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Abstract Classically, an indecomposable class R in the cone of effective curves on a K3 surface X

is representable by a smooth rational curve if and only if RZ = —2. We prove a higher-dimensional
generalization conjectured by Hassett and Tschinkel: for a holomorphic symplectic variety M deformation
equivalent to a Hilbert scheme of n points on a K3 surface, an extremal curve class R € Hy(M, Z) in the

Mori cone is the line in a Lagrangian n-plane P" C M if and only if certain intersection-theoretic criteria

are met. In particular, any such class satisfies (R, R) = —%, and the primitive such classes are all

contained in a single monodromy orbit.
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Statement of results

Let M be an (irreducible) holomorphic symplectic variety, that is, a smooth simply
connected projective variety admitting a unique (up to scalars) everywhere nondegenerate
holomorphic 2-form. M comes equipped with a quadratic form (-, ) on H%(M, Z) called
the Beauville-Bogomolov form; it is primitive, integral, nondegenerate, and deformation
invariant of signature (3, by(M)—3). A K3 surface X, for example, is holomorphic
symplectic, and the Beauville-Bogomolov form in this case is simply the intersection
pairing. The Hilbert scheme of n points on X, M = X"l is holomorphic symplectic as
well, and the Beauville-Bogomolov form yields an orthogonal decomposition

H*(M,7) = H*(X,7) ® 73,

where H*(X,7Z) is isometrically embedded via pullback along the Hilbert-Chow map
X x®™ and (8,8) =2 —2n, where 28 is the divisor of nonreduced subschemes.
More generally, any proper moduli space M (v) of stable sheaves on X of Mukai vector v
with v> = 2n — 2 is a holomorphic symplectic variety deformation equivalent to a Hilbert
scheme of n points on a K3 surface. We say in this case that M is ‘of K3 type’, or
sometimes ‘of K3l type’ if we want to specify the dimension.
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Classically, much of the geometry of a projective K3 surface is encoded in the
intersection pairing on the Néron—Severi group NS(X). If /& is an ample divisor, then
the closed cone NE{(X) of effective curves (also called the Mori cone), for instance, is
the closure of the cone generated by

{R e NS(X) | h.R > 0 and R*> > —2)}.

A primitive curve class R of nonpositive self-intersection generating an extremal ray of
NE(X) is dual to a face of the nef cone whose generic divisor induces either a contraction
of a smooth rational curve R to an ordinary double point, when R? = —2, or an elliptic
fibration X — P!, when R? = 0.

A program to analogously understand the birational geometry of M purely in terms
of the intersection theory of the Beauville-Bogomolov form was initiated by Hassett and
Tschinkel in [14] and proven for fourfolds in [16]. Great strides toward fleshing out this
program in higher dimensions have been made recently by using Bridgeland stability
conditions to analyze moduli spaces M(v) and then deforming to arbitrary K3 type
varieties. Indeed, due to work of Bayer and Macrl [5], Bayer et al. [3], and Mongardi
[24], there is now a complete description of the nef, movable, and Mori cones of M (see
§ 1.9 below). In particular, we have the following.

Theorem 1 ([3, Proposition 2] or [24, Corollary 2.4]). Let M be a holomorphic symplectic
variety of K3 type and dimension 2n. If R € Hy(M, Z) is the primitive generator of an
extremal ray of the Mori cone, then (R, R) > —#.

Here we have used the embedding H2*(M,Z) C Hy(M,Z) induced by the
Beauville-Bogomolov form, and the resulting extension of (-,-) to a rational form on
Hy(M,7Z).

The next step in the Hassett—Tschinkel program is to classify the geometry of extremal
contractions in terms of the intersection theory of their contracted curves. The exceptional
loci of such contractions generically look like a fibration of k-dimensional projective
spaces! over a (2n — 2k)-dimensional holomorphic symplectic variety, contracting via the
projection (see, for example, [9, 26]). In particular, Lagrangian planes contract to points.

Our main result is to provide a numerical classification of curve classes R € Hy(M, Z)
that sweep out a Lagrangian plane P C M, thus proving a conjecture of Hassett and
Tschinkel [17]. In particular, we have the following.

Theorem 2. Let M be a holomorphic symplectic variety of K3 type and dimension 2n,
and suppose that R € Hy(M,Z) is the class of a line in a Lagrangian n-plane P*" C M.
Then R satisfies (R, R) = —"F3 and 2R € H*(M, Z).

In Theorem 22, we classify such curve classes (in particular nonprimitive ones) in terms
of Markman’s extended weight-2 Hodge structure. In general, the numerical criteria of
Theorem 2 are likely not sufficient (see Example 9), but for primitive extremal classes
they are.

f k=1, an ADE configuration of rational curves can occur in the generic fiber.
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Theorem 3. With M as above, a primitive class R € Hy(M,Z) generating an extremal
ray of the Mori cone is the line in a Lagrangian plane if and only if (R, R) = —# and
2R € HX(M, Z).

In view of Theorems 1 and 3, the extremal contractions of Lagrangian planes are
singled out as being the ‘most extreme’, in the sense that the class of the line achieves
the minimal square of the generator of an extremal ray in the Mori cone. They are the
higher-dimensional analog of —2-curves on K3 surfaces. On the other side of the extremal
contraction spectrum, Markman [23] (in the general case) and Bayer and Macri [5] (in
the case of Bridgeland moduli spaces) have recently resolved a long-standing conjecture
asserting that a nef class D with (D, D) = 0 induces a fibration M — P" with Lagrangian
tori fibers. As an application of Theorem 2, we have a necessary condition for the existence
of sections of Lagrangian fibrations.

Corollary 4. M admits a Lagrangian fibration with a section only if Hy(M,Z)N
H"L=1(M) contains the sublattice
(1 -2)
3 -
I -5

Lagrangian planes are also of interest because twisting by their structure sheaf yields
an autoequivalence of the derived category D?(M) in much the same way that a smooth
rational curve on a K3 surface yields a spherical twist (see [15]).

Theorem 2 was demonstrated for varieties of K3[2! type by Hassett and Tschinkel
[16], for those of K3[3! type by Harvey et al. [12], and for those of K3l type by the
author and Jorza [4] using the representation theory of the monodromy group to exhibit
possible classes of lines sweeping out a Lagrangian plane as integral points on arithmetic
curves. As a product of the analysis, in all three cases a universal formula for the class
[P"] € Hy, (M, Z) in terms of Hodge classes and the class of the line R is determined. It
follows that there is a unique orbit of the classes of such lines under the Zariski closure
of the monodromy group Mon(M). We conclude from Theorem 2 that the same is true
without taking the Zariski closure for primitive classes.

Corollary 5. The primitive classes R € Hy(M,Z) occurring as the line in a Lagrangian
plane belong to a single Mon(M) orbit.

In general it may not be the case that the class of the line is primitive (see Remark 28).
We expect our method to also allow for an intersection-theoretic classification of
Lagrangian planes in holomorphic symplectic manifolds deformation equivalent to
generalized Kummer varieties, using the work of [32]. It was conjectured by Hassett and
Tschinkel that an analog of Theorem 2 is true but with (R, R) = —"TH, and the necessity
of the numerical conditions was established in the case of fourfolds [18]. Corollary 5,
however, is not salvageable in this case; it is expected (and proven for n =2 [18]) that

there will always be multiple monodromy orbits.

QOutline

In §1, we summarize the theory of Bridgeland stability conditions on K3 surfaces, and
the Bayer—Macri description of the nef cones of Bridgeland moduli spaces. In §2, we
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define and give some examples of Lagrangian planes and Grassmannians. In § 3, we prove
classify Lagrangian planes for Bridgeland moduli spaces, and discuss other contractible
Lagrangian subvarieties. In § 4, we extend the classification to arbitrary K3 type varieties
by deformation.

1. Bayer—Macri description of the nef cone

We very briefly summarize the basic theory of Bridgeland stability conditions and the
Bayer—Macri description of the nef cone of Bridgeland moduli spaces on K3 surfaces, or
at least as much as we will need. For background on the first, see Bridgeland’s original
paper [8] or Macrl’s survey in [2, Appendix D]. For the second, Bayer and Macri develop
the theory for general stability conditions in [6] and apply it to the case of K3 surface in
[5], and our summary is mainly taken from their treatment.

1.1.
Let X be a smooth projective variety, and let D?(X) be its bounded derived category of
coherent sheaves. A stability condition o = (Z, P) consists of a (group) homomorphism
Z : K(X) — C and full extension-closed abelian subcategories P(p) C DP?(X) for each
¢ € R such that
eany 0 # E € P(p) has Z(E) € Roge!™?;
e P(p+1) =P(p)[1] for all ¢ € R;
e Hom(P(¢), P(¢)) =0 if ¢ > ¢'; and
e any 0 # E € D’(X) has a Harder Narasimhan filtration, i.e., there is a sequence in
D" (X)
O0=Ey—~>E —-+-—>E,_1—>E,=E
whose factors A;, defined as the cones
Eiy1 — Ei »> Ai —> Ei[1],
satisfy A; € P(g;) with
Y1>¢2>->@Pp-1> On.
In this case we denote ¢ (E) = ¢ and ¢~ (E) = ¢,, and for any interval I C R, P(I) C
DP(X) is defined as the full subcategory of E € D?(X) for which [~ (E), ot (E)] C I. Tt

is easy to show that the stability condition o induces a f-structure on D?(X) whose heart

is P((0, 1]).

1.2,

The homomorphism Z is called the central charge, and we say that 0 # E € D?(X)
has phase ¢ if Z(E) € Roge™. The objects of P(¢) are called o-semistable, while
the simple objects are called o-stable. Under mild technical assumptions (fullness; see
[7]), the categories P(¢) are Artinian, and every o-semistable object E € P(p) has
a Jordan—-Holder filtration in the above sense with o-stable factors of phase ¢. Two
o-semistable objects E, E’ € P(¢) are S-equivalent if their Jordan—Holder factors are the
same (up to permutations).
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1.3.

We further say that the stability condition ¢ is numerical if the central charge Z
factors through the cokernel Kpuy,(X) of the Chern character ch: K(X) — H*(X, Q).
Let Stab(X) be the space of numerical stability conditions. It has a natural metric
topology [7, Proposition 8.1] which makes the map Z : Stab(X) — Hom(Kpym(X), C)
a local homeomorphism. There is a particularly well-behaved connected component
Stab’ (X) c Stab(X) containing stability conditions for which the structure sheaves of
points k(x) are all stable of the same phase. Numerical stability conditions have been
constructed on surfaces (see [8] for K3 surfaces, and [1] in general).

For the remainder of this section we restrict our attention to K3 surfaces X. We note
in passing that we could just as easily work throughout with a K3 surface X twisted by a
Brauer class o € Br(X) using the results of [13], and in fact this is extremely useful (see
the use of Lemma 6.3 in the proof of Theorem 1.3 in [6], based on the idea of [25]).

1.4.
The Mukai lattice H(X, Z) is the full cohomology of X,
H(X,7) = H'(X,Z)® H*(X,7) ® H*(X, ),

endowed with the (pure) weight-2 Hodge structure deterrgined by H?0 = 20 The
Mukai pairing of two vectors a = (r, D,s),b= (', D’,s') € H(X,Z) is

(a,b)=D.D' —rs' —7's.
For any object E € D?(X), the Mukai vector of E is

V(E) = ch(E)y/Td(X) = (cho(E), chi(E), cha(E) + cho(E)).
Recall that, for a K3 surface, ch : Kyym(X) — H (X, Z) is an integral isomorphism. Thus,
by Grothendieck Riemann-Roch, for E, F € D?(X),
x(RHom(E, F)) = —(V(E), v(F)).

The algebraic Muka~i lattice is d~eﬁned to be the integral classes in the (1, 1) part of
the Mukai lattice, Hyo(X,Z) = H LInH(X, 7). Note that the Chern character endows

Knum(X) with a natural (pure) weight-2 Hodge structure such that ch: Kyym(X) >
H (X, Z), and this is perhaps a more elegant definition of the Mukai lattice.

The central charge Z of any numerical stability condition on X can be represented
as Z(-) = (Rgz, -) for a unique Q7 € ﬁalg(X, 7Z) ® C; we denote the resulting map by the
same letter: Q : Stab(X) — ﬁalg(X, 7Z)®C.

1.5.

For any Mukai vector v € ﬁalg(X , Z), the space Stab(X) has a wall and chamber structure
with respect to v. That is, there is a locally finite collection of codimension-1 submanifolds
called walls such that, for o off a wall, the set of o-stable objects E (and thus also the set
of o-semistable objects) is locally constant. A connected component of the complement
in Stab(X) of the union of all walls is called an open chamber, and its closure is called a
closed chamber. We say that a stability condition o is generic with respect to v if it lies
in an open chamber.
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1.6.

By [5, §5], every (codimension-1) wall W C Stab(X) with respect to v has an associated
saturated signature-(1, 1) sublattice ve H C ﬁalg(X , Z), intrinsically described as the set
of we ﬁalg(X, Z) for which Z(w) and Z(v) are R-linearly dependent (i.e., %ZZ((VVV)) =0) for
all o0 € W. Not all such hyperplanes H arise in this way, but we can always associate
to H the potential wall VW C Stab(X) of stability conditions o such that Z(#) lies on a
real line. In this case we say that w € H is effective if there is a o-semistable object with
Mukai vector w for a generic o € W, and we define the effective cone of the potential

wall C C H®R to be the real cone generated by effective classes w € H.

1.7.

Fixing o, for any algebraic space § we say that an S-perfect E € D?(S x X) is a flat family

if the derived restriction E; :=i}E € DP(X) is in the heart P((0, 1]) for all closed points

s € S. We say that E is a flat family of o-(semi)stable objects of Mukai vector v and

phase ¢ if E; is o-(semi)stable with v(Ey) = v for all closed points s € S. By [19, 20, 28],

we have the following.

e The stack M,(v, @) (respectively, M (v,¢)) of flat families of o-semistable
(respectively, o-stable) objects is an Artin stack of finite type over C with coarse
space My (v, ) (respectively, M: (v, ¢)).

o N (v, ) C My (v, ) is an open substack.

o N (v, ) is a Gy-gerbe over a symplectic algebraic space M (v, ¢).

o If M (v, @) = My (v, @) then M, (v, @) is proper.

The situation is even better for a generic stability condition, by results of [31] and [28].

Theorem 6 (See [5, Theorem 2.13]). Suppose that o is generic with respect tov. If v = mvy
for vo primitive with V% > —2 and m > 0, then M (v, 9)(C) is nonempty if and only if
V% > —2. Furthermore,

(i) if V(2) > 0, then M, (v, @) is of the expected dimension v> +2; and

(ii) of m =1, then there are no strictly o-semistable objects of Mukai vector v, and
My (v, ) is smooth and projective of dimension v> +2.

Henceforth we will typically drop the phase ¢ from the notation (because it is
determined up to shifts by v).

1.8.

By (1.5), the spaces M = M. (v) are canonically identified as 7 varies in an open chamber
A. For any o € Stab’(X), Bayer and Macri [6, Lemma 3.3] construct a divisor class £, on
M, which evaluates on any map C — 2, (v) from a projective curve C with associated
flat family E € D?(C x X) as

ly.C = —S(M>,
Z(v)
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where g, is the derived pushforward along the second projectiong : C x X — X.£,.C =0
if and only if E. and E. are S-equivalent for generic ¢, ¢’ € C. We have the following.

Theorem 7 [5, Theorem 1.2]. The resulting map £ : Stab(X) —
piecewise analytic. Further, we have the following.

alg(M Z)QR s

(i) The image of £ is the intersection of the big and movable cones of M, and the
birational model associated to £y (lying in an open chamber of the movable cone
decomposition) is Mg (V).

(ii) € maps the closed chamber Ay containing a generic stability condition o to the nef
cone of My (V).

1.9.
Suppose that E € D?(X x M) is a universal object (though a quasiuniversal object would
suffice). We define a map 6 : v — a]g(M Z) via
n v 1)V det
vV ———— Kpm(X) —> Knum(M) — dlg(M Z),

where ®g(-) = g+(E ® p*(-)) is the K-theoretic Fourier—Mukai transform, and p : X x
M — X is the first projection. 6 is an isometry, and there is a dual map 6" : Hygo(X, Z) —

alg(M 7). By (1.6), every face of the nef cone of M has the form 8(H'), and by [5]

such an H can be taken to contain a € H with a> > —2 and |(a, v)| < 2. Similarly, every
face of the movable cone is of the form 6(H') for ‘H containing a w1th either a> = —2
and (a,v) =0, or a2=0 and (a,v) =1 or 2. These three possibilities correspond to
divisorial contractions of Brill-Noether, Hilbert—Chow, and Li—Gieseker—Uhlenbeck type,
respectively.

1.10.

(See [5, Section 14]) Given a hyperbolic lattice H C ﬁalg(X, 7)) with potential wall WW and
effective cone C, there are only finitely many a € C for which v—a € C. By the results of
[5], we can therefore usually assume that W is not totally semistable with respect to any
effective class. We define a partition P = [v =) a;] of v to be a set of Mukai vectors
{a;} with v =) a;, and a second partition P’ = [v=Y_b;] is a refinement of P if it can
be obtained by partitioning each a;. With the above hypothesis, there is an associated
locally closed stratum Mp C M, (v) of objects whose Jordan—Hélder factors with respect
to a generic op € YW have Mukai vectors a;. Moreover, a the stratum Mp/ lies in the
closure of a stratum Mp if and only if P’ refines P

2. Lagrangian planes

A Lagrangian subspace of a symplectic vector space is a maximal isotropic subspace; in
particular, it is half dimensional. Let M be a holomorphic symplectic variety of dimension
2n. A Lagrangian subvariety is an embedded smooth subvariety Z C M whose tangent
space at each point is a Lagrangian subspace. Note that Qz = Nz,m, where Nz, is
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the normal bundle of Z in M. A Lagrangian plane P C M is a Lagrangian subvariety
isomorphic to projective space P = P".

A Lagrangian plane P C M can always be contracted to a point in the analytic category,
and in fact in the category of algebraic spaces: there is an algebraic space M’ and there
isa map f: M — M’ such that f(P) = p is a point and f: M~ P > M’'~ p. It may
happen that M’ is not projective. We say that P is extremal if the class R € Hy(M, Z) of
the line in P generates an extremal ray of the Mori cone. Note that the exceptional locus
of the associated extremal contraction may strictly contain P.

Example 8. (i) The prototypical example of a Lagrangian plane is the zero section
P C A(Qp) in the total space of the cotangent bundle Qp. Blowing up X = A(Q2p)
at P, the exceptional fiber is isomorphic to the universal hyperplane in P x PV, and
can be blown down to the second factor yielding a smooth manifold X’ containing
PY. This is called the Mukai flop, and X and X’ admit contractions of P and PV,
respectively, to the same analytic space Xo. Any Lagrangian plane P C M is locally
analytically isomorphic to the Mukai flop, and can similarly be flopped to a complex
manifold M’ (again, even an algebraic space if M is a variety), but the resulting
manifold M’ need not be Kéahler.

(ii) Let X be a K3 surface containing a smooth rational curve C = P! ¢ X. Let X — X’
be the contraction of C to a double point. There is a natural embedding Sym”" C =
P" ¢ X1 and the plane P" is contractible via the Hilbert—Chow morphism S"! —
Sym” X’, though the subscheme 28 of nonreduced subschemes is contracted as well.

(iii) Here is an example due to Namikawa of a Lagrangian plane whose flop is not
projective [26, Example 1.7(ii)]. Let X — P! be a projective elliptic K3 surface
with two I3 fibers (i.e., cycles of three smooth rational curves), one of which is
E| + E; + E3. Asin the previous example, there are three disjoint Lagrangian planes
Ei(z) c X1 and flopping all three yields a nonprojective manifold.

(iv) If L is an effective line bundle on a K3 surface X such that every section of L
is reduced and irreducible, then let C C X x P be the universal divisor over P =
PHO(L)Y. The compactified relative Jacobian Picp(C) — P is a moduli space of
stable sheaves on X, and any section is a Lagrangian plane. In particular, the

. . =0
structure sheaf gives a section of Picp(C).

The machinery of the previous section (see (1.9)) allows one to very concretely describe
the nef and movable cones of moduli spaces, and we give here an in-depth look at Hilbert
schemes X1 of two points on a K3 surface X with Picard rank 1. In this case the
classification of birational transformations reduces to two Pell’s equations (see [5, § 13]).

Let Pic(X) = Zh, with h the ample generator of degree h? = 2d. As described in the
introduction, we have an isomorphism

H> (X" 7) = Zh © 78,

and the decomposition is orthogonal with respect to the Beauville-Bogomolov form.
Furthermore, we have (h, h) =2d and (8,8) = —2. h is represented by the divisor of

Downloaded from https://www.cambridge.org/core. University of Georgia Libraries, on 30 Jul 2018 at 04:57:36, subject to the Cambridge Core terms of use, available
at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51474748015000328



Lagrangian planes in holomorphic symplectic varieties 867

subschemes one of whose points is supported on a fixed hyperplane section of X, and
2§ is the divisor of nonreduced subschemes. Note that i always generates an extremal
ray of the nef (and movable) cone as it induces the Hilbert-Chow morphism X2 — x@
contracting the diagonal.

Example 9. (i) For d = 1, X is a degree-2 cover X — P2 branched over a sextic, and
hyperplane sections of X are genus-2 curves mapping to a line in P? via the unique
hyperelliptic cover. The Hilbert scheme X! has a Lagrangian plane, the closure of
the set of reduced fibers of the map X — P2. The degree-2 compactified Jacobian
ﬁz(C) of the universal hyperplane section C also has a Lagrangian plane, the
section P C P_icz(C) given by restricting the polarization O(h). In fact, P_icz(C) is
the Mukai flop of X2, and the flop is resolved by the relative Hilbert scheme of
two points Hilb?(C). One can show that the movable cone of X2 is (h, h — 8), which
is decomposed into the nef cone (h, 3k —28) of X2l and the image (3h — 28, h — §) of
the nef cone of the flop Pic’ (C). The isotropic divisor h —§ induces the Lagrangian
fibration ﬁz (€) — P2V, and ﬁz (C) is the only other birational model of X?!. The
wall between them is generated by the nef class 34 — 28 contracting the Lagrangian
plane, and the class of the line

_ 3
R=h—-35

satisfies R> = —3 and 2R € H>(X"], 2).

(ii) For d = 11, the movable cone of X! is (h, 10h —338). There are two chambers
corresponding to the two birational models: the nef cone of X?! is (h, 7h —226),
and that of the birational model is (7h — 228, 10h — 338). The wall between them is
once again a flop, and the contracted curve

Ri=h—18
again has R? = —% and 2R; € H%(X2! 7). Note however that
Ry=11h—-2s

is in the Mori cone and also has these two properties, but the movable cone does
not intersect Rj-.

Lagrangian Grassmannians are also of interest; we will likewise say that an embedded
Lagrangian Grassmannian Gr(k, £) C M in a holomorphic symplectic variety is extremal
if the class of the minimal rational curve in Gr(k, £) is extremal in the Mori cone of M.
The following example of Hassett and Tschinkel [17, Remark 3.1] shows how Lagrangian
Grassmannians naturally arise.

Example 10. Let X C P? be a general quartic (in particular, one containing no lines),
and let M = X be the Hilbert scheme of four points on X. M contains a Lagrangian
Grassmannian: intersecting with any line £ C P3 gives a length-4 subscheme, and there
is an embedding Gr(2,4) C M. Let P = |Ox(1)|, and take C C X x P to be the universal
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hyperplane section. The locus of subschemes supported on a hyperplane section contains
this Gr(2, 4), and is the image of a map from the relative Hilbert scheme of C:

F — Hilbg(C) — X

| :

P Picp(C)

~—

A generic line bundle of degree 4 on a hyperplane section C will have a two-dimensional
space of sections, so Hilbﬁé(C) is generically a P'-bundle over P_ic]?)(C). The locus where the
fiber jumps to a P2 is the section P — Eﬁp (C) obtained by restricting O(1) to a hyperplane
section, and the preimage F of this in Hilb%(C) is the flag variety of P3 parameterizing
hyperplanes and lines contained in them. The leftmost map is one of the forgetful maps,
F — P, and the composition of the top arrows is the other one, F — Gr(2,4) C M.

Lagrangian subvarieties are rigid in the following sense.

Lemma 11. Let G C M be a Lagrangian Grassmannian in a holomorphic symplectic
variety. Then G does not deform as a subscheme. If G =P is a Lagrangian plane, then
no curve C C P deforms out of P.

Proof. For the first statement, since G is Lagrangian, we have Ng,» = Q¢, and therefore
HO(Ng /m) = 0. For the second, it follows from the Euler sequence

0> Qp— Op(—=1)""' > Op >0
together with the sequence
0— I]p/M — IC/M — IC/]p — 0

that Hom(/p,y, Oc) = 0, and therefore that the map Hom(Ic/p, Oc) — Hom(I¢c/m, Oc)
is an isomorphism. O

3. Bridgeland Moduli Spaces

Let X be a K3 surface, let v e ﬁalg(X, 7Z) be a primitive Mukai vector with v> > 0, and
let 0 be a generic stability condition. We first prove Theorem 2 for M = M, (v). Note
that by Verbitsky’s Torelli theorem [29] and Markman’s results on the monodromy group
for the K3 deformation type (see §4), the weight-2 Hodge structure H(X,Z) from (1.4)
together with the class v € ﬁalg(X , Z)) determines M, (v) up to birational equivalence.

Definition 12. A pointed period (A,v) is a (pure) weight-2 polarized Hodge structure
on the Mukai lattice A with Hodge number h>? = 1 together with a primitive algebraic
class v € Kalg. A pointed sublattice is a saturated sublattice H C Kalg containing v. We
will adopt the convention that, when a pointed sublattice is specified by its intersection
form, the distinguished class will be the first basis vector.
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Roughly speaking, if there is a partition v=a+b with a,b € ﬁalg(X, 7Z), then o-stable
objects with Mukai vector v can be built as extensions of objects A, B with Mukai vectors
a and b, and the projectivized extension group P = PExt!(A, B)" will map into M, (V).
The geometry of P depends on the particulars of the pointed sublattice H generated by
a and b. Recall that a € ﬁalg(X, Z) is spherical if a> = —2. An object A € D?(X) is rigid
if Ext!(A, A) = 0, and spherical if it is rigid and Hom(A, A) = Cid.

Definition 13. A pointed sublattice H C I-NIalg(X , Z) is a P type sublattice if the following
hold.

(i) There is a spherical class s € H such that |(s, v)| = %

(ii) There is no spherical class 8" € H with |(§/, V)| < g

Further, we say that a IP type sublattice H is extremal with respect to a (generic) stability
condition o if 8(HY) is a wall of the nef cone of M (v).

Note that H being extremal with respect to some stability condition is equivalent to
6 (') intersecting the movable cone of each My (v). A pointed sublattice of the form

) 2
\A
¥ 2

is automatically of P type, though not every one is of this form. For the following lemma,
we say that v is minimal in H if there is no effective spherical class s € H with (s, v) < 0.

Lemma 14. Let H be a P type sublattice, and let W be the associated potential wall with
generic oo € W. If v is minimal in H, then there are two og-stable spherical objects S, T
with Mukai vectors s, t such that v =s+t.

v2

Proof. By definition, there is a spherical class s € H with (s, v) = %, and it is effective.
Note that t = v —s satisfies

2 =v2—2(s,v) + (=2) = -2,

so t is spherical, and moreover (t, v) = g as well. By [5, Proposition 6.3], there are exactly
two op-stable objects S, T with Mukai vectors sg, tg, and the Jordan—Hélder factors of an
object representing s consist entirely of sg’s and to’s. Thus, s = xsg + ytg with x,y > 0,

but since
V2
(s7 V) = X(SO, V) +)’(t0» V) = 7
we must have either s = sy or s = tp by condition (ii). Similarly, t =ty or t = sg. O

The utility of Definition 13 is hinted at by the following.

Lemma 15. If H C ﬁalg(X, Z) is an extremal P type sublattice, then My (V) contains an
extremal Lagrangian plane P C My (v) for o generic on either side of the wall associated

to H.
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Proof. First assuming that v is minimal in H, by Lemma 14 there exist op-stable objects
S, T € Pp(1) of classes s, t (respectively) for a generic oy € W, and v = s+ t. We therefore
have that Ext*(T,S) =0 for k <0 and k > 2 as S, T are both in the heart of op, and
further Hom(7, ) = Ext>(T, S) = 0 by stability, so ext!(T,8) = (s,t) =n+1. If o is a
generic stability condition on one side of W, assume that ¢(S) < ¢(T), and let P =
PExt' (T, §)V. Denoting by p : P x X — P the first projection,

p*S(1) - E — p*T — p*S(1)[1] (2)

defines a flat family E € D?(P x X) with v(E;) = v for all x € P. Restricting to x € P and
applying Hom(7, -) to the above sequence, we see that Hom(7T, Ey) = 0, and therefore,
by the following simple lemma, E, is o-stable.

Lemma 16 (See [5, Lemma 6.9]). Let A, B be simple objects in an abelian category, and
let
0—>A"—-E—>B" =0

be any extension with the property that either (i) x = 1 and Hom(B, E) =0, or (ii) y = 1
and Hom(E, A) = 0. Then, in case (i), every proper quotient of E is isomorphic to B*
for some z; in case (ii), every proper subobject of E is isomorphic to A* for some z.

Further, it is easy to see that any o-stable object E with Jordan—Holder partition P =
[v = s+ t] with respect to og is of the form (2), so we have an isomorphism between the
stratum Mp C My (v) and P. The case when ¢(S) > ¢(T') likewise produces a Lagrangian
plane on the other side of the wall.

Finally, if v is not minimal in A, then there is a minimal vy € H such that v is
obtained from vo by successive spherical reflections. If we let ST : D?(X) — D?(X) be
the composition of the corresponding sequence of spherical twists by o-stable spherical
objects, for o on one side of the wall, then, by the same argument as [5, Proposition 6.8],
ST applied to the family in (2) will be stable on that side of the wall. O

We can compute the class of the line in the Lagrangian plane of Lemma 15. Recall
from § 1.9 that, for any curve C C My (v),

O(w).C = (w, v(Pg(Oc¢))).

Let P! ¢ P be a line, and let ¢ : P! x X — X be the projection onto the second factor.

The class R = [P'] € Hy(My(v)) is determined by intersecting with all divisors: for any
1

weE v,

O(W).R = (W, V(g Elp1x)) = (W,2s+1t) = (W, s),

and thus R = 6V (s) in the case ¢(S) < ¢(T). If ¢(S) > ¢(T) we obtain R = —6"(s).

The Lagrangians planes constructed as in Lemma 15 are clearly extremal. Indeed, by
the classification in [5, Theorem 5.7], passing through the potential wall associated to
the hyperbolic lattice H will flop the projective space and change the sign of the class of
the line.

The rest of this section will be devoted to showing that this is in fact the only way
such planes arise.
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Proposition 17. Let v € ﬁalg(X, 7) be primitive with v* >0, and let o be a generic
stability condition with respect to V. My (V) contains an extremal Lagrangian plane
P C M, (v) if and only if I-Nlalg(X, 7Z) admits an extremal P type sublattice H with respect
to o. Further, in this case the class of the line in P is £6V(s), for s € H a spherical class

. 2
with (s,v) = % .

Proof. The reverse direction and the computation of the curve class is Lemma 15 and the
ensuing discussion, so we just need to demonstrate the necessity of the lattice condition.

Suppose that for some generic stability condition o there is an extremal Lagrangian
plane P C M, (v), and let w : My (v) = M be the contraction. m is realized by crossing
some wall W C Stab(M); let H C ﬁalg(X, 7Z) be the associated hyperbolic lattice, with
effective cone C C H®R. Then m contracts curves parameterizing objects that are
S-equivalent with respect to op, and, since P is contracted to a point, a generic point
x € P has fixed Jordan—Hélder factors A; with respect to og. Let P = [v =) a;] be the
corresponding partition, where a; = v(A;), and let Mp C M, (v) be the locally closed
subvariety of points with the same Jordan—Ho6lder decomposition.

Lemma 18. The A; are all rigid. In particular, they are spherical.

Proof. Obviously, if the A; deformed, then, because the dimensions of the extension
groups between the A; locally remain constant (as the A; locally remain stable with
respect to op), a curve C contracted by 7 would deform outside of P, contradicting
Lemma 11. Thus, the A; are simple in Py(1) and rigid, and therefore spherical. O

As in the proof of Lemma 15, there are exactly two spherical objects S, T € Py(1), so
in fact the partition P must be of the form v = xs+ yt, where s = v(S) and t = v(T).
Suppose that ¢(S) < ¢(T) for o. It follows that an object E associated to a point of Mp
is an extension of the form

SUY - E—>T®V— SeU], 3)
where U, V are vector spaces of dimensions x, y, respectively. Indeed, since neither S nor
T admits self-extensions, (3) is just the Harder—-Narasimhan filtration on the other side
of the wall2. Such an extension is stable only if the rightmost map U ® V — Ext'(T, S)
from (3) satisfies

(i) U — Hom(V,Ext'(T, §)) is injective, and
(ii) V — Hom(U, Ext! (T, §)) is injective,
and therefore we can identify Mp with a subscheme of the space of bidegree (1, 1) maps
PU x PV — PExt' (B, A), up to the action of PGL(U) x PGL(V). But P ¢ Mp and
2
. v
dimMp < xy((s,t) —xy) = > +x2+ y2 — x2y2 =n+ (x2 — 1)(y2 —1).

In order for this to be half dimensional, we need either x = 1 or y = 1. In this case, by
Lemma 16 we have Mp = Gr(x, (s, t)) (for y = 1, and likewise if x = 1), and, in order for
P=Mp,weneed x =y =1. O

2rl‘herefore, we can retrospectively realize that UV = Hom(S, E) and VY = Hom(E, T).
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This provides an easy verification that Lagrangian planes contract to isolated
singularities, since the decomposition v = s+t cannot be refined.

Corollary 19. If P C M,(v) is an extremal Lagrangian plane, then P is a connected
component of the exceptional locus of the associated extremal contractionw : My (V) — M.

The proof of Proposition 17 begs the same classification question for Lagrangian
Grassmannians, and a similar argument shows that they arise as the strata corresponding
to partitions of the form P = [v = s+ kt], for spherical s, t. As remarked above, however,
it is not the case that an extremal Grassmannian G is contracted to an isolated singularity,
because the partition

V=s+t4---+t (4)

is a common refinement of the partitions v = (s + mt) + (k — m)t for all 0 < m < k, and,
since (s +mt)? > 0, these Jordan-Hélder factors deform. In fact, G will lie in the closure
of each of these strata, since spherical objects have no self-extensions and therefore (4)
and v = s+ kt have the same associated strata. There will thus always be a rational curve
in G which sweeps out a larger exceptional locus (as in Example 10).

Example 20. Here, we revisit Example 10 in the above language. X is the moduli space
My (v) for v = (1, 0, —3), parameterizing ideal sheaves Iz of length-4 subschemes Z C X,
for o in some chamber C of the stability manifold. The Grassmannian Gr(2,4) c X4
arises as the ideal sheaves that are complete intersections of hyperplane sections of X,

0 — Ox(=2) —> Ox(=1)> > Iz — 0,
and can therefore be thought of as extensions:
Ox(=1)* > Iz — Ox(-2)[1] = Ox(=1)’[1],

Thus, the corresponding partition is v=2s+t, for s = (1, —H, 3) and t = (—1,2H, -9),
and v=s+s+t is a refinement of it. As in the above, both of these partitions have
the same associated stratum, but the second also refines v=s+a, where a=s+t =
(0, H, —6). The stratum Mp of v = s+ a parameterizes ideal sheaves of the form

0—>Ox(-1)—> 1 —>F—0

with v(F) = a, that is, with Z lying entirely on a hyperplane section. F moves in
a 2+a%® = 6 dimensional family isomorphic to m;(’;’-[), and Mp is the image of the
complement of the Lagrangian section P in Example 10. Note that P is the Lagrangian
plane corresponding to the partition a = s+t, by Lemma 15.

The phenomenon in Example 20 is generally true: a Lagrangian Grassmannian
Gr(k, £) in a moduli space M, (v) always ‘comes from’ a Lagrangian Grassmannian in
a smaller-dimensional moduli space M, (w) with respect to the same stability condition
o, and the process terminates at a Lagrangian plane. A general notion of ‘stratified Mukai
flops’ such as these were first studied by Markman [21].
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4. Holomorphic symplectic varieties of K3 type

We now turn to the general case. Much of the Hodge-theoretic structure of Bridgeland
moduli spaces on K3 surfaces is echoed by arbitrary holomorphic symplectic manifolds
of K3 type. For M a K3 type manifold of dimension 2n, Markman [22, Corollary 9.5]
constructs a monodromy invariant extension of pure weight-2 Hodge structures (we will
blur the notational distinction between the Hodge structure and the underlying lattice)

0— H*(M,Z) - A(M) - Q(M) — 0,

where A(M) is a (pure) weight-2 Hodge structure on the Mukai lattice A polarized by
the intersection form, and Q(M) is rank 1 of type (1, 1). In the language introduced in
the previous section, this yields a pointed period (IN\(M), v(M)) which determines M up
to birational equivalence, again by Verbitsky’s Torelli theorem [29]. The subgroup of the
oriented isometry group 0+(1~\) preserving the embedding H*(M, Z) — ZN\(M) is equal
to Mon?(M), the image of the restriction map Mon(X) — O(H*(M, 7)), and there is a
natural lift of the monodromy action to 1~\(M).

In the case of a Bridgeland moduli space M = M, (v) of objects on a K3 surface X,
K(M) = ﬁ(X, 7) is the pointed period described above, and the embedding H*(M, Z) —
A(M) is the inverse of the Mukai map 0 : v — H%(M, Z). In general we will still denote
by v(M) a primitive generator of H>(M,Z)* C ZN\(M); we always have v(M)? = 2n —2.
We will also denote by 0V : K(M) — Hy(M, Z) the dual of the embedding.

From [3], the description of the nef cone of moduli spaces in terms of their pointed
periods in §1.9 deforms to all holomorphic symplectic varieties of K3 type, and, in
particular, we have the following.

Theorem 21 [3, Theorem 1]. Let (M, h) be a polarized holomorphic symplectic variety of
K3 type. The Mori cone of M is generated by the positive cone and classes of the form

V2

{Gv(a) |ae K(M)alg with a> > =2, |(a, v)| < ?,hﬂv(a) > O}.

Before proving the general case of Theorem 2, recall that a parallel transport operator
is an isometry ¢ : H*(M,7Z) — H*(M',7) that arises from parallel transport of the
local system RZ?f,Z for some smooth proper family f: M — B along a path with
endpoint fibers M and M’. Recall also that, for an embedding i : ¥ < M of a Lagrangian
submanifold into a holomorphic symplectic manifold, the deformations of the pair (M, i)
are those of M that preserve the sub-Hodge structure keri* ¢ H*(M, Z), and they are
unobstructed (see [30] and [27]). In our case, for ¥ =P and R € Hy(My(v), Z) the class
of the line R, as long as R remains algebraic in a family the plane will deform as well.

We now prove the first main theorem.

Theorem 22. Let (M, h) be a holomorphic symplectic variety of K3 type and dimension 2n
with a Lagrangian plane P C M, and let R € Hy(M, Z) be the class of the line. Then A(M)

admits a P type sublattice H, and R = 6" (s) for a spherical class s € H with |(s, V)| = %
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Proof. We know that R? < 0, and so, by the argument of [3, Proposition 3], there is a
smooth proper family f: M — B over an irreducible analytic base specializing to M
over some point 0 € B such that there is an algebraic section p of R¥"~2 f,7Z specializing
to R over 0 (the argument of Proposition 3 in [3] only uses that R?> <0 and the line
deforms sideways). By the above discussion, the Lagrangian plane P also deforms to the
general fiber. As the periods of moduli spaces are dense in the base of the Kuranishi
family of the pair (M, P), we can find a specialization to a moduli space for which the
plane P does not degenerate and such that P is extremal. Transporting the P type lattice
guaranteed by 17 then yields the claim. O

The existence of a P type lattice does not only depend on H2(M,Z), but we always
have a simple necessary criterion for a curve class to be the class of a line in a Lagrangian
plane.

Corollary 23. Let (M, h) be as above, and let R be the class of a line in a Lagrangian
plane. Then (R, R) = —% and 2R € H*(M, 7).

Proof. The statement follows from the following observation.

Lemma 24. If K(M) admits a spherical a € X(M) such that (a,v) = %, then R =0V (a)
has (R, R) = —# and order 2 in the discriminant group of H*(M, 7).

Proof. Since 6" is the composition of the orthogonal projection onto v and the inclusion
H%*(M,Z) — Hy(M,Z) given by the quadratic form, we have
2 n+3

2
—(a_Y) 2 a2_ y__
(R,R)_<a 2) =a (a,v)+4— 7

We have 2a—v € v, so R is 2-torsion in the discriminant group D of H*(M,Z), but
clearly R # 0 in D, so R has order 2. O

O

Running the argument of Theorem 22 backwards yields a partial converse.

Theorem 25. Let (M,h) be as above, and suppose that R € Hy(M,7Z) is a primitive
generator of an extremal ray of the Mori cone. Then R is the class of a line in a
Lagrangian plane if and only if (R, R) = —% and 2R € H>*(M, 7).

Proof. The ‘only if’ part follows from the previous theorem, so we only need to prove
the sufficiency of the numerical conditions in this setting. As R is extremal, we know
by Theorem 21 that it is a multiple of a class of the form 6V (a) for a € H C A(M) as
in the Theorem, and it is not hard to see that in fact H must be P type and further
that R = 6V (s) for a spherical class s with |(s, V)| = % Again by [3, Proposition 3 and
Corollary 6], there is a smooth proper family along which R remains algebraic specializing
to a moduli space M’ for which the image R’ € Hy(M', Z) of R is extremal, and therefore
by Theorem 17 R’ is the class of a line in a Lagrangian plane P which then deforms to
the general fiber of the family, as above. The primitivity and extremity assumptions on
R ensure that P does not degenerate in M. O
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A full converse to Corollary 23 is not expected without some indecomposability
constraint on the curve class R(indeed, such a hypothesis is also needed in the case of
smooth rational curves on K3 surfaces), but the exact condition is at the moment unclear.
If we drop the extremity and primitivity condition in Theorem 25 and only insist that R
comes from a P type lattice, then the argument carries through except at the last step,
where we must show that the plane P does not degenerate in M. For example, the class
R> in Example 9(ii) is such a class, and there is even a family keeping Ry algebraic whose
associated parallel transport operator sends R, to Ry, but the Lagrangian plane on the
generic fiber of this family could easily degenerate.

With Corollary 23 in mind, Corollary 5 follows by lattice theory. Let L be the lattice
H%*(M,7), and let D(L) = L /L be its discriminant group. Denote by O (L) the isometry
group of L and by O(L) the group of isometries acting trivially on D(L). By a result of
Eichler [10, § 10] (see also [11, Lemma 3.5]), the orbit of a primitive class a € L under the
group 5(L) is determined by its square (a, a) and the class of its dual a¥ = m(a, ) €
D(L) in the discriminant group. Recall that div(a) is defined by (a, L) = div(a)Z. By [22,
Lemma 9.2], 0 (H*(M, 7)) is an index-2 subgroup of Mon?(M), and therefore we deduce
the following.

Corollary 26. There is a single monodromy orbit containing all primitive classes arising
as lines in Lagrangian planes embedded in holomorphic symplectic varieties of K3 type.

Remark 27. In fact, the same proof shows that the number of monodromy orbits
containing the classes of lines in Lagrangian planes is at most equal to the number
of square divisors of (n +3)(n —1).

Remark 28. It is not in general true that the class of a line in an extremal Lagrangian
plane is primitive. Indeed, if v is minimal in a P type sublattice H, so that v=s-+1t in
the notation of §4, this will be the case if and only if the parallelogram with vertexes
0, s, t, v contains no interior lattice point; i.e., if s and t generate H. Since the effective
cone is generated by s, t, any other contracted stratum Mp corresponding to a partition
P =[v=>) a;] must have each a; in the interior of the parallelogram with vertexes
0,s, t, v, so this is in turn equivalent to P being the only exceptional locus.

In dimensions < 8, the method of proving the sufficiency of the numerical criteria in
Corollary 23 in [4, 12, 16] also provides universal expressions for the class [P] € H (M, 7)
of a Lagrangian plane in terms of Hodge classes and the dual to the class of the line
p=2R e H*(M,Z):

[P?] = 5330 +ca(M))
[P*] = z5(0° + pea (M)
[PY] = 337555 (8800 + 1760p%co (M) — 352007 + 492860co (M) — 1408c2 (M)?).

Here 6 € Sym2 H*(M,Z)* ¢ H*(M, Q) is the class of the Beauville-Bogomolov form.
Given the monodromy invariance in Corollary 26, such universal expressions must exist.
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876 B. Bakker

Question 29. What are the universal polynomials for the class of a Lagrangian plane
(with primitive line class) in a holomorphic symplectic variety of K3 type in terms of the
dual to the line and Hodge classes?

As is clear from the n =4 case, the class of a Lagrangian plane cannot always be
expressed purely in terms of chern classes and p.
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