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Abstract

We prove a bound relating the volume of a curve near a cusp in a complex ball quotient
X = B/Γ to its multiplicity at the cusp. There are a number of consequences: we show
that for an n-dimensional toroidal compactification X with boundary D, KX+(1−λ)D
is ample for λ ∈ (0, (n+ 1)/2π), and in particular that KX is ample for n > 6. By an
independent algebraic argument, we prove that every ball quotient of dimension n > 4 is
of general type, and conclude that the phenomenon famously exhibited by Hirzebruch in
dimension 2 does not occur in higher dimensions. Finally, we investigate the applications
to the problem of bounding the number of cusps and to the Green–Griffiths conjecture.

1. Introduction

Complex hyperbolic manifolds are complex manifolds admitting a complete finite-volume metric
of constant negative sectional curvature. Such manifolds are quotients of the complex hyperbolic
ball B by a discrete group of holomorphic isometries. On the one hand, just as for real
hyperbolic manifolds, the topology of the uniformizing group is a powerful tool in studying
their geometry. On the other hand, work of [AMRT75] and [Mok12] shows that such manifolds
always admit orbifold toroidal compactifications whose algebraic geometry provides an equally
powerful complementary set of techniques.

Quotients by arithmetic lattices naturally arise as Shimura varieties parametrizing abelian
varieties with certain endomorphism structure, but many other interesting moduli spaces admit
complex ball uniformizations: moduli spaces of low-genus curves, del Pezzo surfaces, certain K3
surfaces (see, for example, [DK07] for an overview), and cubic 3-folds [ACT11], to name but a few.
Importantly, the complex ball is the only bounded symmetric domain that admits non-arithmetic
lattices [Mar84], and examples have only been constructed in dimensions 2 and 3 by Mostow
[Mos80] and Deligne and Mostow [DM93] as period domains of hypergeometric differential forms.
Many of the techniques available to study the geometry of ball quotients only apply in the
arithmetic case, and consequently much less is known about non-arithmetic quotients.

In this paper we study curves in non-compact complex hyperbolic manifolds. Our first main
result is the following theorem.

Theorem A. Let X be a complex hyperbolic manifold of dimension n whose toroidal
compactification X has no orbifold points. Then KX +(1−λ)D is ample for 0 < λ < (n+ 1)/2π.

Corollary B. With the above assumptions, KX is ample provided n > 6. Thus, X is the
canonical model of X.
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Of course, if X is already compact, then KX is clearly ample. Theorem A is a special case of
the more refined positivity statements in Propositions 3.3 and 3.6. To give an idea for the general
result, we show (KX+D)−((n+ 1)/4π)

∑
i siDi is ample if the depth si horoball neighborhoods

Vi of the cusps are embedded and disjoint. This is a condition that can be understood in terms
of the uniformizing group Γ. Theorem A is proven by showing that the volume of a curve in Vi is
bounded by its multiplicity along the corresponding boundary divisor with coefficient depending
on the depth si. Parker’s generalization of Shimizu’s lemma [Par98] bounds the minimal depth
of the cusps of a discrete group Γ, but better bounds on the ample cone can be extracted from
specific knowledge of the parabolic subgroups. The more general results apply to the orbifold
case as well.

The toroidal compactification of a complex hyperbolic manifold satisfies the hypotheses of
Theorem A under mild assumptions on the uniformizing group (see Definition 2.3), and every
complex hyperbolic orbifold admits a finite étale cover which satisfies this property. Note that
KX + D induces the contraction X → X∗ to the Baily–Borel compactification, and therefore
always generates one of the boundary rays of the slice of the nef cone cut out by the plane
generated by KX and D. It is an interesting question in general for toroidal compactifications
(not necessarily of hyperbolic manifolds) to determine the slope of the opposite boundary ray,
and Theorem A shows that in this case it grows uniformly with dimension.

Theorem A implies that hyperbolic manifolds in dimensions n > 6 are of general type
(in fact KX being ample is much stronger), but this need not be true in low dimensions. Indeed,
any rational curve with at least three punctures or any elliptic curve with at least one puncture
is hyperbolic, so every Kodaira dimension can arise in dimension 1. A famous series of examples
due to Hirzebruch [Hir84] shows that there are also infinitely many smooth hyperbolic surfaces
with Kodaira dimension 0 (see Example 4.1). We give an independent algebraic argument that
in fact hyperbolic manifolds of dimension n > 4 are of general type, thereby showing that there
is no higher-dimensional analog of Hirzebruch’s construction.

Theorem C. Let X be a complex hyperbolic manifold of dimension n > 4 whose toroidal
compactification X has no orbifold points. Then X is of general type.

Thus, KX is big; KX is also nef for n > 3 by a recent theorem of Di Cerbo and Di Cerbo
[DiCDiC] (see Theorem 4.5 below). These two facts together imply an interesting consequence to
the birational geometry of such varieties: by the basepoint-free theorem [KM98, Theorem 3.3],
KX is in fact semi-ample. In general, for any smooth projective variety Y for which KY is nef,
the abundance conjecture asserts that some multiple of KY is basepoint-free. The abundance
conjecture is known in dimension up to 3, so we obtain the following corollary.

Corollary D. Smooth toroidal compactifications X of complex hyperbolic manifolds satisfy
the abundance conjecture in all dimensions.

It is an interesting question whether Corollary B and Theorem C are sharp.

Question. Do there exist complex hyperbolic manifolds X of non-maximal Kodaira dimension
in dimension n = 3 or for which KX is not ample in dimension n = 3, 4, 5?

The behavior in Theorems A and C is common among locally symmetric varieties. For
example, the moduli space of principally polarized g-dimensional abelian varieties Ag is known
to be of general type for g > 7, and KAg

+ (1 − t)D is ample for t ∈ (0, (n+ 1)/12) on the
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The Kodaira dimension of hyperbolic manifolds

perfect cone compactification Ag by a result of Shepherd-Barron [She06]. There are two main
methods of proving positivity properties of K in this context: (a) by producing effective divisors
of large slope moduli-theoretically; or (b) by using modular forms to construct sections. The
novelty of our approach is that it relies only on the metric geometry of the uniformizing group,
and therefore does not require either a moduli interpretation or an arithmetic lattice.

There are a number of applications of Theorems A and C. We obtain an improvement on
Parker’s bound [Par98] on the number of cusps of a complex hyperbolic manifold of fixed volume.

Corollary E. If k is the number of cusps of X, then

vol(X)

k
>

2n

n
.

Theorem C gives a slightly better bound in low dimensions; see Corollary 5.2 (this is
also observed in [DiCDiC]). The bound of Corollary E is in fact equal to Parker’s bound for
uniformizing groups whose parabolic subgroups are unipotent [Par98, Theorem 3.1], though
Corollary E applies to a larger class of lattices (see also the discussion after Corollary 5.2). This
is interesting because Parker’s method cannot give the same bound in this case. The main error
in Parker’s general result comes from bounding the minimal index of a Heisenberg lattice in the
stabilizer of a cusp, which does not appear here. Cusp bounds are treated from a perspective
closer to ours in [Hwa04].

With Theorem C in place, we can ask if X satisfies the Green–Griffiths conjecture.

Conjecture (Green and Griffiths [GG80]). Let Y be a smooth projective variety over C of
general type. Then there exists a subvariety Z ( Y such that every entire holomorphic map
C → Y factors through Z.

The smallest such Z is called the exceptional locus. By a theorem of Nadel [Nad89], it is
not difficult to show that some finite cover of X satisfies the conjecture; our main theorems,
Theorems A and C, allow us to improve the bounds on the ramification required in such a cover.

Corollary F. With X as in Theorem A, let X ′
→ X be a finite étale cover that ramifies at

each boundary component to order `. Then X
′
satisfies the Green–Griffiths conjecture with the

boundary as exceptional locus if:

(i) ` > 4 and n > 6;

(ii) ` > 3 and n = 4, 5.

We can also give an intrinsic criterion that does not require passage to a cover.

Corollary G. With X as in Theorem A, X satisfies the Green–Griffiths conjecture with the
boundary as exceptional locus if the cusps have uniform depth greater than 2π.

See Definition 3.7 for the notion of uniform depth. Finally, Theorem A substantially improves
a variety of results about complex hyperbolic manifolds that have been proven recently using the
algebraic geometry of toroidal compactifications. These methods use as input the positivity of
divisors of the formKX+(1−λ)D; for λ = 0 it comes for free on any toroidal compactification. Di
Cerbo and Di Cerbo [DiCDiC15] have systematically studied effectivity results that follow from
this positivity in the range λ ∈ [0, 2/3] (or more recently for λ ∈ [0, 1] in [DiCDiC]), including
bounds on the number, degree, and Picard rank of hyperbolic manifolds of a given volume. For
most of these results, simply plugging Theorem A into their argument yields a better bound,
and we choose to leave these modifications to the reader.
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Outline

In § 2 we collect some background on hyperbolic manifolds and their toroidal compactifications.
In § 3 we prove the volume bounds on the multiplicity of curves along the boundary, and use it to
conclude Theorem A. These bounds are the boundary analogs of those proven by Hwang and To
[HT02] for interior points of locally symmetric varieties. We provide an independent algebraic
proof of Theorem C in § 4. In § 5 we deduce the applications in Corollaries E, F, and G.

2. Background

The hyperbolic n-ball is the domain

B = Bn = {z ∈ Cn | |z|2 < 1}.

It has holomorphic automorphism group PU(n, 1) and Bergman metric

h = ds2B = 4 ·
(1− |z|2)

∑
i dzi ⊗ dzi +

(∑
i zi dzi

)
⊗
(∑

i zi dzi
)

(1− |z|2)2

of constant sectional curvature −1. With this normalization, Ric(h) = −(n+ 1)h/2, and the
associated Kähler form is ωB = 1

2 Im ds2B.
Let Γ ⊂ PU(n, 1) be a cofinite-volume discrete subgroup and X = B/Γ. X naturally has

the structure of an orbifold; every elliptic element of Γ is torsion, so if Γ is torsion-free X is a
smooth complex manifold. Γ always admits a finite-index torsion-free (in fact neat) subgroup,
by [AMRT75] in the arithmetic case and [Hum98] in general. Henceforth we will typically only
consider Γ torsion-free, and we will refer to such X as torsion-free ball quotients.

The cusps of X are in one-to-one correspondence with the equivalence classes of parabolic
fixed points of Γ, and the Baily and Borel compactification X∗ is a normal projective variety
obtained by adding one point for each cusp ([BB66] in the arithmetic case; [SY82] in general).
X also admits a unique orbifold toroidal compactification X by [AMRT75] in the case of an
arithmetic lattice Γ and by [Mok12] in general. If X has no orbifold points (see Definition 2.3),
then it is a smooth projective variety and each connected component E of the boundary divisor
D is an étale quotient of an abelian variety whose normal bundle OE(E) is anti-ample. If the
parabolic subgroups of Γ are unipotent (in particular, if Γ is neat), the boundary D is a disjoint
union of abelian varieties. In any case, the log-canonical divisor KX + D is semi-ample and
induces a birational map X → X∗ which is an isomorphism on the open part X and contracts
each boundary component E to the point of X∗ compactifying the corresponding cusp.

The hermitian metric ds2B descends to X and extends to a ‘good’ singular hermitian metric
on the log-tangent bundle TX(−logD) by a theorem of Mumford [Mum77]. Likewise, there is a
natural singular hermitian metric on the log-canonical bundle ωX(D), and integration against
the Kähler form ωX on the open part represents (as a current) a multiple of the first Chern class
dictated by our choice of normalization:

c1(KX +D) =
1

2π

n+ 1

2
[ωX ] ∈ H1,1(X,R). (1)

For analyzing the boundary behavior in more detail, the Siegel model is more convenient.
Our presentation is taken from Parker [Par98]. Let

S = Sn = Cn−1 × R× R>0,
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where Cn−1 is endowed with the standard positive definite hermitian form1(· , ·). We use
coordinates (ζ, v, u), and note that holomorphic coordinates in this model are given by ζ and

z = v + i(|ζ|2 + u),

whence

S = {(ζ, z) ∈ Cn−1 × C | Im z > |ζ|2}.

The Siegel model comes with a preferred cusp at infinity whose parabolic stabilizer G∞ contains
the group of Heisenberg isometries U∞ := U(n− 1)nN acting only on the first two coordinates
Cn−1×R: Heisenberg rotations U(n−1) act on Cn−1 in the usual way and Heisenberg translations
N ∼= Cn−1 × R act via

(τ, t) : (ζ, v) 7→ (ζ + τ, v + t+ 2 Im(τ, ζ)).

For completeness, we note that in the holomorphic coordinates this is

(τ, t) : (ζ, z) 7→ (ζ + τ, z + t+ i|τ |2 + 2i(ζ, τ)).

We denote by (A, τ, t) the transformation which first rotates by A ∈ U(n−1) and then translates
by (τ, t). N is a central extension of the group Cn−1 of translations on the first coordinate by
the group R of translations in the second coordinate. We call translations of the form (0, t)
vertical translations, and note that the subgroup T∞ ⊂ G∞ of vertical translations is the center.
The group U∞/T∞ is identified with the group of affine unitary transformations of Cn−1 via
projection to the ζ-coordinate.

The subgroup U∞ ⊂ G∞ can be thought of as the stabilizer of the height coordinate u, and
−2 log u is a potential for the Kähler form.

Lemma 2.1. ωS = −2i∂∂ log u.

Proof. This follows from a computation and the fact that in the Siegel model the hermitian
metric is

ds2S =
du2 + (dv − 2 Im(ζ, dζ))2 + 4u(dζ, dζ)

u2

(see, for example, [Par98]). 2

The horoball B(u) of height u centered at the cusp at infinity is defined to be the set

B(u) = Cn−1 × R× (u,∞).

It is clearly preserved by U∞. The remaining generator of G∞ is a one-dimensional torus which
scales (ζ, v, u) 7→ (aζ, a2v, a2u), and this scales the horoball of height u in the obvious way.

Now suppose Γ has a parabolic fixed point at infinity, and let Γ∞ = Γ∩G∞ be its stabilizer.
For any horoball B(u) centered at infinity, define the horoball neighborhood V (u) := B(u)/Γ∞.
Note that at some sufficiently large height u, V (u) injects into X by Shimizu’s lemma.

Definition 2.2. We call the smallest u such that V (u) injects the height u∞ of the cusp, and
we call s∞ = t∞/u∞ the depth. Note that the depth of a cusp is invariant under conjugating the
lattice Γ, whereas the height is not.

1 Our hermitian forms are C-linear in the first variable.
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The partial quotient by the vertical translations Θ∞ = Γ ∩ T∞ is given by the map

S → Cn−1 ×∆∗ : (ζ, z) 7→ (ζ, e2πiz/t∞).

The cusp is compactified by taking the interior closure in Cn−1×∆, which corresponds to adding a
boundary component of the form D∞ = Cn−1 × 0/Λ∞, where Λ∞ := Γ∞/Θ∞ is identified with
a discrete group of affine unitary transformations. At every point ζ ∈ Cn−1×0 there is a character
χ∞(ζ) encoding the action on q. Note that χ∞(ζ) has finite order since Γ is discrete, and we call
its order m∞(ζ). We define m∞ = maxζ m∞(ζ) to be the order of the cusp.

Definition 2.3. We say that Γ is torsion-free at infinity if Γ is torsion-free and Λ∞ is torsion-free
for each parabolic fixed point q∞. Equivalently, Γ is torsion-free at infinity if the orbifold toroidal
compactification X of X = B/Γ has no orbifold points.

Note that the condition that X have smooth coarse space is slightly weaker, as we only need
every parabolic element to have one non-identity eigenvalue. Neat groups are clearly torsion-free
at infinity, as are groups all of whose parabolic subgroups are unipotent. Every Γ contains a
finite-index neat subgroup, so clearly every complex hyperbolic orbifold X has a finite étale
cover X ′ whose uniformizing group is torsion-free at infinity.

If Γ is torsion-free at infinity, then the residual quotient of Cn−1×∆ by Λ∞ is étale, so locally
around the boundary we have coordinates ζ, q = e2πiz/t∞ and the boundary is cut out by q = 0.
V (u) is then identified with a neighborhood of the zero section in the normal bundle OD∞

(D∞)
(see [Mok12]). In general, qm∞(ζ) locally descends to a function on the coarse space of X which
vanishes along the boundary.

3. Boundary multiplicity inequalities and ampleness

Let X = B/Γ be a torsion-free ball quotient and suppose q∞ is a parabolic fixed point of Γ
with stabilizer Γ∞ = Γ∩G∞. By considering the Siegel model associated to q∞, we have by the
previous section horoball neighborhoods V (u) ⊂ X for all u < u∞, where u∞ is the height of
q∞. Let V (u) be the interior closure of V (u) in the toroidal compactification X.

We first show that the volume of an analytic subvariety of the horoball neighborhood V (u)
scales as the height of the horoball drops.

Proposition 3.1. Let Y be an irreducible k-dimensional analytic subvariety of V (u) not
contained in the boundary. Then

uk vol(Y ∩ V (u))

is a non-increasing function of u > u∞.

Of course, Proposition 3.1 is equally true in the orbifold setting, since we may simply pass
to a torsion-free cover.

Before the proof we recall a lemma of Demailly [Dem12]. Let X be a complex manifold and
ϕ : X → [−∞,∞) a continuous plurisubharmonic function. Define

Bϕ(r) = {x ∈ X | ϕ(x) < r}.

We say ϕ is semi-exhaustive if the balls Bϕ(r) have compact closure in X. Further, for T a
closed positive current of type (p, p), we say ϕ is semi-exhaustive on SuppT if the same is true
for Bϕ(r) ∩ SuppT . In this case, the integral

∫

Bϕ(r)
T ∧ (i∂∂ϕ)p :=

∫

Bϕ(r)
T ∧ (i∂∂max(ϕ, s))p
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is well-defined and independent of s < r [Dem12, § III.5] (see also [HT02]). We then have the
following lemma.

Lemma 3.2 [Dem12, Formula III.5.5]. For any convex increasing function f : R → R,
∫

Bϕ(r)
T ∧ (i∂∂f ◦ ϕ)p = f ′(r − 0)p

∫

Bϕ(r)
T ∧ (i∂∂ϕ)p,

where f ′(r − 0) is the derivative of f from the left at r.

Proof of Proposition 3.1.

vol(Y ∩ V (u0)) =
1

k!

∫

Y ∩V (u0)
ωk
X

=
1

k!

∫

Y ∩V (u0)
(i∂∂(−2 log u))k

=
1

k!

∫

V (u0)
(i∂∂(−2 log u))k ∧ [Y ]

=
2ku−k

0

k!

∫

V (u0)
(i∂∂(−u))k ∧ [Y ]

=
2ku−k

0

k!

∫

Y ∩V (u0)
(i∂∂(−u))k.

As −u is plurisubharmonic,

uk0 vol(Y ∩ V (u0)) =
2k

k!

∫

Y ∩V (u0)
(i∂∂(−u))k

is a non-increasing function of u0 (the horoballs V (u0) shrink as u0 grows). 2

Taking the limit of Proposition 3.1 as u → 0 yields a bound on the multiplicity of a curve
at the boundary in terms of its volume in a horoball neighborhood.

Proposition 3.3. Assume Λ∞ = Γ∞/Θ∞ is torsion-free and let t∞ be the length of the smallest
vertical translation (0, t∞) ∈ Γ∞. For any irreducible one-dimensional analytic subvariety C of
V (u) not contained in the boundary and any u > u∞, we have

vol(C ∩ V (u)) >
t∞
u

· (C ·D∞),

where D∞ is the divisor compactifying q∞ in the toroidal compactification.

Proof. From the proof of the previous proposition, we just need to compute

2 · lim
u0→∞

∫

C∩V (u0)
i∂∂(−u).

For u0 sufficiently large, C ∩ V (u0) is a union of pure one-dimensional analytic sets, each
component of which is normalized by a disk fj : ∆j → C ∩ V (u0). We may assume fj(0) = xj ∈
D∞ and that fj |∆∗

j
is an isomorphism onto an open set of C · q = e2πiz/t∞ is a local defining

equation for D∞ and we have
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C ·D∞ =
∑

j

ord f∗
j q.

Now for sufficiently large u0, we have
∫

C∩V (u0)
i∂∂(−u) =

∑

j

∫

∆j

f∗
j ∂∂(−u),

but of course ∫

∆j

f∗
j ∂∂(−u) > π · ν(f∗

j (−u), 0).

If t is a uniformizer for ∆j at 0, then we compute

ν(f∗
j (−u), 0) = lim inf

t→0

f∗
j (−u)

log |t|

= lim inf
t→0

1

log |t|
· f∗

j

(
|ζ|2 +

t∞
2π

· log |q|

)

=
t∞
2π

· ord f∗
j q. 2

Remark 3.4. If we do not assume Λ∞ is torsion-free, then we have proven

vol(C ∩ V (u)) >
t∞
u

· ˜(C ·D∞),

where we have defined a weighted intersection product

˜(C ·D∞) =
∑

x∈D∞

1

m∞(x)
(C ·D∞)x.

Here (C ·D∞)x is the contribution of x to the usual intersection product on the coarse space of
X, and m∞(x) is the order of x defined at the end of § 2.

Remark 3.5. Proposition 3.3 is sharp in the sense that a union of vertical complex geodesics
will realize the equality. A vertical complex geodesic is a copy of the upper half-plane H ⊂ S
embedded as ζ = 0 (or a horizontal translate thereof), and the intersection of H with the horoball
B(u) is H>u = {z ∈ H | Im z > u}. The resulting curve C in V (u) is the quotient of H>u by real
translation by t∞ and therefore has vol(C ∩ V (u)) = t∞/u. Finally, we have (C ·D∞) = 1, as C
is uniformized by 0×∆ in the partial quotient Cn−1 ×∆.

Proposition 3.3 is analogous to the multiplicity bound proven by Hwang and To [HT02] for
an interior point x of a quotient of a bounded symmetric domain. They show for a k-dimensional
subvariety that

vol(Y ∩B(x, r)) > vol(D(r))k ·multx Y,

where B(x, r) is an isometrically embedded hyperbolic ball around x of radius r and D(r) is the
volume in B(x, r) of a complex geodesic through x. One can show in this case a relative version
as in Proposition 3.1 as well.

We could have proven Proposition 3.3 directly by methods more analogous to [HT02].
As in § 2, the hermitian metric h on ωX extends to a singular hermitian metric h on ωX(D).
We form a different singular metric by twisting by a function e−ϕ supported on V (u0) so that
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e−ϕh has positive curvature form and Lelong number t∞/u0 at every point of the boundary.

As h is given by e2 log u on V (u), taking ϕ so that ϕ − 2 log u approximates the tangent line to

−2 log u at u0 will achieve this. We choose instead to derive Proposition 3.3 from Proposition 3.1

because the latter statement is interesting (and useful; see, for example, [BT]) in its own right.

We are now in a position to prove Theorem A, which will follow from Corollary 3.9 below.

Let qi be the cusps of X, and denote by Di the boundary component of X compactifying qi. Let

ti be the length of the smallest vertical translation in the stabilizer of qi.

Now suppose that for each cusp qi we choose a horoball height ui such that:

(∗) each V (ui) injects into X (i.e. ui is less than the height of qi);

(∗∗) the V (ui) are all disjoint.

Proposition 3.6. Let Γ be torsion-free at infinity and X the toroidal compactification of

X = B/Γ with boundary D. Let L = KX +D. Then in the above situation,

L−
n+ 1

4π

∑

i

siDi (2)

is ample for si ∈ (0, ti/ui).

Proof. By (1) and Proposition 3.3, the divisor is nef modulo the boundary, but for any component

E of the boundary KX |E ≡ −E|E is ample so it is in fact nef. Moreover, L− εD is ample for all

sufficiently small ε > 0 (see [DiCDiC15]). As the interior of any line drawn between a point of

the nef cone and a point in the ample cone is contained in the ample cone, the claim follows. 2

For convenience, we make the following definition.

Definition 3.7. The uniform depth s of the cusps of X is the largest s > 0 such that, setting

ui = ti/s, the horoball neighborhoods V (ui) satisfy properties (∗) and (∗∗).

Corollary 3.8. In the above setup, if the cusps of X have uniform depth s, then L − λD is

ample for 0 < λ < ((n+ 1)/2π)s.

Corollary 3.9. In the above setup, L − λD is ample for 0 < λ < (n+ 1)/2π. In particular,

KX is ample if n > 6.

Proof. By [Par98, Proposition 2.4], since Γ is torsion-free the cusps have uniform depth at least 2.

The second claim follows since (n+ 1)/2π > 1 for n > 6. 2

Remark 3.10. If we only assume Γ is cofinite-volume (and require no torsion-freeness), then the

above proof still goes through, and by Remark 3.4 we conclude that (2) is ample on the coarse

space X provided si ∈ (0, ti/miui), where mi is the order of the cusp compactified by Di, as

defined in the previous section. On the orbifold compactification Propositions 3.3 and 3.6 are

true as written, since intersection numbers, ampleness, and nefness can be computed/checked

on a finite cover with trivial stabilizers. We leave the details to the reader.
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4. Kodaira dimension

In this section we prove Theorem C. Theorem A is stronger starting in dimension n > 6, so this
section is strictly speaking only necessary to handle the case of 4-folds and 5-folds. On the other
hand, our proof is independent of the results of § 3 and entirely algebraic.

We begin with an example due to Hirzebruch [Hir84] for context.

Example 4.1. Let ζ = e2πi/3 and E = C/Z[ζ] be the elliptic curve with j = 0. Consider the
blow-up S of E×E at the origin 0 ∈ E×E. We have KS ≡ F where F is the exceptional divisor.
If we let D be the union of the strict transforms of the fibers E × 0, 0 × E, and the graphs of
1,−ζ ∈ Z[ζ], then the complement U = S rD is uniformized by B2 by a theorem of Yau, since
we compute

3 = (F +D)2 = c1(ωS(logD))2 = 3c2(Ω
1
S(logD)) = 3χ(U)

and KS +D is big and nef. It follows that S is the toroidal compactification of U with
boundary D.

Hirzebruch’s example shows that the toroidal compactification of a torsion-free (in fact neat)
ball quotient in dimension 2 may be non-minimal (i.e. KX is not nef) and may have Kodaira
dimension 0. Blow-ups of E×E at special configurations of points for other elliptic curves E yield
infinitely many such examples. Recently, Di Cerbo and Stover [DiCS] have given some examples
of birational to bielliptic surfaces.

The main goal of this section is to show that neither of these phenomena can occur in higher
dimensions, and in particular that every complex hyperbolic manifold of dimension greater than
or equal to 4 is of general type. Recall that a quasiprojective variety X is of general type if some
projective compactification X ′ has maximal Kodaira dimension, κ(X ′) = n.

Proposition 4.2. Let Γ be torsion-free at infinity and X = B/Γ. If n > 4, then X is of general
type.

In fact, KX is big and nef: the nefness is a recent result of Di Cerbo and Di Cerbo [DiCDiC],
and holds in dimension n > 3. Recall that the abundance conjecture asserts that for a smooth
projective variety Y with KY nef, in fact KY is semi-ample and is known in dimension 63
(see, for example, [Kaw92] for the resolution of the final case). By the basepoint-free theorem
[KM98, Theorem 3.3], we can conclude that this is the case for toroidal compactifications of
complex hyperbolic manifolds.

Corollary 4.3. With X as above, KX is semi-ample, i.e. X satisfies the abundance conjecture.

Our proof of Proposition 4.2 will only require the coarse space of X to be smooth up until
the last step in Lemma 4.10. For completeness, we first summarize the argument of [DiCDiC]
for the nefness of KX using the cone theorem and bend-and-break.

Given a smooth curve C, a projective variety Y , a set of points S ⊂ C, and a map f |S : S → Y ,
we denote by Hom(C, Y ; f |S) the scheme parametrizing maps f : C → Y restricting to f |S
along S. Recall the statement of the ‘bend-and-break’ lemma (see [Deb01, Propositions 3.1
and 3.2]).

Proposition 4.4 (Bend-and-break). Let Y be a projective variety. For any map f : P1
→ X

and any (quasiprojective) curve B ⊂ Hom(P1, X; f |{0,∞}) containing f along which fb(P1) is not
constant, fb(P1) has a limit which is a reducible or multiple rational curve.
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The key idea for us is that an extremal KX -negative rational curve f : P1
→ X must intersect

the boundary D in at least three points since X is uniformized by a bounded domain. On the
other hand, f : P1

→ X deforms, since for any component B of Hom(P1, X) containing f ,

dimB > −KX · f(P1) + dimX. (3)

As long as n > 3, we have dimB > 4, and in the Baily–Borel compactification X∗ we have a
family of rational curves with three fixed points, so by bend-and-break f(P1) is algebraically
equivalent to a reducible or multiple rational curve. Note that each component of the boundary
is an étale quotient of an abelian variety and therefore has no rational curves. The log-canonical
bundle L = KX +D is big and nef and induces the map to X∗, so by induction on the degree
with respect to L = KX +D we have a contradiction. Thus, X can only be non-minimal if n = 2.

Theorem 4.5 [DiCDiC, Theorem 1.1]. KX is nef if n > 3.

Remark 4.6. Given Theorem 4.5, to prove Proposition 4.2 it would be enough to show that

Kn
X

= Ln + (−D)n > 0.

For any component E of the boundary, −(−E)n computes the rate of growth of the volume of
a horoball neighborhood of E, and Ln computes the global volume of X, up to a normalization.
The best known bounds on the size of distinct horoball neighborhoods give bigness for n > 6
(but only in the case of neat quotients); one could conceivably finish the proof of Proposition 4.2
by a case-by-case analysis as in Parker [Par98]. We instead pursue the algebraic line of attack.

We now need to understand curves C for whichKX ·C = 0; we call such curvesKX -trivial. We

call an (irreducible) curve C rigid if no component of Hom(C̃,X) containing the normalization
C̃ → X has dimension greater than the dimension of the infinitesimal automorphism group
dimH0(C̃, T

C̃
) (i.e. 3, 1, 0 for g(C̃) = 0, 1,> 2, respectively).

Lemma 4.7. For n > 4, there are no KX -trivial rational curves.

Proof. If f : P1
→ X has KX ·f(P1) = 0, then for any component B of Hom(P1, X) containing f

for which dimB > 4, f(P1) is algebraically equivalent to a sum
∑

iCi of integral rational curves
by bend-and-break. Since KX is nef, we have KX ·Ci = 0 for each i. By induction on the degree
with respect to an ample bundle, we can repeat the same argument for each Ci and thus we
may assume the Ci are all rigid. By (3), if n > 4 there are no rigid KX -trivial rational curves, a
contradiction. 2

Note that Lemma 4.7 fails in dimension 3 because (3) does not rule out the existence of rigid
rational KX -trivial curves.

If we assume the abundance conjecture, then Lemma 4.7 is enough to conclude
Proposition 4.2. Indeed, by Theorem 4.5, KX would then be semi-ample, so let f : X → Z
be the fiber space induced by |mKX | for m � 0. For any fiber F and any curve C ⊂ F ,
KX · C = 0 whereas D|D ≡ −KX |D is anti-ample. We must therefore have dim(D ∩ F ) = 0, so
dimF = n−κ(X) 6 1. But if κ(X) = n−1, then the general fiber F is a KX -trivial elliptic curve.
Again because X is uniformized by a bounded domain, E · F > 1 for some component E of the
boundary. Taking a curve in C ⊂ E such that the fibers of E = f−1(f(C)) have fixed j-invariant,
C is a multisection of E/f(C), so, base-changing to C, we have an isotrivial family E/C
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with a section. Projecting to X∗, this is a family of maps F → X∗ fixing 0 ∈ F , and by
bend-and-break there is a KX -trivial rational curve. For n > 4, this contradicts Lemma 4.7.

The best that is currently known is a rational version of the abundance conjecture. Recall that
for M a nef line bundle on a normal projective variety Y , there is a nef reduction map f : Y −→• Z
to a normal variety Z [BCE+02]. This map is the unique (up to birational equivalence on Z)
dominant rational map with connected fibers such that:

(i) f is ‘almost holomorphic’ in the sense that if U ⊂ Y is the maximal open set on which f is
defined, f : U → Z has a proper fiber (and therefore the general fiber is proper);

(ii) M is numerically trivial on all proper fibers of dimension dimY − dimZ;

(iii) for a general point y ∈ Y and any irreducible curve C through y with dim f(C) = 1 we have
M · C > 0.

We then call n(M) := dimZ the nef dimension of M and n(Y ) := n(KY ) the nef dimension of
Y if KY is nef.

Lemma 4.8. X has maximal nef dimension if n > 4.

Proof. Take M = KX on Y = X and let F be a general fiber of the nef reduction. KF = KX |F is
numerically trivial, so D|F is ample, and therefore it must again be the case that dim(F ∩D) = 0.
This can only happen if dimF 6 1. If dimF = 0, we are done, while if dimF = 1, F is an elliptic
curve, and the argument above provides the contradiction. 2

We would like to show that Lemma 4.8 implies that KX is big, but in general for a nef line
bundle M it is only the case that

n(M) > ν(M) > κ(M),

where ν(M) is the numerical dimension and κ(M) is the Iitaka dimension of M . If M = KY is
the canonical bundle of a smooth projective variety Y , then the abundance conjecture implies
all three are equal, but we can already see that maximal nef dimension implies bigness assuming
κ(X) is sufficiently large.

Lemma 4.9. Let Y be a smooth n-dimensional projective variety with KY nef. If n(Y ) = n and
κ(Y ) > n− 2, then in fact κ(Y ) = n.

Proof. Let f : Y ′
→ Z be the Iitaka fibration of KY , which admits a birational morphism

g : Y ′
→ Y , and let F be a very general fiber of f . We know that dimF = n − κ(Y ) 6 2, that

g∗KY |F has Iitaka dimension 0, and that κ(F ) = 0 (e.g. [Laz04, § 2.1.C]). We also know g∗KY |F
is nef and non-zero on every curve through a very general point of F by the assumptions, which
immediately implies dimF 6= 1. If dimF = 2, then for some effective divisor E, g∗KY |F+E =KF ,
but KF is numerically equivalent to a sum of −1 curves since κ(F ) = 0, by the Enriques–Kodaira
classification of surfaces. Thus there is a curve C in F with KF · C = 0 and C · E > 0 while
g∗KY · C > 0, which is a contradiction. 2

Given Lemmas 4.8 and 4.9, the proof of Proposition 4.2 will be completed by the following
result.

Lemma 4.10. X has Kodaira dimension κ(X) > n− 2 for n > 3.

560

https://doi.org/10.1112/S0010437X1700762X
Downloaded from https://www.cambridge.org/core. IP address: 187.32.0.65, on 30 Jul 2018 at 04:54:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



The Kodaira dimension of hyperbolic manifolds

Proof. Let L = KX +D. As KX is nef by Lemma 4.5, we have

Kn
X

= (L−D)n = Ln + (−D)n > 0.

If we have strict inequality, then KX is big as it is already nef by Theorem 4.5. Thus, we need
only treat the case Kn

X
= 0, i.e. Ln + (−D)n = 0.

We first note that for t > 2 we have H i(X, tKX) = 0 for i > 1, by the sequence

0 → OX(tKX) → OX(L+ (t− 1)KX) → OD((t− 1)KX) → 0

and Kawamata–Viehweg vanishing applied to the second and third terms. Thus,

h0(X, tKX) > χ(X, tKX)

=
c1(X)2 + c2(X)

12
·
(tKX)n−2

(n− 2)!
+O(tn−3)

=
c2(X)

12
·
(tKX)n−2

(n− 2)!
+O(tn−3)

by our assumption. By the sequence

0 → OD(−D) → Ω1
X
|D → Ω1

D → 0

and the fact that each component of D is an étale quotient of an abelian variety, we have
c2(X) ·D ≡ 0, so by Hirzebruch proportionality [Mum77],

c2(X) ·Kn−2
X

= c2(X) · Ln−2 =
c2(Pn) · c1(Pn)n−2

c1(Pn)n
Ln > 0,

as Pn is the compact dual of Bn. 2

5. Applications

We now apply Corollary 3.9 to derive Corollaries E, F, G and some other consequences. One
immediate application is a bound on the number of cusps of X.

Proposition 5.1. For Γ torsion-free at infinity, let k be the number of cusps of X = B/Γ. Then

k 6
(2π)n

(n+ 1)n
·

Ln

(n− 1)!
.

Further, in dimensions n = 3, 4, 5, we have

k 6
Ln

(n− 1)!
.

Proof. Note that each component of the boundary is an étale quotient of an abelian variety so
all of the Chern classes of ΩD vanish numerically. D|D is anti-ample, so on the one hand

k 6
D · (−D)n−1

(n− 1)!
= −

(−D)n

(n− 1)!
= χ(D,OD(−D))

but on the other hand if aL− bD is a nef R-divisor for a, b > 0,

0 6 (aL− bD)n = anLn + bn(−D)n.

561

https://doi.org/10.1112/S0010437X1700762X
Downloaded from https://www.cambridge.org/core. IP address: 187.32.0.65, on 30 Jul 2018 at 04:54:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



B. Bakker and J. Tsimerman

Thus

k 6

(
a

b

)n

·
Ln

(n− 1)!
.

By Corollary 3.9, we can take a = 1 and b = (n+ 1)/2π. By Theorem 4.5, for n = 3, 4, 5 we can
do better with a = 1 and b = 1. 2

A similar argument is used by Di Cerbo and Di Cerbo to give an improvement to Parker’s
cusp bound in dimensions 2 [DiCDiC14] and 3 [DiCDiC15]. Note that by (1) we have

vol(X) =
(4π)n

n!(n+ 1)n
· Ln

and so we can restate the best known bounds in this context.

Corollary 5.2. Let k be the number of cusps of X. Then

vol(X)

k
>





π2

2
n = 2,

(4π)n

n(n+ 1)n
n = 3, 4, 5,

2n

n
n > 6.

The bound of Corollary 5.2 in dimension n = 2 is sharp and due to Di Cerbo and Di Cerbo
[DiCDiC14]. For n > 6, the above bound is equal to that derived by Parker [Par98] in the case
where the parabolic subgroups of Γ are unipotent; we show that the same bound holds for the
larger class of Γ torsion-free at infinity. On the other hand, the argument of Proposition 5.1 could
conceivably improve Parker’s bound for all torsion-free Γ if m∞ can be controlled sufficiently
well.

The proofs of Corollaries F and G will follow from a result of Nadel [Nad89, Theorem 2.1]:
if Y is a finite-volume quotient of a bounded symmetric domain whose holomorphic sectional
curvature is less than or equal to −γ (with the normalization Ric(h) = −h) for some γ ∈ Q, then
for any smooth toroidal compactification Y such that KY + (1− 1/γ)D is big, every entire map
C → Y has image contained in the boundary.

Proof of Corollaries F and G. For us, γ = 2/(n+ 1), and Corollary G is immediate from
Corollary 3.8.

For the first part of Corollary F, if f : X ′
→ X is a cover ramifying to order at least ` along

each boundary component, then f∗D > `D′. We have

f∗((KX +D)− tD) = (K
X

′ +D′)− t(f∗D′)

6 (K
X

′ +D′)− t`D′.

In any dimension, we can then take t = (n+ 1)/8 and the left-hand side is big by Corollary 3.9,
so ` = 4 is sufficient. This can be slightly improved in dimension n = 4, 5 since the same is true
for t = 1 by Proposition 4.2, and now ` = 3 will do. 2

The following corollary is a well-known consequence of Nadel’s theorem for arithmetic
quotients but in fact the same proof holds for non-arithmetic quotients given the work of [Mok12].
We include it for completeness, but the main point of Corollary F is the improved control over
the ramification order.
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Corollary 5.3. Every complex hyperbolic orbifold X admits a finite étale cover X ′ such that
the toroidal compactification X

′
satisfies the Green–Griffiths conjecture with the boundary as

exceptional locus.

Of course, this is equivalent to the Baily–Borel compactification X ′∗ having no non-trivial
entire maps C → X ′∗.
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260 (Birkhäuser, Basel, 2007), 43–100.

GG80 M. Green and P. Griffiths, Two applications of algebraic geometry to entire holomorphic
mappings, in The Chern symposium 1979 (Proc. internat. sympos., Berkeley, CA, 1979)
(Springer, New York, 1980), 41–74.

Hir84 F. Hirzebruch, Chern numbers of algebraic surfaces: an example, Math. Ann. 266 (1984),
351–356.

563

https://doi.org/10.1112/S0010437X1700762X
Downloaded from https://www.cambridge.org/core. IP address: 187.32.0.65, on 30 Jul 2018 at 04:54:38, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.



The Kodaira dimension of hyperbolic manifolds

Hum98 C. Hummel, Rank one lattices whose parabolic isometries have no rotational part, Proc. Amer.
Math. Soc. 126 (1998), 2453–2458.

Hwa04 J. Hwang, On the volumes of complex hyperbolic manifolds with cusps, Int. J. Math. 15 (2004),
567–572.

HT02 J. Hwang and W. To, Volumes of complex analytic subvarieties of Hermitian symmetric
spaces, Amer. J. Math. 124 (2002), 1221–1246.

Kaw92 Y. Kawamata, Abundance theorem for minimal threefolds, Invent. Math. 108 (1992), 229–246.

KM98 J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in
Mathematics, vol. 134 (Cambridge University Press, Cambridge, 1998).

Laz04 R. Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer
Grenzgebiete, vol. 48 (Springer, Berlin, 2004).

Mar84 G. A. Margulis, Arithmeticity of the irreducible lattices in the semi-simple groups of rank
greater than 1, Invent. Math. 76 (1984), 93–120.

Mok12 N. Mok, Projective algebraicity of minimal compactifications of complex-hyperbolic space
forms of finite volume, in Perspectives in analysis, geometry, and topology, Progress in
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