notion defined below we have drop-

ped the specific structure of I ;O0, and O1 (they are now

arbitrary subsets of NK) and we have replaced the

requirement that postðI iÞ � preðOiÞ by the weaker con-

dition that I i ¼ I \ preðOiÞ (recall Remark 2.6). Also, we

do not use the term ‘‘stable’’ in reference to this generalized

notion, since there is no requirement that the sets of output

configurations Oi are closed under application of reactions

(i.e., we allow Oi(postðOiÞ).
The relationships among the sets relevant to the defini-

tion below are illustrated in Fig. 2.

Definition 3.1 A generalized chemical reaction decider

(gen-CRD) is a 4-tuple D ¼ ðN ; I ;O0;O1Þ, where N ¼
ðK;RÞ is a CRN, I ;O0;O1 � NK, and there is a partition

fI0; I1g of I such that I i ¼ I \ preðOiÞ for i 2 f0; 1g.

Observe that every con-CRD is a gen-CRD. However,

the requirements to be a gen-CRD are weaker than for con-

CRDs: (1) the condition postðOiÞ ¼ Oi need not hold for

gen-CRDs, so it may be possible to ‘‘escape’’ from Oi, and

(2) since postðI iÞ � preðOiÞ need not hold for gen-CRDs,

7 preð0Þ is not semilinear for every CRN. Hopcroft and Pan-

siot Hopcroft and Pansiot (1979) show that postðcÞ may be non-

semilinear: they define c ¼ f1P; 1Yg and reactions Pþ Y !
Pþ X;P ! Q;Qþ X ! Qþ 2Y ;Q ! Pþ A, with postðcÞ ¼
fc j 0\cðXÞ þ cðYÞ� 2cðAÞor0\2cðXÞ þ cðYÞ� 2cðAÞþ1g, which is

not semilinear. To see that postð0Þ can be non-semilinear, modify this

CRN by adding a fifth reaction £ ! Pþ Y , which applied to 0
reaches c ¼ f1P; 1Yg. Moreover, the set S ¼ fx j xðPÞ þ xðQÞ ¼ 1g
is semilinear, so if postð0Þ were semilinear, S \ postð0Þ would be as

well. Since a second execution of £ ! Pþ Y permanently exits S,

we have that S \ postð0Þ ¼ postðcÞ, i.e., non-semilinear. By replac-

ing all reactions with their reverse, we obtain a CRN such that preð0Þ
is not semilinear.
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it is possible to take a ‘‘wrong’’ route starting from I i such

that Oi becomes unreachable.8

Example 3.2 Consider again the con-CRD D ¼
ðN ; I ;O0;O1Þ from Example 2.7 (for some fixed constant

m� 2). Let N 0 ¼ ðK [ fGg;R [ fagÞ be the CRN obtained

from N ¼ ðK;RÞ by adding a new species G 62 K and

adding the reaction a ¼ X ! X þ G. Also, let I0;O0
0;O0

1

be obtained from I ;O0;O1, respectively, by padding for

each configuration a zero entry for species G. Then D0 ¼
ðN 0

; I0;O0
0;O0

1Þ is a gen-CRD where postðI iÞ 6� pre

ðOiÞ—indeed, once reaction a has taken place we cannot

reach any Oi. So, we have taken a ‘‘wrong’’ route once

reaction a has taken place at least once. We also have

postðO1Þ 6¼ O1 since there are configurations of O1 for

which reaction a can take place and once a has taken place

we are outside O1.

Despite these relaxations, observe that the following

property of con-CRDs is retained in gen-CRDs: I is the

disjoint union of I 0 ¼ I \ preðO0Þ and I1 ¼ I \
preðO1Þ, i.e., from each input configuration, exactly one of

the two output sets O0 or O1 is reachable. We say that a

gen-CRD D decides the set I 1.

Definition 3.1 is inspired by the following key Petri net

result from (Esparza et al. 2017, Theorem 10) [announced

in (Esparza et al. 2015, Theorem 10)], formulated here in

terms of CRNs.

Theorem 3.3 (Esparza et al. 2015, 2017) Let N be a

CRN and I ;O0;O1 � NK be semilinear. Let I i ¼ I \
preðOiÞ for i 2 f0; 1g. If fI 0; I1g is a partition of I , then

I0 and I 1 are semilinear.

We say that a gen-CRD D ¼ ðN ; I ;O0;O1Þ is semi-

linear if I ;O0, and O1 are all semilinear. We immediately

have the following corollary to Theorem 3.3.

Corollary 3.4 If a semilinear gen-CRD decides X � NK,

then X is semilinear.

As a by-product of the results shown in Esparza et al.

(2015, 2017), the reverse direction of Theorem 2.8 (which

is the most difficult implication) was reproven in Esparza

et al. (2015, 2017) for the case of population protocols.

That proof however essentially uses the fact that, for

population protocols, postðcÞ is finite for all configurations

c, which is not true for CRNs in general. Fortunately, one

may still obtain the full reverse direction of Theorem 2.8

by showing that every con-CRD is semilinear (cf. the proof

of Theorem 3.5 below) and then invoking Corollary 3.4.

We now use this machinery to re-prove the result, due

originally to Angluin et al. (2006b), that con-CRDs decide

only semilinear sets.

Theorem 3.5 Every con-CRD decides a semilinear set.

Proof Let D ¼ ðN ; I ;O0;O1Þ be a con-CRD. Let

I0 ¼ fc 2 NK j c�KnR ¼ 0g. The complement of I0 is

closed upwards, thus I0 is semilinear, as is I ¼ I0 n f0g.

We now show that each Oi is semilinear. Let Li ¼ fc 2
NK j c�Ci

6¼ 0g as in Definition 2.2. By Remark 2.4, Oi ¼
NK npreðL1�i [ f0gÞ ¼ NK n ðpreðL1�iÞ [ preð0ÞÞ. By

Lemma 2.12 we may assume that each reaction a ¼ ðr; pÞ

Fig. 2 Venn diagram of configurations that define generalized

chemical reaction decider (gen-CRD). Like con-CRD, preðO0Þ and

preðO1Þ partition the input set I ¼ I0 [ I1. The arrows, again

depicting possible trajectories in the set of configurations when

reactions take place, illustrate important differences with con-CRD:

(1) possibly Oi(postðOiÞ (output is not necessarily ‘‘stable’’) and (2)

although I i � preðOiÞ (correct output reachable initially), yet

possibly postðI iÞ 6� preðOiÞ (correct output could become

unreachable)

8 While Definition 3.1 appears almost too general to be useful,

Corollary 3.4 says that if I ;O0;O1 are semilinear, then so are I 0; I 1,

which implies that any CRD definition that can be framed as such a

gen-CRD must decide only semilinear sets.
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of D has p 6¼ 0, so preð0Þ ¼ f0g, which is semilinear. Since

L1�i is closed upwards, by Lemma 2.11, preðL1�iÞ is also

closed upwards, so semilinear by Lemma 2.10. Since semi-

linear sets are closed under union and complement, Oi is also

semilinear, so D is a semilinear gen-CRD. The theorem

follows by Corollary 3.4. h

Remark 3.6 From the hypothesis postðI iÞ � preðOiÞ in

Definition 2.2, we used only the weaker conclusion

I i ¼ I \ preðOiÞ. In other words, we need merely that Oi

is initially reachable from I i itself (and that O1�i is

unreachable from I i, since preðO0Þ and preðO1Þ partition

I ). We do not require that Oi remains reachable from

every configuration reachable from I i (i.e., postðI iÞ).
Hence one could weaken part 3 of Definition 2.2 to use the

condition I i ¼ I \ preðOiÞ, and Theorem 3.5 still holds.9

Despite Remark 3.6, if a gen-CRD does obey the

stronger condition postðI iÞ � preðOiÞ, then a convenient

property holds: each Oi may be enlarged without altering

the set I1 decided by the gen-CRD, so long as O1�i

remains unreachable from Oi. The following lemma for-

malizes this.

Lemma 3.7 Let D ¼ ðN ; I ;O0;O1Þ be a gen-CRD that

decides I 1 and let I 0 ¼ I n I1. For i 2 f0; 1g, assume

that postðI iÞ � preðOiÞ, and let O0
i 	 Oi with

postðO0
iÞ \ O1�i ¼ £. Then D0 ¼ ðN ; I ;O0

0;O0
1Þ is a gen-

CRD deciding I 1.

Proof We have I i ¼ preðOiÞ \ I � preðO0
iÞ \ I for

i 2 f0; 1g. To show that this inclusion is an equality, it

suffices to show that preðO0
0Þ \ I and preðO0

1Þ \ I are

disjoint.

Let i 2 I i. Then i 2 preðOiÞ � preðO0
iÞ. Assume to the

contrary i 2 preðO0
1�iÞ. Let o 2 O0

1�i \ postðiÞ, so o 2
postðiÞ � postðI iÞ � preðOiÞ. Thus O0

1�i \ preðOiÞ e£.

In other words, postðO0
1�iÞ \ Oi 6¼ £—a contradiction.

Hence preðO0
0Þ \ I and preðO0

1Þ \ I are disjoint. h

4 Existential output-stability

We now give a natural alternative output convention for

CRDs, which we call an existential output-stable CRD

(exi-CRD). Whereas the output i of a con-CRD is based on

both the presence of species of one type Ci and the absence

of a species of a different type C1�i, the output of an exi-

CRD is based solely on the presence or absence of a single

species type C1.

For each i 2 I the CRD can either (1) reach a config-

uration o so that for each configuration o0 reachable from o

(including o itself) we have o0�C1
6¼ 0 or (2) reach a con-

figuration o so that for each configuration o0 reachable from

o we have o0�C1
¼ 0. Similarly to gen-CRDs, and unlike

con-CRDs,10 it is not required that such a configuration o is

reachable from any configuration c reachable from the

initial i, merely that such a o is reachable from i itself. Even

this more liberal assumption does not allow the CRD to

decide a non-semilinear set.

Definition 4.1 An existential output-stable chemical

reaction decider (exi-CRD) is a gen-CRD D ¼
ðN ; I ;O0;O1Þ, where there are R � K and voting species

C1 � K such that

1. I ¼ fc 2 NK j c�KnR ¼ 0g n f0g, and

2. Oi ¼ fc 2 NK j postðcÞ � V ig for i 2 f0; 1g, with

V1 ¼ fc 2 NK j c�C1
6¼ 0g and V0 ¼ NK n V1.11

Condition 1 states that only species in R may be present

initially, and at least one must be present. Condition 2

defines V1 and V0 to be configurations with and without C1

voters, and Oi to be the stable subsets of V i.

Example 4.2 Consider the following exi-CRD D0, where

K ¼ R ¼ C1 ¼ fX; Yg, which decides the same set as in

Example 2.7 (i.e., x 6� y mod m).

mX ! £; mY ! £; X þ Y ! £: ð3Þ

If x � y mod m, then eventually all X and Y molecules are

consumed and we obtain the configuration c ¼ 0 2 O0.

Otherwise, all X and Y molecules cannot be consumed, and

we are in O1. This example illustrates that the exi-CRD

computing convention may permit a simpler implementa-

tion in some cases. Indeed, compared with Example 2.7,

(3) has 2 fewer reactions and 1 fewer species (and is also

faster since fewer reactions need to occur).

We first observe that exi-CRDs have at least the com-

putational power of con-CRDs.

Observation 4.3 Let D ¼ ðN ; I ;O0;O1Þ be a con-CRD

deciding X, with voter partition fC0;C1g. Then

D0 ¼ ðN ; I ;O0
0;O0

1Þ, where, for i 2 f0; 1g;O0
i ¼ fc 2

NK j postðcÞ � V ig, with V i as in Definition 4.1 (with

respect to C1), is an exi-CRD deciding X.

9 In contrast, the proof of Angluin et al. (2006b) crucially requires

the hypothesis postðI iÞ � preðOiÞ.

10 As noted, con-CRDs could be defined by replacing the requirement

postðI iÞ � preðOiÞ with I i ¼ I \ preðOiÞ and retain the same

power, but for clarity we retain the original definition.
11 Just as for con-CRDs, postðOiÞ ¼ Oi. Note that V1 above is the

same as L1 in Definition 2.2, but L0 6¼ V0, since L1 and L0 can have

nonempty intersection if there are conflicting voters present in some

configuration.
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Proof This follows from Lemma 3.7 since (1) Oi � O0
i

and (2) postðO0
iÞ ¼ O0

i is disjoint from O1�i for i 2 f0; 1g.

h

We now show that exi-CRDs have no greater compu-

tational power than con-CRDs. This is not as immediate as

the other direction. First, observe that an exi-CRD may not

be a con-CRD; if we interpret species V0 2 K n C1 as

voting ‘‘0’’, then a con-CRD is required to eliminate them

to output ‘‘1’’, but not an exi-CRD. Moreover, a direct

transformation of an exi-CRD into a con-CRD appears

difficult. Intuitively, the problem is that the absence of

molecules in C1 is not detectable by a CRN, so there is no

obvious way to ensure that a species V0 2 K n C1 is pro-

duced only if all V1 2 C1 are absent. The next obvious

proof strategy would be to show, as in the proof of Theo-

rem 3.5, that every exi-CRD is a semilinear gen-CRD.

However, it is not clear whether O1 is semilinear.

Nonetheless, due to the generality of Definition 3.1 and

Theorem 3.3, we can define a semilinear gen-CRD that

decides the same set, by taking a subset of O1 that is

provably semilinear and still satisfies the necessary reach-

ability constraints, even though the gen-CRD we define is

not in fact an exi-CRD (in particular, its ‘‘output’’ set O1 is

not closed under application of reactions).

Recall that a homomorphism f : NK ! Z obeys f ðcþ
c0Þ ¼ f ðcÞ þ f ðc0Þ for all c; c0 2 NK. Some examples

include f ðcÞ ¼ cðSÞ for some S 2 K; f ðcÞ ¼ kc�Dk for some

D � K, or f ðcÞ ¼ cðS1Þ � cðS2Þ for some S1; S2 2 K.

For a CRN N and a function f : NK ! Z, we define

nondecf ;N ¼ fc 2 NK j 8c0 2 postðcÞ; f ðc0Þ � f ðcÞg as the

set of configurations c in which f is minimal among all the

configurations reachable from c.

We now prove a key lemma, which will be used for

characterizing both exi-CRDs in this section and dem-

CRDs in Sect. 5.

Lemma 4.4 Let N be a CRN and f : NK ! Z a homo-

morphism. Let O ¼ fc 2 NK j postðcÞ � Vg with

V ¼ fc 2 NK j f ðcÞ[ 0g. Then O \W is semilinear and

preðO \WÞ ¼ preðOÞ, where W ¼ nondecf ;N .

Proof We first prove preðO \WÞ ¼ preðOÞ. Obviously,

preðO \WÞ � preðOÞ. To prove the reverse containment,

let c 2 preðOÞ. Hence c 2 preðoÞ for some o 2 O. Since

every o0 2 postðoÞ satisfies f ðo0Þ[ 0, there is an o0 2
postðoÞ such that f ðo0Þ is minimal among all configurations

in postðoÞ. Thus o0 2 W . Since postðOÞ ¼ O, we have

o0 2 O. Hence, o0 2 O \W . Now, o 2 preðo0Þ and

c 2 preðoÞ, and so c 2 preðo0Þ. Therefore,

c 2 preðO \WÞ, so preðOÞ � preðO \WÞ.

We now show that O \W is semilinear. Observe that

the set NK nW ¼ fc 2 NK j 9c0 2 postðcÞ; f ðc0Þ\f ðcÞg is

closed upwards. Indeed, if c 2 NK nW and c0 2 postðcÞ
with f ðc0Þ\f ðcÞ, then for all d 2 NK; c0 þ d 2 postðcþ dÞ
and f ðc0 þ dÞ ¼ f ðc0Þ þ f ðdÞ\f ðcÞ þ f ðdÞ ¼ f ðcþ dÞ.
Thus NK nW is semilinear by Lemma 2.10, and hence

also W. Since O � V, we have O \W � V \W . Con-

versely, if c 2 V \W , then f ðcÞ[ 0 since c 2 V, and for

all c0 2 postðcÞ; f ðc0Þ � f ðcÞ[ 0 since c 2 W . Thus

c 2 O \W , showing O \W ¼ V \W , which is semilinear

since V and W are. h

Using Lemma 4.4 we show that every exi-CRD can be

changed into a semilinear gen-CRD by choosing O1 \W ,

rather than O1, as its ‘‘output 1’’ set of configurations. Note

that unlike in the definition of con-CRD and exi-CRD,

O1 \W is not in general closed under application of

reactions.

Lemma 4.5 Let D ¼ ðN ; I ;O0;O1Þ be an exi-CRD

deciding X and C1 be as in Definition 4.1. Let W ¼
nondecf ;N with f : NK ! Z defined as f ðcÞ ¼ kc�C1

k for

all c 2 NK. Then D0 ¼ ðN ; I ;O0;O1 \WÞ is a semilinear

gen-CRD deciding X.

Proof Observe that f is a homomorphism. Now,

Lemma 4.4 tells us that preðO1 \WÞ ¼ preðO1Þ; thus D0

decides X.

To complete the proof, it suffices to show that D0 is

semilinear. I is obtained from the closed-upwards set NR n
f0g by padding zeros for the species of K n R, so I is

semilinear. O1 \W is semilinear by Lemma 4.4. To see

that O0 is semilinear, let V0 and V1 be as in Definition 4.1.

Clearly V1 is closed upwards, so semilinear. So, (1)

preðV1Þ is also closed upwards and therefore semilinear

(by Lemmas 2.11 and 2.10) and (2) V0 ¼ NK n V1 is

semilinear. Thus, O0 ¼ V0 n preðV1Þ is semilinear since

the class of semilinear sets is closed under set difference. h

The following is the first of two main results of this

paper. It says that the computational power of con-CRDs

equals that of exi-CRDs; they both decide exactly the

semilinear sets.

Theorem 4.6 Let X � NR n f0g. Then X is semilinear if

and only if there is an exi-CRD that decides X.

Proof The forward direction follows from Observa-

tion 4.3 and Theorem 2.8. For the reverse direction, let D
be an exi-CRD deciding X. By Lemma 4.5, there is a

semilinear gen-CRD D0 deciding X, which is semilinear by

Corollary 3.4. h
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5 Democratic output-stability

Another reasonable alternative output convention is the one

most naturally associated with the term ‘‘voting’’: a

democratic output convention in which, rather than

requiring a consensus, we define output by majority vote.

In this case, for sets of voting species C0 and C1, the only

undefined outputs occur in ‘‘tie’’ configurations c where

kc�C0
k ¼ kc�C1

k. In this section we show that such CRDs

have equivalent computing power to con-CRDs.

Definition 5.1 A democratic output-stable chemical

reaction decider (dem-CRD) is a gen-CRD

D ¼ ðN ; I ;O0;O1Þ, where there are R � K and a partition

fC0;C1g of K such that

1. I ¼ fc 2 NK j c�KnR ¼ 0g n f0g,

2. Oi ¼ fc 2 NK j postðcÞ � Mig, with Mi ¼ fc 2
NK j kc�Ci

k[ kc�C1�i
kg for i 2 f0; 1g.

Note that M0 \M1 ¼ £, and that Oi is stable, i.e.,

Oi ¼ postðOiÞ. A con-CRD reaches a consensus, the

strongest kind of majority, leading to the following

observation implying that dem-CRDs are at least as pow-

erful as con-CRDs.

Observation 5.2 Let D ¼ ðN ; I ;O0;O1Þ be a con-CRD

deciding X, with voter partition fC0;C1g. Then

D0 ¼ ðN ; I ;O0
0;O0

1Þ, where O0
i ¼ fc 2 NK j postðcÞ �

Mig for i 2 f0; 1g, with Mi as in Definition 5.1, is a dem-

CRD deciding X.

Proof This follows from Lemma 3.7 since (1) Oi � O0
i

and (2) postðO0
iÞ ¼ O0

i is disjoint from O1�i for i 2 f0; 1g.

h

The converse result, that dem-CRDs are no more pow-

erful than con-CRDs, implies the second main result of this

paper.

Theorem 5.3 Let X � NR n f0g. Then X is semilinear if

and only if there is a dem-CRD that decides X.

In order to prove Theorem 5.3, we first show the fol-

lowing lemma.

Lemma 5.4 Let D ¼ ðN ; I ;O0;O1Þ be a dem-CRD that

decides X and Mi for i 2 f0; 1g be as in Definition 5.1.

Let, for i 2 f0; 1g;Wi ¼ nondecfi;N with fi : N
K ! Z

such that fiðcÞ ¼ kc�Ci
k � kc�C1�i

k for all c 2 NK. Then

D0 ¼ ðN ; I ;O0 \W0;O1 \W1Þ is a semilinear gen-CRD

deciding X.

Proof Let i 2 f0; 1g. Observe that fi is a homomorphism.

Lemma 4.4 says that preðOi \WiÞ ¼ preðOiÞ, so D0

decides X. To see that D0 is semilinear, note that I is

semilinear, and for i 2 f0; 1g;Oi \Wi is semilinear by

Lemma 4.4. h

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3 The forward direction follows from

Observation 5.2 and Theorem 2.8. For the reverse direc-

tion, let D be a dem-CRD deciding X. By Lemma 5.4, there

is a semilinear gen-CRD D0 deciding X, which is semi-

linear by Corollary 3.4. h

6 Discussion

Using a recent result about Petri nets (Esparza et al.

2015, 2017) (cf. Theorem 3.3) we have presented a

framework able to capture different output conventions for

computational CRNs. The original consensus-based defi-

nition (Angluin et al. 2006a) can be fitted in this frame-

work, giving a new proof that such CRNs are limited to

computing only semilinear sets. Two additional definitions,

an existence-based convention, and a majority-vote con-

vention, can be fitted in this framework, and thus have the

same expressive power as the original.

We show that exi-CRDs and dem-CRDs are no more

powerful than con-CRDs by showing that they are limited

to deciding semilinear sets, which is known also to apply to

con-CRDs. It would be informative, however, to find a

proof that uses a direct simulation argument, showing how

to transform an arbitrary exi-CRD or dem-CRD into a con-

CRD deciding the same set. Along a similar line of

thinking, we have defined the computational ability of

CRDs without regard to time complexity, which is poten-

tially sensitive to definitional choices, even if the class of

decidable sets remains the same (Angluin et al. 2008; Doty

and Hajiaghayi 2015; Doty and Soloveichik 2015; Alistarh

et al. 2016; Alistarh and Gelashvili 2015). It would be

interesting to find cases in which exi-CRDs or dem-CRDs

are be able to compute faster than any equivalent con-

CRD.

An open problem is to consider other output conven-

tions, where we possibly step out of semilinearity. For

example, consider a designated species V1 such that for

each input configuration d 2 I , (1) d 2 I1 if we always

eventually reach a configuration c such that all configura-

tions reachable from c has a V1 molecule, and (2) d 2 I0 if

we can never reach such a configuration c. Hence the

output of a configuration is then based on a behavioral

property of the system (whether it is stable) instead of a

syntactic property of the configuration (whether it contains

a particular molecule). It is not clear how to apply Theo-

rem 3.3, which requires that I0 ¼ I \ preðSÞ for some

semilinear set S.
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It would be interesting to find generalizations of Theo-

rem 3.3 beyond semilinearity of the sets I ;O0;O1, show-

ing that if they satisfy some condition, then so do I0 and

I1.

In addition to predicates (functions with binary output),

computation by CRNs computing integer-valued functions

has also been extensively investigated (Chen et al.

2014a, b; Doty and Hajiaghayi 2015; Cook et al. 2009;

Soloveichik et al. 2008; Cummings et al. 2016). It remains

to investigate alternative output conventions for such

functions, and in particular how composable such con-

ventions are with each other, since the output of a function

f : N ! N can be the input of another function

g : N ! N.
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Appendix: Consensus-based CRDs with nonvoters

A slightly modified definition of a con-CRD is found in the

literature (Chen et al. 2014a), in which only a subset of

species is designated as voters, and nonvoting species do

not affect the output. Unlike exi-CRDs, which also have

only a subset of voting species, these CRDs treat ‘‘yes’’ and

‘‘no’’ votes symmetrically with respect to interpreting what

is the ‘‘output’’ of a configuration. We refer to this as a

delegating CRD (in analogy to delegates who vote on

behalf of others).

Definition A.1 A delegating output-stable chemical reac-

tion decider (del-CRD) is a gen-CRD D ¼ ðN ; I ;O0;O1Þ
where N ¼ ðK;RÞ is a CRN and there are R � K and

disjoint subsets of voting species C0;C1 � K such that

1. I ¼ fc 2 NK j c�KnR ¼ 0g n f0g,

2. Oi ¼ fc 2 NK j postðcÞ � Li n L1�ig, with Li ¼ fc 2
NK j c�Ci

6¼ 0g for i 2 f0; 1g.

3. There is a partition fI0; I 1g of I such that postðI iÞ �
preðOiÞ for i 2 f0; 1g.

The only difference between a con-CRD and a del-CRD

is that the latter omits the requirement that C0 [ C1 ¼ K, so

each con-CRD is a del-CRD. To show they have equivalent

computational power, it then suffices to show that any del-

CRD can be turned into a con-CRD deciding the same set.

This equivalence is simpler to establish than for exi-CRDs

and dem-CRDs, using a direct simulation argument that

does not require the machinery of gen-CRDs.

Lemma A.2 For each del-CRD, there is a con-CRD

deciding the same set.

Proof Let D ¼ ðN ; I ;O0;O1Þ be an del-CRD deciding X,

with N ¼ ðK;RÞ and voting species C0;C1 � K as in

Definition A.1. Let D ¼ K n ðC0 [ C1Þ be the nonvoting

species. Intuitively, we define a CRN N 0
in which all

nonvoting species S 2 D of N have an additional bit that

determines whether S is a 0-voter or a 1-voter. We add

reactions so that species in Ci flip this bit to i in any

molecule in D. More precisely, let N 0
be obtained from N

by first replacing every species S 2 D by two species S0

and S1. Let K0 be the obtained set of species of N 0
. Replace

every reaction a ¼ ðr; pÞ of N by reactions a0 ¼ ðr0; p0Þ
with r0; p0 2 NK0

such that pðr0Þ ¼ r and pðp0Þ ¼ p, where

p : K0 ! K sends every species Si to S and sends each

Vi 2 Ci to itself (and p is applied component-wise to

vectors). Moreover, for i 2 f0; 1g, add reactions Vi þ
S1�i ! Vi þ Si for all S 2 D and Vi 2 Ci.

Let D0 ¼ ðN 0
; I0;O0

0;O0
1Þ, with I0;O0

0, and O0
1 defined

as in Definition 2.2 and I0 defined with respect to R0 ¼
fS1 j S 2 Rg where R corresponds to I . (The choice of 1

instead of 0 is arbitrary.) We observe that D0 is a con-CRD.

Indeed, once a configuration c 2 Oi in D is reached from

an input configuration, we have that for each c0 2
postðcÞ; c0 contains at least one molecule of species Vi

and none of V1�i. A configuration d in D0 corresponding to

c will turn every molecule into a i-voter. In other words, we

eventually reach a configuration d0 2 O0
i. Hence D0 is a

con-CRD deciding X. h

Although the converse is trivial since, in creating a del-

CRD from a con-CRD, one can choose the voting species

C0;C1 to be the same, in some cases it is preferable to have

a strict subset. One case in particular, in which there are

exactly two voting species, i.e., jC0j ¼ jC1j ¼ 1, merits

mention since this is often a convenient assumption to

make about a CRD. The following lemma shows that we

can make this assumption without loss of generality.

Lemma A.3 For each con-CRD, there is a del-CRD with

exactly two voting species deciding the same set.

Proof Let D ¼ ðN ; I ;O0;O1Þ be a con-CRD that decides

X, with voting species C0;C1 that partition K. Let N 0
be

the CRN obtained from N by adding two new species

V0;V1 to D and adding, for each S 2 Ci, the reactions S !
Sþ Vi and Sþ V1�i ! S. Let D0 ¼ ðN 0

; I0;O0
0;O0

1Þ, with

I0;O0
0, and O0

1 defined as in Definition A.1 and I0 defined

with respect to the same R. Indeed, once an output-

stable configuration c 2 Oi in D is reached from an input

configuration, we have that for each c0 2 postðcÞ, every

molecule of c0 is an i-voter and c0 has at least one molecule.
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A configuration d in D0 corresponding to c may have some

additional molecules of species V0 or V1. The i-voters will

eventually remove all molecules of species V1�i and will

produce molecules of species Vi, but no molecules of

species V1�i. Hence, eventually we reach a configuration d0

with no molecules of species V1�i and at least one molecule

of species Vi. We have that each configuration in postðd0Þ
has this property. In other words, d0 2 O0

i. Hence D0 is a

del-CRD. h
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