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ABSTRACT
Part-of-speech (POS) tagging is the foundation of many natural
language processing applications. Rule-based POS tagging is a well-
known solution, which assigns tags to the words using a set of pre-
defined rules. Many researchers favor statistical-based approaches
over rule-based methods for better empirical accuracy. However,
until now, the computational cost of rule-based POS tagging has
made it difficult to study whether more complex rules or larger rule-
sets could lead to accuracy competitive with statistical approaches.
In this paper, we leverage two hardware accelerators, the Automata
Processor (AP) and Field Programmable Gate Arrays (FPGA), to
accelerate rule-based POS tagging by converting rules to regular
expressions and exploiting the highly-parallel regular-expression-
matching ability of these accelerators.

We study the relationship between rule set size and accuracy, and
observe that adding more rules only poses minimal overhead on
the AP and FPGA. This allows a substantial increase in the number
and complexity of rules, leading to accuracy improvement. Our
experiments on Treebank and Brown corpora achieve up to 2,600×
and 1,914× speedups on the AP and on the FPGA respectively over
rule-based methods on the CPU in the rule-matching stage, up to
58× speedup over the Perceptron POS tagger on the CPU in total
testing time, and up to 253× speedup over the LSTM tagger on the
GPU in total testing time, while showing a competitive accuracy
compared to neural-network and statistical solutions.
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• Computer systems organization → Natural language pro-
cessing; Big data; • Computer Architecture → Accelerators;
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1 INTRODUCTION
As we are living in the era of big-data and mobile computing, effec-
tive and efficient natural language processing (NLP) applications
become increasingly important, and they greatly affect the qual-
ity of human-computer interaction (HCI). The most efficient and
high-quality NLP applications use extensive, time-consuming sta-
tistical or neural-network models, which make them infeasible for
real-time applications.

A part-of-speech tagger assigns part-of-speech tags (e.g., noun,
verb) to words in a sentence. POS tagging is a building block for a
wide range of NLP tasks. For example, in parsing, words’ parts of
speech determine proper word combinations [22]; in named-entity
resolution, it identifies the entities and the relationships between
them [8]; and in detecting sentiment contrasts, some words could
have differing sentiments in different parts of speech [27]. Moreover,
in software engineering, POS tagging helps in recognizing essential
words from software artifacts such as bug reports [11, 26, 28].

Generally in NLP, and specifically in POS tagging, statistical and
neural network (NN)-based approaches have been favored over
rule-based approaches, because they have shown higher accuracy
and the training is straightforward to automate, while early rule-
based tagging required manual rule generation and execution time
increased linearly with the number of rules. This limits the number
of rules, thus limiting accuracy. However, rules can now be learned
automatically and incorporate textual information (i.e., surrounding
tags and words) [6].

In this paper, using POS tagging as a case study, we show that hard-
ware accelerators can make rule-based techniques orders of magni-
tude faster than statistical/ML-based taggers. This allows rule-based
approaches to employ more rules and achieve accuracy compet-
itive with statistical techniques. These observations motivate a
re-evaluation of rule-based approaches in NLP.

Execution efficiency is addressed by observing that rule-based
techniques map well to regular-expressions (regex), which in turn
map well to “spatial” hardware that provides a reconfigurable sub-
strate to lay out the rules in hardware. This allows a large number
of patterns to be executed in parallel, in contrast to von Neumann
architectures such as CPUs that must either handle one rule at
a time in each core, or build large lookup tables in memory and
the communication between the cores imposes a significant over-
head [15]. Specifically, the Automata Processor (AP) and the Field-
Programmable Gate Array (FPGA) are two spatial architectures
suitable for pattern-matching. They both allow native execution
of non-deterministic finite automata (NFAs), an efficient computa-
tional model for regular expressions. They achieve this with recon-
figurable elements that efficiently implement automata states and
matching rules, and reconfigurable routing that efficiently imple-
ments next-state activation. A single chip can implement up to tens
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of thousands of regular expressions, depending on rule complexity,
with little or no change in throughput.

We study the relationship between the rule-set size and the
accuracy of POS taggers, and observe that more complex rules (from
more diverse template rule-sets) and larger rule sets lead to accuracy
almost as good as statistical/ML-based techniques, especially with
a larger training corpus. With hardware acceleration, this sets up
a new tradeoff for designers of NLP applications. The rule-based
approach can give much better testing speed, at the expense of a
small drop in accuracy and longer training time.

Because the AP or FPGA can efficiently process large and com-
plex sets of regular expressions, we propose that other NLP tasks
involving rules or patterns can also be accelerated this way. For
instance, in sentiment analysis, negation scope detection solutions
[18][9] are typically rule-based.

In summary, our paper makes the following contributions.

• We study the effect of different baseline taggers and different
number of tagging rules for rule-based POS tagging.We show
that using the unigram (i.e, one word at a time) tagger as a
baseline tagger as well as larger and more complex tagging
rules results in a higher testing accuracy.

• We utilize spatial architectures (the AP and the FPGA) by
transforming the rules to regular expressions. This approach
is scalable in number and complexity of rules. Increasing the
number of rules up to several thousand has no overhead on
the AP and a minimal overhead on the FPGA, because all
the rules are laid out in space across the chip and executed
in parallel.

• We compare our solution on the AP and FPGA with several
modern statistical approaches. Results show that we can
achieve up to 2,600× and 1,914× speedups on the AP and on
the FPGA respectively over CPU-based Brill tagging in the
rule-matching stage, up to 58× speedup over the Perceptron
POS tagger (CPU solution) in the total testing time, and up to
253× speedup over the LSTM tagger (GPU solution) in total
testing time at the expense of approximately 1% accuracy in
a large corpus.

An important lesson learned from this research is that rule-
based POS tagging on hardware accelerators can compete with the
accuracy of statistical/ML-based approaches, especially in a larger
corpus. As mentioned, this sets up a very interesting tradeoff to
evaluate when designing an NLP application: a small decrease in
testing accuracy in exchange for vastly faster testing, at the expense
of slower training. This suggests that rule-based approaches are
valuable for use cases where testing performance is critical, as long
as training time can be tolerated.

2 BACKGROUND
2.1 Part of Speech Tagging
Part-of-speech-tagging is the process of assigning parts of speech,
such as noun, verb, etc., to each word. It has a wide range of applica-
tions in parsing, text-to-speech conversion, named entity resolution,
machine translation, etc. POS tagging is generally categorized as
a rule-based, statistical-based, or neural network-based model. In
rule-based methods, tags are assigned based on rules that embody

repeatable patterns indicating a specific tag, and in statistical meth-
ods, tags are assigned based on a probability model.

Rule-based POS tagging: The rule-based approach is the ear-
liest POS tagging system, where a set of rules is constructed and
applied to the text. The rule-based POS tagging identifies the most
appropriate tag for each input token based on contextual rules
learned in the training phase. A transformation-based POS tagger
(TBT) [6] is a rule-based tagger that assigns POS tags to words
based on linguistic knowledge learned from a training corpus. Then
it uses the training information to tag new untagged corpora in
the testing phase in two stages. In the first stage, it uses a simple
statistical tagger, called a baseline tagger or back-off tagger, to assign
an initial tag (usually the most frequent POS) for a word. In the
second stage, the initial tags are updated based on the contextual
rules (the learned rules update the tag if the baseline tag is incorrect
in this context). The Brill tagger [5] is a rule-based approach that
is the most widely used POS tagger for English texts. The same
authors also propose an unsupervised approach [7] that assigns all
possible tags to the words in the initial step, and in the next step,
uses rules to reduce the number of tags to remove the ambiguity.
Mohammed et al. [17] improve the original TBT-based approach
and propose guaranteed pre-tagging, which fixes the initial tags of
the words that are known to be correct. This approach works well
if prior information is known.

Statistical-based POS tagging: The Unigram Tagger is a statis-
tical tagger that assigns the most likely tag to the word based on
the training corpus. To identify the most likely tag for each word, a
unigram tagger counts the frequency of tags for each word in the
training corpus. The default tag noun is used for unseen words. The
unigram POS tagger is simple and fast, and it is usually used as a
baseline tagger for rule-based approaches.

A Hidden Markov Model (HMM) tagger assigns POS tags by
searching for the most likely tag for each word in a sentence (similar
to a unigram tagger). Unlike with the unigram tagger, an HMM
tagger detects a tag sequence for a sentence as a whole, instead
of assigning a tag for each word independently. First-order and
second-order HMM taggers are usually called Bigram and Trigram
taggers, respectively. Given a sentence w1...wn , an HMM-based
tagger chooses a tag sequence t1...tn that maximizes the following
joint probability:

P(t1...tn ,w1...wn ) = P(w1...wn |t1...tn )P(t1...tn )

The TnT [4] Tagger (also known as a trigram POS tagger) uses
second-order Markov models and considers triples of consecutive
words to simplify the probability computation. In TnT, the tag of a
word is determined by the POS tags of the two previous words.

The Maximum Entropy (ME) Tagger incorporates more complex
features into probabilistic models [23]. Given a sentencew1...wn ,
an ME-based tagger models the conditional probability of a tag
sequence t1...tn as:

P(t1...tn |w1...wn ) ≈

N∏
i=1

P(ti |ci )

whereC1, ...Cn are contexts for each wordw1...wn in the sentence.
AnME-based tagger models features as binary-valued functions rep-
resenting constraints to compute P(ti |ci ). It will learn the weights
of the features that can maximize the entropy of the probability



model using the training corpus. The Stanford POS-tagger [16] is
an example of ME-based tagger.

Neural network-based POS tagging: POS tagging simply can
be seen as a supervised classification problem where the input of
classifier is a word (or a feature-based representation of a word)
and the output is the score of belonging to each class (tag). In
Avarage Perceptron tagger [12], a huge set of hand crafted features
is extracted and provided for a single layer perceptron with lin-
ear activation function to classify the word based on its tag. This
method selects the class with highest score as the potential tag.
Deep neural network solves the potential drawback of designing
handcrafted features by letting the network to pick the features
by itself. Bi-directional recurrent neural networks-based taggers
[21] (e.g., LSTM) perform the tag classification for the whole sen-
tence as a single decision problem and provide the opportunity of
utilizing information coming from left and right-side at the same
time. However, these benefits come with the computational cost of
training and testing a deep neural network.

2.2 Hardware Accelerators
The Automata Processor: The Automata Processor (AP) [10], in-
troduced by Micron several years ago but not yet commercially
available, is a non-von-Neumann, direct-hardware implementation
of non-deterministic finite automata (NFAs) designed for massively
parallel pattern searching and can achieve two orders of magni-
tude speedup over state-of-the art CPU solutions (see the overview
here [31]). NFAs are an efficient computational model for regular
expressions (regexes).

A regex can be represented by either deterministic finite au-
tomata (DFA) or non-deterministic finite automata (NFA). DFAs
and NFAs are equivalent in computational power, but NFAs typi-
cally only need as many states as there are characters in the regular
expression, while DFAs often suffer exponential blowup in state
count compared to equivalent NFAs, a side effect of the rule that
a DFA can only have one state active at a time, while an NFA can
have many.1 On CPUs, NFAs and DFAs are represented by tables
indicating the each state’s successor state(s) upon a rule match.
DFAs are often the basis for implementing automata on CPUs, be-
cause they have predictable bandwidth requirement; while an NFA
may require many state lookups to process a single input symbol,
a DFA requires just one. On the other hand, DFA tables are often
too large to fit in the processor caches. State-of-the-art automata
engines combine NFA and DFA representations, using DFAs in
regions where too many states are likely to be activated [1].

The AP implements NFAs directly in hardware. The state transi-
tion element (STE) implements a state and its associated transition
rule; this rule can match any subset of an 8-bit symbol set (i.e.,
ASCII). A reconfigurable routing network connects an STE to its
successors, and when an STE rule matches, these successors are
activated. The current beta-hardware AP boards are built on 50nm
DRAM technology, running at 133 MHz. Each chip can support
approximately 48K STEs, as well as boolean and counter elements
that allow certain regular-expression features to be implemented

1For example, for a regular expression such as prefix.{100}suffix, which matches if and
only if a prefix is separated from suffix by 100 characters, would require over one
million states [1].

even more succinctly, and reporting buffers to hold the results of
state matches (analogous to NFA accept states). Therefore, a single
chip can implement a large number of finite automata or regexes,
all executing in parallel. (The AP was initially to be marketed in
form factors with up to 32 chips.)

Although the AP has not yet been commercialized, we can model
its performance in simulation, calibrated using measurements of
beta hardware to which we have access. The AP illustrates the
potential efficiency of native-hardware acceleration for pattern
matching. In fact, using the AP as motivation, we have found that
the acceleration is so dramatic that other algorithms, never previ-
ously considered for an automata implementation, can outperform
alternative algorithms by using automata acceleration like the AP;
see the complete list of application on the AP in [30].

REAPR, An FPGA Implementation of NFAs: In fact, the po-
tential of NFA acceleration can be realized using FPGAs, which are
commodity hardware and are even available in Amazon’s EC2 F1
cloud service. Our implementation of NFAs on FPGAs, Reconfig-
urable Engine for Automata PRocessing [35], is an "end-to-end",
high throughput and scalable engine for generic automata pro-
cessing on FPGAs. FPGAs provide a large pool of logic blocks and
reconfigurable routing, and can be configured by users to imple-
ment a specific algorithm by mapping directly to these hardware
resources. As mentioned before, for NFA processing, we map STEs
to logic blocks and use the reconfigurable routing network for next-
state activation. We use the FPGAs Block RAM to buffer reports.
Therefore, similar to the AP, all automata/regexes to be matched can
be laid out on the hardware, and match against the input sequence
in parallel. Depending on the specific NFA, a typical FPGA can
provide capacity equal to several AP chips. The FPGA also provides
a higher frequency. For example, the max frequency supported by
the Amazon EC2 F1 FPGA is 250MHz

The compilation results show that one AP chip can accommodate
about 2050 POS tagging regexes. It means one AP board (32 chips)
can accommodate more than 65,000 regexes. For now, the largest
rule sets supported on EC2 F1 FPGA is 2,560, because of the limited
hardware resources (specifically, the number of memory banks) on
the EC2 F1 boards. One may change the configuration of REAPR or
utilize a larger FPGA board to support larger rule set. We are also
working on supporting mores rules for limited hardware resources,
such as design fast overlay automata processing engine on FPGA
or using multiple FPGA boards. These are left for future work.

3 METHODOLOGY
Rule-based part-of-speech tagging is a challenging task on CPUs
when the tagging rule set becomes larger and more complex, while
the AP and FPGA excel in parallel rule matching even for large
numbers of rules. In this section, we show how to implement the
tagging task as a parallel regex matching task on these hardware
accelerators, including converting tagging rules to NFAs and en-
coding the input string. Then, we describe how to prepare tagging
rules and input text for applying to the AP and the FPGA. Further-
more, we discuss matching results in the post-processing phase and
method of tagging rules with character-level features.



3.1 Tagging Rules and Input Text Preparation
We create POS tagging rules based on the fnTBL [20] rule-set tem-
plate. A rule template defines a dependency pattern in the tagging
context without assigning specific tags or words. For example, a
rule templatew−1,w0 (previous tag and current word) means that
the tagger will check the previous part-of-speech tag and current
word to determine if the current tag needs to be corrected. Specific
rules can be derived from rule templates by filling in specific part-
of-speech tags and words. The fnTBL rule-set with 37 templates is
shown in Table 1. For comparison, we also show the original Brill
tagging rule-set with 24 templates.

Table 1: The fnTBL Template Set (37 Templates)

w0,w1,w2 *w0 * (t1, t2, t3)
w−1,w0,w1 *w1 * (t−3, t−2, t−1)
w0,w1 *w−1 * t1,w0,w1
w0,w−1 *w2 t1,w0,w−1
w0,w2 *w−2 * t−1,w−1,w0
w0,w−2 * t−1, t1 t−1,w0,w1
* (w1,w2) * t1, t2 t−2, t−1
* (w−2,w−1) * t−1, t−2 t1, t2
(w1,w2,w3) * t1 t1, t2,w1
(w−3,w−2,w−1) * t−1 —
w0, t1 * t2 ** (w−1,w0)
w0, t−1 * t−2 ** (w0,w1)
w0, t2 * (t1, t2) **w−1, t−1
w0, t−2 * (t−2, t−1) **w1, t1

* Original Brill templates (24 templates) in the fnTBL sets
** Original Brill templates that are not in the fnTBL sets
() If a specific tag or word is contained in this range

We use the Brill tagger to learn tagging rules, which requires
tagged training data and a set of rule templates. We choose the Penn
Treebank corpus and the Brown corpus as training data. During
training, the Brill tagger generates specific tagging rules based on
the rule templates, ranks learned rules by score and picks the top-k
rules as learned results. The score of a tagging rule is defined as
Equation 1, where Nf ixed is the number of places that a rule can
change an incorrect tag to a correct tag, and Nbroken is the number
of places that a rule changes a correct tag to an incorrect tag. A
match will not be counted if a rule changes an incorrect tag to
another incorrect tag. A higher score means the the rule can correct
more tags in training data while limiting incorrect tag changes.

Score(rule) = Nf ixed − Nbroken (1)
There are two steps for performing a typical rule-based POS

tagging on testing data. The first step is to tag the input text initially
with a light-weight tagger such as the unigram or bigram tagger.
The second step is to correct initial POS tags using learned tagging
rules. We use various baseline taggers for the first step, which can
be done fast but may have low tagging accuracy. Then we extract
the outputs of the first step, which contains the original text and
initial part-of-speech tags, and use them as the input data for our
rule matching experiments on the hardware accelerators.

Figure 1: POS Tagging workflow on the AP and FPGA.

3.2 Accelerating Rule-Based POS Tagging on
the AP and FPGA

In order to to accelerate the rule-based POS tagging using the
AP and the FPGA, we implement the multi-rule tagging task as a
parallel regex matching task on the hardware accelerators. Figure 1
represents the workflow of rule matching for updating the baseline
tags on the AP and FPGA. We first convert all learned tagging
rules to regular expressions and then convert regular expressions
to ANML representation [10], which is an XML-based file format
expressing finite state machines and connections, used on the AP
and FPGA. For the AP, we compile these rules directly onto the
hardware usingMicron’s compiler, and for the FPGA,we use REAPR
to generate an FPGA configuration as an xclbin and use Amazon’s
toolchain to create an Amazon FPGA Image (AFI) for the xclbin file.
If users use their own FPGAs on local nodes, they do not need to
create the AFI. Then, for both the AP and the FPGA platforms, we
stream in the encoded input text (e.g., encoded Treebank) to match
against all rules. The matching results can tell us which tags match
a learned rule and thus needs to be corrected. The hardware will
report these results back and the CPU can correct the corresponding
tags. For the AP and FPGA, we apply padding in both NFAs and
input text to support different degrees of look ahead in tagging rules,
so that we can get matching results from the AP synchronously
(see below).

Tagging Rules to Regular Expressions Conversion: Table 2
shows how to convert each tagging rule to a regular expression. For
rules with fixed words or tags, we directly fill in the words and tags
into regex templates. For rules that check if a word or a tag is in a
range, we use the regex string-OR operation to represent them. An
example rule with ranges derived from template ‘(w−3,w−2,w−1)’
is shown below. It means that, if the word ‘hadn’t’ is shown in last



three words, we need to correct the current tag from VBD to VBN,
i.e. from past-tense verb to past-participle verb.

VBD → VBN: if Word:hadn’t@[-3,-2,-1]

We use string-OR regex syntax to capture the cases when such
a word may appear at any places in the range. A regex for the
above range rule is shown below. The string-OR regex syntax can
be efficiently converted to NFAs with branches, which the AP and
FPGA support.

/\s+(hadn’t\/[ˆ\s]+\s+[ˆ\s]+\s+[ˆ\s]+|
ˆ\s+\s+hadn’t\/[ˆ\s]+\s+[ˆ\s]+|
ˆ\s+\s+[ˆ\s]+\s+hadn’t\/[ˆ\s]+)

\s+[ˆ\s]+/VBD\s/

Padding Technique: In the fnTBL template set, there are rules
with 0 to 3 look-ahead steps, i.e. the tag of a word may depend on
somewords ahead of itself. If we directly convert these rules to NFAs
and match them with the input word sequence on the hardware,
we may get matching results of the same word asynchronously, i.e.,
for a specific word, some matching results may appear at the end of
this word, while some matching results may appear after streaming
in one or two or three more words. This would introduce more
overhead when applying the results to update tags. For example,
this could occur in a rule derived from template ‘w0,w1,w2’, which
looks two words ahead to determine whether to correct current
tag.

To solve such problems, we use a padding technique. We first
analyze the maximum look-ahead step in the rule template set, then
pad all rules to this maximum look-ahead, so that we can delay
some early matching results. The padding technique only consumes
a marginal amount of hardware resources for each tagging rule,
e.g., two extra NFA state elements for each look-ahead padding step.
With this padding technique, the hardware accelerators can con-
duct regex matching in parallel for consecutive words and tag the
words in a pipelined fashion. This technique can generate matching
results for each word synchronously, which improves throughput
and simplifies the following step. With the padding technique, the
output is a vector of 0s and 1s, from which we know which tag-
ging rules are triggered and whether the input POS tag needs to be
corrected.

3.3 A Working Example
In the training phase of rule-based POS tagging, the following rule
has been learned from the Treebank corpus.

NN → JJ if Word:the@[-1] & Word:future@[0]
& Word:growth@[1]

It means ifword[−1] == the , andword[0] == f uture , andword[1] ==
дrowth, and taд[0] == NN , then, replace taд[0] which is NN with
J J . The rule is then converted to the following regular expression
(according to Table 2):

/\s+the\/[ˆ\s]+\s+future\/NN\s+growth\/[ˆ\s]+\s/

Assume that the maximum look-ahead step is 3, this regular expres-
sion is padded to three look-ahead words as follows:

/\s+the\/[ˆ\s]+\s+future\/NN\s+growth\/[ˆ\s]+\s/
+[ˆ\s]+\s/+[ˆ\s]+\s/

Figure 2 shows the generated automaton on the AP/FPGA for the
padded regular expression. The automata generate a report (in the
“report” state shown in the figure) when the input stream matches
the padded regular expression.

Figure 2: An example automaton for a regex rule with
padding.

Such automata are stored on the AP/FPGA and the input se-
quence will be streamed into the hardware. The input string is
the baseline-tagged word sequence with dummy word-tag pairs
between sentences.2

Assume the sentence we intend to tag is ”the future growth of
our economy”. After applying the baseline tagger, the words are
initially tagged as follows:

the/DT future/NN growth/NN of/IN our/PRP economy/NN

We encoded the input string with sentence delimiters as follows:

the/DT future/NN growth/NN of/IN our/PRP economy/NN
./. ./. ./.

The regex rule mentioned above matches the input string at the
space character right after ’our/PRP ’, so we need to correct the tag
for future to JJ.

The encoded text is matched against all the tagging rules in
parallel. If multiple tagging rules match the input, the tag is updated
using the rule with higher score.

One can find the details of our implementations here.3

2An example input sentence can be separated by space using word-tag pairs, e.g.
“word0/taд0 word1/taд1 word2/taд2 ...”. If the tagging rules are learned at the
sentence-level, we need to use dummy word-tag pairs to separate adjacent sentences,
so that the boundary words will not affect other sentences during regex matching, e.g.
“sentence0 ./. ./. ./. sentence1 ...”. The number of dummy word-tag pairs
depends on the maximum look-ahead steps in the rule template set.
3https://github.com/elaheh-sadredini/BrillPlusPlus



Table 2: Converting Tagging Rules to Regexes

Rules Regex
Regex rule templates ...word−1\/tag−1\s+word0\/tag0\s+word1\/tag1\s+word2\/tag2\s+word3\/tag3\s
A known word “word” word

An unknown word [ˆ\s]+

A known tag “NN” NN

An unknown tag [ˆ\s]+

Word tag delimiter \/

An unknown word-tag pair [ˆ\s]+

A word “word” in a range 1 to 3 (word\/[ˆ\s]+\s+[ˆ\s]+\s+[ˆ\s]+|[ˆ\s]+\s+word\/[ˆ\s]+\s+[ˆ\s]+|
[ˆ\s]+\s+[ˆ\s]+\s+word\/[ˆ\s]+)

Table 3: Testing accuracy of the Brill tagger with different baseline taggers with 5-fold cross validation on the Treebank corpus
and Brown news corpus.

Baseline Treebank Brown (News) Entire Brown
Baseline Brill (24) fnTBL (37) Baseline Brill (24) fnTBL (37) Baseline Brill (24) fnTBL (37)

RU 91.37 93.76 93.82 87.58 91.03 91.14 92.60 94.36 94.55
RUB 92.26 92.60 92.65 88.59 89.55 89.71 92.69 94.45 94.59
RUBT 92.16 92.32 92.37 88.51 89.28 89.37 92.74 94.18 94.31

3.4 Character-Level Regex Features
Character-level regex can capture features inside a word, which
can be more discriminative in POS tagging task. Some example
character-level features that can be important include hyphens,
uppercase letters, specific prefixes or suffixes, root words, or words
with mixed digits and letters. Since the AP and FPGA excel at
general regex matching, it will be interesting future work to extend
the tagging rule set to include rules with character-level features
without significant performance overhead.

4 EXPERIMENTAL RESULTS
4.1 Execution Environment and Data Sets
We perform experiments on a Linux server with a 3.3GHz Intel
Core-i7 5820k CPU and 32GB DDR4 RAM. GPU experiments use an
NVIDIA K80 in this same system. We use taggers in NLTK 3.2.1 in
Python 2.7 as our baseline taggers. In addition, NLTK contains Java
interface for running the Stanford log-linear tagger (3.6.0). For all
measurements, I/O times are excluded, assuming data are already
loaded.

We use the Penn Treebank and Brown corpora, the built-in cor-
pora in NLTK, as our datasets. The Penn Treebank corpus contains
199 tagged documents (wsj_0001 to wsj_0199), 3,914 sentences and
100,676 words. The Brown corpus contains 500 documents, 57,340
sentences and 1,161,192 words. Some experiments are performed
using just the news category of the Brown corpus, which has 44
documents, 4,623 sentences and 100,554 words.

On both the AP and FPGA, because all regexes are processed in
parallel, a new input symbol can be processed every clock cycle.
The kernel execution time of the AP is estimated, because fully-
functional AP hardware is not yet available. But it is simple to
estimate, because with the input processing rate fixed at one char-
acter per cycle at 133 MHz, throughput is 133MB/s. The kernel

execution time on FPGA is evaluated on the Amazon EC2 F1 in-
stance equipped with a Xilinx Virtex UltraScale VU9P FPGA and
four memory banks. The synthesized clock rate can vary with rule
complexity, with a maximum of 250 MHz. The deployment on F1
also allows other users who have access to EC2 to easily use our
proposed method or reproduce the results.

4.2 Accuracy of the Brill Tagger
In order to study how baseline taggers affect the overall testing
accuracy of a rule-based tagger like Brill, we evaluate the accuracy
of Brill tagger using unigram tagger (U), bigram tagger (B), and
trigram tagger (T) as the baseline on Treebank, Brown News, and
entire Brown corpus with 5-fold cross validation on the datasets.
We also test the Brill tagging testing accuracy with both the original
24 rule templates and the fnTBL 37 rule templates.

Results are shown in Table 3. For each corpus, the first column
(Baseline) represents the baseline testing accuracy for the corre-
sponding baseline tagger. The second and third columns show test-
ing accuracy when using the corresponding baseline tagger as their
back-off tagger for 24 rule-templates and fnTBL 37 rule-templates
respectively. The maximum number of rules generated for Brill is
500 for this experiment.

For the unigram tagger, we use the regex tagger as its backoff
tagger (denoted as RU). The regex tagger (R) can assign tags to
words based on common rules, such as defining “.*able” as adjective
and defining “.*ness” as noun. Since we only use 9 common rules, the
accuracy of pure regex tagger is very low (23.92% on the Treebank
corpus, 30.41% on the Brown news corpus, and 29.61% on the entire
brown corpus). For the bigram tagger, we use the unigram tagger
as the backoff of the bigram tagger (denoted as RUB). Finally, for
the trigram tagger, we use the bigram tagger as the backoff of the
trigram tagger (denoted as RUBT).

Results show that by choosing the unigram tagger (RU) as the
baseline, the Brill tagger achieves the highest testing accuracy for



Table 4: Testing accuracy (%) and testing time (in seconds) for Brill++ on CPU, AP, and FPGA for Treebank and Brown (news)
corpora while increasing the number of tagging rules.

#Rules Treebank Brown (News)

Test Acc (%) Test Time (second) Test Acc (%) Test Time (second)
CPU AP FPGA CPU AP FPGA

100 93.57 0.23 0.0015 0.0008 90.36 0.345 0.0015 0.0008
200 93.73 0.37 0.0015 0.0008 90.78 0.475 0.0015 0.0008
300 93.76 0.52 0.0015 0.0009 91.00 0.594 0.0015 0.0009
400 93.82 0.55 0.0015 0.0009 91.09 0.720 0.0015 0.0009

Table 5: Testing accuracy (%) and testing time (in seconds) for
Brill++ on CPU, AP, and FPGA for the entire Brown corpus
while increasing the number of tagging rules.

#Rules

Entire Brown Corpus
Test Acc(%) Test Time (second)

Brill++ Brill++ Brill++
RU RUB CPU AP FPGA

100 93.48 94.02 2.40 0.0172 0.0093
200 93.98 94.28 3.82 0.0172 0.0093
300 94.25 94.41 5.44 0.0172 0.0098
400 94.43 94.52 6.90 0.0172 0.0098
500 94.58 94.6 8.40 0.0172 0.0098
1000 94.90 94.8 15.7 0.0172 0.0098
2000 95.17 94.91 30.05 0.0172 0.0157
3000 95.25 94.94 40.02 0.0172 NA
4000 95.29 94.96 44.59 0.0172 NA

Treebank and Brown (news) corpora, which is 1% more than choos-
ing other taggers as baseline taggers. The reason for this is that
Treebank corpus and Brown (news) are small, so there are many
unseen words in the bigram and trigram taggers, and they may
overfit the training data. Interestingly for entire Brown corpus, by
using bigram tagger (RUB) as the baseline tagger, the brill tagger
achieves the highest testing accuracy. This is because there are
fewer unseen words in the bigram tagger model for larger datasets.
Furthermore, for all corpora, the larger rule template set (fnTBL
37) helps to improve the accuracy. This shows that more diverse
and complex template for rule-set is beneficial to accuracy, but
processing them on the CPU is very time-consuming, and this is
where having a hardware accelerators can play an important role.

4.3 Brill tagging with different number of rules
In the training phase of Brill tagging, we can set a score threshold
and the number of rules to be learned. More rules usually lead
to higher training/testing accuracy, although too many rules may
cause overfitting. In this section, we show that a larger number
of rules significantly increases computation time on the CPU and
slows down the training and testing speed. However, the AP and
FPGA shows a constant or near-constant processing time for test-
ing when the number of rules increase. In this work, we focus on
improving the testing time, because the learning phase is executed
rarely, and the results are used many times for new texts.

Table 4 presents the testing accuracy and testing time (for rule-
matching stage) of the Brill tagger when increasing the number of

generated rules on Treebank and Brown news corpora. We refer to
Brill as Brill++ when using our approach for increasing the number
of rules. We choose the unigram tagger as the baseline tagger, and
learn 100 to 400 rules from the training folds based on the fnTBL 37
rule templates (based on the results in Section 4.2, unigram tagger
and fnTBL rule templates perform better). We observe that testing
accuracy improves in both corpus when increasing the number of
learned rules.

Table 4 also shows rule-matching time, i.e., the testing stage, for
the Brill++ tagger on the CPU, AP, and FPGA for the Treebank
and Brown news corpora. The testing time of the Brill tagger on
the CPU is proportional to the number of rules and it increases
when generating more rules. However, the computation time on
the AP remains constant (0.0015 seconds) as long as the rule-set
can fit on the AP board. Moreover, the computation time for the
FPGA is even less than the AP, which is about 0.0009 second for
both corpora. This is because all the rules configured on the AP
and FPGA can be matched against the input stream (the baseline
tagged word sequence) in parallel at the rate of 133MB/s for the AP
and 250MB/s for the FPGA.

We perform a set of similar experiments on the entire Brown
corpus, which has 500 documents and 1.16 million words. Table 5
shows the testing accuracy of Brill++ when the number of rules
increases from 100 to 4,000. We run the experiments for Brill++
using both unigram tagger and bigram tagger as the back-off tagger,
with baseline accuracy of 92.60% and 92.69% respectively. Accuracy
is improved up to 95.21% when increasing the number of learning
rule from the training folds. In Section 4.2, we observed that bigram
tagger performs better as the baseline tagger for Brill on the entire
Brown corpus. However, when increasing the number of rules, we
see that the unigram tagger starts to perform better. This implies
that more tagging rules work best with a simpler baseline tagger.
Therefore, we use unigram tagger as a reliable baseline tagger for
rule-based taggers, independent of the corpus size.

Table 5 also presents the rule-matching time for the Brill++ tag-
ger on the CPU, AP, and FPGA for the full Brown corpus. The length
of input string generated from testing folds of the Brown corpus
is about 2.3MB and the AP frequency is 133MB, so the AP testing
time is only 17ms (calculated as 2.3MB / 133MB/s). The FPGA rule-
matching kernel is around 2× faster than the AP, and this is because
the rule processing frequency on the FPGA is higher than the AP
(about 250MB/s). However, the testing time of the Brill++ on the
CPU consumes up to 44.59 seconds.

As a result, if we only compare the matching part, that is, de-
ducting the baseline tagging time from the Brill++ tagging time,



the AP and FPGA can achieve up to 2600× and 1914× speedup over
the CPU-based implementation respectively.

4.4 Performance Discussion and Future Work
Errors in initial stages of an NLP pipeline have negative effects on
the overall accuracy. Therefore, the main focus of many state-of-the-
art POS taggers is to improve the accuracy. However, the runtime of
POS taggers is very important for time-sensitive tasks (e.g., online
machine translation). Therefore, in this section, we discuss the
trade-off between accuracy and time for different methods.

Table 6 shows training time, testing time, and testing accuracy
of rules-based, statistical-based, and neural network (NN)-based
approaches on Treebank and entire Brown corpora. Testing times
for Brill and Brill++ include both baseline tagger and rule-matching
stages. For the Brill++ (AP-FPGA*), numbers on the parenthesis
with asterisks represent testing time for the FPGA. The TnT (Tri-
grams’n’Tags) tagger [4] is a statistical POS tagger based onMarkov
models. The Stanford POS tagger [13] is also a statistical POS tagger
based on a maximum-entropy model. The Stanford tagger is pre-
trained on the TreeBank corpus, so we do not report the training
time for that. Moreover, because the Stanford tagger is trained on
Treebank, its accuracy on Brown corpus is low. The Perceptron
tagger (or averaged Perceptron tagger) is a one-layer NN-based so-
lution. TnT, Perceptron, and Stanford Taggers are all from the NLTK
package4. LSTM5 is a bidirectional long-short term memory tagger
using conditional random field (CRF). LSTM is based on word-level
features while LSTM-ChE employs character embedding features
in addition to word-level features (both run on the K80 GPU). The
testing time is measured using mini-batch size of 20.

The TnT tagger has the lowest accuracy and the longest testing
time. However, it has the shortest training time. The Perceptron
tagger has the highest accuracy among the methods that does not
use character-embedding information, for both corpora. However,
its testing time on the CPU is up to 58× slower than Brill++ on the
AP and the FPGA. Perceptron tagger would have a better perfor-
mance on GPUs and will be an interesting point of comparison for
the future work. Brill++ has the second highest testing accuracy
and by far the lowest testing time (on the AP and FPGA) among
the taggers that does not use character-embedding features. The
training time of the rule-based approach is higher than Perceptron
tagger. Although the training is conducted just once and the rules
are used multiple times for the unseen textual data, accelerating
the training phase of Brill++ using the AP or the FPGA or other
hardware accelerators is an interesting area for future work.

We ran LSTM and LSTM-ChE for 7 epochs on the Treebank
corpus and 4 epochs on the Brown corpus. Results show that by
adding character-embedding feature to LSTM-ChE, the accuracy
can increase by 6.85%. Clearly, LSTM-ChE achieves the highest
accuracy among other methods; however, testing time of Brill++
on the AP/FPGA is still 253%× less than LSTM-ChE on the GPU.

Most state-of-the-art POS taggers that report high accuracy
(about 96%- 97%) take advantage of character-level features in addi-
tion to word-level features [14, 19, 25]. A recent study on machine-
learning-based POS taggers [36] compares the accuracy of three

4http://www.nltk.org/api/nltk.tag.html
5https://github.com/guillaumegenthial/sequence_tagging

state-of-the-art taggers, MarMot6 (a generic conditional random
field framework), bilstm-aux7 (bidirectional long-short term mem-
ory tagger) and its own CNN-based tagger for three variations
of input features: word only, character only, and word-character
combination ([36], Table 1). The results show that combining word
feature and character feature can increase the accuracy by 2%-3%.

Compared to word-level POS taggers, Brill++ achieves competi-
tive accuracy with a superior short runtime. Based on the character-
level POS tagger study, we hope that adding character-level rules
will increase the accuracy of rule-based POS taggers by a similar
margin, and make Brill++ fully competitive in accuracy to these
statistical/ML-based approaches with superior efficiency. The AP
and FPGA have plentiful capacity to extend the tagging ruleset with
character-level features while maintaining good runtime.

5 RELATEDWORK
Regex matching is an important computation kernel in many appli-
cations. However, the efficiency on CPUs is not satisfying due to
memory bandwidth limitations. Therefore, several regular-expression
processing hardware acceleration methods have been proposed.
Micron’s AP is an efficient semiconductor architecture for paral-
lel automata processing [10]. It uses a non-von-Neumann recon-
figurable architecture, which directly implements NFAs in hard-
ware, to match complex regular expressions in parallel. REAPR is
a reconfigurable engine for automata processing on the FPGA. It
provides a flexible framework which synthesizes RTL for applica-
tions involving automata processing with high throughput [35].
iNFAnt2, an optimized version of iNFAnt, is a prototype framework
for NFA-based automata processing on NVIDIA CUDA-enabled
GPU cards [30], and DFAGE89 is a DFA-based automata process-
ing on GPU. However, neither GPU automata processing engine
provides clear advantages over CPU, let alone AP/FPGA [30] [2];
therefore, we focus on the AP and FPGA in our paper. Both the
AP and FPGA have been proved their strengths in many different
applications [3, 24, 29, 32–34].

We are aware of very little work to accelerate POS tagging. A
recent study [37] of Brill tagging on the AP shows 30x to 270x
speedup over the CPU solution. However, [37] only uses 218 rules
in Brill and only evaluates them on a small dataset (e.g. picking 5
sample files from the Brown corpus). Furthermore, they just present
the speedup for the second stage of the testing phase, which is
simply the rule-matching. However, in our paper, we focus on
scalability with number of rules and on accuracy, generating more
complicated rule template sets and creating up to 4,000 newly-
learned rules using the entire Brown corpus (containing 500 sample
files), and achieve a better accuracy than [37]. We also study the
performance improvements for the whole testing phase (both the
baseline tagger and rule-matching stages). Moreover, [37] uses a
character position array to process various look-ahead steps among
rules, while we propose a padding technique to synchronize the
reports from the AP, which works much faster and significantly
simplifies the post-processing of the match-reports.

6http://cistern.cis.lmu.de/marmot/
7https://github.com/bplank/bilstm-aux
8https://github.com/vqd8a/DFAGE
9https://github.com/vqd8a/iNFAnt2



Table 6: Timing/accuracy trade-off for different methods on Treebank corpus and entire Brown corpus.

Method Character Treebank Entire Brown
Embedding Train Time (s) Test Time (s) Test Acc Train Time (s) Test Time (s) Test Acc

Brill (CPU) No 27.21 0.55 93.82 4980 45.43 95.29
Brill++ (AP-FPGA*) No 27.21 0.091 (0.090*) 93.82 4980 0.837 (0.835*) 95.29

TnT (CPU) No 0.46 157 89.95 3.74 15736 94.05
Stanford Tagger (CPU) No NA 3.39 91.30 NA 117.58 62.86

Perceptron (CPU) No 17.01 0.82 95.89 941 48.61 96.24
LSTM (GPU) No 210.64 1.25 89.3 1832 184.29 91.7

LSTM-ChE (GPU) Yes 223 2.78 96.15 2676 212.06 96.67

6 CONCLUSIONS
The main objective of this paper is to motivate re-consideration of
rule-based approaches when real-time computation is needed for
NLP applications. To this end, we utilize two state-of-the-art accel-
erators, the Automata Processor and FPGA, and propose an efficient,
rule-based POS tagging approach. We observe that increasing the
number of rules, especially from more diverse template-sets and in
a larger corpus, results in a higher accuracy that nearly matches
the accuracy of statistical/ML-based approaches. Increasing the
number of rules only adds minor computational overhead on the
AP and FPGA, while the processing time of CPU solutions increases
linearly with the number of rules. This is because both hardware
accelerators can process a large number of rules against the input
corpus in parallel, due to their abundant hardware resources that
lay out all the rules in space for concurrent processing. The results
show orders-of-magnitude speedup over CPU-based solutions, thus
providing NLP application designers with a tradeoff between losing
a small amount of accuracy (approximately 1%) in exchange for
much faster processing.
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