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ABSTRACT
In this work, we propose to improve long-term user engagement in

a recommender system from the perspective of sequential decision

optimization, where users’ click and return behaviors are directly

modeled for online optimization. A bandit-based solution is for-

mulated to balance three competing factors during online learning,

including exploitation for immediate click, exploitation for expected

future clicks, and exploration of unknowns for model estimation.

We rigorously prove that with a high probability our proposed

solution achieves a sublinear upper regret bound in maximizing

cumulative clicks from a population of users in a given period of

time, while a linear regret is inevitable if a user’s temporal return

behavior is not considered when making the recommendations.

Extensive experimentation on both simulations and a large-scale

real-world dataset collected from Yahoo frontpage news recommen-

dation log veri�ed the e�ectiveness and signi�cant improvement

of our proposed algorithm compared with several state-of-the-art

online learning baselines for recommendation.

CCS CONCEPTS
•Information systems →Recommender systems; •�eory of
computation →Regret bounds; •Computing methodologies
→Sequential decision making;

KEYWORDS
User long-term engagement modeling; contextual bandit algorithm;
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1 INTRODUCTION
Recommender systems play a central role in today’s Web ecosys-

tems, as they prompt and facilitate users’ interactions with system

provided services. �e success of a recommender system directly

depends on the quality of user engagement [18, 23], which is con-

sidered as a desirable, even essential, human response to computer-

mediated activities. User engagement can be measured not only

from immediate user responses, such as click and dwell time on
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the recommended items, but more importantly from long-term

responses, such as users’ re-visitations and return time intervals.

In fact, metrics purely based on immediate feedback signals such

as user-item ratings [24] and click-through rate [8] have been in-

creasingly criticized to be insu�cient to measure and represent

real engagement of users [28]. For example, some eye-catching

recommendations may a�ract users to click; but a�er reviewing the

recommended content, users might get unsatis�ed or even upset.

�is will hurt users’ trust in the system, cause them to return to it

less o�en, and eventually leave. �erefore, we believe user return,

which indicates users’ long-term engagement, should be empha-

sized as an, at least equally, important metric of recommendation

quality, and therefore to be optimized in a recommender system.

Unfortunately, most recommendation algorithms only focus on

optimizing users’ immediate responses (typically clicks) [16, 26].

Few of them explicitly take into account the temporal behavior of

users a�er reviewing the recommended items, to pursue long-term

utility of recommendations. Implicitly, such algorithms impose a

strong assumption that users’ return behavior is always consistent

with their immediate responses, or the probability of user return

is independent from the recommendations being made. However,

these assumptions do not always hold in practice. For example,

users may click on an item because of link bait, but may get disap-

pointed and decide not to come back [28]. In addition, users may

return less o�en because of boredom if the system keeps recom-

mending popular items to the users [14]. �ere are some recent

a�empts in o�ine analysis and prediction of users’ return time

[14, 15], but li�le has been explored about how to integrate users’

temporal return behavior with their click behavior to help improve

overall recommendation quality.

To optimize users’ long-term engagement, a good recommender

system should maximize the total number of clicks from a popula-

tion of users in a given period of time. If a recommendation drives

a user to leave the system early when alternative exists, regret

will accumulate linearly over such users and time. To reduce the

expected regret of a recommendation decision, one has to not only

predict its in�uence on a user’s immediate click, but also to project

it onto future clicks if the recommendation would a�ract the user to

return. �is makes the recommendation decisions dependent over

time. Furthermore, as modern recommender systems face rapidly

changing recommendation candidates and users, the in�uence of a

recommendation on user click and return has to be estimated on

the �y. �is inevitably introduces an explore-exploit dilemma in

online learning [3, 4]; and the existence of multiple objectives for

optimizing the long-term user engagement further complicates the

problem. To the best of our knowledge, no single recommendation

algorithm currently addresses all these challenges at once.



We formalize the optimization of users’ long-term engagement

as a sequential decision making problem, in which an agent maxi-

mizes the reward collected from a set of users in a given period of

time by making recommendations. In every round of interaction,

the agent faces the risk of losing a user because of making a “bad”

recommendation, as the user’s click and return depend on the rec-

ommendation; but the dependency is unknown to the agent apriori.

�e agent needs to maintain an estimate based on users’ responses

to the past recommendations on the �y. Due to the incomplete

information, the agent needs to balance among three competing

factors when making recommendations: 1) maximize the utility of

user feedback for its model estimation (i.e., exploration); 2) maxi-

mize immediate reward of the recommendation (i.e., exploitation

for short-term reward); and 3) maximize expected future reward by

keeping users in the system (i.e., exploitation for long-term reward).

We solve this problem from the perspective of reinforcement

learning [13]. Speci�cally, we consider user click as immediate

reward to a recommendation; and the time interval between suc-

cessive interactions, i.e., user’s return time, determines how many

rounds of interaction the agent could take in a given period of time.

To maximize the cumulative reward over time, the agent has to

make users click more and return more o�en. To avoid cumber-

some transition policy estimation, which requires a large parameter

and search space, we assume the distribution of recommendation

candidates is stationary over time, and a user’s click preference is

stationary with respect to the recommendations. �erefore, the

marginal probability of user click is also stationary. To improve

the e�ciency of policy iteration for making a recommendation,

we only compute the expected future reward in a �nite time. �is

leads us to a bandit learning solution [3, 4, 12]. To improve the

algorithm’s estimation quality, we use generalized linear models

[22] with logit and inverse link functions to leverage contextual

information for modeling discrete click and continuous return time.

�is choice of reward functions provides us a closed form assess-

ment of model estimation con�dence, which enables an e�cient

exploration strategy for our online model learning based on the

Upper Con�dence Bound principle [2].

We rigorously prove that with a high probability the proposed

solution achieves a sublinear upper regret bound in optimizing

long-term user engagement. We also demonstrate that if a system

only optimizes immediate clicks on its recommendations, a linearly

increasing regret can be inevitable. In addition, extensive experi-

mentation on both simulations and a large-scale real-world dataset

veri�ed the improvement of the proposed algorithm compared with

several online learning baselines for recommendation.

2 RELATED WORK
�e importance of modeling users’ post-click behaviors has been

recognized and discussed in several recent works. Barbieri et al.

[5] used survival analysis to estimate users’ post-click engagement

on native ads by predicting the dwell time on the corresponding ad

landing pages. �e predicted dwell time is then integrated into a

ranking function to promote ads that are likely to lead to a longer

dwell time. Lalmas et al. [17] measured users’ post-click experience

by two metrics: dwell time and bounce rate. However, these works

only focus on users’ short-term engagement, such as click and dwell

time, long-term user engagement is not studied.

�ere is also a line of related work about modeling users’ return

behavior [10, 14, 15], which is recently considered as an important

measure of long-term user engagement. Kapoor et al. [15] proposed

a Cox’s proportional hazard function based on survival analysis to

predict users’ return time on free web services. In their follow-up

work [14], a hidden semi-Markov model is used to model the time

interval between a user’s successive consumption activities with

regard to his/her latent psychological states, including sensitization

and boredom. Du et al. [10] combined a self-exciting point process

with low rank models to capture the recurrent temporal pa�erns in

user-item consumption. In their recent work [9], marked temporal

point process and intensity functions are leveraged to predict the re-

occurrence of user event. Chapelle [7] developed a survival analysis

based approach to predict conversion delay in display advertising.

However, all the aforementioned works focus on o�ine analysis

and prediction of user return. Few of them touches the question of

how the modeled user return can be integrated to improve a service

system, especially when user return heavily depends on the quality

of provided service. In our solution, we formulate the optimization

of users’ long-term engagement as a sequential decision making

problem, in which a contextual bandit algorithm optimizes recom-

mendation quality with regard to user click and return responses

on the �y.

Our work is also related to the studies in multi-armed ban-

dits, which have recently become a reference solution to handle

the notorious explore/exploit dilemma in online recommendation

[3, 4, 6, 19, 27]. However, most of the bandit algorithms for recom-

mendation only consider the immediate clicks or ratings as reward

for optimization. In other words, such algorithms assume the users

will always return to the system. As we discussed in the introduc-

tion, this assumption is o�en violated in practice, as user return

depends on the quality of recommended items. To the best of our

knowledge, there is no bandit algorithm that directly optimizes user

long-term engagement under the se�ing that users might leave the

system because of “bad” recommendations. In our solution, by ex-

plicitly modeling expected user return, the optimization objective

is re�ned to include both the immediate click and expected future

click from users, which re�ects users’ long-term engagement with

the system. Our theoretical analysis proves that a linear regret is

inevitable if user return depends on the recommendations but it is

not considered in the optimization.

3 METHODOLOGY
We propose to improve long-term user engagement in a recom-

mender system from the perspective of sequential decision op-

timization. In this problem, the agent’s goal is to maximize the

cumulative reward it receives from users in a given period of time

by making recommendations. Because a “bad” recommendation

might cause a user to return less o�en, or leave the system, the

agent needs to balance the immediate reward of a recommendation

(i.e., clicks) and expected reward from users’ future interactions

as a result of user return. Moreover, as the in�uence of a recom-

mendation on a user’s click and return decisions is unknown to

the agent beforehand, the agent needs to maintain estimates of

them on the �y. �is further complicates the optimization problem.

In the following discussions, we will �rst introduce several key

concepts and our formulation of the problem, and then discuss our

developed solution in details.



3.1 Problem Formulation
In a typical recommender system, a user’s response to a recom-

mended item can be characterized by the outcome of the following

two variables,

• Cu,i ∈ {0, 1} is a binary variable indicating whether user u clicks

on the recommendation at the i-th interaction;

• ∆u,i ∈ (0,∞) is a continuous variable denoting the time interval

between user u’s current visit and next visit a�er examining the

recommendation in the i-th interaction, i.e., user u’s return time

interval a�er the i-th interaction.

We materialize the immediate reward collected from a recom-

mendation as user click Cu,i in this work; but our solution can be

readily extended to other types of user response, such as dwell time,

ratings and conversion. ∆u,i determines the total number of rec-

ommendations an agent can make in a given period of time, as it di-

rectly de�nes a user’s revisitation sequence: {tu,i =
∑
i′<i ∆u,i′ }

∞
i=1

,

where tu,i denotes the timestamp of the i-th interaction for user u.

Since ∆u,i depends on the recommended item at the i-th iteration,

the optimal recommendation sequence becomes dependent over

time: each time, an agent should not only consider the recommen-

dations’ in�uence on a user’s immediate click, but also project it

onto future clicks brought by this user’s revisitation.

As a result, the optimization objective for this sequential decision

making problem consists of two parts: the �rst part is the expected

immediate click P (Cu,i = 1|ai ), which re�ects the user’s short-

term engagement on the recommended item ai ; and the second

part is the expected future clicks in the resulting user revisitation

sequence. To quantify the expected future clicks, we introduce

two notations: I (t ) is a function to retrieve the recommendation

candidate pool at time t , and πA is the agent’s decision policy.

For the interaction at time tu,i , the agent’s decision is made by

ai = πA
(
I (tu,i )

)
. �e choice of ai will lead to a future arrival se-

quence {tu,k }
∞
k=i+1

of user u with the return probability at time

tu,k as

∏k
j=i+1

∫ tu,k
tu, j−1

P
(
tu, j |tu, j−1,πA (I (tu, j−1))

)
dtu, j . In particu-

lar, P (tu, j |tu, j−1,aj−1) is the probability that user u returns at time

tu, j given the recommended item aj−1 at time tu, j−1. �en the

expectation of future clicks resulted from the agent’s i-th recom-

mendation at time tu,i can be formally wri�en as,

∞∑
k=i+1

P
(
Cu,k = 1 |πA (I (tu,k ))

) k∏
j=i+1

∫ tu,k

tu, j−1

P
(
tu, j |tu, j−1, πA (I (tu, j−1 ))

)
dtu, j

(1)

Eq (1) de�nes a value function, which measures the expected

reward of the agent’s policy πA at time tu,i . Policy iteration or

value iteration is usually used to compute it analytically in standard

reinforcement learning se�ings [13]. But in our problem, since

new content constantly streams into a recommender system, it is

infeasible to specify the recommendation candidate pool at a future

time beforehand. In other words, I (t ) is unde�ned when time t is

in the future; and this leads to P (Cu, j = 1|aj ) and P (tu, j+1 |tu, j ,aj )
at any future time tu, j unde�ned. �is prohibits direct application

of standard reinforcement learning solutions in this problem.

Several unique properties of the online recommendation prob-

lem and the value function de�ned in Eq (1) make it possible to

approximate the expected future clicks. First, as I (t ) cannot be

pre-speci�ed in general, we assume the recommendation candi-

dates are drawn from a stationary stochastic process and a user’s

interest on those candidates is also stationary, such that the click

at a future time tu,k is only determined by the user. �at is, we

assume at current time tu,i , the expected future click at time tu,k
is P

(
Cu,k = 1|πA (I (tu,k ))

)
= ϵu for tu,k > tu,i , where ϵu is the

marginal click probability of user u. �is assumption is mild, espe-

cially in product or movie recommendation scenarios [24], where

the candidate pool is rather stable over time. Second, since a user’s

future arrival depends on all its preceding returns, the return prob-

ability of future events decays exponentially fast over time. As a

result, future clicks have a decreasing impact on the agent’s cur-

rent decision. Instead of performing a complete policy or value

iteration, we can approximate it with only �nite iterations. In this

work, we only predict the future click one step ahead. Combining

these two special treatments leads us to the following approximated

optimization objective function at time tu,i ,

P (Cu,i = 1 |ai ) + ϵu

∫ ∞

tu,i
P (tu,i+1 |tu,i , ai )dtu,i+1 (2)

With stronger assumptions, such as the candidate pool is stable in

a short period time, we can improve this approximation by iterating

multiple steps ahead. But this will not change the nature of our

solution; and to simplify our follow-up discussions, we will focus

on the formulation de�ned in Eq (2) in this paper.

In Eq (2), a user return is allowed to happen in an in�nite far

future. �is se�ing is practically less interesting, as we prefer users

to return as early as possible. We introduce a return time threshold τ
to restrict the computation of expected clicks in a foreseeable future,

such that tu,i+1 ≤ tu,i + τ . τ can be considered as the resolution

of user return modeling, and it can be �ne-tuned according to

di�erent recommender systems’ business interests. For example,

a news recommendation system might prefer its users to return

every day. �is �nalizes our approximated sequential decision

optimization objective as,

P (Cu,i = 1|ai ) + ϵuP (∆u,i ≤ τ |ai ) (3)

According to Eq (3), at time tu,i the agent needs to choose the

recommendation that maximizes the sum of expected immediate

click and future click from user u. But as the click and return prob-

abilities are unknown to the agent ahead of time, the estimate of

them need to be maintained on the �y. �is introduces another

competing factor in the agent’s decisions: it has to choose between

maximizing its expected reward according to its current knowl-

edge about Eq (3) (i.e., exploitation) and learning more about the

unknowns for improving its estimate of Eq (3) (i.e., exploration).

Conventional supervised learning would overly exploit historical

data, which is biased towards previously trained models, and thus

easily become victims of the Ma�hew e�ect (the rich get richer) in

the long run. In this work, we develop a bandit-based solution to

perform the online optimization of Eq (3).

3.2 A Bandit-based Online Solution
In a bandit se�ing of online optimization, a learning algorithm takes

sequential actions to collect payo�s from the environment. In each

round of interaction, the algorithm chooses an action from a �nite

set of candidates, while simultaneously adapts its decision strategy

based on environment’s feedback to maximize the total payo�

in the long run [3, 4]. Map it to our long-term user engagement

optimization problem: environment is the user that the agent serves,

and the payo� of a recommendation in each round is de�ned by

Eq (3). To derive a bandit-based solution for it, we need to quantify



the estimation of click and return probabilities in Eq (3), and design

an action selection strategy for online feedback acquisition.

In a modern recommender system, recommendation candidates

are usually described by a set of contextual features. And utilizing

such contextual features for payo� estimation has been proved to

be e�ective [11, 19]. In this work, we parameterize the estimation of

click and return probabilities via generalized linear models [22]. In

particular, we use a logit link function to model discrete clicks and

an inverse link function to model continuous return time intervals.

We should note that our formulation is general: when the contex-

tual features are not available, the estimations just degenerate to

estimating a Bernoulli distribution of clicks and an exponential

distribution of return time intervals accordingly.

Under a logit link function, the click probability is quanti�ed

as P (Cu,i = 1|ai ) =
1

1+exp(−θ T
uxai )

, where xai is a d-dimensional

feature vector for recommendation candidate ai with ‖xa ‖2 ≤ L,

and θu is the click model’s coe�cients pertaining to user u. With

an inverse link function, we can de�ne the return probability as

P (∆u,i ≤ t ) = 1 − exp (−λu,ai t ), where λu,ai = exp(βTuxai ) and

βu is the return model’s coe�cients for user u. θu and βu can be

e�ciently estimated via a maximum likelihood estimator (MLE)

[22] on users’ visitation sequence

{
(xau,i ,Cu,i ,∆u,i )

}N
i=1

. Because

of our stationary assumption about the candidate pool and user’s

click preference over time, user u’s marginal click probability can

be estimated by ϵ̂u,i =
∑i−1

j=1
Cu, j/(i − 1). As the user’s visitation

sequence is a�ected by the recommendations, a well-de�ned action

selection strategy is needed for the agent to quickly explore the

unknowns for model estimation and exploit the currently learnt

model to maximize Eq (3) on the �y.

Various types of action selection strategies have been studied

in literature [2–4]. Among them, Upper Con�dence Bound (UCB)

[2, 19], which uses estimation con�dence of predicted payo� on the

candidate actions for exploration, has been proved to be e�ective.

As we use generalized linear models to quantify the payo� in Eq (3),

the estimation con�dence of click and return probabilities can be

readily evaluated. Formally, we denote (θ∗u , β
∗
u ) as the ground-truth

model parameters, and without loss of generality we assume that

‖θ∗u ‖2 ≤ M, ‖β∗u ‖2 ≤ H . Denote ( ˆθu,i , ˆβu,i ) as their maximum

likelihood estimations at round i . With probability at least 1 −

δ1, we have the following two inequalities hold on any particular

recommendation candidate ai for user u,

|P (Cu,i = 1 |xai , ˆθu,i ) − P (Cu,i = 1 |xai , θ
∗
u ) | ≤ αθu,i ‖xai ‖A−1

u,i
(4)

|P (∆u,i ≤ τ |xai ,
ˆβu,i ) − P (∆u,i ≤ τ |xai , β

∗
u ) | ≤ α βu,i ‖xai ‖A−1

u,i
(5)

in which Au,i = ηI +
∑
j<i xau, j x

T
au, j , α

θ
u,i =

√
d ln(

η+iL
δ1

) +
√
ηM ,

α
β
u,i =

√
d ln(

η+iLτ
δ1

) +
√
ηH , and ‖x‖A−1 =

√
xTA−1x.

Eq (4) and (5) provide a tight upper bound for the estimation

con�dence of user click and return probabilities under maximum

likelihood estimation. �e proof of Eq (4) and (5) can be readily

derived from the proof of the prediction error in generalized linear

models [11]. Due to space limit, we omit the proof details. It is easy

to verify that those con�dence intervals shrink as more observa-

tions become available. Hence, less exploration is needed in the

later stage of online optimization. Combining the estimated payo�

de�ned in Eq (3) and the corresponding estimation con�dence, a

Algorithm 1 r2
Bandit

1: Inputs: η > 0, τ > 0, δ1 ∈ (0, 1)
2: for i = 1 to N do
3: Receive user u
4: Record current timestamp tu,i
5: if user u is new: then
6: Set Au,1 ← ηI, ˆθu,1 ← 0d ,

ˆβu,1 ← 0d , ϵ̂u,1 ∼ U (0, 1);
7: else:

8: Compute return interval ∆u,i−1 = tu,i − tu,i−1

9: Update
ˆβu,i in user return model using MLE.

10: end if
11: Observe context vectors, xa ∈ Rd for ∀a ∈ I (tu,i )
12: Make recommendation au,i = arg maxa∈I (tu,i ) P (Cu,i =

1|xa , ˆθu,i ) + ϵ̂u,iP (∆u,i ≤ τ |xa , ˆβu,i ) + αu,i ‖xa ‖A−1

u,i
13: Observe click Cu,i
14: Au,i+1 ← Au,i + xau,i x

T
au,i

15: Update
ˆθu,i+1 in user click model using MLE.

16: Update ϵ̂u,i+1 =
∑
j≤i Cu, j/i

17: end for

UCB-type action selection strategy can be formulated as,

πA
(
I (tu,i )

)
= arg max

a∈I (tu,i )

(
P (Cu,i = 1 |xa, ˆθu,i ) + ϵ̂u,iP (∆u,i ≤ τ |xa, ˆβu,i )

+ αu,i ‖xa ‖A−1

u,i

)
(6)

where αu,i = α
θ
u,i + ϵ̂u,iα

β
u,i , and ϵ̂u,i is the estimation of ϵu at the

i-th iteration.

�e recommendation policy de�ned in Eq (6) can also be under-

stood from the perspective of multi-objective optimization. �e

payo� function de�ned in Eq (3) can be decomposed into two parts:

payo� from a user’s immediate click (i.e., P (Cu,i = 1|xa )) and that

from a user’s expected future click (i.e., ϵuP (∆u,i ≤ τ |xa )). Corre-

spondingly, Eq (4) and (5) provide the estimation con�dence of each

type of payo�. Our action selection strategy essentially combines

two complementary bandit algorithms for online optimization of

Eq (3). And therefore, we name our algorithm as reward-return

bandit, or r2
Bandit in short.

�e details of r2
Bandit are described in Algorithm 1. �e al-

gorithm takes η, δ1 and τ as inputs, and outputs a sequence of

recommendations for each user in the system. To simplify our

algorithm description, we use N to denote the total number of

rounds the algorithm could take when interacting with users. We

can terminate the algorithm when no users would return before a

required time threshold, i.e., optimizing in a given period of time.

In Algorithm 1, we assume the model parameters associated with

each user, i.e., {θu , βu }, are independent across users. �is ensures

the generality of r2
Bandit, but it also increases the total amount

of parameters to be estimated. Considering the potentially sparse

observations in an individual user, this might limit the practical

performance of our algorithm. To reduce the parameter space,

dependency among users can be explored, i.e., collaborative bandits

[6, 27]. For example, by assuming similar users tend to share the

same parameters, we can estimate the models in a group-wise

manner. And the similarity between users can be de�ned by their

demographics, content viewing history, or social connections. In



an extreme case, one can assume that all users share the same set of

parameters [19]. Our r2
Bandit algorithm can be readily extended to

any of these collaborative se�ings [6, 27]. We leave it as our future

work and focus on our current more general se�ing in this paper.

�e explicit modeling of user return di�erentiates r2
Bandit from

existing bandit algorithms for online recommendation [11, 19].

Traditional bandit solutions only focus on maximizing immediate

user clicks, with an implicit assumption that users will always

return. However, since a user might return less o�en, or even leave

the system, if “bad” recommendations have been presented, the

total number of interactions that agent could take with the user

become dependent on the algorithm’s choices. An increased user

return time leads to reduced cumulative clicks an algorithm can

receive in a given period time. r2
Bandit balances the immediate

click and user return via the expected future user clicks, and actively

explores items that are most helpful for improving the quality of

both clicks and return time estimations. Our theoretical regret

analysis detailed in the next section supports that if user return

is not considered, a linearly increasing regret is inevitable when

items with high click probability cannot always lead to a shorter

return time. Intutively, those algorithms would fail to recognize

the recommendations with high extrinsic appeal but low intrinsic

utility to users. r2
Bandit balances these two competing factors and

achieves a sublinear regret with high probability in a �nite time.

3.3 Regret Analysis
Regret of a multi-armed bandit algorithm is de�ned as the di�er-

ence between the expected payo� from the optimal decisions made

by the oracle and that from the algorithm’s choices. In this section,

we provide detailed regret analysis of our proposed solution for

long-term user engagement optimization. To simplify the discus-

sion, we omit subscript u in all our notations, as users are treated

independently from each other in r2
Bandit.

To provide a �nite time regret bound analysis, we discretize time

into N time intervals and assume both the oracle and an algorithm

can only make recommendations within each discrete time interval.

As a result, at each time, the user either returns to give feedback on

a recommendation, or does not return (no payo� can be collected

then). We should note this operation does not restrict the practical

value of our regret analysis. First, in real systems we cannot expect

a user to return in a very short period of time, e.g., milliseconds.

�is naturally discretizes users’ returns. Second, we only need

to assume the existence of such a minimum return time interval,

while the execution of our algorithm or oracle does not depend on

the actual value of it. �ird, as the oracle is also restricted to the

same discrete time intervals, our analysis still leads to a tight regret

bound. Denote Sr as the set of iterations in which the user returns

as a result of the recommendations made by our algorithm, and

the rest as Sn . Hence, we have |Sr | + |Sn | = N . De�ne N ′ as the

cardinality of Sr , and N ∗ as the optimal number of times that the

user would return according to the oracle strategy. �e expected

cumulative regret can thus be separated into two parts,

R(N ) =
∑
i∈Sn

Ri +
∑
i∈Sr

Ri = E[ϵ (N ∗ − N ′)] +
∑
i∈Sr

Ri (7)

=ϵ
N∑
i=1

(
P (∆i ≤ τ |xa∗i , β

∗) − P (∆i ≤ τ |xai , β
∗)

)
+

N ′∑
i=1

(
P (Ci = 1 |xa∗i , θ

∗) − P (Ci = 1 |xai , θ
∗)

)

wherea∗i is the optimal recommendation to make at time i according

to the oracle strategy, ai is the learning algorithm’s choice, ϵ is

users’ marginal click probability, and Ri is the one-step expected

regret at the i-th interaction. In particular, the third inequality is

based on the expectation of additional user returns from oracle

recommendation strategy against our algorithm’s choices over the

whole time period.

�e �rst term on the right-hand side of Eq (7) measures the

expected regret from the interactions where the user does not

return; accordingly, the second term measures the expected regret

in immediate clicks if the user returns. Based on the con�dence

bound of users’ click and return probability estimations stated in

Eq (4) and (5), we can prove the upper regret bound of r2
Bandit in

the following theorem.

Theorem 3.1. With probability at least (1 − δ1) · (1 − δ2), the
expected cumulative regret of r2Bandit a�er N rounds of interactions
satis�es,

R(N ) ≤ R(i′−1)+2(ϵα β
N +

ϵ
ϵ̃
αθN )

√
2dN ln(

NL
ηd
+ 1)+

1

ϵ̃

√
1

2

ln

2

δ2

N∑
i=i′

1

√
i − 1

in which αθN =
√
d ln(

η+NL
δ1

) +
√
ηM , α βN =

√
d ln(

η+NLτ
δ1

) +
√
ηH ,

ϵ̃ > 0 and i ′ =
⌈
1 +

ln(2/δ2 )
2(ϵ−ϵ̃ )2

⌉
.

Proof. For the �rst term of the right-hand side of Eq (7),

P (∆i ≤ τ |xa∗i
, β ∗ ) − P (∆i ≤ τ |xai , β

∗ ) (8)

≤P (∆i ≤ τ |xa∗i
, ˆβi ) + α

β
i ‖xa∗i

‖A−1

i
− P (∆i ≤ τ |xai , β

∗ )

≤P (∆i ≤ τ |xai ,
ˆβi ) + α

β
i ‖xai ‖A−1

i
+

1

ϵ̂i

(
P (Ci = 1 |xai ,

ˆθi ) + αθi ‖xai ‖A−1

i

)
−

1

ϵ̂i

(
P (Ci = 1 |xa∗i

, ˆθi ) + αθi ‖xa∗i
‖A−1

i

)
− P (∆i ≤ τ |xai , β

∗ )

≤2α β
i ‖xai ‖A−1

i
+

1

ϵ̂i

(
P (Ci = 1 |xai ,

ˆθi ) + αθi ‖xai ‖A−1

i
− P (Ci = 1 |xa∗i

, θ ∗ )
)

where the �rst and third inequalities are based on the upper con�-

dence bound of the estimated return probability in Eq (5), and the

second equality is based on our derived action selection strategy in

Eq (6). By substituting Eq (8) into Eq (7) and also considering the

fact that N ′ ≤ N , we have,

R(N ) ≤
N∑
i=1

ϵ
ϵ̂i

(
P (Ci = 1 |xai ,

ˆθi ) + αθi ‖xai ‖A−1

i
− P (Ci = 1 |xa∗i

, θ ∗ )
)

+

N∑
i=1

2ϵα β
i ‖xai ‖A−1

i
+

N∑
i=1

(
P (Ci = 1 |xa∗i

, θ ∗ ) − P (Ci = 1 |xai , θ
∗ )

)
=

N∑
i=1

2ϵα β
i ‖xai ‖A−1

i
+

N∑
i=1

ϵ̂i − ϵ
ϵ̂i

(
P (Ci = 1 |xa∗i

, θ ∗ ) − P (Ci = 1 |xai , θ
∗ )

)
+

N∑
i

ϵ
ϵi

(
P (Ci = 1 |xai ,

ˆθi ) − P (Ci = 1 |xai , θ
∗ ) + αθi ‖xai ‖A−1

i

)
≤

N∑
i=1

2ϵα β
i ‖xai ‖A−1

i
+

N∑
i=1

ϵ̂i − ϵ
ϵ̂i

(
P (Ci = 1 |xa∗i

, θ ∗ ) − P (Ci = 1 |xai , θ
∗ )

)
+

N∑
i

ϵ
ϵi

2αθi ‖xai ‖A−1

i
(9)

in which the last inequality is based on the upper con�dence bound

of estimated click probability in Eq (4).

�e second term of the right-hand side of Eq (9) can be under-

stood as the additional regret caused by the online estimation of the

expected future click ϵ . As ϵ̂i =
1

i−1

∑i−1

j=1
Cj for i > 1, according to



Hoe�ding’s inequality, we have |ϵ̂i −ϵ | ≤
√

1

2(i−1) ln
2

δ2

, with prob-

ability at least 1−δ2. We de�ne ϵ̃ as a lower bound of ϵ̂i , then by sim-

ply rewriting and variable replacement, we have ϵ̂i > ϵ̃ when i ≥

1 +
ln(2/δ2 )
2(ϵ−ϵ̃ )2 . De�ne i ′ =

⌈
1 +

ln(2/δ2 )
2(ϵ−ϵ̃ )2

⌉
, we have

∑N
i=i′

ϵ̂i−ϵ
ϵ̂i

(P (Ci =

1|xa∗i ,θ
∗) − P (Ci = 1|xai ,θ

∗)) ≤ 1

ϵ̃
∑N
i=i′

√
ln(2/δ2 )
2(i−1)

and

∑N
i=i′

ϵ
ϵi 2αθi ‖xai ‖A−1

i
≤

∑N
i=i′

2ϵ
ϵ̃ α

θ
i ‖xai ‖A−1

i
.

Substituting them into the right-hand side of Eq (9),

R(N ) ≤ R(i′ − 1) +
N∑
i=i′

2ϵα β
i ‖xai ‖A−1

i
+

N∑
i=i′

2ϵ
ϵ̂i

αθi ‖xai ‖A−1

i
(10)

+

N∑
i=i′

ϵ̂i − ϵ
ϵ̂i

(
P (Ci = 1 |xa∗i

, θ ∗ ) − P (Ci = 1 |xai , θ
∗ )

)
≤R(i′ − 1) +

N∑
i=i′

(2ϵα β
i +

2ϵ
ϵ̃
αθi ) ‖xai ‖A−1

i
+

1

ϵ̃

√
1

2

ln

2

δ2

N∑
i=i′

1

√
i − 1

≤R(i′ − 1) + 2(ϵα β
N +

ϵ
ϵ̃
αθN )

N∑
i=i′
‖xai ‖A−1

i
+

1

ϵ̃

√
1

2

ln

2

δ2

N∑
i=i′

1

√
i − 1

≤R(i′ − 1) + 2(ϵα β
N +

ϵ
ϵ̃
αθN )

√
2dN ln(

NL
ηd
+ 1) +

1

ϵ̃

√
1

2

ln

2

δ2

N∑
i=i′

1

√
i − 1

in which R(i ′ − 1) is the cumulative regret from the �rst (i ′ − 1)
iterations, which is independent from N and only related to the

di�erence between ϵ and ϵ̃ . And the last inequality is based on the

property of self-normalized matrix norm [1]. �

With some simple rewriting, it is easy to verify that r2
Bandit

achieves a subliner upper regret bound ofO (
√
N logN+

√
N ) with a

high probability. Note that comparing with the upper regret bound

in traditional contextual bandit algorithms, e.g., [11, 19], we have

an additional regret term O (
√
N ) which is caused by the online

estimation of future clicks. But since the �rst term O (
√
N logN )

dominates the overall regret, this additional regret term does not

a�ect the order of the resulting regret bound. Next we prove if

an algorithm only models immediate click, a linearly increasing

regret is inevitable, due to the fact that a user would return less

o�en because of bad recommendations.

Without lose of generality, assume there are two types of recom-

mendation candidates, which have the same click probability, but

di�erent return probabilities. �e �rst type of candidates, denoted

asA1, have a return probability P (∆i ≤ τ |xai , β
∗) = p+c , in which

p > 0, c > 0 and p + c ∈ (0, 1); and the second type, denoted as A2,

has a return probability P (∆i ≤ τ |xai , β
∗) = p. Consider the �rst

term on the right-hand side of Eq (7): if the algorithm selected a

candidate from A1 at the i-th iteration, the one-step regret is zero;

otherwise if it chose from A2, we have,

P (∆i ≤ τ |xa∗i , β
∗) − P (∆i ≤ τ |xai , β

∗) = p + c − p = c (11)

which is a constant over time.

Substitute Eq (11) into Eq (7), the upper regret bound of any algo-

rithm that does not model user return can be derived asO ( |A2 |Nc
|A1 |+ |A2 |

),

which is linear with respect to N . And the proof is straightforward:

although the algorithm might achieve a sublinear regret on the

second component of Eq (7), it makes constant mistakes in choos-

ing between candidates in A1 and A2, as they have the same click

probability. A similar linear regret conclusion also applies to algo-

rithms that only model user return [7, 17]. And it is easy to verify

that a linear regret generally applies to situations in which a user’s

click decisions are independent of return decisions. �is proof

supports the necessity of modeling both a user’s immediate click

and expected future clicks as a result of user return in optimizing

long-term user engagement. Our empirical evaluation con�rms

this regret analysis.

4 EXPERIMENTS
We performed extensive empirical evaluations of our developed

r2
Bandit algorithm on a synthetic dataset via simulations and a

large collection of real-world user click logs extracted from Yahoo

frontpage news recommendation module.

A set of bandit algorithms are employed as baselines. To study

the importance of user return modeling, we included GLM-UCB

[11], which uses a logistic regression model to predict user clicks

and uses its click estimation’s upper con�dence bound to select

recommendations during online learning. GLM-UCB’s click estima-

tion and exploration strategy are the same as that in r2
Bandit, but

it does not model user return. In the meanwhile, we also included a

variant of GLM-UCB, which uses an inverse link function to model

user return time, but does not consider user clicks. We refer to it

as rGLM-UCB. To verify the e�ectiveness of con�dence estimation

based arm selection strategy, we designed a baseline using the same

set of generalized linear models as in r2
Bandit for click and return

estimation, but using the UCB1 strategy [3] for action selection.

We refer to it as r2
GLM-UCB1. In the end, to verify the importance

of context modeling for long-term user engagement optimization,

we also included a context-free bandit algorithm based on UCB1

strategy. It uses a Bernoulli distribution to model user clicks and

an exponential distribution to model return time. We refer to it as

r2
UCB1. Various evaluation metrics, such as cumulative clicks over

time and average return time, were used to compare the algorithms.

4.1 Comparisons in simulations
4.1.1 Simulation Se�ing. In simulation, we simulate a personal-

ized environment: we generate N users, each of whom is associ-

ated with a d-dimensional parameter θu ∈ Rd characterizing the

user’s click preference, and ad-dimensional parameter βu depicting

his/her return decisions. θu and βu are drawn from a multivariate

Normal distribution N (0, Id ) and normalized to ‖θu ‖2 = 1 and

‖βu ‖2 = 1. �ese θs and βs are treated as the ground-truth pa-

rameters to generate user click and return time a�er an item ai
is recommended. In particular, the click response Cu,i is sampled

from a Bernoulli distribution de�ned by a logistic regression model

1

1+exp(−θ T
uxai +σ )

, where xai is the context vector of ai and σ is

sampled from a zero-mean Gaussian N (0, ζ 2) to corrupt the obser-

vations with white noise. Similarly, the return time ∆u,i is sampled

from an exponential distribution with its rate parameter λu,i spec-

i�ed as λu,i = exp (βTuxai + γ ), where γ is drawn from another

zero-mean Gaussian N (0, ξ 2). �e corrupted click response and

return time of the selected recommendation are fed back to the

learning algorithms, but the ground-truth parameters, i.e., (θu , βu ),
are kept hidden from them.

To study the importance of user return modeling in optimiz-

ing users’ long-term engagement, we require the recommended

items to exhibit di�erent e�ects on users’ click and return decisions.

For example, some items might have higher click probabilities but

make a user return in a longer time. To achieve so, we generate

a size-K recommendation candidate pool Au
for each user u, and
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Figure 1: Performance comparison in simulations.

enforce each generated candidate to fall into one of four follow-

ing categories according to the ground-truth model parameters

(θu , βu ),

• Type 1: items with high click probability but short expected

return time, denoted as Ch -Rl ;
• Type 2: items with high click probability but long expected return

time, denoted as Ch -Rl ;
• Type 3: items with low click probability but short expected return

time, denoted as Cl -Rs ;

• Type 4: items with low click probability and long expected return

time, denoted as Cl -Rl .

It is clear that the type 1 candidates should be the preferred

choice for recommendation in most cases, as it allows an algorithm

to collect more clicks in a given period of time. But the introduction

of type 2 candidates complicates the choice between immediate click

and expected future clicks. As we discussed in the regret analysis,

if an algorithm does not model user return, it cannot recognize the

recommendations that make users return less o�en, which in turn

reduces its opportunities to make more recommendations in a long

run. Correspondingly, the introduction of type 3 candidates traps

algorithms that do not model immediate user click.

In our simulation, the separation of these four types of candi-

dates is constructed by constraining the parameters of Bernoulli

distribution for click generation and exponential distribution for

return time sampling with respect to the given θu and βu . For

example, to create a Ch -Rs type candidate, we enforce its context

vector xa to satisfy θTuxa > Ch and βTuxa > Rs (as the expected

return time is the reciprocal of the rate parameter in an exponen-

tial distribution). Rejection sampling is used to e�ciently create

the context vectors xa with each dimension sampled from a uni-

form distribution U (0, 1). To increase learning complexity, in each

iteration, only a subset of items in Au
will be presented to the

algorithms, and we guarantee that there are equal number of these

four types of items in the presented candidate pool. We should

note that as Gaussian noise will be added to the click and return

time feedback at each round of interaction independently, the afore-

mentioned simulation procedure will maintain the categorization

of these recommendation candidates in expectation. �is further

increases the learning complexity in our simulated environment.

4.1.2 Results Analysis. Under the simulation se�ings described

above, we �xed the user number N to 100, article pool sizeK in each

user to 200, which means that the number of each type of items is 50.

We varied the thresholds of (Ch ,Cl ,Rs ,Rl ) and noise parameters

(ζ , ξ ) in our experiments, but found consistent relative comparison

results. �erefore, we �xed (Ch = 0.8,Cl = 0.2,Rs = 0.8,Rl = 0.2)

and (ζ = 0.1, ξ = 0.1), and reported the corresponding results of

all algorithms. To reduce the randomness in this simulation-based

evaluation, mean and standard deviation of each evaluation metric

are reported from 10 independent runs of all algorithms.

We �rst compared the algorithms by their accumulated clicks

during the interaction with users in Figure 1 (a). From the results,

it is clear that r2
Bandits collected the most clicks from users at any

point of time since the interaction started; and the slope of its accu-

mulated clicks was steeper than the other algorithms’, which means

the gain from r2
Bandits kept increasing faster as time elapsed. In

addition, we can also clearly observe that the variance of cumula-

tive reward collected from r2
Bandits was consistently smaller than

those in the baselines. �is indicates it successfully recognized the

items with high click probability and short return in the early stage.

�is is veri�ed by further detailed result analysis next.

As Figure 1 (a) measures both user clicks and return time, it is

important to decompose them and understand how they contribute

to optimize the cumulative clicks over time. We �rst analyzed the

distribution of the four types of items selected by each algorithm

in Figure 1 (b). We can clearly observe that because GLM-UCB

does not model user return, thought it successfully recommended

candidates with high click probability, it failed to �lter those that

make users return in a longer time (i.e., the type Ch -Rl ). On the

other hand, rGLM-UCB, as it does not model click, tended to choose

items with shorter user return time, but failed to di�erentiate those

with low click probabilities (i.e., the type Cl -Rs ). Among the base-

lines that model both user click and return time, i.e., r2
GLM-UCB1

and r2
UCB1, they selected the Ch -Rs type items more o�en, as our

r2
Bandits did. But because of their less e�ective exploration strat-

egy and parameter estimation methods, they tended to select other

types of items more o�en than r2
Bandits. �is conclusion becomes

especially evident, when we compare r2
Bandits with r2

GLM-UCB1,

as they used the same set of generalized linear models to estimate

user clicks and return time.

It is also important to verify how di�erent algorithms’ item se-

lections evolve during the online learning. We investigate the ratio

of preferred candidate type, i.e., Ch -Rs , among the selected items

over time in di�erent algorithms. In Figure 1 (c), we report the

results with respect to the iterations to align the comparison across

algorithms, as actual user return time depends on the algorithm.

We can observe that, over the entire interaction history, both GLM-

UCB and rGLM-UCB can only select the preferred type of items

50% of time, as they only model click or return. �is result directly

supports our linear regret conclusion on this type of algorithms.

Because of explicit modeling of both user click and return time,



the selection ratio of preferred items in r2
GLM-UCB1, r2

UCB1 and

r2
Bandit kept increasing during online update. In particular, the

ratio in r2
Bandit increased signi�cantly faster and quickly con-

verged. �is con�rms the e�ectiveness of estimation con�dence

based exploration strategy for online learning.

4.2 Comparisons in news recommendation logs
4.2.1 Dataset, metrics, and o�line evaluation protocol. Dataset:

We collected 4 weeks user visitation data extracted from Yahoo

frontpage news recommendation module during the summer of

2016. Each logged event contains the following information: times-

tamp, anonymized user ID, displayed article ID, corresponding

article features, and click label.

Pre-processing was performed on this dataset. First, principal

component analysis was used to reduce the dimensionality of the

article features. Second, each user’s visitation sequence was seg-

mented into sessions, which were de�ned by 30 minutes inactive

time threshold. �e o�ine evaluation was performed in sessions:

for each session, a candidate article pool was created by retaining

the top 10% most popular articles in the same day, together with

the originally displayed articles in that session. �ird, the time

interval between two consecutive user sessions was computed as

the “return time” of the earlier session. As a result, the return time

is valid only when there are at least two sessions. For this reason,

we removed users with less than two sessions in this data set. In

the rest of users, if one user did not return to the site within four

weeks, we labeled this user’s last observation as “no return.”

Figure 2: Discretized user return time distribution.

A�er the pre-processing, there are in total 18,882 users, 188,384

articles, and 9,984,879 logged events segmented into 1,123,583 ses-

sions. �e distribution of users’ return time on this dataset is shown

in Figure 2. To avoid disclosing sensitive business information about

the recommendation system, we categorize the actual return time

into 8 levels. �e lower a level is, the shorter the return time is.

Based on this distribution, we set the return time threshold τ to 24

hours, which is used to compute the return probability in di�erent

algorithms’ action selection strategy. In particular, on this dataset,

the distribution of observations per user is highly unbalanced: over

71% observations come from less than 30% users. Learning inde-

pendent set of model parameters for every single user becomes

impractical. As a result, we set the same set of bandit parameters for

all the users both in our proposed solutions and in all the baselines.

O�line Evaluation: Evaluation of bandit algorithms is challeng-

ing, as one needs to label instances upon algorithm’s request on

the �y. We adopted the o�ine evaluation protocol proposed in [20]

to compare the online learning algorithms on this o�ine dataset.

Speci�cally, the o�ine evaluator takes an algorithm A as input and

outputs a set of “valid” events E from the sequence of logged events,

on which to base the evaluation. At every interaction, if given the

current observation history, the algorithm A chooses the same item

at as the one that was recorded by the logging policy in the o�ine

data, the event (xat ,Cat ,∆at ) is retained as a valid event and added

to the history and valid event set E. �en the model parameters

of A will be updated accordingly. Otherwise, the event is ignored,

and the algorithm proceeds to the next event in the logged data

without any update in its state.

It is proved in [20] that this o�ine evaluator is unbiased if the

logging policy chooses each item uniformly at random. But when

the logging policy is not uniformly random, reweighting the logged

events is necessary to correct the sampling bias in the evaluator,

as v̂ (π ) := 1

N
∑N
i=1

πA (ai )
pai

rai , where pai is the probability of ob-

serving article ai in the logging policy, πA (ai ) is the corresponding

probability in the evaluated algorithm A, and rai is the target eval-

uation metric (e.g., cumulative clicks or return time in our case).

�e intuition behind the estimator v̂ (π ) is that, during data col-

lection, some items have higher selection probability, so that they

are overly represented in the o�ine data. Normalizing their in�u-

ence by their popularity will correct such sampling bias. And it is

proved in [21, 25] that the evaluator is unbiased in the sense that

E[v̂ (π )] = v (π ).
In our o�ine dataset, each logged event is also associated with

a return time triggered by the choice of logging policy. Similar

proof of unbiased o�ine evaluation applies to return time: when

the algorithm’s recommendation matches with the choice in the

logged event, the return time can be considered as being triggered

by the algorithm’s choice [20]. �erefore in our experiments, we

extent this o�ine evaluation protocol to evaluate both clicks and

return time, and also other metrics resulted from these two types

of feedback to be discussed below.

Evaluation Metrics: We include a comprehensive set of evalua-

tion metrics, which track both user clicks and return time resulted

from the recommendation as the interaction proceeds.

• Cumulative clicks over time: it is the cumulative clicks till any

particular time point during the interaction. A larger cumulative

clicks over time indicate an algorithm makes users click more

and return more o�en.

• Click-through rate (CTR): it is computed as the ratio of the num-

ber of clicks an algorithm receives among all recommendations

it has made. A higher CTR indicates users tend to click on the

recommended items.

• Average return time: it is the average of time between a user’s

consecutive visits up till a particular time point. We do not count

the recommendations that drive users away (i.e., no return), since

return time is unde�ned in this case. A shorter average return

time means an algorithm makes users return more o�en. We

normalize an algorithm’s average return time by the logged av-

erage return time in the o�ine dataset to avoid disclose sensitive

business information of Yahoo.

• Return rate: it is the ratio of the number of recommendations

that lead a user to return within the threshold τ among all rec-

ommendations the algorithm has made. A larger return rate

indicates an algorithm makes users more likely to return.
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Figure 3: Experiment results on real-world news recommendation log data.

• Improved user ratio: it is computed as the percentage of users

whose average return time get reduced compared to his/her

logged average return time in the o�ine data, up till a partic-

ular time during interaction. A larger ratio of improved users

indicates an algorithm makes more users engaged in the system.

• No return count: it is the number of users who le� the system

a�er a recommendation was made (e.g., those labeled as “no

return”). A smaller no return count indicates an algorithm keeps

more users in the system. No return count is also normalized by

the total number of no return users in the o�ine data.

In our evaluation, we reweighted cumulative clicks over time,

click-through rate, return rate based on the o�ine evaluation proto-

col to reduce bias from the article distribution in this o�ine dataset.

4.2.2 Experiment Results. On this real-world dataset, we include

a variant of r2
Bandit, named naive-r2

Bandit. Instead of estimating

the expected future clicks ϵ on the �y, we set it to the average click

through rate on this dataset. �is model is designed to be�er serve

users with fewer observations for expected click estimation. Com-

parisons on all six metrics among all the algorithms are reported in

Figure 3.

First of all, we can observe that our r2
Bandit and naive-r2

Bandit

collected signi�cantly more clicks over the same period of time

than all the other baselines, and their improvement margins kept

increasing. In practice, such performance gain can be translated to

improved revenue resulted from this news recommendation module,

especially when long-term engagement is emphasized. �is directly

proves the e�ectiveness of our proposed algorithm in a practical

recommender system.

�e click-through rate and average return time explain where

the improvement comes from. In Figure 3 (b), we can �nd that

r2
Bandit achieved the highest CTR, which is about twice as that in

GLM-UCB and rGLM-UCB, and more than 5 times of that in r2
GLM-

UCB1 and r2
UCB1. And Figure 3 (c) shows that naive-r2

Bandit

achieved the shortest average return time. In particular, according

to the normalized average return time, naive-r2
Bandit reduced

users’ average return time interval by 18% to 25% comparing to

that recorded in the o�ine data. �is allows our algorithms to

make much more recommendations than other baselines in the

same period of time. To make this advantage easier to comprehend,

we also reported the distribution of return time resulted from our

algorithms in Figure 2. In this comparison, the ratio of shorter

returns, i.e., those in lower levels, got greatly increased, and the

ratio of longer returns got signi�cantly reduced accordingly.

Figure 3 (d), (e) and (f) illustrate users’ return behavior resulted

from di�erent algorithms from di�erent perspectives. Figure 3

(d) shows that r2
Bandit and naive-r2

Bandit achieved the highest

user return rate, which is around 1.8 times of that in GLM-UCB

and 3.5 times of that in r2
UCB1 and r2

GLM-UCB1. �is indicates

our proposed algorithms gain at least one more chance to make

a recommendation to every single user. �is gain is signi�cant

for any practical recommender system. Figure 3 (e) shows that

around 63% users will return in a shorter time than the recorded

average return time achieved by the originally deployed algorithm

in Yahoo. Figure 3 (f) shows that both r2
Bandit and naive-r2

Bandit

achieved signi�cantly lower no-return user count, which means a

higher user retention rate. �is is vital for a recommender system

to increase its user base and succeed in market competition.

Comparing the baselines, we can �nd that as expected GLM-UCB

outperformed rGLM-UCB in click-through rate but fell behind in

user return rate. As a result, their �nal cumulative clicks over time

were quite similar. r2
GLM-UCB1 and r2

UCB1 performed the worst

in most metrics in this evaluation. �e main reason is that on this

large dataset, the size of article pool is considerably large, on which

UCB1 exploration strategy is less e�ective. �ese results verify the

importance of context modeling for user long-term engagement

optimization and exploration strategy.



(a) Top clicked articles (b) Top returning articles

Figure 4: Word cloud of algorithm selected article content.

To further reveal how our developed algorithm recognizes di�er-

ent e�ect of recommendations on users’ click and return decisions,

we looked into the selected articles that tend to make users click

more and those that tend to make users return more frequently. We

used the learnt models to rank the articles by their estimated click

and return probabilities accordingly, extracted text content from

the top 5000 articles of each type, and then generated world clouds

to summarize those documents in Figure 4. We should note our

context features in xa include richer type of information beyond

just article content, but we only visualized the results based on the

article content. It is interesting to �nd that articles make users more

likely to click are mostly about technology, sports and entertain-

ment, while those make user return more o�en are mostly about

politics and NBA games. Considering the dataset was collected in

summer 2016, when the U.S. presidential campaigns and NBA �nals

were on going, our algorithm reasonably captured users’ interest

and encouraged them to return more o�en to get the latest updates

on those news events.

5 CONCLUSION
Most of existing recommendation algorithms impose a strong as-

sumption that users’ return behavior is always consistent with

their immediate responses, or the probability of user return is in-

dependent from the recommendations being made, such that few

of them explicitly consider users’ temporal return behavior when

making recommendations. In this work, we formulate the opti-

mization of long-term user engagement as a sequential decision

making problem. A recommendation is made by not only its esti-

mated immediate user click but also the expected clicks resulted

from the user’s future return. We develop a bandit-based online

solution for the problem. Rigorous theoretical analysis proves a

high-probability sublinear upper regret bound of our proposed so-

lution; while if only immediate click is optimized, a linear regret is

inevitable. Extensive experiments on both simulations and a large

collection of real-world click logs veri�ed the improvement of our

algorithm in optimizing the long-term reward from users.

Our current solution handles users independently. It is important

to explore the dependence among users to perform collaborative

online learning [6, 27], such that observations can be leveraged

across users to reduce the model learning complexity. As r2
Bandit is

able to predict expected user return time, proactive learning across

users becomes possible: an algorithm can probe a few current users

for the most informative feedback to update itself for be�er serving

the other about-to-come users. And the temporal dynamics of the

candidate pool can also be modeled to be�er predict future clicks.

6 ACKNOWLEDGMENTS
�e authors would like to thank anonymous reviewers for their

helpful comments suggestions. �is work was supported by the Na-

tional Science Foundation under grant IIS-1553568 and IIS-1618948.

REFERENCES
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