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Abstract

In recent years there has been rapid proliferation of studies demonstrating how reward learning
guides visual search. However, most of these studies have focused on feature-based reward,
and there has been scant evidence supporting the learning of space-based reward. We raise the
possibility that the visual search apparatus is impenetrable to spatial value contingencies, even
when such contingencies are learned and represented online in a separate knowledge domain.
In three experiments, we interleaved a visual choice task with a visual search task in which one
display quadrant produced greater monetary rewards than the remaining quadrants. We found
that participants consistently exploited this spatial value contingency during the choice task but
not during the search task — even when these tasks were interleaved within the same trials and
when rewards were contingent on response speed. These results suggest that the expression of
spatial value information is task specific and that the visual search apparatus could be
impenetrable to spatial reward information. Such findings are consistent with an evolutionary
framework in which the search apparatus has little to gain from spatial value information in

most real world situations.
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Failure to Exploit Learned Spatial Value Information During Visual Search

The principle of utility maximization, by which individuals seek the greatest rewards
and smallest losses, is among the most fundamental motivators of human behavior (von
Neumann & Morgenstern, 1953). With all other things being equal, we take the bet with the
largest expected payout, we buy from the seller offering the lowest price, and so on. Humans
do demonstrate a variety of non-normative tendencies (Tversky & Kahneman, 1975; Hastie &
Dawes, 2010), but we nevertheless are consistently sensitive to value and pursue strategies to
maximize our gains.

It is thus intriguing when people demonstrate insensitivity to value, as these examples
offer important insights into our cognitive architecture. Such behavior can be attributed to
several causes. First, people could fail to learn the relevant value contingencies; classic
examples of such acquisition failures include blocking (Kamin, 1969) and overshadowing
(Pavlov, 1927), in which previous or concurrent exposure of a conditioned stimulus prevents a
second conditioned stimulus from being associated with an unconditioned stimulus. Second,
people could successfully learn a value contingency but fail to retrieve the memory of this
contingency (Tollman, 1932; Spear, 1973; see Wasserman, 1981). Third, people could
decrease their subjective valuation of the reward and thus possess lesser motivation toward it,
as highlighted by the classic example of a free-feeding rat reaching satiety and then abstaining
from seeking food (Richter, 1922).

In this article, we consider a more perplexing scenario, in which an individual

demonstrates learning, retrieval, and motivation yet only behaviorally exploits the value
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contingency during some task settings and not others. Such a task-dependent expression,
should it exist, is theoretically significant because it would show domain specificity in the
exploitation of reward.

Here we examine the case of spatial value and visual search. Recently, two studies
using this combination of value manipulation and task, respectively, failed to show any
sensitivity to reward (Jiang, Sha & Remington, 2015; Won & Leber, 2016). In both of these
studies, participants were instructed to perform a search task (target T among L distractors), in
which correct target identification was followed by either a small or large monetary reward.
Unbeknownst to participants, the expected value (EV) of the targets varied as a function of
space. For instance, targets in “high-EV” display quadrants could yield rewards averaging
approximately 6 times greater value than targets appearing in the “low-EV” quadrants (e.g.,
Won & Leber, 2016, Experiment 1a). Note that targets appeared with equal frequency in each
of the quadrants, so only the reward magnitude was varied. What the studies showed
repeatedly across numerous experiments was that participants’ behavior (i.e., response time and
accuracy) was totally insensitive to quadrant EV.

These findings are situated in a literature on attention and reward in which dozens of
studies have reported robust effects from feature-based value manipulations (e.g., Anderson,
Laurent & Yantis, 2011; Della Libera & Chelazzi, 2006; Hickey et al., 2010; Kiss et al., 2009;
Navalpakkam et al., 2010), while virtually no studies have reported effects of spatial reward
(but see Chelazzi et al., 2014). In line with the lopsided state of the literature, we found that
participants did exploit color-based value information when we modified our task to endow

colors instead of spatial locations with value, using the same EV ratios (Won & Leber, 2016,
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Experiment 2). Thus, there appears to be a clear dissociation between the exploitation of
spatial vs. non-spatial value information during visual search.

Why would people be insensitive to spatial value? Given that similar payoff schedules
elicited value-sensitive performance in other tasks, it is unlikely that participants were
unmotivated to seek the monetary reward. Instead, it is possible that the act of conducting
visual search interferes with either learning or retrieval of the spatial value contingency. Given
the brain’s capacity limitations, it is simply not possible to encode or retrieve task-relevant
information about all potential relationships among variables. Such an encoding-based
explanation suggests that people would demonstrate sensitivity to spatial reward during search
if they were just able to properly represent the relevant information. Alternatively, expression
of spatial value knowledge could be task dependent; that is, observers could know the spatial
value contingencies but the visual search apparatus could be impenetrable to incorporating this
information. Such a scenario represents the most intractable form of reward insensitivity,
because any method to endow the observer with knowledge of the contingency will inevitably
fail to circumvent the mode of expression and will consequently fail to produce behavioral
change.

While it seems counterintuitive that the human mind would selectively fail to express
actively represented knowledge, it may be sensible from an ecological standpoint. Consider
that in the real world, objects are usually the things to which we assign value, not their
locations. When we engage in a search task for a specific item, such as our car key, the target
of our search is just as valuable to us if we find it on the desk or hanging from the doorknob.
Because of the ecological oddity of a visual search target varying in value as a function of its

location, the designer of a visual search apparatus — i.e., the process of natural selection — may
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not have been pressured to incorporate spatial reward sensitivity as a necessary component. It
has previously been argued that the visual search apparatus does not take all possible
information into account when deploying shifts of attention; for instance visual search might be
more efficient when it is allowed to run in “anarchic” versus “orderly” fashion (Wolfe, Alvarez,
& Horowitz, 2000), and it might sometimes proceed without concern of revisiting previously
rejected locations (Horowitz & Wolfe, 1998; Wolfe, 2003).

Many forms of learning have been shown to modulate the visual search process,
including phenomena such as contextual cueing and probability learning (e.g., Chun & Jiang,
1998; Miller, 1988; Geng & Berhmann, 2002). Moreover, individuals are highly sensitive to
variations in the likelihood of target appearance, as shown in visual foraging tasks (e.g., Cain,
Vul, Clark & Mitroff, 2012; Wolfe, 2013). Finally, individuals are plenty capable of claiming
volitional control over their search when they want to; apropos to this discussion, Jiang et al.
(2015) showed that a subset of participants were able to direct attention to high-value locations
when asked to do so. Yet, in this paper, we entertain the notion that, by default, the visual
search apparatus is impenetrable to spatial value information, even when the observer is
actively representing such value within another knowledge domain.

Before proceeding in this venture, we must offer an important disclaimer: proving that
the visual search apparatus is impenetrable to spatial value information is a tall order, which
might require a substantial number of studies, using a variety of converging approaches.
Therefore, we will refrain from making overly strong claims about the impenetrability of the
search apparatus while presenting our current work. We will emphasize that the discussion of

this theoretical possibility is important and our results provide tentative support for it.
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Specifically, we conducted three experiments to seek support for whether insensitivity
to spatial value during visual search constitutes a task-dependent expression failure. Our
general approach was to mix together two types of tasks: Visual Choice and Visual Search.
During the choice task (see, e.g., Jiang, Swallow, Won, Cistera & Rosenbaum, 2015),
participants were able to select a single item (Exp. 1) or a subset of the display (Exp. 2 and 3)
in the aim of obtaining a reward. We varied potential reward as a function of spatial location,
and we anticipated that participants would rapidly learn to choose high-EV locations,
replicating an earlier finding (Won & Leber, 2016, Exp. 4b). The visual search task was like
that used in previous work, in which targets were assigned value depending on their spatial
location. Critically, the locations assigned as high-EV were identical across the choice and
search tasks within each participant. Assuming that the participants show a clear preference for
the high-EV locations during choice, we reasoned that a) this would demonstrate that observers
are actively representing spatial value information during choice and b) the information would
be carried into the interleaved search task. Given these assumptions, if previous findings of
reward insensitivity during search resulted only from learning, retrieval, or motivational
deficits, then the current manipulations should overcome these limitations and facilitate the
expression of the value contingency knowledge during search. If, however, the visual search
apparatus is insensitive to spatial value, participants will persist in demonstrating a task-
dependent expression failure during search while successfully expressing learning during
choice. To preview, none of the current manipulations succeeded in eliciting the expression of
spatial value knowledge during search. These results provide intriguing support for the notion

that our search apparatus is, by default, impenetrable to spatial value information.
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Experiment 1: Interleaved Visual Choice and Visual Search

In the first experiment, we interleaved 16-trial mini-blocks of Visual Choice and Visual
Search. During Visual Choice, participants viewed a display of 16 “L” stimuli and clicked on
any of them to receive a reward. For each participant, we designated a single High-EV
quadrant, for which any object clicked inside of it would typically return a high reward.
Because the remaining quadrants typically returned low rewards, we expected to replicate our
previous finding that participants quickly learn to disproportionately choose the high-EV
quadrant (Won & Leber, 2016). The Visual Search task had stimuli that were nearly identical
to those in the choice task, except one of the search items was a T, and participants were told to
click on it rapidly and accurately.

As we described in the introduction, we expected that participants would bias behavior
toward the high-EV quadrant during the Visual Choice trials, and we thus sought to determine
whether the participants would express this knowledge during the Visual Search task; such
expression would be manifested via faster response times (RTs) on trials in which target

appeared in the high-EV quadrant versus the low-EV quadrant.

Method

Participants

In choosing our sample size, our goal was to include a sufficient number of participants
to obtain power = 0.9 for the visual choice manipulation. Based on the effect size obtained for

this manipulation in our previous paper (Won & Leber, 2016, Experiment 4b), we estimated
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that 15 participants would be needed.! We ran 16 participants in all experiments reported in
this manuscript. Of the 16 run in Experiment 1, 12 were female (mean age = 22.7 years). All
participants reported normal or corrected-to-normal visual acuity and normal hearing. The Ohio
State University IRB approved this protocol. Compensation for the 1.5 hr session was based on
how many points were earned during the experiment (point values will be further explained in
the Design). Participants’ payouts were distributed in whole dollar amounts, as follows: 0-
5000 points = $15; 5001-6000 points = $16; 6001-7000 points = $17; 7001-8000 points = $18;

8001-9000 points = $19; 9001 and up = $20.

Apparatus and Stimuli

Participants were tested in a dimly lit room. Stimuli were presented on a 24” LCD

monitor and generated using MATLAB (www.mathworks.com), with Psychtoolbox extensions

(Brainard, 1997; Pelli, 1997). In the Visual Search task, displays contained one target (a white
T rotated 0°, 90°, 180°, or 270°) and 15 distractors (white Ls rotated 0°, 90°, 180°, or 270°) on
a gray background. Targets and distractors subtended 1.02°x1.02° (all visual angles assume a
typical viewing distance of 60 cm). Item locations were chosen randomly from a 10x10
invisible matrix (15.28°x15.28°), with four items appearing in each quadrant. Target and
distractor orientations were all selected randomly with replacement on each trial. The number
20 or 1 (font size: .92°), indicating reward points for a given trial, was displayed at the target
location, in green. Auditory feedback was either a three “chirp” sequence lasting 300ms for 20-

point responses, a single high-pitched 100ms tone for 1-point responses. In the Visual Choice

' We do acknowledge, however, that estimates of effect size and power from previous data are prone to inflation, due to a
“winner’s curse,” in which researchers are biased to primarily follow up on positive results (Halsey et al., 2015). Therefore,
our true power may have been less than 0.9.
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task, stimuli were identical to the search task except that choice displays contained 16 Ls and

no Ts.

Design

In the Visual Search task, the target appeared with equal frequency across the four
quadrants (25% of trials each), but the point-value was varied. Specifically, targets in the high-
EV quadrant earned 20 points on 75% of trials and 1 point on 25% of trials. Targets in the other
three low-EV quadrants earned the opposite: 1 point on 75% of trials and 20 points on 25% of
trials. These contingencies yielded individual quadrant EVs of 3.813 and 1.438 for Aigh- and
low-EV quadrants, respectively. In the Visual Choice task, we matched the payoffs to the
Visual Search task. Specifically, objects clicked in the high-EV quadrant yielded 20 points on
75% of trials and 1 point on 25% of trials; objects clicked in the low-EV quadrant yielded 1
point on 75% of trials and 20 points on 25% of trials (see Figure 1A). Critically, the location of

the high-EV quadrant was the same across the search and choice tasks for each participant.

Procedure

Main Trials.

Participants completed 46 mini-blocks, each 16 trials, which consisted of alternating
visual search and visual choice 23 times. Half of the participants started with visual search and
the other half started with visual choice. In both tasks, participants initiated each trial by
clicking on a small white square (.51°x.51°), which appeared near the screen center (jittered
randomly on each trial by +/- .77° in both vertical and horizontal directions). After the click and

a 500 ms delay, the search or choice display appeared (for the two respective tasks).

10
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Participants were instructed to click on the target in the search task and click on any object in
the choice task. Upon response, the display was removed, and the point-value earned was
displayed, along with the auditory feedback. Next, the cumulative total points were displayed at
the screen center for 500 ms (see Figure 1B). Participants completed 16 practice trials in each

task before advancing to the main task.

Explicit Learning Assessment.

After the main trials, participants were told about the spatial reward manipulation and
asked to complete a 16-trial generation task (similar to Chun & Jiang, 2003) for each task,
which assessed their explicit knowledge of the quadrant EVs. Participants were shown a search
or choice display (depending on the task) and were required to click on the target in the search
task or a randomly circled L in the choice task. In both cases, this response then revealed two
point values, 1 and 20. Participants had to then choose which of these they felt to best match

the reward typically earned at that location. No feedback was provided.

Visual search: find the target T Visual choice: choose one of 16 Ls

11
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Visual search (16 trials)

Visual choice (16 trials)
Visual search (16 trials)
Visual choice (16 trials)

C.
Figure 1. Design and procedure in Experiment 1. A. Choice task. Participants chose one of 16
randomly rotated Ls. The High-EV quadrant yielded 20 points on 75% of trials and 1 point on
25% of trials, while the Low-EV quadrants had the opposite payoff. B. Search task.
Participants searched for a target T among 15 randomly rotated L distractors. Targets
appearing in the High-EV quadrant were worth 20 points on 75% of trials and [ point on 25%
of trials, while targets in the Low-EV quadrants yielded the opposite payoff (see method for

additional details). C. A schematic procedure of Experiment 1. The two tasks were presented in
a sequence of 23 alternating mini-blocks (16 trials per mini-block).

Results and Discussion

Visual choice

Choice Frequency. The choice frequency data across quadrant type and blocks are
plotted in Figure 2 (bar graph). It was calculated as the proportion of trials in which items in
each of the quadrants was chosen. For the low-EV data, we collapsed across the three
quadrants of this type for each participant. Because low- and high-EV data were statistically
dependent, our analysis approach was to compare high-EV choices vs. chance level. A sample
to hypothesized mean (of 0.25) t-test, on collapsed data from all blocks, was significant, #(15) =
5.04, p <.001, Cohen’s d = 1.26. To then determine if participants’ sensitivity to the high-EV
quadrant changed over time, we conducted a 1-way ANOVA on choice data across 23 blocks.
The results showed a significant main effect, F(22, 330) = 7.48, p <.001, np2 =.33. To test

whether the sensitivity to the high-EV quadrant increased over time, we entered the high-EV

12
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choices in each block into a linear regression, for each participant, and computed the slope
values. These slopes were entered into a one-sample t-test (compared to a hypothesized mean
of zero). Results demonstrated a significantly positive linear trend, #(15) =4.77, p <.001,

Cohen’s d = 1.19, consistent with increased sensitivity to the high-EV quadrant over time.

Visual search

Because we only accepted click responses when the mouse hovered over the target,
errors were not possible, so accuracy data are not reported. We thus focus solely on RT.

RT. We removed trials with RTs slower than 3 SD above the mean (1.7%), and the
remaining mean RTs are plotted in Figure 2 (line graph). The quadrant type x block ANOVA
revealed a main effect of block, as RT became faster as the experiment progressed, (22, 330)
=3.50, p <0.0001, npz =.19. However, there was neither a main effect of quadrant type, F' <1,
n," = 0.024, nor a 2-way interaction, F(22, 330) = 1.29, p = 0.174, n,” = 0.079, showing that
participants were insensitive to spatial value during search.

One of potential issues with this is that failing to reject the null hypothesis could be due
to limitations in statistical power. One approach to increase confidence in supporting the null
hypothesis is to compute the Bayes Factor (BF), which generates a readily interpretable odds
ratio of evidence for vs. against the null hypothesis (e.g., Rouder, Speckman, Sun, Morey, &
Iverson, 2009). We computed BF on visual search RTs?, which yields BFy; = 3.34. The BF
indicates that the observed data were 3.34 times more likely to be observed if the null

hypothesis were true than if the alternative hypothesis were true. (for guidelines in the

% The Bayes factors are written as BF |, when the evidence is in favor of H1 and as BF,;; when the evidence is in favor of HO.
We computed the BF using JASP 0.8.1.2 (JASP Team, 2017), with the default prior width of 0.707.

13



Running Head: CHOICE AND SEARCH 14

interpretation of Bayes factor magnitudes, see Morey, Rouder, & Jamil, 2014; Rouder, Morey,

Speckman, & Province, 2012; Wetzels, Matzke, Lee, Rouder, Iverson, & Wagenmakers, 2011).

Visual search vs. visual choice

We next wanted to compare visual search and visual choice results. While it is difficult
to directly compare RT and choice frequency, our approach was to convert these respective
dependent measures of interest to arbitrary learning efficiency units for each block (see Figure
3). Specifically, for visual search, we subtracted the mean RT in high-EV quadrant from that in
low-EV quadrants, and then divided by the sum of the two mean RTs from high-EV quadrant
and low-EV quadrant (i.e., low-EV quadrant’s RT — high-EV quadrant’s RT) / (low-EV
quadrant’s RT + high-EV quadrant’s RT)). For visual choice, we subtracted expected chance
level choice frequency (0.25) from choice frequency in high-EV quadrant, and then divided by
the sum of these two measures (i.e., (high-EV quadrant’s choice — 0.25) / (high-EV quadrant’s
choice + 0.25)). We then conducted a pairwise t-test on the two learning efficiency measures,
revealing a significant difference between the two, #15) = 7.01, p <.001, Cohen’s d = 1.75.

We interpret this result with some caution, as we cannot verify that the choice and
search manipulations were equally strong and/or sensitive. And while converting the
respective choice and RT measures learning efficiency units places the two on a common scale,
it does circumvent the inherent limitations in our comparison. Keeping these points in mind,

the results suggest stronger expression of learning in visual choice than visual search.

Explicit Learning Assessment

14
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A task x quadrant type ANOVA on the generation task responses revealed that
participants chose 20 points more often in 4igh-EV quadrant than in any of low-EV quadrants,
F(1,15)=10.29, p = 0.006, 171,2 = 41. Also, we found a significant interaction between task
and quadrant type, F(1, 15) =14.30, p = 0.002, 17,,2 = .49, which was driven by stronger
recognition in visual choice than in visual search. Specifically, for visual choice, participants
chose 20 points 75.0% of the time in the high-EV quadrant vs. 32.8% of the time in the low-EV
quadrants. In contrast, for visual search, participants chose 20 points 53.1% of the time in the
high-EV quadrant vs. 44.8% of the time in the Jow-EV quadrants. When comparing recognition
performance with chance (50%), visual choice was significantly more above chance (69.1%),
#(15) =4.68, p = 0.0003; visual search was not (54.7%), t(15) =1.31, p = 0.210. Clearly, the

participants developed some degree of explicit knowledge for the choice task while failing to

do so for the search task.

CHigh-EV quadrant Choice
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Block (1block = 16 trials per task; all blocks: uneven point)

Figure 2. Results from Experiment 1, showing RT in visual search (line graph) and the choice

frequency in visual choice (bar graph) as a function of quadrant type, across blocks. Error
bars show +1 S.E. of the mean.
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Figure 3. Learning efficiency of visual choice and visual search. Error bars show £1 S.E. of
the mean.

Experiment 2: Combined Choice and Search Within Trials

The first experiment showed a clear dissociation: even though the high-EV location
was fixed across both tasks, participants prioritized it during choice but ignored it during
search. This is consistent with the task-dependent expression account, in that participants
demonstrated sufficient knowledge and active retrieval of the high-EV location, and they
demonstrated sufficient motivation to prioritize that location, yet they failed to use the value
information during search. However, there is one key limitation to this experiment: it is
possible that the brief breaks in between the interleaved mini-blocks were long enough to
prevent transfer between the tasks. Specifically, we presume that participants were operating
with actively represented value information during the choice trials, but it could have rapidly
decayed at the end of the 16-trial mini block; thus, the value information might not have been
actively represented during the search trials.

To attempt to overcome this limitation, Experiment 2 combined both choice and search
components within single trials. When the display appeared, observers now had to choose to

search one side of the display vs. the other. After making this choice, the search items

16
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appeared — only within the chosen display side — and observers had to click on the target T.
Critically, a single high-EV quadrant was assigned to each participant that could motivate both
the choice and search tasks similarly. That is, to get the high reward, participants would first
need to click on the correct side of the display; then to demonstrate a bias toward that same
reward, participants would need to prioritize search toward that high-EV quadrant. Note that
across blocks, we varied the choice task to be either upper (top) vs. lower (bottom) or left vs.
right. Thus, a participant seeking to maximize reward would need to know the specific high-
EV quadrant and not just a high-EV side; for instance, if the upper left were high-EV, the
participant would need to choose top on some blocks and left on others.

If observers demonstrate actively retrieved knowledge of the high-EV quadrant during
the choice task, we could test whether that information would be expressed moments later

during the search task.

Method
Participants

Sixteen individuals participated in Experiment 2 (9 females; mean age = 19.9 years),
which took approximately 1 hour. Participants’ payouts were determined as follows: 0-3000
points = $10; 3001-4000 points = $11; 4001-5000 points = $12; 5001-6000 points = $13; 6001-

7000 points = $14; 7001 and up = $15.

Material, stimuli, and procedure

The experiment was modeled off of Experiment 1, with the following changes. During

the choice component, top/bottom displays contained two dots (.51°x.51°) in the center of the

17
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upper and lower sides of display, while left/right displays contained dots in the center of the left
and right sides of the display (see Figure 4). Top/bottom and left/right displays were alternated
across blocks, with half of the subjects doing left/right on even blocks and half doing them on
odd blocks. Participants were instructed that each side has its own target, and they were asked
to click which side they preferred to search. Once they clicked on a dot, that side of search
array was revealed. Participants completed 24 blocks (32 trials per block). During the first half
of these trials (blocks 1-12), quadrant EV was manipulated to match the same EVs used in
Experiment 1. During the second half (block 13-24) all four quadrants’ EVs were made to be

equal, so that we could examine any persisting effects of learning.

Explicit Learning Assessment

We focused here on assessing explicit learning during search. The generation task was
identical with that for visual search’s generation task in Experiment 1, except that in
Experiment 2, participants were shown two dots — white and black — before the search display,
and asked to click the white dot to reveal that side of search display. This ensured that
participants would provide an equal amount of data for each side. Additionally, we presented
this task in two blocks of 24 trials each; one block was top/bottom and the other block was
left/right. The order of blocks was counterbalanced across participants. Once the search
display was revealed, participants clicked on the target T to reveal two point values, 1 and 20;

they then chose which one best matched the reward typically earned at this location.

18
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Visual choice task:click Visual search task:find
one dot to revealthe andclick onT as fastas  Side/Quadrant EV

Low-EV
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Low-EV
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items on that side you can
High-EV Low-EV
quadrant quadrant
Top/bottom HighValueSide (EV: 2.63)
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quadrant 1 quadrant
S _ i3
Left/right 238183
block sTIET
551z
T 13
i
1
1

Top/bottom block: 32 trials
p

time
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Figure 4. Design and procedure in Experiment 2. A. In top/bottom blocks, two dots were
displayed in upper side and bottom side, each. Participants clicked one dot to reveal that side
of search display. In the left/right blocks, two dots were displayed in left and right side, each.
Which block — odd or even — was assigned as top-down dots or left-right dots were
counterbalanced across participants. Side/Quadrant EVs indicate sample reward contingencies
based on location. Note that the high-EV quadrant was counterbalanced across participants.
B. Sample trials of Experiment 2. Top/bottom blocks and left/right blocks were alternating 12

times.
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Results and Discussion
Visual choice

Choice frequency. Analysis focused on chosen side. We coded low-EV side as the one
consisting of two low-EV quadrants and high-EV side as the one consisting of one low-EV
quadrant and the high-EV quadrant. Note that we collapsed across top/bottom and left/right
blocks. Again, we tested high-EV choices against chance level, because low- and high-EV data
were statistically dependent. A sample to hypothesized mean (of 0.5) t-test, on collapsed data
from all blocks, was significant, #(15) =2.79, p = .014, Cohen’s d = .70. To then determine if
participants’ sensitivity to the high-EV side changed over time, we conducted a 1-way ANOVA
on choice data across 24 blocks. We did not find any significant main effect of block, F(23,
345) =1.07, p > .3, which might be because learning emerged rapidly, in the earliest blocks.

We considered the possibility that each participant could have learned the bias from
only the top/bottom (or left/right) blocks and totally ignored the left/right (or top/bottom)
blocks. This is important because we inferred from the choice performance above that
participants represented their high-EV quadrant rather than just a single display side.
Critically, had the participants only represented a display side, the visual search performance
would not be expected to vary between the high- and low-EV quadrants. To address this
concern, we generated a scatterplot in which the y-axis indicates high-EV preference in the
top/bottom blocks and the x-axis indicates high-EV preference in the left/right blocks (Figure
6). If participants represented the high-EV quadrant rather than only one side, the dots should
all settle into the upper-right quadrant of the scatterplot; numerically speaking, this occurred for

13/16 participants. To test this preference statistically, we rank ordered the magnitude of the

20
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side preferences for each participant, (for some, the stronger numerical preference was for left-
right and others it was for top-down). Then we tested the correlation of the stronger vs. weaker
preference. Our logic was that, if participants only had a side bias, then the weaker preference
score would not carry any meaningful information and the correlation would thus not be
significant. However, if both stronger and weaker preferences scaled with participants’ overall
quadrant preference, then the correlation would be significant. Indeed, it was significant, 7(15)
=10.943, p <0.00001. However, this result might have been driven partially by one outlier who
perfectly chose the high-EV side for both odd and even blocks and another participant who
reliably chose the low-EV side. We repeated the test while excluding these individuals, and the
result remained significant, 7(13) = 0.858, p < 0.001. All told, this analysis provides evidence
that the participants’ choices were biased toward a quadrant, not a single side. It is worth noting
that this result does not necessarily reflect that the participants “integrated” the representation
of quadrant value from two types of trials (i.e., top/bottom and left/right trials). Whether the

participants represented the quadrant value will need to be fleshed out in future experiments.

Visual search

RT. Analysis focused on target click RT, which commenced at the moment the
participant completed the choice (by clicking one of the two dots). RT trimming removed 1.2%
of trials. Mean RTs across quadrant types and blocks are shown in Figure 5 (line graph). A
quadrant type x block ANOVA revealed a main effect of block, (23, 253) =2.56, p <.001, np2
= .19, meaning the overall search RT became faster as the experiment progressed. However,

replicating the visual search in Experiment 1, there was no RT difference between the two
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quadrant types, F'< 1, BFy; = 3.90, demonstrating a failure to exploit the value information

during search. Quadrant type and block did not interact, F(23, 253) = 1.53, p = .062, np2 =.12.

Explicit Learning Assessment

During the generation task, on trials in which the high-EV side was presented,
participants did not reliably vary in their selection of 20 points vs. 1 point across the high-EV
(59.7% vs. 40.3%) and low-EV (53.5% vs. 46.5%) quadrants, F(1, 15) = 1.47, p = 244, np2 =

.09 The recognition performance (49.8%) was not higher than chance (50%), #(15) = .25, p =

81,
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Figure 5. Results from Experiment 2 showing RT in visual search (line graph) and the choice
frequency in visual choice (bar graph). Error bars show +1 S.E. of the mean.
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Figure 6. High-EV quadrant preference in two block types — left/right blocks and top/bottom
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blocks. Scores are calculated as the different in proportion of trials in which the High-EV side

was chosen minus the proportion of trials in which the Low-EV side was chosen. Each “X”

represents one participant.

Visual search vs. visual choice

To compare results from visual search and visual choice, as done in Experiment 1, we

again calculated learning efficiency units (see Figure 7). A pairwise t-test revealed a significant

difference between the two tasks, #(15) =2.77, p = .014, Cohen’s d = .69, showing a reliably

stronger learning effect during choice than during search.
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Figure 7. Learning efficiency of visual choice and visual search. Error bars show =1 S.E. of
the mean.

Experiment 3: Combined Choice and Search for Single Target

Experiment 2 showed that high-value locations could be represented and acted upon via
Visual Choice while neglected during Visual Search within the same trial. Along with the
results of Experiment 1, these results are consistent with the task-dependent expression
account.

Nevertheless, there are a few remaining potential limitations we must address. One
such limitation is that, even though we fixed the same high-EV quadrant across choice and
search, it is possible that participants did not view the two tasks to be related to one another.
This is because the choice task produced a target on either display side that was clicked, which
stands in contrast to the visual search task, whose target is pre-determined to appear in only one
location. There is some evidence that learning could fail to transfer across a choice and search
task if they are viewed as contextually dissimilar to one another. For instance, Jiang, Swallow,
et al. (2015) used a training/transfer procedure to see if a location preference learned during a
spatial probability cueing manipulation — in which targets appeared more frequently in one

display quadrant than others — transferred to a visual choice task. They tested whether learning
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from visual choice task would transfer to visual search. Learning did occur within each task
type, but the critical result showed no transfer in either direction. Thus, the two tasks were
represented as distinct from one another. That study differed from the present work in a few
important ways. First, it used probability cueing instead of a reward manipulation; second, its
design included hundreds of training trials followed by hundreds of test trials, whereas we
interleaved or combined our tasks. Nevertheless, the possibility remains that participants
simply viewed our choice and search tasks as unrelated to one another and thus did not transfer
learning from choice to search. To address this concern, we now told participants that they had
to find a single target on each trial, which would be completed in two steps. First, the
participants would only be able to reveal half of the display, by clicking on any two quadrants.
If neither of the quadrants they chose on a given trial contained the target, the trial would be
terminated with no reward, and they would advance to the next trial. If, however, their chosen
quadrants did include the target location, the participants would then proceed to the search
portion of the trial. For the search portion, we revealed items in both of the chosen quadrants,
and participants had to click on the target. This procedure allowed us to determine if a)
participants developed a bias toward the high-EV quadrant during choice and b) if they
prioritized the same high-EV quadrant during search.

Additionally, we addressed one further potential drawback of Experiments 1 and 2,
which is that the outcome of selecting high-EV locations during choice is much more
consequential than for prioritizing search toward the high-EV location. This is because, in the
previous experiment, the choice determined the payoff on each trial; that is, choosing high-EV
locations more frequently resulted in increased overall earnings for the participants. In

contrast, directing visual search toward the high-EV location before inspecting the other
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locations may not have had as great of an impact on earnings. For instance, in Experiment 1,
participants searched the full display exhaustively until they found the target, which was the
only way for them to advance to the next trial. Because the target was equally likely to appear
in all four quadrants, directing the search initially to the high-EV quadrant would not, on
average, speed target identification compared to searching a low-EV quadrant first. In
Experiment 2, the same logic can be applied, albeit within the chosen side of the display. As a
result, even if participants knew where the high-EV location was, it would not necessarily have
benefitted them to prioritize their search one way or another.

Note that the same criticism can be leveled at experiments showing color-based
prioritization, yet those experiments generate robust expression of learned value. For instance,
as mentioned in the introduction, we previously ran an experiment using the same 16-item T
among L displays in which target color, not location, was associated with reward (Won &
Leber, 2016, Exp. 2). We matched the reward ratios in that experiment (i.e., high-EV color vs.
low-EV colors) to a spatial reward manipulation much like Exp. 1 of this article. While
participants could gain no monetary advantage for initially prioritizing search within the high-
EV color, they did so anyway, showing faster RTs to high-EV targets. This is reminiscent of a
study by Goldstein & Spence (1963), in which rats were placed in one of two 60-inch alleys
that contained a food reward at the other end. One alley consistently had a greater reward than
the other, which rats learned, and they expressed this learning by running faster when placed in
the high-reward alley than the low-reward one. Thus, even though the rats could not alter their
behavior to influence the reward outcome, they demonstrated greater motivation in one

condition than another. Given these results, we should have reasonably expected our observers
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to search the high-EV locations more rapidly than low-EV locations in the previous
experiments.

Nevertheless, there is a clear way to experimentally address this concern. Indeed, the
two papers that previously failed to find spatial reward effects each included a manipulation to
incentivize participants to prioritize search to the high-EV location (Jiang, Sha & Remington,
2015, Exp. 3; Won & Leber, 2016, Exp. 3). Jiang and colleagues only rewarded trials in which
RTs were faster than each participant’s median RT; in this case, strategically searching the
high-EV quadrant first would yield greater overall rewards than searching low-EV quadrants
first. Won and Leber limited display exposure, which reduced overall accuracy and provided a
similar incentive in which prioritizing the high-EV quadrant would bring greater overall
earnings (since rewards were only provided on correct trials). In the current experiment, we
adopted Jiang et al.’s approach by only providing a reward on faster-than-median trials during
search.

Altogether, this experiment maintained the same approach as Exp. 2, in that it provided
for the active representation of spatial value information during choice, which we assumed to
be available a moment later during search. Moreover, it merged the task context across choice
and search, as participants now sought the same target on each trial. And finally, the incentive
to exploit the value information to maximize reward was roughly equivalent in both the choice

and search components of the task.

Method

Participants
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We ran sixteen individuals (9 females; mean age = 23.2 years), which took
approximately 1.5 hours. Participants’ payouts were determined as follows: 0-3000 points =
$15; 3001-4000 points = $16; 4001-5000 points = $17; 5001-6000 points = $18; 6001-7000
points = $19; 7001 and up = $20. This payoff schedule was slightly modified from the
previous experiments. This was because we made rewards dependent on search RT, which
reduced the total number of points earned; the modified payoff schedule ensured comparable

total dollars earned per hour across the experiments.

Material, stimuli, and procedure

The first half of the experiment began with the same Visual Search used in Exp. 1. In
particular, we did not condition reward based on search RT; our goal was to have the greatest
possible chance of forming an association between quadrant and reward magnitude, and
providing rewards on every correct trial maximized this. We also wanted to familiarize
participants with this task before layering on the choice component; this served to reinforce the
participants’ interpretation that choice and search were part of the same task.

In the second half of the experiment, each trial began with the presentation of four black
dots, each centered in one of the four quadrants. Participants were told to click any two of the
dots to reveal the search items in those quadrants, then click on a small white square which
appeared near the screen center to initiate search. If neither quadrant contained the target
(which was equally likely to appear in each of the four quadrants), the message “no T (font
size: 0.92°) appeared for 1 sec, before proceeding to the next trial. If one of the two chosen
quadrants did contain the target, the search items in those chosen quadrants were revealed.

Participants then had to click on the target, at which point their RT was calculated. For trials in
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which the RT was slower than the previous block’s median RT, the message “too slow”
appeared in white, along with the point-value they would have earned, which appeared in red.
For trials in which the RT was faster than previous block’s median, a reward was provided,
with the point value displayed in green. Note that we needed a full block of this combined
choice/search task to calculate a stable median RT, so the median cutoff was not used until the
2" block of this phase (i.e., the Block 13 of the experiment).

There were 24 total blocks, with 32 trials per block. The first 12 blocks consisted of the
search task only, and the remaining 12 blocks included the combined choice and search task
(see Figure 8 for design and procedure details). The explicit learning assessment was identical

with that of the search task in Experiment 1.

First half: search only (12 blocks) Second half: combined choice and search (12 blocks) Reward distribution

A. B.
Figure 8. Design and procedure in Experiment 3. A. The first half of the experiment (blocks 1-
12), consisted of visual search. In the second half of experiment (blocks 13-24), participants
clicked any two of four presented dots (one in each quadrant) to be able to search for the target
within those chosen quadrants. When targets were clicked on, rewards were determined by 1)
the target quadrant’s EV and 2) whether the response was faster than the previous block’s
median RT. B. Sample reward contingencies in each quadrant. The actual location of the
high-EV quadrant was counterbalanced across participants.

Results and Discussion
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First half: visual search only

RT. Analysis focused on target RT. Trimming removed 1.8% of trials, and mean RTs
across quadrant types and blocks are shown in Figure 9A. A quadrant type x block ANOVA
revealed a main effect of block, F(11, 165) =2.07, p = 0.014, n,” = .12, meaning the overall
search RT became faster as the experiment progressed. The main effect of quadrant type was
significant, F(1, 15) = 8.84, p = 0.0095, npz =.37. This result was very surprising, given the
multiple previous failures of us and others to produce any evidence of spatial value exploitation
during search under highly similar conditions. The effect of quadrant did not increase across
blocks, as shown by a non-significant quadrant x block interaction, F(15, 165) = 1.06, p =
0.397. Moreover, an inspection of the means shows the largest numerical effects of quadrant to
appear in the first phase, when the manifestation of learning should be the weakest. When
excluding these two blocks from the ANOVA, the main effect is no longer significant, F(1, 15)
=2.191, p = 0.160, n,” = 0.13.

Overall, the results from the first half of this experiment are not easily interpreted as
support for the expression of spatial reward learning. However, to ensure that we were not too
quick to dismiss this result, we ran a more powerful analysis across pooled results from five
total experiments run under highly similar conditions. These experiments all contained a T
among L search task in which quadrant value was manipulated, the displays had unlimited
exposure, and rewards were provided on all correct trials. The analysis included: Experiment 2
from Jiang et al. (2015), who kindly shared their data (blocks 1-8, n=16); Won and Leber
(2016), Experiment 1a (all 12 blocks, n=12); Won and Leber (2016), Experiment 3 (blocks 1-4,
n=12); Won and Leber (2016), Experiment 4a (blocks 1-12, n=12); and the current Experiment

3 (blocks 1-12, n=16). Given the highly similar experimental conditions across experiments,
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we simply ran a paired-samples t-test on the pooled group of 68 participants, comparing mean
RT on the lowest EV vs. highest EV quadrants. Results showed a total mean quadrant effect of
M =20.7 ms, SD = 46.3, which was not significant, #(68) = 0.351, p = 0.727, d = 0.043. This
analysis increases our confidence that the surprising main effect of quadrant in the first half of

Experiment 3 was likely a Type I error.

Second half: Visual choice

Choice frequency.

Analysis focused on the frequency of trials in which participants chose the high-EV.
Note that while we requested participants choose two quadrants on each trial, our experimental
code allowed for them to click on the same quadrant twice; we excluded such trials from the
analysis (2.3%). A sample to hypothesized mean (of 0.5) t-test, on collapsed data from all
blocks, was significant, #(15) = 2.40, p = .03, Cohen’s d = .60, reflecting that participants more
often chose the high-EV quadrant in one of their two clicks than chance. We performed a 1-way
ANOVA on the choice data across the 12 blocks to determine if the learning effect changed
over time. Mauchley’s test showed a violation of the sphericity assumption, so we applied the
Greenhouse-Geisser correction; results were significant, F(4.12, 143) = 2.65, p = .042, npz =
.17. As we did previously, we used linear regression to calculate slopes in high-EV choices
across the blocks for each participant, and the one-sample t-test was significant, #(15) = 2.60, p
=.020, Cohen’s d = .65, consistent with an increase in learning over time. Mean choice

frequency across quadrant types and blocks are shown in Figure 9B (bar graph).

Second half: Visual search
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RT. Trimming removed 1.1% of trials. Because we could not measure RTs from the
trials in which participants did not find a target, we only analyzed the trials in which
participants found a target, which was 49.1% (among those trials, “too slow” trials were
43.4%). This relatively small number of trials produced several missing data points and noisy
data when we separated RTs separately by quadrant type and block (Figure 9B line graph).
Therefore, we collapsed across blocks, and conducted a paired samples t-test, which showed no
effect of quadrant type, #(15) =0.912, p = 0.376, d = 0.228, BFy; = 2.85 (Figure 9C).
Therefore, any evidence of participants prioritizing the high-EV quadrant during search in the
first half of the experiment had vanished during the second half. This is notable, given that the
second half was specifically designed to maximize any chance of such prioritization.

One potential reason for our failure to observe prioritization of the EV quadrant during
search could have stemmed from the order of clicks in the choice task. That is, if participants
routinely clicked the high-EV quadrant first, followed by a low-EV quadrant, then an
attentional bias could remain in the last clicked quadrant (low-EV) at the start of the search.
While our requirement that participants click the center point prior to the onset of the search
was designed to prevent the persistence of such a bias, we further checked to see if any click
order preference was present in the choice data. We found that, on trials in which the high-EV
quadrant was clicked, it was no more likely to be clicked first or second, #(15) = 1.35, p = .20,

BF()] =1.83.

Explicit Learning Assessment
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During the generation task, participants did not reliably vary in their selection of 20

points vs. 1 point across the high-EV (57.7% vs. 42.3%)and low-EV quadrants (53.4% vs.

46.6%), F(1,15)=1.88, p=0.199, n,> = .11.
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Figure 9. Results in Experiment 3. A. Search RT in the first half of experiment as a function of

quadrant type, across blocks. B. The choice frequency (bar graph) in the second half of
experiment as a function of quadrant type, across block and search RT (line graph) in the

second half of experiment as a function of quadrant type, across blocks. C. Search RTs for the

two quadrant types in the second half of the experiment, collapsed across block. Error bars

show =1 S.E. of the mean

Visual search vs. visual choice

We compare results from visual search and visual choice during the combined search
and choice trials in the second half of the experiment, we calculated learning efficiency units
for each task (see Experiment 1 for detail). A pairwise t-test revealed numerical but non-

significant difference between two tasks, #(15) =1.513, p =.151, BFy; = 1.51. Learning

efficiency of visual choice and visual search is shown in Figure 10.
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Figure 10. Learning efficiency of visual choice and visual search in the second half of
experiment. Error bars show £1 S.E. of the mean.

General Discussion

Across three experiments, we found a clear qualitative distinction between visual choice
and visual search. Participants learned to prioritize high-value locations when their task was
one of choice, but the same participants failed to prioritize high-value locations when their task
was visual search (we found just one exception to this, in the first half of Experiment 3,
although a pooled analysis across 5 experiments suggested the result was a Type I error). Even
when we incorporated choice and search within the same trial, such that the two were jointly
involved in representing the same target information — and both were incentivized such that
behavior determined the reward outcome — we continued to observe significant prioritization
during choice but not during search. That is, we demonstrated that participants learned the
spatial value contingencies, actively represented this information, and displayed sufficient
motivation to seek reward, but they nonetheless failed to express this knowledge during search.

We thus find support for a task-dependent expression failure in the domain of visual search.
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Broadly, these findings represent an example of the notion that some cognitive
mechanisms are impenetrable to knowledge represented in different domains (e.g., Fodor,
1983). For instance, it has been argued that our low-level perceptual processing is
uninfluenced by higher-level object knowledge, as highlighted by our inability to willfully alter
how we perceive some visual illusions (e.g., the Miiller-Lyer; see Firestone & Scholl, 2015;
Pylyshyn, 1999). Other examples come from the domain of motor control, in which,
knowledge of mirror tracing is clearly dissociated from the time-consuming process of skill
acquisition (Milner, 1962).

While we present evidence favoring a default impenetrability of the visual search
apparatus, we must acknowledge several caveats. First, from an experimental standpoint, we
rely on producing learning in one task (visual choice) and measuring the transference to another
(visual search). However, we cannot know if the choice task carried a stronger manipulation
than the search task; moreover, equating the two tasks would be virtually impossible. That
said, we do believe that the chosen search task is amenable to robust learning, based on a broad
array of studies using this task and demonstrating strong learning effects (including some of our
own, such as Won & Leber, 2016).

Second, some might question how much the spatial value learning is useful for the
visual search task because, unlike in the choice task, learning that a location is more valuable
than other locations does not help one to find the target any sooner. That is, because the target
must be found, regardless of whether it appears in a high-value or low-value location,
participants in our basic paradigm could not alter their earnings by first searching within the
high-value quadrants. Although this is a valid point, consider classic animal learning studies in

which the rats do prioritize high-value locations even when such behavior need not yield a
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better outcome (Crespi, 1942; Herrnstein, 1961; Spear & Pavlik, 1966). Furthermore, if spatial
value learning would occur only when the information could facilitate search behavior (and
earnings), then non-spatial features (e.g., color) that are associated with high reward should not
prioritize attention in visual search. Yet, many studies including our previous study (Won &
Leber, 2016) showed that high-reward associated colors prioritize attention in visual search
even when the color is no longer rewarded (or even when it becomes penalized, Failing &
Theeuwes, 2017; Le Pelley, Pearson, Griffiths, & Beesley, 2015). Regardless, to address these
concerns, we conducted Experiment 3, where learning spatial value was actually useful and
incentivized, but again, we found no significant search bias toward the high value location.

Third — and also related to the first point — our argument rests in large part on
supporting the null hypothesis. Failing to reject the null hypothesis with classical statistics
could occur due to limitations in statistical power, even when a true difference is present (type
IT error). One approach to increase confidence in the null hypothesis is to compute the Bayes
Factor (BF), which generates a readily interpretable odds ratio of evidence for vs. against the
null hypothesis (e.g., Rouder, Speckman, Sun, Morey, & Iverson, 2009). We computed these
statistics on our test-phase visual search RTs for Experiments 1-3, using JASP 0.8.1.2 (JASP
Team, 2017), with the default prior width of 0.707, and found that our data were more likely to
be observed given that the null hypothesis were true vs. if the null hypothesis were false
(Wetzels et al., 2011). Taken together, these results strengthen the interpretation that visual
search performance in our experiments was insensitive to spatial value.

Previous concerns notwithstanding, we do not intend to argue that the visual search
apparatus is impervious to all learning, an extreme argument that is contradicted by several

robust findings. For one, the phenomenon of contextual cueing shows that individuals

36



Running Head: CHOICE AND SEARCH 37

performing a visual search task learn when the search array is presented in spatial
configurations that repeat multiple times. When these configurations are associated with
specific target positions, participants exploit this information and begin to rapidly prioritize
search to these expected target locations, facilitating both RT (Chun & Jiang, 1998; Chun,
2000; Jiang & Wagner, 2004; Gibson, Leber & Mehlman, 2015; Hout & Goldinger, 2010) and
eye movements (Peterson & Kramer, 2001; Hout & Goldinger, 2012). Another well-
documented phenomenon, described in this paper, is probability cueing, which shows that
individuals rapidly learn to prioritize locations in the search display that contain more frequent
targets (Geng & Berhmann, 2002; Jiang, Swallow, Rosenbaum & Herzig, 2013; Miller, 1988;
Won & Leber, 2015).

Additionally, visual search is penetrable by volition; individuals can voluntarily choose
to search some portions of the display over others, as in the classic case of endogenous cueing
(Posner, Snyder & Davidson, 1984). Had we explicitly told our participants which quadrant to
search first, we undoubtedly would have found that they could comply; indeed, when Jiang et
al. (2015, Exp. 4) informed their participants about the spatial reward contingencies and asked
the participants to prioritize the high-value locations, several of the participants were able to do
exactly that. In the current experiments, we employed an incidental learning approach, in
which we did not explicitly inform participants of the value manipulation. Clearly the visual
search apparatus is not universally impenetrable to outside cognitive inputs (i.e., volition and
certain forms of spatial learning). However, we have observed here that the visual search
apparatus does not spontaneously act upon currently represented spatial value information.

This finding is parsimonious with our speculation that the search apparatus evolved

without any environmental pressures to incorporate spatial value. That is, it is of great

37



Running Head: CHOICE AND SEARCH 38

ecological significance for us to learn the value of individual object properties for which we
might search. For instance, when searching for berries in a patch where red ones are desirable
while yellow ones are poisonous, we could benefit greatly from a visual search apparatus that
can boost the priority of red information, regardless of its location. Consistent with this notion,
as mentioned above, there have been dozens of recent reports in which color-based or object-
based value information drives visual search (e.g., Anderson et al., 2011; Della Libera &
Chelazzi, 2006; Hickey et al., 2010; Kiss et al., 2009; Navalpakkam et al., 2010; Shomstein &
Johnson, 2013), including in our own paradigm (Won & Leber, 2016). However, as we stated
in the introduction, prioritizing search based only on spatial value is an ecological oddity. That
is, we devised a task in which only one target of search was to be found. In the real world,
when an individual has committed to finding a specific target, its objective value becomes
irrelevant. Moreover, its value should rarely vary as a function of its ultimate location, as we
argued when discussing the relative value of car keys that are hanging from the door vs. on a
desk. Thus, perhaps it should not be surprising that the visual search apparatus does not adapt
to an artificial scenario in which a target’s value does vary depending on its spatial location. Of
course, it is not impossible that an object’s value changes as a function of location. For
instance, ice cream on the table is more valuable than ice cream on the ground.” However, we
believe that examples like this occur infrequently, compared to everyday searches for items
such as keys, people, articles of clothing, etc. Such examples may not carry sufficient
behavioral significance to drive evolutionary changes in the design of our search apparatus.

To conclude, this study takes a step toward resolving a puzzling pattern in the literature,
in which dozens of papers have reported feature or object-based reward learning at the same

time as a striking scarcity in reports of space-based reward learning. We have systematically

? We thank the anonymous reviewer for this example.
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shown that individuals fail to express such learning even while simultaneously demonstrating it
in other task domains. We propose that the visual search apparatus is not be designed to make

use of this information source.
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