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ABSTRACT  

Recent experiments have revealed that a variety of associative polymers with different architecture 

(linear and branched) and different nature of the associating interaction (associative protein 

domains and metal-ligand bonds) exhibit unexplained superdiffusive behavior. Here, Brownian 

dynamics simulations of unentangled coarse-grained associating star-shaped polymers are used to 

establish a molecular picture of chain dynamics that explains this behavior. Polymers are 

conceptualized as particles with effective Rouse diffusivities that interact with a mean field 

background through attachments by stickers at the end of massless springs that represent the arms 

of the polymer.  The simulations reveal three mechanisms of molecular diffusion at length scales 
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much larger than the radius of gyration: hindered diffusion, walking diffusion, and molecular 

hopping, all of which depend strongly on polymer concentration, arm length, and the 

association/dissociation rate constants. The molecular model establishes that superdiffusive 

scaling results primarily from molecular hopping, which only occurs when the kinetics of 

attachment are slower than the relaxation time of dangling strands.  Scaling relationships can be 

used to identify the range of rate constants over which this behavior is expected.  The formation 

of loops in the networks promotes this superdiffusive scaling by reducing the total number of arms 

that must detach in order for a hopping step to occur. 

 

INTRODUCTION 

Supramolecular networks are an exciting class of soft materials with significant impact in fields 

as diverse as enhanced oil recovery 1, synthetic extracellular matrices for tissue engineering 2, 

injectable biomaterials for minimally invasive surgery 3,4, sacrificial components in tough and 

fatigue resistant physical double networks 5 and self-healing soft materials for autonomous damage 

repair 6. In contrast to their chemically cross-linked counterparts, supramolecular networks are 

formed by temporary physical 7,8,9,10,11,12 or chemical bonds 7,8,13 whose rates of 

association/dissociation govern junction dynamics, and consequently, the rheological response of 

the network 10,11,12,14,15,16,17. As a result of the transient nature of the bonds, associative polymers 

can inherently dissipate part of the stress stored in the network strands, and the constituent 

molecules can diffuse within the networks on length scales greater than their radius of gyration 

1,10,11,12,14,18,19,20,21,22 23,24. This allows the network to dynamically rearrange and to respond to mild 

external stimuli. Therefore, a quantitative description of molecular motion is critical to overcoming 
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important challenges such as predicting the rate of degradation of implantable biomaterials 25, 

determining the time scale of self-healing in networks 26, understanding how cells dynamically 

remodel hydrogels 27, and calculating the rheological response of shear-thinning materials 3. 

Theoretical efforts have addressed supramolecular-network dynamics on the macroscopic and 

molecular levels 14,15,16,17,20,21,22,23,24,28; however, knowledge of diffusive dynamics, especially self-

diffusion, of the network-forming constituents remains limited 10,11,12. Diffusion measurements 

provide a complementary probe of molecular dynamics to rheology, and comparison of dynamic 

theories with diffusion data provides critical insight into the testing and development of dynamic 

models. In addition, diffusion itself is an important dynamic property in many polymeric systems.  

Recent studies 10,11,12,28 have shown that self-diffusive polymer dynamics often contain 

unexpected physics; in particular, apparent superdiffusive scaling regimes (i.e., when the distance 

versus time dependence is stronger than Fickian diffusion) are observed on length scales much 

larger than the radius of gyration of the polymers that make up the gel. Using forced Rayleigh 

scattering (FRS), Tang et al. 10,11,12 observed such superdiffusive regimes in metal coordinate star-

polymer gels and associative linear coiled-coil protein gels. These non-Fickian scaling regimes are 

not predicted by the sticky Rouse/reptation theories 21,22,23,24, indicating that the state-of-the-art 

understanding of associative polymer dynamics is incomplete. 

To explain the observed superdiffusive scaling regimes, Tang, Wang, and Olsen 10,11,12 

developed an empirical two-state model where a diffusing species is in dynamic equilibrium 

between a molecular state (“fast”) and an associated (“slow”) state, and molecules can exchange 

between both states by means of first order reactions. Despite its seeming simplicity, the model 

quantitatively captured the transition from superdiffusive scaling at intermediate length scales to 

Fickian diffusion at large scales. In this Fickian regime, the effective diffusivity is governed by 
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the fast-state diffusivity and corresponding fraction of time spent in the fast state, whereas in the 

apparent superdiffusive regime, rate of diffusion is governed by the transition rate between the fast 

and slow diffusing states.  

While the two-state model proved quantitatively accurate in predicting the dynamics of the 

materials, it does not provide insight into the detailed mechanisms underlying these surprising 

observations. Recently, Tirrell and coworkers 28 demonstrated that diffusion of telechelic 

molecules (i.e., with only two associative groups and three molecular associative states) measured 

by fluorescence recovery after photobleaching (FRAP) can be accurately captured by a three-state 

model accounting for all molecular states (zero, one, and two stickers attached to the network). 

While the ability of Tirrell and coworkers 28 to reduce the telechelic system to three states is 

intuitive based on the limited number of molecular configurations, the systems studied by Tang et 

al. 10,11,12 have significantly more than two molecular configurations, making the efficacy of the 

two-state model surprising.  

Here, it is hypothesized that the superdiffusive scaling results from molecular hopping, where a 

molecule detaches completely from the network and diffuses a distance much larger than its own 

size. The goal of this work is to systematically test this hypothesis using molecular simulations. 

Specifically, Brownian dynamics of unentangled coarse-grained associating star-shaped polymers 

(a direct analog to the system studied experimentally in Reference 10) is employed to capture the 

essential physics of self-diffusion in supramolecular networks. The model is validated through 

comparison with previously reported experiments. 

MODEL AND METHODS 

In our model, the supramolecular network is formed by 𝑛 four-armed star-shaped molecules in 

a well-stirred solution of constant volume 𝑉̃. The position of each polymer is tracked by the 
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coordinates of its junction point 𝑟̃𝑖, 𝑖 = 1 … 𝑛. Each arm is a Gaussian chain of 𝑁 Kuhn steps of 

length 𝑏 and friction coefficient 𝜁0, and is decorated with an associative group or sticker at the end 

that can dynamically form connections with other free stickers, as illustrated in Figure 1. The one-

dimensional stochastic differential equation to update the position of molecule 𝑖 is: 

𝑑𝑟̃𝑖 = 𝑑𝑡̃
𝑘

𝜁
∑(𝑎̃𝑖𝑗 − 𝑟̃𝑖)𝑙𝑖𝑗

𝑁𝐴

𝑗=1

+ √
2𝑘𝐵𝑇

𝜁
𝑑𝑊̃𝑖 ( 1 ) 

where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the temperature, 𝑊̃𝑖 is a standard Wiener process (Gaussian 

with zero mean and variance 𝑑𝑡̃) 29, 𝑁𝐴 = 4, 𝑘 = 𝑘𝐵𝑇/𝑁𝑏2 is the strength of the spring constant 

associated with each arm, 𝜁 = 𝑁𝐴𝑁𝜁0 is the total friction coefficient of the molecule, assumed to 

act at the junction point, 𝑎̃𝑖𝑗 is the attachment point of sticker 𝑗 of molecule 𝑖, and 𝑙𝑖𝑗 is a Boolean 

variable that is 0 when the sticker is free or attached to another sticker of the same molecule 

(forming an intramolecular association or loop) and 1 when it is attached to a sticker in a different 

molecule (forming an intermolecular association). As a result, the sum only runs over arms that 

form intermolecular bonds.  
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Figure 1: Schematic view of the association reactions (filled/open symbols represent 

associated/free stickers), the formation of loops and the three main diffusion mechanisms in 

associating star-shaped polymers.  

In previous experiments 10, the polymers are in semidilute conditions and below the 

entanglement concentration, and star arms can be regarded as Rouse chains of correlation blobs 

whose size and terminal time scale with concentration according to 30,31 

〈𝑅2〉 = 𝑅𝑔
2 (

𝜙∗

𝜙
)

2𝜈−1
3𝜈−1

 ( 2 ) 

and  

𝜏𝑅 = 𝜏𝐹 (
𝜙∗

𝜙
)

3𝜈−2
3𝜈−1

 ( 3 ) 

where 𝜙 is the polymer volume fraction (𝜙∗ at overlap conditions), 𝑅𝑔
2 and 𝜏𝐹 are the arm size and 

relaxation time in dilute conditions, respectively, and 𝜈 = 0.588 in a good solvent. In the 

experiments 10, the anomalous diffusive scaling is observed at length and time scales that are much 

greater than the size (𝑅𝑔) and Rouse time (𝜏𝑅) of the arms, respectively. Therefore, in the model, 

the internal molecular degrees of freedom are coarse-grained and the arms are treated as Hookean 

dumbbells. The model represents the center of mass dynamics well even at shorter length and time 

scales, provided that star arms completely relax their conformation during the time that the 

associative group is detached (i.e., 1/𝑘𝐴 ≫ 𝜏𝑅).  

The system is considered to be well stirred so all free stickers can react with each other. It is 

assumed that the attachment reactions are governed by second order kinetics, whereas the 

detachment is first order. Note that in the two-state model of Tang el al. 12 and in the three-state 

model of Rapp et al. 28, association reactions are considered to be first order and pseudo-first order, 
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respectively. In our model, every time 2 stickers form an intermolecular association, they are 

linked virtually but each sticker is effectively attached to the background at point 𝑎̃𝑖𝑗, which is 

selected randomly from a Gaussian distribution centered at the junction point of each molecule 𝑟̃𝑖, 

with variance 𝑁𝑏2. In this work, fluctuations of the attachment points of stickers have not been 

considered and, as the concentration is higher than the overlap, depletion effects in the number of 

intermolecular binding events have been neglected. Whenever two stickers of the same molecule 

create a loop, they are also linked virtually but not attached to the background, so they do not exert 

any force to the molecule junction point. The kinetic constants of attachment and detachment are 

𝑘̃𝐴 (units of volume/time) and 𝑘̃𝐷 (units of 1/time), respectively. The equilibrium constant of the 

association is 𝐾̃𝑒𝑞 = 𝑘̃𝐴/𝑘̃𝐷 (units of volume). 

We evolve the associative state of the stickers by means of a stochastic chemical kinetics 

algorithm. 32 The propensity for intermolecular bonding can be written as: 

𝛼̃𝐵 =
𝑘̃𝐴

𝑉̃
∑ 𝑓𝑖(𝐹 − 𝑓𝑖)

𝑛

𝑖=1

 ( 4 ) 

where 𝑓𝑖 is the total number of free arms of molecule 𝑖, and 𝐹 is the total number of free arms in 

the system. The propensity for looping reactions can be written as: 

𝛼̃𝐿 =
𝑘̃𝐴

𝑉̃𝑠𝑝𝑎𝑛

∑ 𝑓𝑖(𝑓𝑖 − 1)

𝑛

𝑖=1

 ( 5 ) 

where 𝑉̃𝑠𝑝𝑎𝑛 = 4𝜋〈𝑅2〉
3

2/3 = 4𝜋𝑁3/2𝑏3/3 is the volume spanned by one molecule and the sum 

runs over molecules with more than one free arm. At overlap conditions, 𝑉̃ = 𝑛𝑉̃𝑠𝑝𝑎𝑛, which allows 

to express the system concentration as 𝜙∗/𝜙 = 𝑉/𝑛𝑉𝑠𝑝𝑎𝑛 = 𝑉̃/𝑛𝑉̃𝑠𝑝𝑎𝑛. The bond dissociation 

reaction is the same independently of the bond being a loop or an intramolecular association. At 
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any time, the total number of bonds in the system is equal to (𝑛𝑁𝐴 − 𝐹)/2, so the total propensity 

for detachment is:  

𝛼̃𝐷 =
𝑘̃𝐷

2
(𝑛𝑁𝐴 − 𝐹) ( 6 ) 

Each time step, Δ𝑡̃, the stochastic differential equation ( 1 )  is updated using an explicit Euler-

Maruyama first order algorithm 29, and the states of the stickers are updated using the tau-leap 

algorithm 32,33. In this algorithm, the number of bonding, looping and detachment reactions are 

calculated by drawing random numbers from a Poisson distribution with mean and variance given 

by the product of the corresponding propensities, equations ( 4 ), ( 5 ) and ( 6 ), and the time step 

Δ𝑡̃.30,32 Within each reaction channel (B, L and D), the propensities of all possible reactions are 

equal, and thus the actual stickers that attach or detach are chosen randomly among all available 

candidates for each reaction. The simulations are run at equilibrium and the number of molecules 

𝑛 is large enough so that the leap condition is satisfied for the typical time steps used to update 

molecule positions 33.  

The arm size √𝑁𝑏2 and Rouse time 𝜏𝑅 = 𝑁𝜁0/𝑘 = 𝑁2𝜁0𝑏2/𝑘𝐵𝑇 are chosen as the units of length 

and time in the system, respectively. In these units, the stochastic differential equation ( 1 ) 

becomes: 

𝑑𝑟𝑖 =
𝑑𝑡

NA
∑(𝑎𝑖𝑗 − 𝑟𝑖)𝑙𝑖𝑗

𝑁𝐴

𝑗=1

+ √
2

NA
𝑑𝑊𝑖 ( 7 ) 

and the kinetic constants have the following expressions: 

𝑘𝐴 =
𝜏𝑅

(𝑁𝑏2)
3
2

𝑘̃𝐴 

𝑘𝐷 = 𝜏𝑅𝑘̃𝐷 

( 8 ) 
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𝐾𝑒𝑞 =
𝐾̃𝑒𝑞

(𝑁𝑏2)
3
2

 

The dimensionless volume spanned by a molecule is equal to 𝑉𝑠𝑝𝑎𝑛 = 4𝜋/3. The expressions for 

the non-dimensional propensities are equivalent to equations ( 4 ), ( 5 ) and ( 6 ) but without the 

tildes. In total, the model has five parameters: 𝑘𝐴, 𝐾𝑒𝑞, 𝑅𝑔, 𝜏𝐹 and 𝜙.  

At every time step Δ𝑡, each sticker on the diffusing polymer may undergo one of four possible 

events (see Figure 1):  (1) remain unreacted, (2) form a loop (intramolecular attachment), (3) form 

a bridge (intermolecular attachment), or (4) detach from a loop or bridge. Sticker association is 

considered in a mean-field sense: the probability of association of a sticker takes into account the 

state of all stickers in the system. For each time step, B, L and D reactions and the molecules that 

react within each channel are sorted randomly to avoid bias.  

In FRS measurements 12, two coherent laser beams of wavelength 𝜆 cross at an angle 𝜃 inside a 

sample where a small fraction of tracer molecules have been labelled with chromophores. By 

constructive interference, the laser beams create a one-dimensional sine-shaped interference 

pattern of period 𝑑 = 𝜆/2sin (𝜃/2) in the sample. The chromophores are bleached in the higher 

intensity regions of the interference grating, effectively creating a sinusoidal concentration profile 

of non-bleached molecules. The diffusion of the tracers with time destroys the grating and, by 

tracking the decay of the scattered intensity of the sample as a function of time, it is possible to 

extract the characteristic relaxation time 〈𝜏〉 of the system as a function of the grating period 𝑑. 

For a substance diffusing in the Fickian regime, the relationship between 〈𝜏〉 and 𝑑2 is linear with 

slope given by 1/4𝜋2𝐷, where 𝐷 is the molecular self-diffusion coefficient.  
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Figure 2: Schematic of the algorithm for the simulation of an FRS experiment. b) Molecules are 

initially distributed in the domain [−𝑑/2 , 𝑑/2] according to a sinusoidal probability distribution 

(panel b). a) At time 𝑡, molecule A has two free stickers (green dots) and another two attached to 

the background (red dots), while molecule B has four free stickers. A and B diffuse over a mean-

field background made of free and attached stickers (faded green and red dots, respectively), 

representing the current state all the stickers in the system. During the time step Δ𝑡, the centers of 

mass of A and B move according to Eq. (7) and the states of their stickers, as well as the states of 

the background stickers, change according to the stochastic reaction rules, with propensities given 

by Equations (4-6).  b) Due to the molecular motion, the density distribution of molecular centers 

of mass evolves, as seen here for a system of 𝑁 = 105 star molecules with 4 arms, 𝑘𝐴 = 0.0025, 

𝐾𝑒𝑞 = 5, at overlap concentration, at times 𝑡 = 0 and 𝑡 = 7.28. c) Normalized intensity decay 

calculated by Fourier transforming the distributions in (b), with the highlighted times 𝑡 = 0 (black 

symbol) and 𝑡 = 7.28 (red symbol). 
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In order to model FRS experiments 10,11,12, a large ensemble 𝑛 =105 of molecules, whose 

stickers’ states have been previously equilibrated, are randomly distributed in a one-dimensional 

periodic domain of length 𝑑 with normalized probability distribution 𝑝(𝑥) = (sin(2𝜋𝑥/𝑑) +

1)/𝑑 that represents the initial one-dimensional sinusoidal concentration profile of bleached dye-

label molecules created during the writing interval of the FRS experiment,  where 𝑑 denotes the 

period of the grating 10,11,12 (see Figure 2b). In order to distribute the molecules randomly according 

to 𝑝(𝑥), we first calculate 𝑃(𝑥) = ∫ 𝑝(𝑥)𝑑𝑥 and use the standard transformation method described 

in section 7.2 of Numerical Recipes 34. Then, the molecules are allowed to evolve (see Figure 2a) 

and, periodically, a normalized histogram of molecular positions in the 1D domain is built (see 

Figure 2b). This histogram is Fourier transformed, and the amplitude of the longest mode at that 

time, 𝐼(𝑡), is calculated, which corresponds to the scattered intensity measured in the experiments. 

The simulations are run at equilibrium; therefore, the distributions of the states of the stickers is 

constant with time. As molecules diffuse over time, this intensity decays monotonically towards 

zero (see Figure 2c). To obtain the characteristic time, 〈𝜏〉, an exponential function is fit to the 

resulting transient 𝐼(𝑡)/𝐼(0) data. For intermediate values of 𝑑, the intensity shows two relaxation 

modes. A sum of two exponentials is used to fit 𝐼(𝑡)/𝐼(0) and ⟨𝜏⟩ is determined as the longest of 

the two relaxation times (details about the fitting procedure are provided in Section 3 of Supporting 

Information). Resulting characteristic times are then acquired as a function of domain size. It is 

important to note that, although the distribution of molecules according to 𝑝(𝑥) suggests a non-

homogeneous density of molecules in the system, the whole ensemble of 𝑛 molecules represents 

the equilibrium state of the system at any point in space. The gradient is only in the labeled tracer 

component.  The probabilities of sticker binding are not dependent on the local density of free 

stickers. Any pair of molecules in the system may become virtually bonded by intermolecular 
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association, independently of their relative positions in real space. This method to simulate the 

FRS experiment is fully equivalent to calculating the one-dimensional dynamic structure factor of 

the position of the junction points as the molecules diffuse in space.  

RESULTS AND DISCUSSION 

Figure 3a displays a typical plot of the characteristic time, 〈𝜏〉, as a function of domain length 

squared, 𝑑2/4𝜋2, from simulations of four-arm star polymers with 𝐾𝑒𝑞  =  5, 𝑘𝐴  =  0.0025 and 

𝜙∗/𝜙 = 1. The simulation results demonstrate that this relatively simple molecular model is able 

to capture both the apparent superdiffusive and large 𝑑2 Fickian regimes observed in experimental 

measurements 10,11,12.   

 

Figure 3: (a) characteristic time 〈𝜏〉 as a function of the domain length from BD simulations of 

FRS experiments of molecules with 4 arms, 𝑘𝐴 = 0.0025, 𝐾𝑒𝑞 = 5, at the overlap concentration; 

and (b) normalized 〈𝜏〉 as a function of the domain length, revealing differences in the early- and 

large-distance diffusion coefficients, as well as the apparent superdiffusive scaling. 
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The simulated FRS result contains four regimes:  an early Fickian regime, a caging regime, an 

apparent superdiffusive regime, and a late Fickian regime.  Given that 𝐾𝑒𝑞 > 1, at equilibrium 

most of the stickers are attached to the background. At times much smaller than 𝜏𝑅 (1 in non-

dimensional units), the molecules still do not feel the attachment potential and can move freely 

with diffusion coefficient 𝐷 = 𝑁𝐴
−1, up to a maximum distance 〈𝑅2〉/𝑁𝐴 (𝑁𝐴

−1 in non-dimensional 

units), which corresponds to the maximum mean-square displacement of the center of mass of a 

molecule that has 𝑁𝐴 stickers attached to the background. In this regime, 〈𝜏〉 increases linearly to 

𝜏𝑅 with slope equal to 𝐷−1 = 𝑁𝐴. At 𝜏𝑅, a sharp increase in 〈𝜏〉 is observed due to a caging effect. 

Attached molecules are trapped in a cage of size 〈𝑅2〉/𝑁𝐴 and must wait for the arms to detach in 

order to diffuse over longer distances. For timescales, 〈𝜏〉, larger than the inverse of the detachment 

rate, 𝑘𝐷
−1, stickers can detach from and reattach to the background, moving the molecular center 

of mass in the process. Motion of the center of mass over distances greater than 〈𝑅2〉/𝑁𝐴 through 

sequential detachment and reattachment of individual arms is termed walking.  Walking is the 

most frequently observed diffusion event due to the relatively high likelihood of single arm 

detachment events.  Infrequently, some molecules may also detach all their stickers and diffuse 

freely throughout the network in a process referred to as hopping.  During this rare event, 

molecules diffuse with diffusion constant 𝐷 = 𝑁𝐴
−1. It is hypothesized that, in order to observe 

superdiffusive scaling in FRS experiments, hopping must be faster than the walking mechanism 

over large distances. For that to occur, the distance travelled by molecules during hopping events 

must be much larger than the molecular radius of gyration, which is the characteristic size of a 

walking step. In the crossover between the early and late Fickian regimes, the interplay between 

walking and hopping modes dictates the prominence and shape (i.e., amplitude and inflection) of 

the apparent superdiffusive regime. At large 𝑑2, the polymers again exhibit Fickian diffusion, but 



 14 

now with an effective diffusivity, 𝐷𝑒𝑓𝑓, that contains contributions from the walking and hopping 

mechanisms.  

Differences in diffusivity between the two limiting Fickian regimes and the non-Fickian 

behavior at intermediate length scales are highlighted in Figure 3b, where the primary ordinate, 

〈𝜏〉, is renormalized by the abscissa, 𝑑2/4𝜋. Diffusion coefficients in the short and long length 

scale Fickian regimes are now given by the inverse of the plateau values. A priori calculation of 

self-diffusion coefficients in both Fickian regimes is provided in Section 2 of Supporting 

Information. 

The results from the simulations agree qualitatively with the experimental data at large 𝑑2 values 

12 (current experiments cannot resolve the early time Fickian diffusion and caging regimes). In the 

simulations, the escape from the cage occurs at 𝑑2 ≈ 4𝜋2〈𝑅2〉, which is 1-2 orders of magnitude 

larger than the molecular size. The exact location of the large 𝑑2 Fickian regime depends on the 

values of 𝑘𝐴 and 𝐾𝑒𝑞. In the particular example shown in Figure 3, this regime is observed at 𝑑2 

values that are 4-5 orders of magnitude larger than the molecular size, in reasonable qualitative 

agreement with the experiments.  

A comparison of FRS simulations and mean-square displacement measurements shows that this 

unexpected regime is not observed in the mean-square displacement. In Figure 4a, the mean-square 

displacement of the center of mass of molecules with 4 arms, 𝑘𝐴 = 0.0025, 𝐾𝑒𝑞 = 5, and at the 

overlap concentration (same case as Figure 3) is shown. Early and late Fickian diffusion regimes 

are clearly observed, with self-diffusion coefficients that agree well with those extracted from 

Figure 3. However, no superdiffusive scaling is observed in the crossover regime. Instead, a clear 

subdiffusive regime is found, as shown in Figure 4b, where the mean-square displacement is 

divided by time. Comparison between Figures 2 and 3 shows that the caging regime observed in 
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the FRS simulation corresponds in timescale to the subdiffusive regime observed in the mean-

square displacement; both the apparent superdiffusive and late Fickian regimes in the FRS 

simulation occur within the late Fickian regime of the mean-square displacement plot.  Therefore, 

FRS results are more sensitive to the molecular association mechanisms than mean-square 

displacement, and the 〈𝜏〉 vs 𝑑2 plot shows richer features than the 〈𝑟2〉 vs 𝑡 plot, even though both 

methods are sampling different moments of the same distribution of displacements of the same 

physical model.  

 

Figure 4: (a) Mean-square displacement of the center of mass, 𝑔3(𝑡),  as a function of time from 

BD simulations of molecules with 4 arms, 𝑘𝐴 = 0.0025, 𝐾𝑒𝑞 = 5, at the overlap concentration. 

(b) 𝑔3(𝑡) divided by time, highlighting the early and late Fickian behavior, as well as the 

subdiffusive regime in the crossover. 

To illustrate the origin of these differences, the probability distribution of the center of mass 

displacement as a function of time for molecules with 4 arms, 𝑘𝐴 = 0.0025, 𝐾𝑒𝑞 = 5, and at the 

overlap concentration (same case as Figures 3 and 4) is shown in Figure 5a. When 𝑡 ≤ 𝜏𝑅, the 

molecules are trapped in the cage and the distribution is Gaussian, as proved by the small values 
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of the one-dimensional non-Gaussian parameter 35 𝛼 = 〈𝑟4〉/3〈𝑟2〉2 − 1 shown in Figure 5b. At 

times 𝑡 ≥ 10𝜏𝑅, the distribution becomes bimodal, with a Gaussian mode of small variance that 

represents the molecules that have not been able to detach completely from the background and 

therefore have very small diffusivity, and a second mode that represents the displacement of 

molecules that have escaped the cage by means of the walking and hopping mechanisms. In this 

time region, the parameter 𝛼 > 1 indicating a non-Gaussian distribution, and superdiffusive 

scaling is observed in the FRS experiments. At times 𝑡 ≫ 𝑘𝐷
−1, the parameter 𝛼 decreases slowly 

to zero and the second Fickian regime is observed. The FRS simulations show an apparent 

superdiffusive regime while the mean-square displacement does not because the FRS simulations 

sample a different moment of the distribution of molecular motion (the one-dimensional dynamic 

structure factor of an isotropic system is equivalent to the average 〈cos(𝑞𝑟)〉) that is more sensitive 

to the distribution of diffusivities while the mean-square displacement (〈𝑟2〉) is sensitive just to 

the average.  Both ways of looking at the same molecular motion are qualitatively very similar up 

to the point when the molecules escape from the caging regime (in fact, up to that regime, one plot 

is approximately the reflection of the other by the diagonal line 𝑦 = 𝑥). At longer times, the mean-

square displacement of the system can be much larger than the size of the cage if a small fraction 

of molecules detaches from the network and diffuses over very long distances. However, in FRS 

measurements, when the period of the grating is larger than the molecular size, a large fraction of 

molecules must diffuse over distances of the order of 𝑑2 in order to destroy the sinusoidal 

distribution of unbleached chromophores.  For that to happen, the system needs to wait a very long 

time.  Therefore, FRS is more sensitive to the large displacement tail of the distribution, providing 

a very important probe into molecular dynamics that complements other methods of measuring 

diffusion.   
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In understanding this effect, it is very illustrative to compare to the family of models originally 

proposed by Tang, Wang, and Olsen and Tirrell and coworkers.  These models are continuum 

models of reaction-diffusion which are represented by one differential equation for each diffusing 

species, and the species are allowed to interconvert according to the laws of chemical kinetics. 

When mean-square displacement is plotted for any member of this family, only Fickian behavior 

is observed, where the diffusivity is an average of all the different species based on their relative 

abundance.  While the average remains unchanged from a single effective species, the distribution 

of displacements changes substantially, showing a peak for the abundant, slow species and a long 

tail for the rare, fast diffusive events.  The FRS measurement is therefore extremely useful in 

understanding different molecular mechanisms because it can differentiate between the single 

effective species and the multiple different species. 

 

Figure 5: (a) Probability distribution of the motion of the center of mass of molecules with 4 

arms, 𝑘𝐴 = 0.0025, 𝐾𝑒𝑞 = 5, at the overlap concentration. (b) Time evolution of the one-

dimensional non-Gaussian parameter 𝛼 = 〈𝑟4〉/3〈𝑟2〉2 − 1 for the same system. 
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Comparing diffusion rates via different molecular mechanisms enables scaling relationships to 

be derived that estimate the range of molecular parameters over which the apparent superdiffusive 

regime can be observed. At large length and time scales, the effective diffusion coefficient 𝐷𝑒𝑓𝑓 

has contributions from both walking and hopping mechanisms (Figure 1). Hopping diffusion can 

be calculated as the product of the diffusion constant of a free molecule, 𝐷 = 1/𝑁𝐴, times the 

probability that a molecule is completely detached from the network. Walking diffusion can be 

estimated by means of a simple scaling argument. During a walking event, a molecule that has 𝑗 

stickers bonded to the background detaches one with attempt frequency 𝑘𝐷. The mean-squared 

displacement of the center of mass during the walking step, before the free arm gets bonded again, 

is given by the size of the arms 〈𝑅2〉 divided by the number of arms that remain attached to the 

network, i.e. 〈𝑅2〉/(𝑗 − 1) (equal to 1/(𝑗 − 1) in the units of the simulation). Therefore, the 

diffusion coefficient of a molecule walking on 𝑗 arms is 𝑘𝐷/(𝑗 − 1). A molecule can walk on 𝑗 =

2 … 𝑁𝐴 arms (when it has just one arm attached to the background, detachment leads to a hopping 

event), and each of the walking contributions must be multiplied by the probability of having 𝑗 

arms attached to the background. The scaling argument above assumes that walking occurs by 

detaching and re-attaching a single arm at a time (i.e. it neglects rare but important events such as 

when a molecule goes from 𝑗 → 𝑗 − 1 → 𝑗 − 2 arms attached). For 𝐾𝑒𝑞 ≫ 1, it is more likely that 

a molecule will attach a free arm back to the background before it detaches a second one. The 

resulting effective diffusion coefficient of the walking and hopping mechanisms is: 

𝐷𝑒𝑓𝑓 = 𝐷𝑤𝑎𝑙𝑘 + 𝐷ℎ𝑜𝑝 = ∑ 𝑝𝑗𝑘𝐷

〈𝑅2〉

𝑗 − 1

𝑁𝐴

𝑗=2

+
𝑝0

𝑁𝐴
 ( 9 ) 

where 𝑝𝑗 is the probability that a molecule has 𝑗 arms attached to the background. Although Eq. ( 

9 ) is approximate, it successfully permits quantitative prediction of diffusivities in the large 
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length-scale regime as a function of a wide variety of parameters including 𝐾𝑒𝑞, 𝑘𝐴, 𝑁𝐴  and 

concentration (see Section 2 of the Supporting Information). 

A general criterion for observing the apparent superdiffusion emerges by examining the curve 

shape as it exits the caging regime. In the case of no superdiffusive scaling, molecules should 

exhibit Fickian scaling immediately following the caging regime, at the point 𝑑2/4𝜋2 = 1/𝑁𝐴 and 

〈𝜏〉 = 𝑘𝐷
−1. The self-diffusion coefficient of such Fickian process would be equal to 𝑘𝐷/𝑁𝐴 (see 

dashed blue line in Figure 6a). For the apparent superdiffusive scaling to be observed, the effective 

diffusion coefficient at large distances should exceed that of the limiting Fickian-scaling described 

above, or 

𝐷𝑒𝑓𝑓 ≫
𝑘𝐷

𝑁𝐴
=

𝑘𝐴

𝑁𝐴𝐾𝑒𝑞
 ( 10 ) 

which corresponds to the hypothetical diffusion coefficient of a molecule walking on 𝑁𝐴 + 1 arms.  

Although both walking and molecular hopping contribute to 𝐷𝑒𝑓𝑓, the apparent superdiffusive 

scaling is most easily observed when molecular hopping is the primary diffusive mode, as 

illustrated in Figure 6a. When hopping is switched off in the simulations, the apparent 

superdiffusive scaling is still observed but to a lesser extent. The ability to form loops enhances 

diffusion, as seen in Figure 6a, by effectively reducing the number of arms that need to be detached 

in order to hop, and by increasing the walking diffusivity. When molecular hopping is prevalent, 

𝐷ℎ𝑜𝑝 ≫ 𝐷𝑤𝑎𝑙𝑘 and 𝐷𝑒𝑓𝑓 ≈ 𝐷ℎ𝑜𝑝 = 𝑝0/𝑁𝐴. In this case, the criterion for observing superdiffusive 

scaling in Eq. ( 10 ) becomes 𝑘𝐴 ≪ 𝑝0𝐾𝑒𝑞, where 𝑝0 depends on the number of arms and the 

equilibrium constant of the attachment reactions. The calculation of the probabilities 𝑝𝑗 can be 

difficult, in the full model, but they can be easily estimated if the looping reactions are turned off 
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(see Section 4 of Supporting Information). In that case, 𝑝0 ≈ 𝐾𝑒𝑞
−𝑁𝐴/2

, so the requirement for 

observing superdiffusive scaling in the absence of looping becomes 

𝑘𝐴 ≪ 𝐾𝑒𝑞
1−𝑁𝐴/2 

 ( 11 ) 

 

 

Figure 6: (a) 〈𝜏〉 versus 𝑑2/4𝜋2 for 𝑁𝐴 = 4, 𝜙∗/𝜙 = 1, 𝐾𝑒𝑞 = 5 and 𝑘𝐴 = 0.0025, with all 

diffusion mechanisms (black symbols), only walking mechanisms (red symbols), only walking 

mechanisms with loops forbidden (green symbols) and limiting inverse effective diffusion 

coefficient 𝑁𝐴/𝑘𝐷 when no superdiffusive scaling is observed (blue dashed line). (b) 〈𝜏〉 versus  

𝑑2/4𝜋2 𝑁𝐴 = 4, 𝜙∗/𝜙 = 1, varying 𝑘𝐴 at fixed 𝐾𝑒𝑞 = 5 (closed symbols), and varying 𝐾𝑒𝑞 at 

fixed 𝑘𝐴 = 0.0025 (open symbols). 

Although approximate, Eq. ( 11 ) reveals that superdiffusive scaling is less prevalent for star 

polymers containing many arms and for large values of the association equilibrium constant. 

Figure 6b, which plots the average characteristic time, 〈𝜏〉, versus 𝑑2 for four-arm star polymers 

at fixed concentration as a function of 𝑘𝐴 (with constant 𝐾𝑒𝑞) and 𝐾𝑒𝑞 (with constant 𝑘𝐴), 
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respectively, clearly shows that the simulation results are consistent with this scaling prediction. 

The values of 𝑘𝐴 and 𝐾𝑒𝑞 in both plots have been chosen to give identical inverse detachment 

times, 𝑘𝐷 .  In Figure 6b, superdiffusive scaling is observed when 𝑘𝐴 < 0.1 in good agreement with 

Eq. ( 11 ), despite the presence of looping. For 𝑘𝐴 > 0.1, superdiffusive scaling is less easily 

observed as indicated by Eq. ( 11 ).  Walking diffusion becomes the prevalent diffusive mode, 

since 𝐷𝑤𝑎𝑙𝑘 increases strongly with increasing 𝑘𝐴, while 𝐷ℎ𝑜𝑝 is independent of 𝑘𝐴 in Eq. ( 9 ). 

Superdiffusive scaling is observed for values of 𝐾𝑒𝑞 > 1 as expected because an associated 

network is required to produce differing diffusive mechanisms. The range of length scales over 

which the superdiffusive scaling is observed widens for increasing values of 𝐾𝑒𝑞. 

Loop formation increases the probability of hopping, increasing the likelihood of star polymers 

exhibiting superdiffusive scaling. The balance between intermolecular and intramolecular 

association of stickers is primarily governed by concentration. This effect is highlighted in Figure 

7a, where 〈𝜏〉 versus 𝑑2 is shown for constant values of 𝑘𝐴 and 𝐾𝑒𝑞, at different polymer volume 

fractions. Below the overlap concentration (𝜙∗/𝜙 > 1), looping is highly probable and hopping is 

more likely. As concentration increases above the overlap concentration (𝜙∗/𝜙 < 1), hopping 

becomes increasingly difficult because star arms of different molecules interpenetrate and 

intermolecular associations are more likely. In Figure 7a, the width of the apparent superdiffusive 

region becomes narrower as the concentration of polymers increases, until it disappears completely 

for (𝜙∗/𝜙 < 0.1). The diffusion behavior of a concentrated solution (0.1 < 𝜙∗/𝜙 < 0.25) is 

qualitatively similar to that of a solution at the overlap concentration for which looping reactions 

have been turned off. 
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Figure 7: (a) 〈𝜏〉 versus 𝑑2/4𝜋2 for varying concentration, expressed as the ratio of the overlap 

volume fraction to the system volume fraction, 𝜙∗/𝜙, with fixed 𝑘𝐴 = 0.0025, 𝐾𝑒𝑞 = 5, for 

molecules with 𝑁𝐴 = 4 arms and loops allowed (open symbols). Filled symbols show a case in 

which loop reactions are not allowed. (b) Same results represented for real units, taking into 

account the scaling of the molecular size and relaxation time given by Equations ( 2 ) and ( 3 ). 

In semidilute conditions, according to Equations ( 2 ) and ( 3 ), changes in concentration affect 

the molecular size and relaxation time, used as basic units of length and time in our simulations. 

In a good solvent, the arm size decreases with concentration, whereas the relaxation time increases. 

In Figure 7b, the non-dimensional simulation results of Figure 7a are shown in real units, scaled 

by the size, 𝑅𝑔, and relaxation time, 𝜏𝐹, of the arms in dilute conditions. Higher concentrations 

have a smaller cage size and slower diffusion constants. The 〈𝜏̃〉 vs 𝑑̃2 curves are more spread out 

than the same curves in non-dimensional units. 

In order to test the validity of the assumptions of the model, the theoretical predictions have been 

compared to experimental FRS measurements of four-arm poly(ethylene glycol) star polymers of 
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𝑀𝑤 = 10,000 g/mol, end-functionalized with terpyridine which associating with divalent Zn2+ ions 

in N,N-dimethylformamide, a good solvent for the polymer. 10  The units of length and time in the 

simulations are rescaled using Eqs. (8) and (9), respectively, and the values of the non-dimensional 

rate and equilibrium constants are modified accordingly. Overall, the model has five fitting 

parameters: 𝐾𝑒𝑞, 𝑘𝐴, 𝑅𝑔, 𝜏𝐹 and 𝜙. To reduce the complexity of the fitting procedure, the 

concentration 𝜙 is fixed based upon the experimental conditions, and the other four parameters are 

fit to the data. Figure 8a compares experimental data of Tang et. al 10 with the simulation results 

for the best-fit parameter set, values of which are included in the inset to the figure. Here, each 

theoretical point corresponds to a separate FRS simulation. In all cases, simulation results are in 

good qualitative agreement with experimental data over several decades of length and time, and at 

several polymer concentrations, using only the single set of fitting parameters. 

 

Figure 8: (a) Simultaneous fit of the theory to experimental self-diffusion data of telechelic 4-arm 

PEG stars at different concentrations, see Tang el al. 10. (b) Fit to experimental data of tracer 

diffusion of 3-arm star tracers through a 4-arm star gel matrix, see Tang el al. 10. 
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In Figure 8b, the simulation results are fit to experimental measurements of four-arm tracer 

molecules with only three stickers diffusing in a mesh of four-arm molecules with four stickers. 

The predictions of the model have been calculated by diluting 2% of molecules with 4 arms and 

only three stickers in a matrix of stars with 4 stickers, following the same approach as in the 

experiment. The agreement of the theory with the experimental data is also good, and manages to 

capture the faster diffusion and the sharper transition from the superdiffusive scaling to the Fickian 

regime at long distances. The fitting is somewhat noisier in this case because fewer molecules are 

used and the statistics are poorer. The values of the fitting parameters are very similar in both 

cases.  

In contrast to the phenomenological two-state theory proposed previously 12, the parameters of 

extracted by fitting the simulations have a well-defined molecular interpretation given by the 

development of the model. In Figure 8a, however, the obtained values of 𝜏𝐹 = 0.84 ms and 𝑅𝑔 =

37.8 nm are unexpectedly large for the molecular weight of the star arms in the experiments (in 19 

the value of 𝑅𝑔 is estimated as 3.5 nm). Given the approximations inherent in the highly coarse-

grained view of the polymers and bond kinetics and the many approximations necessary to map 

the parameters of the experiment to the simulation, this is reasonable qualitative agreement with 

the experimental result.  However, it is clear that further advances can improve the accuracy of the 

predictions.  Including junction fluctuations may also increase the effective size of the cage and 

reduce the value of the parameter 𝑅𝑔 needed to fit the data, bringing it closer to the experimentally 

determined values. However, this effect alone cannot account for the one order of magnitude 

difference between the experimental and the fitted values of 𝑅𝑔. Alternately, even though the 

model is formulated with a single molecule in mind, it is possible that in the experiments the same 
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molecular mechanisms described above occur for bundles of a few molecules, with corresponding 

larger size and relaxation time. 

 

CONCLUSIONS 

Four-arm star polymers were modeled as point particles that associate with a mean field polymer 

network through massless associative arms, enabling simulation of self-diffusion of these 

molecules at length scales larger than the polymer size.  The simulation results reveal the 

importance of multiple mechanisms of molecular motion to traverse distances larger than the 

molecular scale, particularly walking and hopping. The molecular model establishes that 

previously reported superdiffusive scaling regimes result primarily from molecular hopping which 

occurs when the kinetics of attachment are slower than the relaxation time of dangling strands. 

The role of these different molecular mechanisms is particularly clear in FRS data because of its 

sensitivity to the tail of the displacement distribution caused by rare but long-distance hopping 

events. The presence of looping defects within the networks strongly promotes hopping by 

allowing a molecule to effectively reduce the total number of elastically effective connections with 

the network.  Because different measures of diffusion such as mean square displacement and FRS 

measurement are sensitive to different moments of the displacement distribution, the diffusive 

process may simultaneously show characteristics of both superdiffusive and subdiffusive behavior 

depending upon how it is measured. 

These findings can be generalized to more complex associating networks with polydisperse arm 

length, other chain topology, chain statistics, and association kinetics. Separately quantifying the 

mechanisms of molecular diffusion in this work enables decoupling their impacts, which is 

essential to developing correlations between molecular and macroscopic transport properties, 
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predicting material properties de novo, and aiding in the development of novel polymeric materials 

for next-generation applications. 
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