
Scalable and Sustainable Deep Learning
via Randomized Hashing

Ryan Spring

Rice University

Department of Computer Science

Houston, Texas, USA 43017-6221

rdspring1@rice.edu

Anshumali Shrivastava

Rice University

Department of Computer Science

Houston, Texas, USA 43017-6221

anshumali@rice.edu

ABSTRACT
Current deep learning architectures are growing larger in order

to learn from complex datasets. These architectures require giant

matrix multiplication operations to train millions of parameters.

Conversely, there is another growing trend to bring deep learning

to low-power, embedded devices. The matrix operations, associated

with the training and testing of deep networks, are very expensive

from a computational and energy standpoint. We present a novel

hashing-based technique to drastically reduce the amount of com-

putation needed to train and test neural networks. Our approach

combines two recent ideas, Adaptive Dropout and Randomized

Hashing for Maximum Inner Product Search (MIPS), to select the

nodes with the highest activations efficiently. Our new algorithm

for deep learning reduces the overall computational cost of the for-

ward and backward propagation steps by operating on significantly

fewer nodes. As a consequence, our algorithm uses only 5% of the

total multiplications, while keeping within 1% of the accuracy of

the original model on average. A unique property of the proposed

hashing-based back-propagation is that the updates are always

sparse. Due to the sparse gradient updates, our algorithm is ideally

suited for asynchronous, parallel training, leading to near-linear

speedup, as the number of cores increases. We demonstrate the

scalability and sustainability (energy efficiency) of our proposed al-

gorithm via rigorous experimental evaluations on several datasets.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Theory
of computation→ Streaming, sublinear andnear linear time
algorithms; Parallel algorithms;

KEYWORDS
Neural Networks; Deep Learning; Locality-Sensitive Hashing; Ran-

domized Algorithms; Parallel Computing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’17, , August 13–17, 2017, Halifax, NS, Canada.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098035

1 INTRODUCTION
Deep learning is revolutionizing big-data applications, after being

responsible for groundbreaking improvements in image classifica-

tion [12] and speech recognition [9]. With the recent upsurge in

data, at a much faster rate than our computing capabilities, neu-

ral networks are growing larger to process information more ef-

fectively. In 2012, state-of-the-art convolutional neural networks

contained at most 10 layers. Afterward, each successive year has

brought deeper architectures with greater accuracy. Microsoft’s

deep residual network [8], which won the ILSVRC 2015 competition

with a 3.57% error rate, had 152 layers and 11.3 billion FLOPs. To

handle such large neural networks, researchers usually train them

on large computer clusters with high-performance graphics cards.

Due to the growing size and complexity of networks, efficient

algorithms for training massive deep networks in a distributed, par-

allel environment is currently themost sought-after problem in both

academia and the commercial industry. For example, Google [5]

used a 1-billion parameter neural network, which took three days

to train on a 1000-node cluster, totaling over 16,000 CPU cores. Each

instantiation of the network spanned 170 servers. In distributed

computing environments, the parameters of giant deep networks

are required to be split across multiple nodes. However, this setup

requires costly communication and synchronization between the

parameter server and processing nodes in order to transfer the

gradient and parameter updates. The sequential and dense nature

of gradient updates prohibits any efficient splitting (sharding) of

the neural network parameters across computer nodes. There is

no clear way to avoid the costly synchronization without resorting

to some ad-hoc breaking of the network. This ad-hoc breaking of

deep networks is not well-understood and is likely to hurt perfor-

mance. Synchronization is one of the major hurdles in scalability.

Asynchronous training is the ideal solution, but it is sensitive to

conflicting, overlapping parameter updates, which leads to poor

convergence.

While deep networks are growing larger and more complex,

there is also push for greater energy efficiency to satisfy the growing

popularity of machine learning applications on mobile phones and

low-power devices. For example, there is recent work by McMahan

et al. [22] aimed at leveraging the vast data of mobile devices. This

work has the users train neural networks on their local data, and

then periodically transmit their models to a central server. This

approach preserves the privacy of the user’s personal data, but still

allows the central server’s model to learn effectively. Their work is

dependent on training neural networks locally. Back-propagation

is the most popular algorithm for training deep networks. Each

iteration of the back-propagation algorithm is composed of giant

https://doi.org/10.1145/3097983.3098035

matrix multiplications. These matrices are very large, especially for

massive networks with millions of nodes in the hidden layer, which

are common in industrial practice. Large matrix multiplications

are parallelizable on GPUs, but not energy-efficient. Users require

their phones and tablets to have long battery life. Reducing the

computational costs of neural networks, which directly translates

into longer battery life, is a critical issue for the mobile industry.

The current challenges for deep learning illustrate a great de-

mand for algorithms that reduce the amount of computation and

energy usage. To reduce the bottleneckmatrix multiplications, there

has been a flurry of works around reducing the amount of computa-

tions associated with them. Most of them revolve around exploiting

low-rank matrices or low precision updates (See Section 6.2 for

details). However, updates with these techniques are hard to paral-

lelize making them unsuitable for distributed and large scale appli-

cations. On the contrary, our proposal capitalizes on the sparsity of

the activations to reduce the computation complexity. To the best

of our knowledge, this is the first proposal that exploits sparsity to

reduce the amount of computation associated with deep networks.

We further show that our approach admits asynchronous parallel

updates leading to perfect scaling with increasing parallelism.

Recent machine learning research has focused on techniques for

dealing with the famous problem of over-fitting with deep networks.

A notable line of work [2, 20, 21] improved the accuracy of neural

networks by only updating the neurons with the highest activations.

Adaptive dropout [2] sampled neurons in proportion to an affine

transformation of the neuron’s activation. The Winner-Take-All

(WTA) approach [20, 21] kept only the top-k% neurons by using a

hard threshold. It was found that such a selective choice of nodes

and sparse updates provide a natural regularization [30]. However,

these approaches rely on inefficient, brute-force techniques to find

the best neurons. Thus, these techniques are equally as expensive as

the standard back-propagation method leading to no computational

savings.

Our idea is to index the neurons (the weights of each neuron as a

vector) in a hash table using locality sensitive hashing. These hash

tables allow us to select (or sample) the neurons with the highest

activations in sub-linear time. Moreover, since our approach results

in a sparse active set of neurons randomly, the gradient updates are

unlikely to overwrite each other because of their sparsity. Sparse

updates are ideal for asynchronous and parallel gradient updates.

It is known that asynchronous stochastic gradient descent (ASGD)

[23] will converge if the number of simultaneous parameter updates

is small. We heavily leverage this sparsity which unique to our

proposal. On several deep learning benchmarks, we show that

our approach outperforms standard algorithms including vanilla

dropout [30] at high sparsity levels and matches the performance

of adaptive dropout [2] and winner-take-all [20, 21] while needing

less computation (only 5%).

1.1 Our Contributions:
(1) We present a scalable and sustainable algorithm for train-

ing and testing fully-connected neural networks. Our idea

capitalizes on the recent, successful technique of adaptive

dropouts and locality sensitive hashing (LSH) for maximum

inner product search (MIPS) [25]. We show significant re-

ductions in the computational requirement for training deep

networks without any significant loss in accuracy (within

1% of the accuracy of the original model on average). In par-

ticular, our method achieves the performance of other state-

of-the-art regularization methods such as Dropout, Adaptive

Dropout, and Winner-Take-All when using only 5% of the

neurons in a standard neural network.

(2) Our proposal reduces computations associated with both

the training and testing (inference) of deep networks by

reducing the multiplications needed for the feed-forward

and back-propagation operations.

(3) The key idea in our algorithm is to associate LSH hash

tables [7, 11] with every layer. These hash tables support

constant-time O(1) insertion and deletion operations.

(4) Our scheme naturally leads to sparse gradient updates. Sparse

updates are ideally suited for massively parallelizable asyn-

chronous training [23]. We demonstrate that this sparsity

opens room for truly asynchronous training without any

compromise with accuracy. As a result, we obtain near-linear

speedup when increasing number of cores.

(5) The code for training and running our randomized-hashing

approach is available online
1

2 RELATEDWORK
There have been several recent advances aimed at improving the

performance of neural networks. Courbariaux et al. [4], Lin et al.

[17] reduced the number of floating point multiplications by map-

ping the network’s weights stochastically to {-1, 0, 1} during forward

propagation. Reducing the precision of the weights and activations

is an orthogonal approach. In addition, binary quantization only

gives a constant factor of improvement, while our approach is sub-

linear in the size of the network. Therefore, the improvements will

be significantly more for larger networks.

Sindhwani et al. [28] uses structuredmatrix transformationswith

low-rank matrices to reduce the number of parameters for the fully-

connected layers of a neural network. This low-rank constraint

leads to a smaller memory footprint. However, such an approxima-

tion is not well suited for asynchronous, parallel training, limiting

its scalability. We instead use random but sparse activations that

are easily parallelized by leveraging advances in approximate query

processing. (See Section 6.2 for details)

We briefly review Dropout and its variants, which are popular

sparsity promoting techniques for neural networks. Although such

randomized, sparse activations improve the generalization of neural

networks, to the best of our knowledge, this sparsity has not been

adequately exploited tomake deep networks computationally cheap

and parallelizable. We provide first such evidence.

Dropout [30] is primarily a regularization technique that ad-

dresses the issue of over-fitting by randomly dropping half of the

nodes in a hidden layer while training the network. The nodes are

independently sampled for every mini-batch of training data [30].

We reinterpret Dropout as a technique for reducing the number

of multiplications during forward and back-propagation phases,

by ignoring nodes randomly in the network. It is known that the

1
https://github.com/rdspring1/LSH_DeepLearning

https://github.com/rdspring1/LSH_DeepLearning

network’s performance becomes worse when too many nodes are

dropped from the network. Usually, only 50% of the nodes in the

network are dropped when training the network. At test time, the

network takes the average of the thinned networks to form a predic-

tion from the input data, which involves computing the activations

for all of the nodes in the network.

Adaptive dropout [2] is an enhancement to the dropout tech-

nique that adaptively chooses the nodes based on their activations.

The methodology samples a small subset of nodes from the net-

work, where the sampling is in proportion to the node activations.

Adaptive dropouts demonstrate better performance than vanilla

dropout [30]. A notable feature of Adaptive Dropout is that you can

drop significantly more nodes than the standard Dropout technique

while still retaining superior performance.

Winner-Take-All [20, 21] is an extreme form of AdaptiveDropouts

that uses mini-batch statistics to enforce a sparsity constraint. With

this technique, only the k% largest, non-zero activations are used

during the forward and back-propagation phases of training. This

approach requires computing the forward propagation step before

selecting the k% nodes with a hard threshold. Unfortunately, all

of these techniques require full computation of the activations to

sample nodes selectively. Therefore, they are only intended for

better generalization and not for reducing computational cost. Our

approach uses the insight that selecting a very sparse set of hidden

nodes with the highest activations can be reformulated as dynamic

approximate query processing problem, which can solve efficiently

using locality sensitive hashing. The differentiating factor between

our approach and the two other algorithms, Adaptive Dropout and

Winner-Take-All (WTA), is that we use sub-linear time, randomized

hashing to determine the active set of nodes instead computing the

activation for each node individually.

There is also another orthogonal line of work which uses univer-

sal hashing to reduce the network’s memory footprint [3]. Unlike

our objective, theirs was to reduce the number of parameters in

a neural network by using a hash function to tie virtual weights

together to the same real weight. The HashedNet architecture is

more computational expensive than the standard neural network

because it incurs an additional overhead when either rebuilding

the weight matrix or looking up the value of corresponding weight.

Hashed nets are complementary to our approach because we focus

on reducing the computational cost of neural networks rather than

its memory size.

3 BACKGROUND
3.1 Locality-Sensitive Hashing (LSH)
Locality-Sensitive Hashing (LSH) [6, 7, 10] is a popular, sub-linear

time algorithm for approximate nearest-neighbor search. The main

idea is to place similar items into the same bucket of a hash ta-

ble with high probability. An LSH hash function maps an input

data vector to an integer key - h(x) : RD 7→ [0, 1, 2, . . . ,N]. A
collision occurs when the hash values for two elements are equal

- h(x) = h(y). The collision probability for an LSH hash function

is proportional to the similarity metric between the two elements

- Pr [h(x) = h(y)] ∝ sim(x ,y). Essentially, similar items are more

likely to collide with each other under the same hash function.

1 1 -1 1 -1 -1

-1 -1 1 -1 -1 1

1 1 -1 -1 -1 -1

-1 1 1 -1 -1 1

𝑋 ∈ ℝ𝐷

𝑆𝑅𝑃 ∈ ℝ𝐷𝑥𝑘𝐿

sign(𝑌)𝑌 ∈ ℝ𝑘𝐿

1 3 0

K=2 bits 0 1 1 1 0 0

L=3 Tables
0

1

2

3

1

2

3

4

Figure 1: Locality Sensitive Hashing: (1) Compute the pro-
jection using a signed, random matrix RD×kL and the item
x ∈ RD . (2) Generate a bit from the sign of each entry in the
projection RkL (3) From the kL bits, we create L integer fin-
gerprints with k bits per fingerprint. (4) Add the item x into
each hash table using the corresponding integer key

Sub-linear Time Search using (K ,L) LSH Algorithm. To be
able to answer approximate nearest-neighbor queries in sub-linear

time, the idea is to create hash tables that have constant-time insert

and search operations (See Figure 1). Given the collection C, which
we are interested in querying for the set of nearest-neighbors, the

hash tables are generated using some locality sensitive hash (LSH)

family. We assume that we have access to the appropriate locality

sensitive hash (LSH) family F for the given similarity metric.

The classic LSH algorithm uses two parameters - (K ,L) to im-

prove the precision and recall of nearest-neighbors for a collection

C. Each hash table has a meta-hash function H that is formed by

concatenating K random hash functions from F . Now, under the

meta-hash function H , all of the K independent hash function val-

ues must match in order for two items to have the same fingerprint.

[H (x) = H (y)] ⇐⇒ [hi (x) = hi (y)] for all [i = 0, 1, 2, . . . ,K]. L
hash tables are constructed from the collection C. Given a query,

we collect one buckets from each hash table and return the union of

L buckets. Intuitively, the meta-hash function reduces the amount

of false positives because valid nearest-neighbor items are more

likely to match allK hash values for a given query. The union of the

L buckets decreases the number of false negatives by increasing the

number of potential buckets that could hold valid nearest-neighbor

items. The probability that at least one of the L meta-hash finger-

prints match and the two items form a candidate pair [15] is

Pr [H (x) = H (y)] = 1 − (1 − pk)L

The overall algorithm works in two phases:

1
2
3
4
5

1
2
3
4

1
2
3
4

1
2

H1 H2

1 | 1

2 | 2, 4

3 | 3

1 | 3

2 | 1, 4

3 | 2

Input
Hidden 1 Hidden 2

Output

Hash Table 1 Hash Table 2

1 – Build
5 – Update

2 – Hash

3 – Query

4 – Compute

Figure 2: A visual representation of a neural network us-
ing randomized hashing: (1) Build the hash tables by hash-
ing the weights of each hidden layer (Pre-processing oper-
ation) (2) Hash the layer’s input (3) Query the layer’s hash
table(s) for the active set AS (4) Only perform forward and
back-propagation on the neurons in the active set. The solid-
colored neurons in the hidden layer are the active neurons.
(5) Update the AS weights via gradient descent and the hash
tables by rehashing the updated AS weights.

(1) Pre-processing Phase: We construct L hash tables from

the data by storing all elements x ∈ C. (See Figure 2 for an
illustration) We only store pointers to the vector in the hash

tables because storing whole data vectors is very memory

inefficient.

(2) Query Phase:Given a queryq, we will search for its nearest-
neighbors. We report the union from all of the buckets col-

lected from the L hash tables. Note, we do not scan all of the

elements in C, we only probe L different buckets, one bucket

per hash table. Note: For nearest-neighbor search, we need
to filter these candidates further. However, our algorithm

does not require such filtering, because we want to perform

adaptive sampling and not exact nearest-neighbor search.

(explained in section 6.1)

Multi-Probe LSH. One common complaint with the classical

LSH algorithm is that it requires a significant number of hash tables.

Large L increases the processing time and memory cost. A simple

solution is to probe multiple "close-by" buckets in each hash table

rather than probing only one bucket [19]. Thus, for a given query

q, in addition to probing bucket Hj (q) in hash table j ∈ L, we also
generate several new addresses to probe by slightly perturbing

values of Hj (q). This simple idea significantly reduces the number

of tables needed with LSH, allowing us to work with only a few

hash tables. (See Lv et al. [19] for more details)

4 PROPOSED METHODOLOGY
4.1 Intuition
The Winner-Take-All [20, 21] technique shows that we should only

consider a few nodes with large activations (top k%) and to ignore

the rest while computing the feed-forward pass. Furthermore, the

back-propagation updates should only be performed on those top

k% nodes. Let n denote the total number of nodes in the neural

network. Let AS (Active Set) define the subset of top k% nodes with

significant activations where |AS | ≪ n. For each gradient update,

Winner-Take-All needs to first perform O(n logn) work to sort the

activations to find the AS , and then to update the O(AS) weights.
O(n logn) seems quite wasteful. In particular, finding the active

set AS is a search problem that can be solved well using smart

data structures. Furthermore, if the data structure is dynamic and

efficient, then the gradient updates will also be efficient.

For a node i with weight wi and input x , its activation is a

monotonic function of the inner product wT
i · x . Thus, selecting

the active set AS is equivalent to searching through a collection of

weight vectors for the ones that have large inner products with the

input x . Equivalently, from a query processing perspective, if we

treat the input x as a query, then the search problem of selecting top

k% nodes can be solved in sub-linear time using the recent advances

in maximum inner product search (MIPS) [25]. Our proposal is to

create hash tables with indexes generated by asymmetric locality

sensitive hash functions tailored for inner products. With such hash

tables, we can very efficiently approximate the active set AS for a

given query input x .
One last implementation challenge is how to update the nodes

(weights associated with them) in the AS , during the gradient up-
date. If we can perform these updates inO(AS) instead ofO(n), then
we save a significant amount of computation. Therefore, we need a

data structure where updates are also efficient. We describe our the

details of our system in Section 4.2.

4.2 Hashing-Based Back-Propagation
We use randomized hash functions to build hash tables from the

nodes in each hidden layer. We sample nodes from the hash table

with probability proportional to the node’s activation in sub-linear

time. We then perform forward and back propagation only on the

active nodes retrieved from the hash tables. We later update the

hash tables to reorganize only the modified weights.

Figure 2 illustrates an example neural network with two hidden

layers, five input nodes, and two output nodes. Hash tables are

built for each hidden layer, where the weighted connections for

each node are hashed to place the node in its corresponding bucket.

Creating hash tables to store all the initial parameters is a one-time

operation which requires cost linear in the number of parameters.

During a forward propagation pass, the input to the hidden

layer is hashed with the same hash function used to build the

hidden layer’s hash table. The input’s fingerprint is used to collect

the active set AS nodes from the hash table. The hash table only

contains pointers to the nodes in the hidden layer. Then, forward

propagation is performed only on the nodes in the active set AS .
Note:As argued, unlike exact nearest-neighbor search, we report

everything retrieved from buckets as the active set AS , without
any filtration of the candidates. Our randomized hashing approach

Algorithm 1 Deep Learning with Randomized Hashing

// HFl - Layer l Hash Function

// HTl - Layer l Hash Tables

// ASl - Layer l Active Set

// θ lAS ∈W l
AS , b

l
AS - Layer l Active Set parameters

Randomly initialize parametersW l
, bl for each layer l

HFl = constructHashFunction(k , L)

HTl = constructHashTable(W l
, HFl)

while not stopping criteria do
for each training epoch do
// Forward Propagation

for layer l = 1 . . .N do
fingerprintl = HFl (al)
ASl = collectActiveSet(HTl , fingerprintl)

for each node i in ASl do
al+1i = f (W l

i a
l
i + b

l
i)

end for
end for
// Backpropagation

for layer l = 1 . . .N do
∆J (θ lAS) = computeGradient(θ lAS , ASl)

θ lAS = updateParameters(θ lAS , ∆J (θAS))
end for
for each Layer l -> updateHashTables(HFl , HTl , θ

l
)

end for
end while

adaptively samples [29] from all of the candidates. (See Section 6.1

for the sampling view of our algorithms)

The rest of the hidden layer’s nodes, which are not part of the

active set, are ignored and automatically switched off. On the back-

propagation pass, the active set is reused to determine the gradient

and to update the parameters. We rehash the nodes in each hidden

layer to account for the changes in the network during training.

In detail, the hash function for each hidden layer is composed of

K randomized hash functions. We use the sign of an asymmetrically

transformed random projection to generate the K bits for each data

vector. (See Shrivastava and Li [27] for details) TheK bits are stored

together efficiently as an integer, forming a fingerprint for the data

vector. We create a hash table of 2
K
buckets, but we only keep the

nonempty buckets to minimize the memory footprint (analogous

to hash-maps in Java). Each bucket stores pointers to the nodes

whose fingerprints match the bucket’s id instead of the node itself.

In figure 2, we showed only one hash table, which is likely to miss

valuable nodes in practice. In our implementation, we generate

L hash tables for each hidden layer, and each hash table has an

independent set of K random projections. Our final active set from

these L hash tables is the union of the buckets selected from each

hash table. For each layer, we have L hash tables. Effectively, we

have two tunable parameters, K bits and L tables to control the size

and the quality of the active sets. The K bits increase the precision

of the fingerprint, meaning the nodes in a bucket are more likely

to generate higher activation values for a given input. The L tables

increase the probability of finding useful nodes that are missed

because of the randomness in the hash functions.

EfficientQuery andUpdates:Our algorithm critically depends

on the efficiency of the query and update procedure. The hash table

is one of the most efficient data structures, so this is not a difficult

challenge. We only store references to the weight vectors, which

makes the hash table a very light entity. Furthermore, we reduce

the number of hash tables L by using Multi-Probe LSH [19]. A large

number of tables L increases the hashing time and memory cost. A

simple solution is to probe multiple "nearby" buckets in every hash

table rather than probing only a single bucket. Multi-Probe LSH

for a binary hash function is quite straightforward. We just have to

randomly flip a few bits of the meta-hash fingerprint to generate

more addresses.

The gradient update to a weight vector associated with a node

may change its location in the hash table. Updating the node’s loca-

tion only requires one insertion and one deletion in the respective

buckets. There are plenty of data structures available for represent-

ing the buckets that have efficient insert and delete operations. In

theory, we can use a red-black-tree to ensure both insertion and

deletion cost is logarithmic in the size of the bucket. However, in

our implementation, the buckets are represented by simple arrays

because they are easy to parallelize, and the buckets are relatively

sparse. Arrays have constant-time O(1) insertion and linear-time

O(b) deletion, where b is the size of buckets.

Overall Cost: For each layer, during every Stochastic Gradient

Descent (SGD) update, we compute K × L hashes of the input data,

probe several buckets per hash table, and then take their union.

In our experiments, we use K = 6 and L = 5 – only 30 hash

computations per data point. There are many other techniques to

further reduce this hashing cost [1, 16, 24, 26]. The process gives us

the active set AS of nodes, which is significantly smaller than the

total number of nodes n. During SGD, we update all of the nodes in
the AS and then rebuild the hash tables. Overall, the cost is on the

order of the number of nodes in the active set AS . For 1000 nodes
per layer and an AS containing only 5% of the layer’s nodes, we

only have to update around 50 nodes. The primary bottleneck is

calculating the activation for each node in theAS . The performance

benefits will be even more significant for larger neural networks.

Bonus: Sparse Updates can be Parallelized: As mentioned,

we only need to update the set of weights associated with nodes

in the active set AS . If each AS is very sparse, then it is unlikely

that a group of active sets will significantly overlap. Small overlaps

imply fewer conflicts while updating the parameters. Fewer con-

flicts while updating is an ideal ground where SGD updates can

be parallelized without any overhead. In fact, it was shown both

theoretically and experimentally that random, sparse SGD updates

can be parallelized without compromising with the convergence

[23]. Vanilla SGD is a sequential operation, and parallel updates

lead to poor convergence, due to significant overwrites among

the gradient updates. Our experimental results, in Section 5.3, sup-

port this known phenomenon. Exploiting this unique property, we

show near-linear scaling without hurting convergence using our

algorithm, while increasing the number of concurrently running

models.

5 EVALUATIONS
We design experiments to answer the following six important ques-

tions:

(1) How much can we reduce computation without affecting

the neural network’s accuracy?

(2) How effective is adaptive sampling compared to a random

sampling of nodes?

(3) How does the accuracy of our approximate hashing-based

approach compare with the expensive, exact approaches of

adaptive dropouts [2] and Winner-Takes-all [20, 21]?

(4) How is the network’s convergence effected by increasing

number of cores when using asynchronous SGD?

(5) Is the sparse gradient update necessary? Is there any de-

terioration in performance, if we perform standard, dense

updates in parallel?

(6) How much does the walk-clock time decrease, as a function

of increasing number of cores?

For evaluation, we implemented the following five approaches

to compare and contrast against our approach.

• Standard (NN) : A full-connected neural network

• Dropout (VD) [30]: A neural network that disables the nodes

of a hidden layer using a fixed probability threshold

• Adaptive Dropout (AD) [2]: A neural network that disables

the nodes of a hidden layer using a probability threshold

based on the inner product of the node’s weights and the

input.

• Winner Take All (WTA) [20, 21]: A neural network that sorts

the activations of a hidden layer and selects the k% largest

activations

• Randomized Hashing (LSH): A neural network that selects

nodes using randomized hashing. A hard threshold limits

the active node set to k% sparsity

Dataset Train Size Test Size

MNIST8M 8,100,000 10,000

NORB 24,300 24,300

Convex 8,000 50,000

Rectangles 12,000 50,000

Figure 3: Dataset - Training + Test Size

5.1 Datasets
To test our neural network implementation, we used four publicly

available datasets - MNIST8M [18], NORB [14], CONVEX, and

RECTANGLES [13]. The statistics of these datasets are summarized

in Table 3. The MNIST8M, CONVEX, and RECTANGLES datasets

contain 28 × 28 images, forming 784-dimensional feature vectors.

The MNIST8M task is to classify each handwritten digit in the

image correctly. It is derived by applying random deformations and

translations to the MNIST dataset. The CONVEX dataset objective

is to identify if a single convex region exists in the image. The goal

for the RECTANGLES dataset is to discriminate between tall and

wide rectangles overlaid on a black and white background image.

The NORB dataset [14] contains images of 50 toys, belonging to 5

categories under various lighting conditions and camera angles.

5.2 Sustainability
5.2.1 Experimental Setting. All of the experiments for our ap-

proach and the other techniques were run on a 6-core Intel i7-3930K

machine with 16 GB of memory. Our approach uses stochastic gra-

dient descent with Momentum and Adagrad [5]. Since our approach

uniquely selects an active set of nodes for each hidden layer, we fo-

cused on a CPU-based approach to simplify combining randomized

hashing with neural networks. The ReLU activation function was

used for all methods. The learning rate for each approach ranged

between 10
−2

and 10
−4
. The parameters for the randomized hash

tables were K = 6 bits and L = 5 tables with multi-probe LSH [19].

For the experiments, we use a fixed threshold to cap the number of

active nodes selected from the hash tables to guarantee the amount

of computation is within a certain level.

5.2.2 Effect of computation levels. Figures 4, 5 show the accu-

racy of each method on neural networks with 2 and 3 hidden layers

with the percentage of active nodes ranging from [0.05, 0.10, 0.25,

0.5, 0.75, 0.9]. The standard neural network is our baseline in these

experiments and is marked with a dashed black line. Each hidden

layer contains 1000 nodes. The x-axis represents the average per-

centage of active nodes per epoch selected by each technique. Our

approach only performs the forward and back propagation steps

on the nodes selected in each hidden layer. The other baseline tech-

niques except for Dropout (VD) perform the forward propagation

step for all of the nodes first, before setting node activations to

zero based on the corresponding algorithm. Therefore, Dropout

(VD) and our proposal (LSH) require fewer multiplications than the

standard neural network training procedure.

Figures 4 and 5 summarizes the accuracy of different approaches

at various computations levels.

• Our method (LSH) gives the best overall accuracy with the

fewest number of active nodes. The fact that our approxi-

mate method is even slightly better than WTA and adaptive

dropouts is not surprising, as it is long known that a small

amount of random noise leads to better generalization. (See

Srivastava et al. [30] for examples)

• As the number of active nodes decreases from 90% to 5%,

LSH experiences the smallest drop in performance and less

performance volatility.

• VD experiences the greatest drop in performance when re-

ducing the number of active nodes from 50% to 5%.

• WTA performed better than VD when the percentage of

active nodes is less than 50%

• As the number of active nodes approaches 100%, the perfor-

mance stabilizes for each method.

Lowering the computational cost of running neural networks

and running fewer operations reduces the energy consumption and

heat produced by the processor. However, large neural networks

provide better accuracy and arbitrarily reducing the number of

active nodes hurts performance. Our experiments show that our

method (LSH) provides the best of both worlds - high performance

and low processor computation. This approach is ideal for mobile

phones because reducing the processor’s load directly translates

into longer battery life.

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

MNIST8M

Standard NN

Randomized Hashing

Vanilla Dropout

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

NORB

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Convex

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Rectangles

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

MNIST8M

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

NORB

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Convex

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Rectangles

Figure 4: Classification accuracy under different levels of active nodes with networks on the MNIST (1st), NORB (2nd), Convex
(3rd) and Rectangles (4th) datasets. The standard neural network (dashed black line) is our baseline accuracy. We can clearly
see that adaptive samplingwith hashing (LSH) is significantlymore effective than random sampling (VD). Top Panels: 2 hidden
Layers. Bottom Panels: 3 hidden Layers

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

MNIST8M

Standard NN

Randomized Hashing

Winner-Take-All

Adaptive Dropout

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

NORB

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Convex

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Rectangles

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

MNIST8M

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

NORB

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Convex

0.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Rectangles

Figure 5: Classification accuracy under different levels of active nodes with networks on the MNIST (1st), NORB (2nd), Convex
(3rd) and Rectangles (4th) datasets. The standard neural network (dashed black line) is our baseline accuracy. WTA and AD
(dashed red and yellow lines) perform the same amount of computation as the standard neural network. Those two techniques
select nodes with high activation values to achieve better accuracy, but they require computing the activation for every node
in the hidden layer. We compare our LSH approach to determine whether our randomized algorithm achieves comparable
performance, while reducing the total amount of computation. We do not have data for adaptive dropout at the 5% and 10%
computation levels because those models diverged when the number of active nodes dropped below 25%. Top Panels: 2 hidden
Layers. Bottom Panels: 3 hidden Layers

10 20 30 40 50

Epochs

0.90

0.92

0.94

0.96

0.98

1.00

A
c
c
u
ra

c
y

MNIST8M

LSH-1

LSH-8

LSH-56

5 10 15 20 25 30

Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

NORB

10 20 30 40 50

Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Convex

10 20 30 40 50

Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Rectangles

Figure 6: The convergence of our randomized hashing approach (LSH-5%) over several training epochs using asynchronous
stochastic gradient (ASGD) with 1, 8, 56 cores. We used a (3 hidden layer) network on the MNIST (1st), NORB (2nd), Convex
(3rd) and Rectangles (4th) datasets. Only 5% of the standard network’s computation was performed in this experiment. ASGD
has no effect on convergence with the sparse, random gradient updates.

5 10 15 20 25 30

Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
c
c
u
ra

c
y

MNIST8M

STD-56

LSH-56

5 10 15 20 25 30

Epochs

0.60

0.65

0.70

0.75

0.80

0.85

A
c
c
u
ra

c
y

NORB

5 10 15 20 25 30

Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Convex

5 10 15 20 25 30

Epochs

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
c
c
u
ra

c
y

Rectangles

Figure 7: Performance comparison between our randomized hashing approach and a standard network using asynchronous
stochastic gradient descent (ASGD) on an Intel Xeon ES-2697 machine with 56-cores. We used (3 hidden layer) networks on
MNIST (1st), NORB (2nd), Convex (3rd) and Rectangles (4th). All networks were initialized with the same settings for this
experiment. We see that parallelizing the non-sparse gradient updates leads to poor convergence.

2
0

2
1

2
2

2
3

2
4

2
5

2
6

#Processors

10
3

10
4

10
5

T
im

e
 (

s
e
c
s
)

MNIST8M

2
0

2
1

2
2

2
3

2
4

2
5

2
6

#Processors

10
2

10
3

10
4

T
im

e
 (

s
e
c
s
)

NORB

2
0

2
1

2
2

2
3

2
4

2
5

2
6

#Processors

10
2

10
3

10
4

T
im

e
 (

s
e
c
s
)

Convex

20 21 22 23 24 25 26

#Processors

102

103

104

T
im

e
 (

s
e
c
s
)

Rectangles

Figure 8: The wall-clock per epoch for our approach (LSH-5%) gained by using asynchronous stochastic gradient descent. We
used a (3 hidden layer) network on the MNIST (1st), NORB (2nd), Convex (3rd) and Rectangles (4th). We see smaller perfor-
mance gains with the Convex and Rectangles datasets because there are not enough training examples to use of all of the cores
effectively. Only 5% of the standard network’s computation was performed in this experiment.

5.3 Scalability
5.3.1 Experimental Setting. Wenow show experiments to demon-

strate the scalability of our approach to large-scale, distributed com-

puting environments. Specifically, we are testing if our approach

maintains accuracy and improves training time, as we increase the

number of cores. We use asynchronous stochastic gradient descent

with momentum and adagrad [5, 23]. Our implementation utilizes

data parallelism by running the same model on multiple training

examples concurrently. The gradient is applied without synchro-

nization to maximize performance. We run all of the experiments

on an Intel Xeon ES-2697 machine with 56 cores and 256 GB of

memory. The ReLU activation was used for all models, and the

learning rate ranged between 10
−2

and 10
−3
.

5.3.2 Results with different number of cores. Figure 6 shows how
our method performs with asynchronous stochastic gradient de-

scent (ASGD) using only 5% of the neurons of a full-sized neural

network. The neural network has three hidden layers, and each hid-

den layer contains 1000 neurons. The x-axis represents the number

of epochs completed, and the y-axis shows the test accuracy for the

given epoch. We compare how our model converges with multiple

cores working concurrently. Since our ASGD implementation does

not use locks, it depends on the sparsity of the gradient to ensure

the model converges and performs well [23]. From our experiments,

we see that our method converges at a similar rate and obtains the

same accuracy regardless of the number of cores running ASGD.

Figure 8 illustrates how our method scales with multiple cores.

The inherent sparsity of our randomized hashing approach reduces

the number of simultaneous updates and allows for more asyn-

chronous models without any performance penalty. We show the

corresponding drop in wall-clock computation time per epochwhile

adding more cores. We achieve roughly a 31x speed up while run-

ning ASGD with 56 cores.

5.3.3 ASGD Performance Comparison with Standard Neural Net-
work. Figure 7 compares the performance of our LSH approach

against a standard neural network (STD) when running ASGD with

56-cores. We clearly out-perform the standard network for all of our

experimental datasets. However, since there is a large number of

models running concurrently, their gradients are constantly being

overridden, preventing ASGD from converging to an optimal local

minimum. Our approach produces a spare gradient that reduces the

number of conflicts between the different models, while keeping

enough valuable gradients for ASGD to progress towards the local

minimum efficiently.

From Figures 6, 7 and 8, we conclude the following:

(1) The gradient updates are quite sparse with 5% LSH and

running them in parallel does not affect the convergence

rate of our hashing-based approach. Even when running 56

cores in parallel, the convergence is indistinguishable from

the sequential update (1 core) on all the four datasets.

(2) If we instead run vanilla SGD in parallel, then the conver-

gence is affected. The convergence is in general slower com-

pared the sparse 5% LSH. This slow convergence is due

to dense updates which leads to overwrites. Parallelizing

dense updates affects the four datasets differently. For con-

vex dataset, the convergence is very poor.

(3) As expected, we obtain near-perfect decrease in the wall

clock times with increasing the number of cores with LSH-

5%. Note, if there are too many overwrites, then atomic over-

writes are necessary, which will create additional overhead

and hurt the parallelism. Thus, the near-perfect scalability

also indicates fewer gradient overwrites.

(4) On the largest dataset - MNIST8M, the running time per

epoch for the 1-core implementation is 50,254 seconds. The

56-core implementation runs in 1,637 seconds. Since the

convergence is not affected, there is a 31x speedup in the

training process while using 56 cores.

(5) We see that the performance gains from data parallelism be-

come flat with the Convex and Rectangle datasets, especially

while using a large number of cores. This poor scaling oc-

curs because the two datasets have fewer training examples

than MNIST8M or NORB, so there is less parallel work for a

large number of cores. We do not see such behaviors with

MNIST8M which has around 8 million training examples.

6 DISCUSSIONS
Machine learning with a huge parameter space is becoming a com-

mon phenomenon. Stochastic Gradient Descent (SGD) remains

the most popular optimization algorithm due to its effectiveness

and simplicity. Each SGD update is expected to alter only a small

subset of the parameters significantly. Identifying that subset of

parameters is a search problem. We can exploit the rich literature in

approximate query processing to find this active set of parameters

efficiently. Of course, the approximate active set contains a small

amount of random noise, which is often good for generalization.

Sparsity and randomness enhance data parallelism because the

gradient updates are unlikely to overwrite each other. In conclu-

sion, we are reformulating the machine learning problem into an

approximate query processing problem, and then leveraging the

decades of research from the systems and database communities.

We have demonstrated one concrete example, by showing how

neural networks can be scaled-up using randomized hashing. We

believe that the combination of sparsity with approximate query

processing is the future of large-scale machine learning.

6.1 Equivalence with Adaptive Dropouts
From a statistical perspective, Asymmetric Locality-Sensitive Hash-

ing (ALSH) [25] for finding nodes with large inner products is

equivalent to Adaptive Dropout [2] with a non-trivial sampling

distribution.

The Adaptive Dropout technique uses the Bernoulli distribution

to sample nodes with large activation. In theory, any distribution

assigning probabilities in proportion to the node’s activation is

sufficient. We argue that the Bernoulli distribution is sub-optimal.

There is another non-intuitive, but a very efficient distribution. This

distribution comes from the theory of Locality-Sensitive Hashing

(LSH) [11], which is primarily considered a black-box technique for

fast sub-linear search. Our core idea comes from the observation

that, for a given search query q, the LSH algorithm inherently sam-

ples, in sub-linear time, points from a distribution with probability

proportional to 1 − (1 − pK)L [29]. Here, the collision probability p
is a monotonic function of the similarity between the query and

the retrieved point.

Theorem 6.1. Hashing-Based Efficient Samplingt - For a
given input x to any layer of the neural network, any (K ,L) pa-
rameterized LSH algorithm selects a node i , associated with weight
vectorwi , with probability proportional to 1 − (1 − pK)L . Here, the
collision probability of the associated locality-sensitive hash function
is p = Pr [h(x) = h(wi)]. Thus, the sampling probability 1−(1−pK)L
is monotonic with respect to p.

6.2 Low-Rank vs Sparsity
The low-rank (or structured) assumption is very convenient for re-

ducing the complexity of general matrix operations. However, low-

rank, dense updates do not promote sparsity and are not friendly

for distributed computing. The same principle holds with deep

networks. We illustrate it with a simple example.

Consider a layer of the first network (left) shown in Figure 9.

The insight is that if the weight matrixW ∈ Rmxn
for a hidden

layer has low-rank structure where rank r ≪ min(m,n), then it

has a representationW = UV where U ∈ Rmxr
and V ∈ Rrxn .

This low-rank structure improves the storage requirements and

matrix-multiplication time from O(mn) to O(mr + rn). As shown
in Figure 9, there is an equivalent representation of the same net-

work using an intermediate hidden layer that contains r nodes

and uses the identity activation function. The weight matrices for

the hidden layers in the second network (right) map to the matrix

decomposition, U and V .

1 2 3 4 5

1 2 3 4

1 2 3 4 5

1 2

1 2 3 4

1 2𝑊 ∈ ℝ𝑀 𝑥 𝑁 𝑈 ∈ ℝ𝑀 𝑥 𝑅

𝑉 ∈ ℝ𝑅 𝑥 𝑁

Figure 9: (1) The single-layer network is characterized by the
weight matrixW ∈ RM×N of constrained rank R such that
W = UV with U ∈ RM×R and V ∈ RR×N . (2) An equivalent
network contains two layers, represented by thematrices,U
andV . The first layer uses the identity activation function I .
(3) Both networks produce the same output. a = f (WT x) =
f ((UV)T x) = f ((VTUT)x) = f (VT I (UT x))

Sindhwani et al. [28] uses structuredmatrix transformationswith

low-rank matrices to reduce the number of parameters for the fully-

connected layers of a neural network. The low-rank, structured

matrices require dense gradient updates, which is not ideally suited

for data parallelism [23]. In this work, we move away from the low-

rank assumption. Instead, we make use of sparsity to reduce the

amount of computation. We showed that due to random sparsity,

our approach is well-suited for Asynchronous Stochastic Gradient

Descent (ASGD), leading to near-linear scaling.

7 FUTURE WORK
One future direction is to optimize our approach for low-power,

mobile processors. There are many platforms including the Nvidia

Tegra, Qualcomm Snapdragon, and Movidius Myriad. The other

direction is to leverage the power of GPUs and distributed com-

puting. GPUs are commonly used to train deep networks because

of their high performance. The next logical step is to harness the

computational savings via randomized hashing on GPUs.

8 ACKNOWLEDGMENTS
The work was supported by NSF Awards IIS-1652131 and DMS-

1547433. We would like to thank reviewers of ICML 2016, NIPS 2016

and KDD 2017 for their encouraging remarks and suggestions.

REFERENCES
[1] Dimitris Achlioptas. 2003. Database-friendly Random Projections: Johnson-

Lindenstrauss with Binary Coins. J. Comput. Syst. Sci. 66, 4 (June 2003), 671–687.
https://doi.org/10.1016/S0022-0000(03)00025-4

[2] Jimmy Ba and Brendan Frey. 2013. Adaptive dropout for training deep neural

networks. In Advances in Neural Information Processing Systems 26. 3084–3092.
[3] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.

2015. Compressing Neural Networks with the Hashing Trick. In Proceedings of
the 32nd International Conference on Machine Learning. 2285–2294.

[4] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. 2016. Binarized neural networks: Training deep neural networks with

weights and activations constrained to +1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark

Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale

distributed deep networks. In Advances in Neural Information Processing Systems.
1223–1231.

[6] Jinyang Gao, Hosagrahar Visvesvaraya Jagadish,Wei Lu, and Beng Chin Ooi. 2014.

DSH: data sensitive hashing for high-dimensional KNN search. In Proceedings of
the 2014 ACM SIGMOD. ACM, 1127–1138.

[7] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in

high dimensions via hashing. VLDB 99, 6 (1999), 518–529.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[9] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N

Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech

recognition: The shared views of four research groups. Signal ProcessingMagazine,
IEEE 29, 6 (2012), 82–97.

[10] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.

Query-aware locality-sensitive hashing for approximate nearest neighbor search.

Proceedings of the VLDB Endowment 9, 1 (2015), 1–12.
[11] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In STOC. Dallas, TX, 604–613.
[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[13] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua

Bengio. 2007. An empirical evaluation of deep architectures on problems with

many factors of variation. In Proceedings of the 24th international conference on
Machine learning. ACM, 473–480.

[14] Yann LeCun, Fu Jie Huang, and Leon Bottou. 2004. Learning methods for generic

object recognition with invariance to pose and lighting. In Computer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, Vol. 2. IEEE, II–97.

[15] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge University Press.

[16] Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random

projections. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 287–296.

[17] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio.

2015. Neural Networks with Few Multiplications. arXiv preprint arXiv:1510.03009
(2015).

[18] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. 2007. Training Invariant Support

Vector Machines using Selective Sampling. In Large Scale Kernel Machines, Léon
Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston (Eds.). MIT Press,

Cambridge,MA., 301–320. http://leon.bottou.org/papers/loosli-canu-bottou-2006

[19] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-

probe LSH: efficient indexing for high-dimensional similarity search. In Pro-
ceedings of the 33rd international conference on Very large data bases. VLDB
Endowment, 950–961.

[20] Alireza Makhzani and Brendan Frey. 2013. k-Sparse Autoencoders. arXiv preprint
arXiv:1312.5663 (2013).

[21] Alireza Makhzani and Brendan J Frey. 2015. Winner-Take-All Autoencoders. In

Advances in Neural Information Processing Systems 28. 2791–2799.
[22] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2016. Communication-Efficient Learning of Deep Net-

works fromDecentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS). http://arxiv.org/abs/1602.05629

[23] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:

A lock-free approach to parallelizing stochastic gradient descent. In Advances in
Neural Information Processing Systems. 693–701.

[24] Anshumali Shrivastava. 2016. Simple and Efficient Weighted Minwise Hashing.

In Advances in Neural Information Processing Systems 29. 1498–1506.
[25] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear

time maximum inner product search (MIPS). In Advances in Neural Information
Processing Systems. 2321–2329.

[26] Anshumali Shrivastava and Ping Li. 2014. Improved Densification of One Permu-

tation Hashing. In UAI. Quebec, CA.
[27] Anshumali Shrivastava and Ping Li. 2015. Improved Asymmetric Locality Sensi-

tive Hashing (ALSH) for Maximum Inner Product Search (MIPS). In Conference
on Uncertainty in Artificial Intelligence (UAI).

[28] Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. 2015. Structured transforms

for small-footprint deep learning. In Advances in Neural Information Processing
Systems. 3070–3078.

[29] Ryan Spring and Anshumali Shrivastava. 2017. A New Unbiased and Efficient

Class of LSH-Based Samplers and Estimators for Partition Function Computation

in Log-Linear Models. arXiv preprint arXiv:1703.05160 (2017).
[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

https://doi.org/10.1016/S0022-0000(03)00025-4
http://leon.bottou.org/papers/loosli-canu-bottou-2006
http://arxiv.org/abs/1602.05629

	Abstract
	1 Introduction
	1.1 Our Contributions:

	2 Related Work
	3 Background
	3.1 Locality-Sensitive Hashing (LSH)

	4 Proposed Methodology
	4.1 Intuition
	4.2 Hashing-Based Back-Propagation

	5 Evaluations
	5.1 Datasets
	5.2 Sustainability
	5.3 Scalability

	6 Discussions
	6.1 Equivalence with Adaptive Dropouts
	6.2 Low-Rank vs Sparsity

	7 Future Work
	8 Acknowledgments
	References

