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Abstract 

 

In recent years there has been rapid proliferation of studies demonstrating how reward learning 

guides visual search.  However, most of these studies have focused on feature-based reward, 

and there has been scant evidence supporting the learning of space-based reward.  We raise the 

possibility that the visual search apparatus is impenetrable to spatial value contingencies, even 

when such contingencies are learned and represented online in a separate knowledge domain.  

In three experiments, we interleaved a visual choice task with a visual search task in which one 

display quadrant produced greater monetary rewards than the remaining quadrants.  We found 

that participants consistently exploited this spatial value contingency during the choice task but 

not during the search task – even when these tasks were interleaved within the same trials and 

when rewards were contingent on response speed.  These results suggest that the expression of 

spatial value information is task specific and that the visual search apparatus could be 

impenetrable to spatial reward information.  Such findings are consistent with an evolutionary 

framework in which the search apparatus has little to gain from spatial value information in 

most real world situations. 
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Failure to Exploit Learned Spatial Value Information During Visual Search 

 

The principle of utility maximization, by which individuals seek the greatest rewards 

and smallest losses, is among the most fundamental motivators of human behavior (von 

Neumann & Morgenstern, 1953).  With all other things being equal, we take the bet with the 

largest expected payout, we buy from the seller offering the lowest price, and so on.  Humans 

do demonstrate a variety of non-normative tendencies (Tversky & Kahneman, 1975; Hastie & 

Dawes, 2010), but we nevertheless are consistently sensitive to value and pursue strategies to 

maximize our gains.   

It is thus intriguing when people demonstrate insensitivity to value, as these examples 

offer important insights into our cognitive architecture.  Such behavior can be attributed to 

several causes.  First, people could fail to learn the relevant value contingencies; classic 

examples of such acquisition failures include blocking (Kamin, 1969) and overshadowing 

(Pavlov, 1927), in which previous or concurrent exposure of a conditioned stimulus prevents a 

second conditioned stimulus from being associated with an unconditioned stimulus.  Second, 

people could successfully learn a value contingency but fail to retrieve the memory of this 

contingency (Tollman, 1932; Spear, 1973; see Wasserman, 1981).  Third, people could 

decrease their subjective valuation of the reward and thus possess lesser motivation toward it, 

as highlighted by the classic example of a free-feeding rat reaching satiety and then abstaining 

from seeking food (Richter, 1922).   

In this article, we consider a more perplexing scenario, in which an individual 

demonstrates learning, retrieval, and motivation yet only behaviorally exploits the value 
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contingency during some task settings and not others.  Such a task-dependent expression, 

should it exist, is theoretically significant because it would show domain specificity in the 

exploitation of reward.  

Here we examine the case of spatial value and visual search. Recently, two studies 

using this combination of value manipulation and task, respectively, failed to show any 

sensitivity to reward (Jiang, Sha & Remington, 2015; Won & Leber, 2016).  In both of these 

studies, participants were instructed to perform a search task (target T among L distractors), in 

which correct target identification was followed by either a small or large monetary reward.  

Unbeknownst to participants, the expected value (EV) of the targets varied as a function of 

space.  For instance, targets in “high-EV” display quadrants could yield rewards averaging 

approximately 6 times greater value than targets appearing in the “low-EV” quadrants (e.g., 

Won & Leber, 2016, Experiment 1a).  Note that targets appeared with equal frequency in each 

of the quadrants, so only the reward magnitude was varied.  What the studies showed 

repeatedly across numerous experiments was that participants’ behavior (i.e., response time and 

accuracy) was totally insensitive to quadrant EV.   

These findings are situated in a literature on attention and reward in which dozens of 

studies have reported robust effects from feature-based value manipulations (e.g., Anderson, 

Laurent & Yantis, 2011; Della Libera & Chelazzi, 2006; Hickey et al., 2010; Kiss et al., 2009; 

Navalpakkam et al., 2010), while virtually no studies have reported effects of spatial reward 

(but see Chelazzi et al., 2014).  In line with the lopsided state of the literature, we found that 

participants did exploit color-based value information when we modified our task to endow 

colors instead of spatial locations with value, using the same EV ratios (Won & Leber, 2016, 
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Experiment 2).  Thus, there appears to be a clear dissociation between the exploitation of 

spatial vs. non-spatial value information during visual search. 

Why would people be insensitive to spatial value?  Given that similar payoff schedules 

elicited value-sensitive performance in other tasks, it is unlikely that participants were 

unmotivated to seek the monetary reward.  Instead, it is possible that the act of conducting 

visual search interferes with either learning or retrieval of the spatial value contingency.  Given 

the brain’s capacity limitations, it is simply not possible to encode or retrieve task-relevant 

information about all potential relationships among variables.  Such an encoding-based 

explanation suggests that people would demonstrate sensitivity to spatial reward during search 

if they were just able to properly represent the relevant information.  Alternatively, expression 

of spatial value knowledge could be task dependent; that is, observers could know the spatial 

value contingencies but the visual search apparatus could be impenetrable to incorporating this 

information.  Such a scenario represents the most intractable form of reward insensitivity, 

because any method to endow the observer with knowledge of the contingency will inevitably 

fail to circumvent the mode of expression and will consequently fail to produce behavioral 

change.  

While it seems counterintuitive that the human mind would selectively fail to express 

actively represented knowledge, it may be sensible from an ecological standpoint.  Consider 

that in the real world, objects are usually the things to which we assign value, not their 

locations.  When we engage in a search task for a specific item, such as our car key, the target 

of our search is just as valuable to us if we find it on the desk or hanging from the doorknob.  

Because of the ecological oddity of a visual search target varying in value as a function of its 

location, the designer of a visual search apparatus – i.e., the process of natural selection – may 
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not have been pressured to incorporate spatial reward sensitivity as a necessary component. It 

has previously been argued that the visual search apparatus does not take all possible 

information into account when deploying shifts of attention; for instance visual search might be 

more efficient when it is allowed to run in “anarchic” versus “orderly” fashion (Wolfe, Alvarez, 

& Horowitz, 2000), and it might sometimes proceed without concern of revisiting previously 

rejected locations (Horowitz & Wolfe, 1998; Wolfe, 2003).   

Many forms of learning have been shown to modulate the visual search process, 

including phenomena such as contextual cueing and probability learning (e.g., Chun & Jiang, 

1998; Miller, 1988; Geng & Berhmann, 2002).  Moreover, individuals are highly sensitive to 

variations in the likelihood of target appearance, as shown in visual foraging tasks (e.g., Cain, 

Vul, Clark & Mitroff, 2012; Wolfe, 2013).  Finally, individuals are plenty capable of claiming 

volitional control over their search when they want to; apropos to this discussion, Jiang et al. 

(2015) showed that a subset of participants were able to direct attention to high-value locations 

when asked to do so.  Yet, in this paper, we entertain the notion that, by default, the visual 

search apparatus is impenetrable to spatial value information, even when the observer is 

actively representing such value within another knowledge domain.  

Before proceeding in this venture, we must offer an important disclaimer:  proving that 

the visual search apparatus is impenetrable to spatial value information is a tall order, which 

might require a substantial number of studies, using a variety of converging approaches.  

Therefore, we will refrain from making overly strong claims about the impenetrability of the 

search apparatus while presenting our current work.  We will emphasize that the discussion of 

this theoretical possibility is important and our results provide tentative support for it. 
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Specifically, we conducted three experiments to seek support for whether insensitivity 

to spatial value during visual search constitutes a task-dependent expression failure.  Our 

general approach was to mix together two types of tasks: Visual Choice and Visual Search.  

During the choice task (see, e.g., Jiang, Swallow, Won, Cistera & Rosenbaum, 2015), 

participants were able to select a single item (Exp. 1) or a subset of the display (Exp. 2 and 3) 

in the aim of obtaining a reward.  We varied potential reward as a function of spatial location, 

and we anticipated that participants would rapidly learn to choose high-EV locations, 

replicating an earlier finding (Won & Leber, 2016, Exp. 4b).  The visual search task was like 

that used in previous work, in which targets were assigned value depending on their spatial 

location.  Critically, the locations assigned as high-EV were identical across the choice and 

search tasks within each participant.  Assuming that the participants show a clear preference for 

the high-EV locations during choice, we reasoned that a) this would demonstrate that observers 

are actively representing spatial value information during choice and b) the information would 

be carried into the interleaved search task.  Given these assumptions, if previous findings of 

reward insensitivity during search resulted only from learning, retrieval, or motivational 

deficits, then the current manipulations should overcome these limitations and facilitate the 

expression of the value contingency knowledge during search.  If, however, the visual search 

apparatus is insensitive to spatial value, participants will persist in demonstrating a task-

dependent expression failure during search while successfully expressing learning during 

choice.  To preview, none of the current manipulations succeeded in eliciting the expression of 

spatial value knowledge during search.  These results provide intriguing support for the notion 

that our search apparatus is, by default, impenetrable to spatial value information. 
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Experiment 1: Interleaved Visual Choice and Visual Search  

In the first experiment, we interleaved 16-trial mini-blocks of Visual Choice and Visual 

Search.  During Visual Choice, participants viewed a display of 16 “L” stimuli and clicked on 

any of them to receive a reward.  For each participant, we designated a single High-EV 

quadrant, for which any object clicked inside of it would typically return a high reward.  

Because the remaining quadrants typically returned low rewards, we expected to replicate our 

previous finding that participants quickly learn to disproportionately choose the high-EV 

quadrant (Won & Leber, 2016).  The Visual Search task had stimuli that were nearly identical 

to those in the choice task, except one of the search items was a T, and participants were told to 

click on it rapidly and accurately. 

As we described in the introduction, we expected that participants would bias behavior 

toward the high-EV quadrant during the Visual Choice trials, and we thus sought to determine 

whether the participants would express this knowledge during the Visual Search task; such 

expression would be manifested via faster response times (RTs) on trials in which target 

appeared in the high-EV quadrant versus the low-EV quadrant.  

 

Method 

 

Participants  

In choosing our sample size, our goal was to include a sufficient number of participants 

to obtain power = 0.9 for the visual choice manipulation. Based on the effect size obtained for 

this manipulation in our previous paper (Won & Leber, 2016, Experiment 4b), we estimated 
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that 15 participants would be needed.1  We ran 16 participants in all experiments reported in 

this manuscript.  Of the 16 run in Experiment 1, 12 were female (mean age = 22.7 years). All 

participants reported normal or corrected-to-normal visual acuity and normal hearing. The Ohio 

State University IRB approved this protocol. Compensation for the 1.5 hr session was based on 

how many points were earned during the experiment (point values will be further explained in 

the Design). Participants’ payouts were distributed in whole dollar amounts, as follows:  0-

5000 points = $15; 5001-6000 points = $16; 6001-7000 points = $17; 7001-8000 points = $18; 

8001-9000 points = $19; 9001 and up = $20.   

 

Apparatus and Stimuli  

Participants were tested in a dimly lit room. Stimuli were presented on a 24” LCD 

monitor and generated using MATLAB (www.mathworks.com), with Psychtoolbox extensions 

(Brainard, 1997; Pelli, 1997).   In the Visual Search task, displays contained one target (a white 

T rotated 0°, 90°, 180°, or 270°) and 15 distractors (white Ls rotated 0°, 90°, 180°, or 270°) on 

a gray background. Targets and distractors subtended 1.02°x1.02° (all visual angles assume a 

typical viewing distance of 60 cm). Item locations were chosen randomly from a 10x10 

invisible matrix (15.28°x15.28°), with four items appearing in each quadrant. Target and 

distractor orientations were all selected randomly with replacement on each trial. The number 

20 or 1 (font size: .92°), indicating reward points for a given trial, was displayed at the target 

location, in green. Auditory feedback was either a three “chirp” sequence lasting 300ms for 20-

point responses, a single high-pitched 100ms tone for 1-point responses. In the Visual Choice 

																																																								
1 We do acknowledge, however, that estimates of effect size and power from previous data are prone to inflation, due to a 
“winner’s curse,” in which researchers are biased to primarily follow up on positive results (Halsey et al., 2015).   Therefore, 
our true power may have been less than 0.9. 
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task, stimuli were identical to the search task except that choice displays contained 16 Ls and 

no Ts. 

 

Design 

In the Visual Search task, the target appeared with equal frequency across the four 

quadrants (25% of trials each), but the point-value was varied. Specifically, targets in the high-

EV quadrant earned 20 points on 75% of trials and 1 point on 25% of trials. Targets in the other 

three low-EV quadrants earned the opposite: 1 point on 75% of trials and 20 points on 25% of 

trials. These contingencies yielded individual quadrant EVs of 3.813 and 1.438 for high- and 

low-EV quadrants, respectively. In the Visual Choice task, we matched the payoffs to the 

Visual Search task.  Specifically, objects clicked in the high-EV quadrant yielded 20 points on 

75% of trials and 1 point on 25% of trials; objects clicked in the low-EV quadrant yielded 1 

point on 75% of trials and 20 points on 25% of trials (see Figure 1A). Critically, the location of 

the high-EV quadrant was the same across the search and choice tasks for each participant. 

 

Procedure 

Main Trials.   

Participants completed 46 mini-blocks, each 16 trials, which consisted of alternating 

visual search and visual choice 23 times. Half of the participants started with visual search and 

the other half started with visual choice. In both tasks, participants initiated each trial by 

clicking on a small white square (.51°x.51°), which appeared near the screen center (jittered 

randomly on each trial by +/- .77° in both vertical and horizontal directions). After the click and 

a 500 ms delay,	the search or choice display appeared (for the two respective tasks). 
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choices in each block into a linear regression, for each participant, and computed the slope 

values.  These slopes were entered into a one-sample t-test (compared to a hypothesized mean 

of zero).  Results demonstrated a significantly positive linear trend, t(15) = 4.77, p < .001, 

Cohen’s d = 1.19, consistent with increased sensitivity to the high-EV quadrant over time.  

 

Visual search   

Because we only accepted click responses when the mouse hovered over the target, 

errors were not possible, so accuracy data are not reported.  We thus focus solely on RT. 

RT.  We removed trials with RTs slower than 3 SD above the mean (1.7%), and the 

remaining mean RTs are plotted in Figure 2 (line graph). The quadrant type x block ANOVA 

revealed a main effect of block, as RT became faster as the experiment progressed, F(22, 330) 

= 3.50, p < 0.0001, ηp
2 = .19. However, there was neither a main effect of quadrant type, F < 1, 

ηp
2 = 0.024, nor a 2-way interaction, F(22, 330) = 1.29, p = 0.174, ηp

2 = 0.079, showing that 

participants were insensitive to spatial value during search.   

One of potential issues with this is that failing to reject the null hypothesis could be due 

to limitations in statistical power.  One approach to increase confidence in supporting the null 

hypothesis is to compute the Bayes Factor (BF), which generates a readily interpretable odds 

ratio of evidence for vs. against the null hypothesis (e.g., Rouder, Speckman, Sun, Morey, & 

Iverson, 2009).  We computed BF on visual search RTs2, which yields BF01 = 3.34. The BF 

indicates that the observed data were 3.34 times more likely to be observed if the null 

hypothesis were true than if the alternative hypothesis were true. (for guidelines in the 

																																																								
2 The Bayes factors are written as BF10 when the evidence is in favor of H1 and as BF01 when the evidence is in favor of H0. 
We computed the BF using JASP 0.8.1.2 (JASP Team, 2017), with the default prior width of 0.707. 
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interpretation of Bayes factor magnitudes, see Morey, Rouder, & Jamil, 2014; Rouder, Morey, 

Speckman, & Province, 2012; Wetzels, Matzke, Lee, Rouder, Iverson, & Wagenmakers, 2011). 

 

Visual search vs. visual choice 

We next wanted to compare visual search and visual choice results.  While it is difficult 

to directly compare RT and choice frequency, our approach was to convert these respective 

dependent measures of interest to arbitrary learning efficiency units for each block (see Figure 

3). Specifically, for visual search, we subtracted the mean RT in high-EV quadrant from that in 

low-EV quadrants, and then divided by the sum of the two mean RTs from high-EV quadrant 

and low-EV quadrant (i.e., low-EV quadrant’s RT – high-EV quadrant’s RT) / (low-EV 

quadrant’s RT + high-EV quadrant’s RT)).  For visual choice, we subtracted expected chance 

level choice frequency (0.25) from choice frequency in high-EV quadrant, and then divided by 

the sum of these two measures (i.e., (high-EV quadrant’s choice – 0.25) / (high-EV quadrant’s 

choice + 0.25)). We then conducted a pairwise t-test on the two learning efficiency measures, 

revealing a significant difference between the two, t(15) = 7.01, p < .001, Cohen’s d = 1.75. 

We interpret this result with some caution, as we cannot verify that the choice and 

search manipulations were equally strong and/or sensitive.  And while converting the 

respective choice and RT measures learning efficiency units places the two on a common scale, 

it does circumvent the inherent limitations in our comparison.  Keeping these points in mind, 

the results suggest stronger expression of learning in visual choice than visual search.  

 

Explicit Learning Assessment  
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Figure 3.  Learning efficiency of visual choice and visual search.  Error bars show ±1 S.E. of 

the mean. 

 

 

Experiment 2: Combined Choice and Search Within Trials 

 The first experiment showed a clear dissociation:  even though the high-EV location 

was fixed across both tasks, participants prioritized it during choice but ignored it during 

search.  This is consistent with the task-dependent expression account, in that participants 

demonstrated sufficient knowledge and active retrieval of the high-EV location, and they 

demonstrated sufficient motivation to prioritize that location, yet they failed to use the value 

information during search.  However, there is one key limitation to this experiment:  it is 

possible that the brief breaks in between the interleaved mini-blocks were long enough to 

prevent transfer between the tasks.  Specifically, we presume that participants were operating 

with actively represented value information during the choice trials, but it could have rapidly 

decayed at the end of the 16-trial mini block; thus, the value information might not have been 

actively represented during the search trials.  

 To attempt to overcome this limitation, Experiment 2 combined both choice and search 

components within single trials.  When the display appeared, observers now had to choose to 

search one side of the display vs. the other.  After making this choice, the search items 
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appeared – only within the chosen display side – and observers had to click on the target T.  

Critically, a single high-EV quadrant was assigned to each participant that could motivate both 

the choice and search tasks similarly.  That is, to get the high reward, participants would first 

need to click on the correct side of the display; then to demonstrate a bias toward that same 

reward, participants would need to prioritize search toward that high-EV quadrant.  Note that 

across blocks, we varied the choice task to be either upper (top) vs. lower (bottom) or left vs. 

right.  Thus, a participant seeking to maximize reward would need to know the specific high-

EV quadrant and not just a high-EV side; for instance, if the upper left were high-EV, the 

participant would need to choose top on some blocks and left on others.   

If observers demonstrate actively retrieved knowledge of the high-EV quadrant during 

the choice task, we could test whether that information would be expressed moments later 

during the search task.  

 

Method 

Participants  

Sixteen individuals participated in Experiment 2 (9 females; mean age = 19.9 years), 

which took approximately 1 hour.  Participants’ payouts were determined as follows:  0-3000 

points = $10; 3001-4000 points = $11; 4001-5000 points = $12; 5001-6000 points = $13; 6001-

7000 points = $14; 7001 and up = $15.  

 

Material, stimuli, and procedure 

The experiment was modeled off of Experiment 1, with the following changes.  During 

the choice component, top/bottom displays contained two dots (.51°x.51°) in the center of the 
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upper and lower sides of display, while left/right displays contained dots in the center of the left 

and right sides of the display (see Figure 4).  Top/bottom and left/right displays were alternated 

across blocks, with half of the subjects doing left/right on even blocks and half doing them on 

odd blocks. Participants were instructed that each side has its own target, and they were asked 

to click which side they preferred to search. Once they clicked on a dot, that side of search 

array was revealed. Participants completed 24 blocks (32 trials per block). During the first half 

of these trials (blocks 1-12), quadrant EV was manipulated to match the same EVs used in 

Experiment 1.  During the second half (block 13-24) all four quadrants’ EVs were made to be 

equal, so that we could examine any persisting effects of learning. 

 

Explicit Learning Assessment  

We focused here on assessing explicit learning during search.  The generation task was 

identical with that for visual search’s generation task in Experiment 1, except that in 

Experiment 2, participants were shown two dots – white and black – before the search display, 

and asked to click the white dot to reveal that side of search display.  This ensured that 

participants would provide an equal amount of data for each side.  Additionally, we presented 

this task in two blocks of 24 trials each; one block was top/bottom and the other block was 

left/right.  The order of blocks was counterbalanced across participants.  Once the search 

display was revealed, participants clicked on the target T to reveal two point values, 1 and 20; 

they then chose which one best matched the reward typically earned at this location.   

 

A.			
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Results and Discussion 

Visual choice 

Choice frequency. Analysis focused on chosen side.  We coded low-EV side as the one 

consisting of two low-EV quadrants and high-EV side as the one consisting of one low-EV 

quadrant and the high-EV quadrant.  Note that we collapsed across top/bottom and left/right 

blocks. Again, we tested high-EV choices against chance level, because low- and high-EV data 

were statistically dependent. A sample to hypothesized mean (of 0.5) t-test, on collapsed data 

from all blocks, was significant, t(15) = 2.79, p = .014, Cohen’s d = .70. To then determine if 

participants’ sensitivity to the high-EV side changed over time, we conducted a 1-way ANOVA 

on choice data across 24 blocks. We did not find any significant main effect of block, F(23, 

345) = 1.07, p > .3, which might be because learning emerged rapidly, in the earliest blocks.  

We considered the possibility that each participant could have learned the bias from 

only the top/bottom (or left/right) blocks and totally ignored the left/right (or top/bottom) 

blocks. This is important because we inferred from the choice performance above that 

participants represented their high-EV quadrant rather than just a single display side.  

Critically, had the participants only represented a display side, the visual search performance 

would not be expected to vary between the high- and low-EV quadrants. To address this 

concern, we generated a scatterplot in which the y-axis indicates high-EV preference in the 

top/bottom blocks and the x-axis indicates high-EV preference in the left/right blocks (Figure 

6). If participants represented the high-EV quadrant rather than only one side, the dots should 

all settle into the upper-right quadrant of the scatterplot; numerically speaking, this occurred for 

13/16 participants.  To test this preference statistically, we rank ordered the magnitude of the 
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side preferences for each participant, (for some, the stronger numerical preference was for left-

right and others it was for top-down).  Then we tested the correlation of the stronger vs. weaker 

preference.  Our logic was that, if participants only had a side bias, then the weaker preference 

score would not carry any meaningful information and the correlation would thus not be 

significant.  However, if both stronger and weaker preferences scaled with participants’ overall 

quadrant preference, then the correlation would be significant.  Indeed, it was significant, r(15) 

= 0.943, p < 0.00001.  However, this result might have been driven partially by one outlier who 

perfectly chose the high-EV side for both odd and even blocks and another participant who 

reliably chose the low-EV side.  We repeated the test while excluding these individuals, and the 

result remained significant, r(13) =  0.858, p < 0.001.  All told, this analysis provides evidence 

that the participants’ choices were biased toward a quadrant, not a single side. It is worth noting 

that this result does not necessarily reflect that the participants “integrated” the representation 

of quadrant value from two types of trials (i.e., top/bottom and left/right trials). Whether the 

participants represented the quadrant value will need to be fleshed out in future experiments. 

 

Visual search 

RT. Analysis focused on target click RT, which commenced at the moment the 

participant completed the choice (by clicking one of the two dots). RT trimming removed 1.2% 

of trials.  Mean RTs across quadrant types and blocks are shown in Figure 5 (line graph).  A 

quadrant type x block ANOVA revealed a main effect of block, F(23, 253) = 2.56, p < .001, ηp
2
 

= .19, meaning the overall search RT became faster as the experiment progressed.  However, 

replicating the visual search in Experiment 1, there was no RT difference between the two 
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Figure 7.  Learning efficiency of visual choice and visual search. Error bars show ±1 S.E. of 

the mean. 

 

 

Experiment 3: Combined Choice and Search for Single Target 

 Experiment 2 showed that high-value locations could be represented and acted upon via 

Visual Choice while neglected during Visual Search within the same trial.  Along with the 

results of Experiment 1, these results are consistent with the task-dependent expression 

account.   

 Nevertheless, there are a few remaining potential limitations we must address.  One 

such limitation is that, even though we fixed the same high-EV quadrant across choice and 

search, it is possible that participants did not view the two tasks to be related to one another.  

This is because the choice task produced a target on either display side that was clicked, which 

stands in contrast to the visual search task, whose target is pre-determined to appear in only one 

location.  There is some evidence that learning could fail to transfer across a choice and search 

task if they are viewed as contextually dissimilar to one another.  For instance, Jiang, Swallow, 

et al. (2015) used a training/transfer procedure to see if a location preference learned during a 

spatial probability cueing manipulation – in which targets appeared more frequently in one 

display quadrant than others – transferred to a visual choice task.  They tested whether learning 
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from visual choice task would transfer to visual search.  Learning did occur within each task 

type, but the critical result showed no transfer in either direction.  Thus, the two tasks were 

represented as distinct from one another. That study differed from the present work in a few 

important ways.  First, it used probability cueing instead of a reward manipulation; second, its 

design included hundreds of training trials followed by hundreds of test trials, whereas we 

interleaved or combined our tasks.  Nevertheless, the possibility remains that participants 

simply viewed our choice and search tasks as unrelated to one another and thus did not transfer 

learning from choice to search.  To address this concern, we now told participants that they had 

to find a single target on each trial, which would be completed in two steps.  First, the 

participants would only be able to reveal half of the display, by clicking on any two quadrants.  

If neither of the quadrants they chose on a given trial contained the target, the trial would be 

terminated with no reward, and they would advance to the next trial.  If, however, their chosen 

quadrants did include the target location, the participants would then proceed to the search 

portion of the trial.  For the search portion, we revealed items in both of the chosen quadrants, 

and participants had to click on the target.  This procedure allowed us to determine if a) 

participants developed a bias toward the high-EV quadrant during choice and b) if they 

prioritized the same high-EV quadrant during search. 

 Additionally, we addressed one further potential drawback of Experiments 1 and 2, 

which is that the outcome of selecting high-EV locations during choice is much more 

consequential than for prioritizing search toward the high-EV location.  This is because, in the 

previous experiment, the choice determined the payoff on each trial; that is, choosing high-EV 

locations more frequently resulted in increased overall earnings for the participants.  In 

contrast, directing visual search toward the high-EV location before inspecting the other 
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locations may not have had as great of an impact on earnings.  For instance, in Experiment 1, 

participants searched the full display exhaustively until they found the target, which was the 

only way for them to advance to the next trial.  Because the target was equally likely to appear 

in all four quadrants, directing the search initially to the high-EV quadrant would not, on 

average, speed target identification compared to searching a low-EV quadrant first.  In 

Experiment 2, the same logic can be applied, albeit within the chosen side of the display.  As a 

result, even if participants knew where the high-EV location was, it would not necessarily have 

benefitted them to prioritize their search one way or another.  

 Note that the same criticism can be leveled at experiments showing color-based 

prioritization, yet those experiments generate robust expression of learned value.  For instance, 

as mentioned in the introduction, we previously ran an experiment using the same 16-item T 

among L displays in which target color, not location, was associated with reward (Won & 

Leber, 2016, Exp. 2).  We matched the reward ratios in that experiment (i.e., high-EV color vs. 

low-EV colors) to a spatial reward manipulation much like Exp. 1 of this article.  While 

participants could gain no monetary advantage for initially prioritizing search within the high-

EV color, they did so anyway, showing faster RTs to high-EV targets.  This is reminiscent of a 

study by Goldstein & Spence (1963), in which rats were placed in one of two 60-inch alleys 

that contained a food reward at the other end.  One alley consistently had a greater reward than 

the other, which rats learned, and they expressed this learning by running faster when placed in 

the high-reward alley than the low-reward one.  Thus, even though the rats could not alter their 

behavior to influence the reward outcome, they demonstrated greater motivation in one 

condition than another.  Given these results, we should have reasonably expected our observers 
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to search the high-EV locations more rapidly than low-EV locations in the previous 

experiments. 

 Nevertheless, there is a clear way to experimentally address this concern.  Indeed, the 

two papers that previously failed to find spatial reward effects each included a manipulation to 

incentivize participants to prioritize search to the high-EV location (Jiang, Sha & Remington, 

2015, Exp. 3; Won & Leber, 2016, Exp. 3).  Jiang and colleagues only rewarded trials in which 

RTs were faster than each participant’s median RT; in this case, strategically searching the 

high-EV quadrant first would yield greater overall rewards than searching low-EV quadrants 

first.  Won and Leber limited display exposure, which reduced overall accuracy and provided a 

similar incentive in which prioritizing the high-EV quadrant would bring greater overall 

earnings (since rewards were only provided on correct trials).  In the current experiment, we 

adopted Jiang et al.’s approach by only providing a reward on faster-than-median trials during 

search.   

 Altogether, this experiment maintained the same approach as Exp. 2, in that it provided 

for the active representation of spatial value information during choice, which we assumed to 

be available a moment later during search.  Moreover, it merged the task context across choice 

and search, as participants now sought the same target on each trial.  And finally, the incentive 

to exploit the value information to maximize reward was roughly equivalent in both the choice 

and search components of the task.  

 

Method 

Participants 
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We ran sixteen individuals (9 females; mean age = 23.2 years), which took 

approximately 1.5 hours.  Participants’ payouts were determined as follows:  0-3000 points = 

$15; 3001-4000 points = $16; 4001-5000 points = $17; 5001-6000 points = $18; 6001-7000 

points = $19; 7001 and up = $20.   This payoff schedule was slightly modified from the 

previous experiments.  This was because we made rewards dependent on search RT, which 

reduced the total number of points earned; the modified payoff schedule ensured comparable 

total dollars earned per hour across the experiments.   

 

Material, stimuli, and procedure 

The first half of the experiment began with the same Visual Search used in Exp. 1.  In 

particular, we did not condition reward based on search RT; our goal was to have the greatest 

possible chance of forming an association between quadrant and reward magnitude, and 

providing rewards on every correct trial maximized this.  We also wanted to familiarize 

participants with this task before layering on the choice component; this served to reinforce the 

participants’ interpretation that choice and search were part of the same task.   

In the second half of the experiment, each trial began with the presentation of four black 

dots, each centered in one of the four quadrants.  Participants were told to click any two of the 

dots to reveal the search items in those quadrants, then click on a small white square which 

appeared near the screen center to initiate search. If neither quadrant contained the target 

(which was equally likely to appear in each of the four quadrants), the message “no T” (font 

size: 0.92°) appeared for 1 sec, before proceeding to the next trial. If one of the two chosen 

quadrants did contain the target, the search items in those chosen quadrants were revealed. 

Participants then had to click on the target, at which point their RT was calculated.  For trials in 
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First half: visual search only 

RT. Analysis focused on target RT. Trimming removed 1.8% of trials, and mean RTs 

across quadrant types and blocks are shown in Figure 9A. A quadrant type x block ANOVA 

revealed a main effect of block, F(11, 165) = 2.07, p = 0.014, ηp
2 = .12, meaning the overall 

search RT became faster as the experiment progressed. The main effect of quadrant type was 

significant, F(1, 15) = 8.84, p = 0.0095, ηp
2 = .37. This result was very surprising, given the 

multiple previous failures of us and others to produce any evidence of spatial value exploitation 

during search under highly similar conditions.  The effect of quadrant did not increase across 

blocks, as shown by a non-significant quadrant x block interaction, F(15, 165) = 1.06, p = 

0.397.  Moreover, an inspection of the means shows the largest numerical effects of quadrant to 

appear in the first phase, when the manifestation of learning should be the weakest.  When 

excluding these two blocks from the ANOVA, the main effect is no longer significant, F(1, 15) 

= 2.191, p = 0.160, ηp
2 = 0.13.    

Overall, the results from the first half of this experiment are not easily interpreted as 

support for the expression of spatial reward learning.  However, to ensure that we were not too 

quick to dismiss this result, we ran a more powerful analysis across pooled results from five 

total experiments run under highly similar conditions.  These experiments all contained a T 

among L search task in which quadrant value was manipulated, the displays had unlimited 

exposure, and rewards were provided on all correct trials.  The analysis included: Experiment 2 

from Jiang et al. (2015), who kindly shared their data (blocks 1-8, n=16); Won and Leber 

(2016), Experiment 1a (all 12 blocks, n=12); Won and Leber (2016), Experiment 3 (blocks 1-4, 

n=12); Won and Leber (2016), Experiment 4a (blocks 1-12, n=12); and the current Experiment 

3 (blocks 1-12, n=16).  Given the highly similar experimental conditions across experiments, 
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we simply ran a paired-samples t-test on the pooled group of 68 participants, comparing mean 

RT on the lowest EV vs. highest EV quadrants.  Results showed a total mean quadrant effect of 

M = 20.7 ms, SD = 46.3, which was not significant, t(68) = 0.351, p = 0.727, d = 0.043.  This 

analysis increases our confidence that the surprising main effect of quadrant in the first half of 

Experiment 3 was likely a Type I error.  

 

Second half: Visual choice 

Choice frequency.  

Analysis focused on the frequency of trials in which participants chose the high-EV.  

Note that while we requested participants choose two quadrants on each trial, our experimental 

code allowed for them to click on the same quadrant twice; we excluded such trials from the 

analysis (2.3%). A sample to hypothesized mean (of 0.5) t-test, on collapsed data from all 

blocks, was significant, t(15) = 2.40, p = .03, Cohen’s d = .60, reflecting that participants more 

often chose the high-EV quadrant in one of their two clicks than chance. We performed a 1-way 

ANOVA on the choice data across the 12 blocks to determine if the learning effect changed 

over time.  Mauchley’s test showed a violation of the sphericity assumption, so we applied the 

Greenhouse-Geisser correction; results were significant, F(4.12, 143) = 2.65, p = .042, ηp
2 = 

.17. As we did previously, we used linear regression to calculate slopes in high-EV choices 

across the blocks for each participant, and the one-sample t-test was significant, t(15) = 2.60, p 

= .020, Cohen’s d = .65, consistent with an increase in learning over time. Mean choice 

frequency across quadrant types and blocks are shown in Figure 9B (bar graph). 

 

Second half: Visual search 
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RT. Trimming removed 1.1% of trials. Because we could not measure RTs from the 

trials in which participants did not find a target, we only analyzed the trials in which 

participants found a target, which was 49.1% (among those trials, “too slow” trials were 

43.4%).  This relatively small number of trials produced several missing data points and noisy 

data when we separated RTs separately by quadrant type and block (Figure 9B line graph). 

Therefore, we collapsed across blocks, and conducted a paired samples t-test, which showed no 

effect of quadrant type, t(15) = 0.912, p = 0.376, d = 0.228, BF01 = 2.85 (Figure 9C).  

Therefore, any evidence of participants prioritizing the high-EV quadrant during search in the 

first half of the experiment had vanished during the second half.  This is notable, given that the 

second half was specifically designed to maximize any chance of such prioritization.  

One potential reason for our failure to observe prioritization of the EV quadrant during 

search could have stemmed from the order of clicks in the choice task.  That is, if participants 

routinely clicked the high-EV quadrant first, followed by a low-EV quadrant, then an 

attentional bias could remain in the last clicked quadrant (low-EV) at the start of the search.  

While our requirement that participants click the center point prior to the onset of the search 

was designed to prevent the persistence of such a bias, we further checked to see if any click 

order preference was present in the choice data.  We found that, on trials in which the high-EV 

quadrant was clicked, it was no more likely to be clicked first or second, t(15) = 1.35, p = .20, 

BF01 = 1.83. 

 

Explicit Learning Assessment  
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Figure 10.  Learning efficiency of visual choice and visual search in the second half of 

experiment.  Error bars show ±1 S.E. of the mean.	

 

 

General Discussion 

Across three experiments, we found a clear qualitative distinction between visual choice 

and visual search.  Participants learned to prioritize high-value locations when their task was 

one of choice, but the same participants failed to prioritize high-value locations when their task 

was visual search (we found just one exception to this, in the first half of Experiment 3, 

although a pooled analysis across 5 experiments suggested the result was a Type I error).  Even 

when we incorporated choice and search within the same trial, such that the two were jointly 

involved in representing the same target information – and both were incentivized such that 

behavior determined the reward outcome – we continued to observe significant prioritization 

during choice but not during search.  That is, we demonstrated that participants learned the 

spatial value contingencies, actively represented this information, and displayed sufficient 

motivation to seek reward, but they nonetheless failed to express this knowledge during search.  

We thus find support for a task-dependent expression failure in the domain of visual search. 
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Broadly, these findings represent an example of the notion that some cognitive 

mechanisms are impenetrable to knowledge represented in different domains (e.g., Fodor, 

1983).  For instance, it has been argued that our low-level perceptual processing is 

uninfluenced by higher-level object knowledge, as highlighted by our inability to willfully alter 

how we perceive some visual illusions (e.g., the Müller-Lyer; see Firestone & Scholl, 2015; 

Pylyshyn, 1999).  Other examples come from the domain of motor control, in which, 

knowledge of mirror tracing is clearly dissociated from the time-consuming process of skill 

acquisition (Milner, 1962).   

While we present evidence favoring a default impenetrability of the visual search 

apparatus, we must acknowledge several caveats.  First, from an experimental standpoint, we 

rely on producing learning in one task (visual choice) and measuring the transference to another 

(visual search).  However, we cannot know if the choice task carried a stronger manipulation 

than the search task; moreover, equating the two tasks would be virtually impossible.  That 

said, we do believe that the chosen search task is amenable to robust learning, based on a broad 

array of studies using this task and demonstrating strong learning effects (including some of our 

own, such as Won & Leber, 2016).   

Second, some might question how much the spatial value learning is useful for the 

visual search task because, unlike in the choice task, learning that a location is more valuable 

than other locations does not help one to find the target any sooner.  That is, because the target 

must be found, regardless of whether it appears in a high-value or low-value location, 

participants in our basic paradigm could not alter their earnings by first searching within the 

high-value quadrants.  Although this is a valid point, consider classic animal learning studies in 

which the rats do prioritize high-value locations even when such behavior need not yield a 
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better outcome (Crespi, 1942; Herrnstein, 1961;	Spear & Pavlik, 1966). Furthermore, if spatial 

value learning would occur only when the information could facilitate search behavior (and 

earnings), then non-spatial features (e.g., color) that are associated with high reward should not 

prioritize attention in visual search. Yet, many studies including our previous study (Won & 

Leber, 2016) showed that high-reward associated colors prioritize attention in visual search 

even when the color is no longer rewarded (or even when it becomes penalized, Failing & 

Theeuwes, 2017;	Le Pelley, Pearson, Griffiths, & Beesley, 2015). Regardless, to address these 

concerns, we conducted Experiment 3, where learning spatial value was actually useful and 

incentivized, but again, we found no significant search bias toward the high value location. 

Third – and also related to the first point – our argument rests in large part on 

supporting the null hypothesis.  Failing to reject the null hypothesis with classical statistics 

could occur due to limitations in statistical power, even when a true difference is present (type 

II error). One approach to increase confidence in the null hypothesis is to compute the Bayes 

Factor (BF), which generates a readily interpretable odds ratio of evidence for vs. against the 

null hypothesis (e.g., Rouder, Speckman, Sun, Morey, & Iverson, 2009). We computed these 

statistics on our test-phase visual search RTs for Experiments 1-3, using JASP 0.8.1.2 (JASP 

Team, 2017), with the default prior width of 0.707, and found that our data were more likely to 

be observed given that the null hypothesis were true vs. if the null hypothesis were false 

(Wetzels et al., 2011).  Taken together, these results strengthen the interpretation that visual 

search performance in our experiments was insensitive to spatial value. 

Previous concerns notwithstanding, we do not intend to argue that the visual search 

apparatus is impervious to all learning, an extreme argument that is contradicted by several 

robust findings.  For one, the phenomenon of contextual cueing shows that individuals 
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performing a visual search task learn when the search array is presented in spatial 

configurations that repeat multiple times.  When these configurations are associated with 

specific target positions, participants exploit this information and begin to rapidly prioritize 

search to these expected target locations, facilitating both RT (Chun & Jiang, 1998; Chun, 

2000; Jiang & Wagner, 2004; Gibson, Leber & Mehlman, 2015; Hout & Goldinger, 2010) and 

eye movements (Peterson & Kramer, 2001; Hout & Goldinger, 2012).  Another well-

documented phenomenon, described in this paper, is probability cueing, which shows that 

individuals rapidly learn to prioritize locations in the search display that contain more frequent 

targets (Geng & Berhmann, 2002; Jiang, Swallow, Rosenbaum & Herzig, 2013; Miller, 1988; 

Won & Leber, 2015).  

Additionally, visual search is penetrable by volition; individuals can voluntarily choose 

to search some portions of the display over others, as in the classic case of endogenous cueing 

(Posner, Snyder & Davidson, 1984).  Had we explicitly told our participants which quadrant to 

search first, we undoubtedly would have found that they could comply; indeed, when Jiang et 

al. (2015, Exp. 4) informed their participants about the spatial reward contingencies and asked 

the participants to prioritize the high-value locations, several of the participants were able to do 

exactly that.  In the current experiments, we employed an incidental learning approach, in 

which we did not explicitly inform participants of the value manipulation.   Clearly the visual 

search apparatus is not universally impenetrable to outside cognitive inputs (i.e., volition and 

certain forms of spatial learning).  However, we have observed here that the visual search 

apparatus does not spontaneously act upon currently represented spatial value information.   

This finding is parsimonious with our speculation that the search apparatus evolved 

without any environmental pressures to incorporate spatial value.  That is, it is of great 
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ecological significance for us to learn the value of individual object properties for which we 

might search.  For instance, when searching for berries in a patch where red ones are desirable 

while yellow ones are poisonous, we could benefit greatly from a visual search apparatus that 

can boost the priority of red information, regardless of its location.  Consistent with this notion, 

as mentioned above, there have been dozens of recent reports in which color-based or object-

based value information drives visual search (e.g., Anderson et al., 2011; Della Libera & 

Chelazzi, 2006; Hickey et al., 2010; Kiss et al., 2009; Navalpakkam et al., 2010; Shomstein & 

Johnson, 2013), including in our own paradigm (Won & Leber, 2016).  However, as we stated 

in the introduction, prioritizing search based only on spatial value is an ecological oddity.  That 

is, we devised a task in which only one target of search was to be found.  In the real world, 

when an individual has committed to finding a specific target, its objective value becomes 

irrelevant.  Moreover, its value should rarely vary as a function of its ultimate location, as we 

argued when discussing the relative value of car keys that are hanging from the door vs. on a 

desk. Thus, perhaps it should not be surprising that the visual search apparatus does not adapt 

to an artificial scenario in which a target’s value does vary depending on its spatial location. Of 

course, it is not impossible that an object’s value changes as a function of location.  For 

instance, ice cream on the table is more valuable than ice cream on the ground.3 However, we 

believe that examples like this occur infrequently, compared to everyday searches for items 

such as keys, people, articles of clothing, etc.  Such examples may not carry sufficient 

behavioral significance to drive evolutionary changes in the design of our search apparatus. 

 To conclude, this study takes a step toward resolving a puzzling pattern in the literature, 

in which dozens of papers have reported feature or object-based reward learning at the same 

time as a striking scarcity in reports of space-based reward learning.  We have systematically 

																																																								
3 We thank the anonymous reviewer for this example. 
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shown that individuals fail to express such learning even while simultaneously demonstrating it 

in other task domains.  We propose that the visual search apparatus is not be designed to make 

use of this information source.  
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