Scalable and Sustainable Deep Learning
via Randomized Hashing

Ryan Spring
Rice University
Department of Computer Science
Houston, Texas, USA 43017-6221
rdspringl@rice.edu

ABSTRACT

Current deep learning architectures are growing larger in order
to learn from complex datasets. These architectures require giant
matrix multiplication operations to train millions of parameters.
Conversely, there is another growing trend to bring deep learning
to low-power, embedded devices. The matrix operations, associated
with the training and testing of deep networks, are very expensive
from a computational and energy standpoint. We present a novel
hashing-based technique to drastically reduce the amount of com-
putation needed to train and test neural networks. Our approach
combines two recent ideas, Adaptive Dropout and Randomized
Hashing for Maximum Inner Product Search (MIPS), to select the
nodes with the highest activations efficiently. Our new algorithm
for deep learning reduces the overall computational cost of the for-
ward and backward propagation steps by operating on significantly
fewer nodes. As a consequence, our algorithm uses only 5% of the
total multiplications, while keeping within 1% of the accuracy of
the original model on average. A unique property of the proposed
hashing-based back-propagation is that the updates are always
sparse. Due to the sparse gradient updates, our algorithm is ideally
suited for asynchronous, parallel training, leading to near-linear
speedup, as the number of cores increases. We demonstrate the
scalability and sustainability (energy efficiency) of our proposed al-
gorithm via rigorous experimental evaluations on several datasets.

CCS CONCEPTS

« Computing methodologies — Neural networks; « Theory
of computation — Streaming, sublinear and near linear time
algorithms; Parallel algorithms;

KEYWORDS

Neural Networks; Deep Learning; Locality-Sensitive Hashing; Ran-
domized Algorithms; Parallel Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD’17, , August 13-17, 2017, Halifax, NS, Canada.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08...$15.00
https://doi.org/10.1145/3097983.3098035

Anshumali Shrivastava
Rice University
Department of Computer Science
Houston, Texas, USA 43017-6221
anshumali@rice.edu

1 INTRODUCTION

Deep learning is revolutionizing big-data applications, after being
responsible for groundbreaking improvements in image classifica-
tion [12] and speech recognition [9]. With the recent upsurge in
data, at a much faster rate than our computing capabilities, neu-
ral networks are growing larger to process information more ef-
fectively. In 2012, state-of-the-art convolutional neural networks
contained at most 10 layers. Afterward, each successive year has
brought deeper architectures with greater accuracy. Microsoft’s
deep residual network [8], which won the ILSVRC 2015 competition
with a 3.57% error rate, had 152 layers and 11.3 billion FLOPs. To
handle such large neural networks, researchers usually train them
on large computer clusters with high-performance graphics cards.

Due to the growing size and complexity of networks, efficient
algorithms for training massive deep networks in a distributed, par-
allel environment is currently the most sought-after problem in both
academia and the commercial industry. For example, Google [5]
used a 1-billion parameter neural network, which took three days
to train on a 1000-node cluster, totaling over 16,000 CPU cores. Each
instantiation of the network spanned 170 servers. In distributed
computing environments, the parameters of giant deep networks
are required to be split across multiple nodes. However, this setup
requires costly communication and synchronization between the
parameter server and processing nodes in order to transfer the
gradient and parameter updates. The sequential and dense nature
of gradient updates prohibits any efficient splitting (sharding) of
the neural network parameters across computer nodes. There is
no clear way to avoid the costly synchronization without resorting
to some ad-hoc breaking of the network. This ad-hoc breaking of
deep networks is not well-understood and is likely to hurt perfor-
mance. Synchronization is one of the major hurdles in scalability.
Asynchronous training is the ideal solution, but it is sensitive to
conflicting, overlapping parameter updates, which leads to poor
convergence.

While deep networks are growing larger and more complex,
there is also push for greater energy efficiency to satisfy the growing
popularity of machine learning applications on mobile phones and
low-power devices. For example, there is recent work by McMahan
et al. [22] aimed at leveraging the vast data of mobile devices. This
work has the users train neural networks on their local data, and
then periodically transmit their models to a central server. This
approach preserves the privacy of the user’s personal data, but still
allows the central server’s model to learn effectively. Their work is
dependent on training neural networks locally. Back-propagation
is the most popular algorithm for training deep networks. Each
iteration of the back-propagation algorithm is composed of giant

https://doi.org/10.1145/3097983.3098035

matrix multiplications. These matrices are very large, especially for
massive networks with millions of nodes in the hidden layer, which
are common in industrial practice. Large matrix multiplications
are parallelizable on GPUs, but not energy-efficient. Users require
their phones and tablets to have long battery life. Reducing the
computational costs of neural networks, which directly translates
into longer battery life, is a critical issue for the mobile industry.

The current challenges for deep learning illustrate a great de-
mand for algorithms that reduce the amount of computation and
energy usage. To reduce the bottleneck matrix multiplications, there
has been a flurry of works around reducing the amount of computa-
tions associated with them. Most of them revolve around exploiting
low-rank matrices or low precision updates (See Section 6.2 for
details). However, updates with these techniques are hard to paral-
lelize making them unsuitable for distributed and large scale appli-
cations. On the contrary, our proposal capitalizes on the sparsity of
the activations to reduce the computation complexity. To the best
of our knowledge, this is the first proposal that exploits sparsity to
reduce the amount of computation associated with deep networks.
We further show that our approach admits asynchronous parallel
updates leading to perfect scaling with increasing parallelism.

Recent machine learning research has focused on techniques for
dealing with the famous problem of over-fitting with deep networks.
A notable line of work [2, 20, 21] improved the accuracy of neural
networks by only updating the neurons with the highest activations.
Adaptive dropout [2] sampled neurons in proportion to an affine
transformation of the neuron’s activation. The Winner-Take-All
(WTA) approach [20, 21] kept only the top-k% neurons by using a
hard threshold. It was found that such a selective choice of nodes
and sparse updates provide a natural regularization [30]. However,
these approaches rely on inefficient, brute-force techniques to find
the best neurons. Thus, these techniques are equally as expensive as
the standard back-propagation method leading to no computational
savings.

Our idea is to index the neurons (the weights of each neuron as a
vector) in a hash table using locality sensitive hashing. These hash
tables allow us to select (or sample) the neurons with the highest
activations in sub-linear time. Moreover, since our approach results
in a sparse active set of neurons randomly, the gradient updates are
unlikely to overwrite each other because of their sparsity. Sparse
updates are ideal for asynchronous and parallel gradient updates.
It is known that asynchronous stochastic gradient descent (ASGD)
[23] will converge if the number of simultaneous parameter updates
is small. We heavily leverage this sparsity which unique to our
proposal. On several deep learning benchmarks, we show that
our approach outperforms standard algorithms including vanilla
dropout [30] at high sparsity levels and matches the performance
of adaptive dropout [2] and winner-take-all [20, 21] while needing
less computation (only 5%).

1.1 Our Contributions:

(1) We present a scalable and sustainable algorithm for train-
ing and testing fully-connected neural networks. Our idea
capitalizes on the recent, successful technique of adaptive
dropouts and locality sensitive hashing (LSH) for maximum

inner product search (MIPS) [25]. We show significant re-
ductions in the computational requirement for training deep
networks without any significant loss in accuracy (within
1% of the accuracy of the original model on average). In par-
ticular, our method achieves the performance of other state-
of-the-art regularization methods such as Dropout, Adaptive
Dropout, and Winner-Take-All when using only 5% of the
neurons in a standard neural network.

(2) Our proposal reduces computations associated with both
the training and testing (inference) of deep networks by
reducing the multiplications needed for the feed-forward
and back-propagation operations.

(3) The key idea in our algorithm is to associate LSH hash
tables [7, 11] with every layer. These hash tables support
constant-time O(1) insertion and deletion operations.

(4) Our scheme naturally leads to sparse gradient updates. Sparse
updates are ideally suited for massively parallelizable asyn-
chronous training [23]. We demonstrate that this sparsity
opens room for truly asynchronous training without any
compromise with accuracy. As a result, we obtain near-linear
speedup when increasing number of cores.

(5) The code for training and running our randomized-hashing
approach is available online !

2 RELATED WORK

There have been several recent advances aimed at improving the
performance of neural networks. Courbariaux et al. [4], Lin et al.
[17] reduced the number of floating point multiplications by map-
ping the network’s weights stochastically to {-1, 0, 1} during forward
propagation. Reducing the precision of the weights and activations
is an orthogonal approach. In addition, binary quantization only
gives a constant factor of improvement, while our approach is sub-
linear in the size of the network. Therefore, the improvements will
be significantly more for larger networks.

Sindhwani et al. [28] uses structured matrix transformations with
low-rank matrices to reduce the number of parameters for the fully-
connected layers of a neural network. This low-rank constraint
leads to a smaller memory footprint. However, such an approxima-
tion is not well suited for asynchronous, parallel training, limiting
its scalability. We instead use random but sparse activations that
are easily parallelized by leveraging advances in approximate query
processing. (See Section 6.2 for details)

We briefly review Dropout and its variants, which are popular
sparsity promoting techniques for neural networks. Although such
randomized, sparse activations improve the generalization of neural
networks, to the best of our knowledge, this sparsity has not been
adequately exploited to make deep networks computationally cheap
and parallelizable. We provide first such evidence.

Dropout [30] is primarily a regularization technique that ad-
dresses the issue of over-fitting by randomly dropping half of the
nodes in a hidden layer while training the network. The nodes are
independently sampled for every mini-batch of training data [30].
We reinterpret Dropout as a technique for reducing the number
of multiplications during forward and back-propagation phases,
by ignoring nodes randomly in the network. It is known that the

! https://github.com/rdspring1/LSH_DeepLearning

https://github.com/rdspring1/LSH_DeepLearning

network’s performance becomes worse when too many nodes are
dropped from the network. Usually, only 50% of the nodes in the
network are dropped when training the network. At test time, the
network takes the average of the thinned networks to form a predic-
tion from the input data, which involves computing the activations
for all of the nodes in the network.

Adaptive dropout [2] is an enhancement to the dropout tech-
nique that adaptively chooses the nodes based on their activations.
The methodology samples a small subset of nodes from the net-
work, where the sampling is in proportion to the node activations.
Adaptive dropouts demonstrate better performance than vanilla
dropout [30]. A notable feature of Adaptive Dropout is that you can
drop significantly more nodes than the standard Dropout technique
while still retaining superior performance.

Winner-Take-All [20, 21] is an extreme form of Adaptive Dropouts
that uses mini-batch statistics to enforce a sparsity constraint. With
this technique, only the k% largest, non-zero activations are used
during the forward and back-propagation phases of training. This
approach requires computing the forward propagation step before
selecting the k% nodes with a hard threshold. Unfortunately, all
of these techniques require full computation of the activations to
sample nodes selectively. Therefore, they are only intended for
better generalization and not for reducing computational cost. Our
approach uses the insight that selecting a very sparse set of hidden
nodes with the highest activations can be reformulated as dynamic
approximate query processing problem, which can solve efficiently
using locality sensitive hashing. The differentiating factor between
our approach and the two other algorithms, Adaptive Dropout and
Winner-Take-All (WTA), is that we use sub-linear time, randomized
hashing to determine the active set of nodes instead computing the
activation for each node individually.

There is also another orthogonal line of work which uses univer-
sal hashing to reduce the network’s memory footprint [3]. Unlike
our objective, theirs was to reduce the number of parameters in
a neural network by using a hash function to tie virtual weights
together to the same real weight. The HashedNet architecture is
more computational expensive than the standard neural network
because it incurs an additional overhead when either rebuilding
the weight matrix or looking up the value of corresponding weight.
Hashed nets are complementary to our approach because we focus
on reducing the computational cost of neural networks rather than
its memory size.

3 BACKGROUND

3.1 Locality-Sensitive Hashing (LSH)

Locality-Sensitive Hashing (LSH) [6, 7, 10] is a popular, sub-linear
time algorithm for approximate nearest-neighbor search. The main
idea is to place similar items into the same bucket of a hash ta-
ble with high probability. An LSH hash function maps an input
data vector to an integer key - h(x) : RP — [0,1,2,...,N]. A
collision occurs when the hash values for two elements are equal
- h(x) = h(y). The collision probability for an LSH hash function
is proportional to the similarity metric between the two elements
- Pr[h(x) = h(y)] o sim(x,y). Essentially, similar items are more
likely to collide with each other under the same hash function.

SRP € RPxkL

X € RP

0
E L=3 Tables || [1
2
3

Figure 1: Locality Sensitive Hashing: (1) Compute the pro-
jection using a signed, random matrix RP*kL and the item
x € RP. (2) Generate a bit from the sign of each entry in the
projection R¥L (3) From the kL bits, we create L integer fin-
gerprints with k bits per fingerprint. (4) Add the item x into
each hash table using the corresponding integer key

Sub-linear Time Search using (K, L) LSH Algorithm. To be
able to answer approximate nearest-neighbor queries in sub-linear
time, the idea is to create hash tables that have constant-time insert
and search operations (See Figure 1). Given the collection C, which
we are interested in querying for the set of nearest-neighbors, the
hash tables are generated using some locality sensitive hash (LSH)
family. We assume that we have access to the appropriate locality
sensitive hash (LSH) family ¥ for the given similarity metric.

The classic LSH algorithm uses two parameters - (K, L) to im-
prove the precision and recall of nearest-neighbors for a collection
C. Each hash table has a meta-hash function H that is formed by
concatenating K random hash functions from #. Now, under the
meta-hash function H, all of the K independent hash function val-
ues must match in order for two items to have the same fingerprint.
[H(x) = H(y)] < [hi(x) = hi(y)] forall [i = 0,1,2,...,K]. L
hash tables are constructed from the collection C. Given a query,
we collect one buckets from each hash table and return the union of
L buckets. Intuitively, the meta-hash function reduces the amount
of false positives because valid nearest-neighbor items are more
likely to match all K hash values for a given query. The union of the
L buckets decreases the number of false negatives by increasing the
number of potential buckets that could hold valid nearest-neighbor
items. The probability that at least one of the L meta-hash finger-
prints match and the two items form a candidate pair [15] is

PrlH(x) = Hy)l = 1 - (1 - pF)L

The overall algorithm works in two phases:

1 - Build
5 — Update

Hash Table 1 Hash Table 2

3 - Query 1)1 1]3
(2124 21,4

313 302

/]

Hidden 2

Output
Hidden 1

Figure 2: A visual representation of a neural network us-
ing randomized hashing: (1) Build the hash tables by hash-
ing the weights of each hidden layer (Pre-processing oper-
ation) (2) Hash the layer’s input (3) Query the layer’s hash
table(s) for the active set AS (4) Only perform forward and
back-propagation on the neurons in the active set. The solid-
colored neurons in the hidden layer are the active neurons.
(5) Update the AS weights via gradient descent and the hash
tables by rehashing the updated AS weights.

(1) Pre-processing Phase: We construct L hash tables from
the data by storing all elements x € C. (See Figure 2 for an
illustration) We only store pointers to the vector in the hash
tables because storing whole data vectors is very memory
inefficient.

(2) Query Phase: Given a query g, we will search for its nearest-
neighbors. We report the union from all of the buckets col-
lected from the L hash tables. Note, we do not scan all of the
elements in C, we only probe L different buckets, one bucket
per hash table. Note: For nearest-neighbor search, we need
to filter these candidates further. However, our algorithm
does not require such filtering, because we want to perform
adaptive sampling and not exact nearest-neighbor search.
(explained in section 6.1)

Multi-Probe LSH. One common complaint with the classical
LSH algorithm is that it requires a significant number of hash tables.
Large L increases the processing time and memory cost. A simple
solution is to probe multiple "close-by" buckets in each hash table
rather than probing only one bucket [19]. Thus, for a given query
¢, in addition to probing bucket H;(q) in hash table j € L, we also
generate several new addresses to probe by slightly perturbing
values of Hj(q). This simple idea significantly reduces the number
of tables needed with LSH, allowing us to work with only a few
hash tables. (See Lv et al. [19] for more details)

4 PROPOSED METHODOLOGY

4.1 Intuition

The Winner-Take-All [20, 21] technique shows that we should only
consider a few nodes with large activations (top k%) and to ignore
the rest while computing the feed-forward pass. Furthermore, the
back-propagation updates should only be performed on those top
k% nodes. Let n denote the total number of nodes in the neural
network. Let AS (Active Set) define the subset of top k% nodes with
significant activations where |AS| < n. For each gradient update,
Winner-Take-All needs to first perform O(n log n) work to sort the
activations to find the AS, and then to update the O(AS) weights.
O(nlogn) seems quite wasteful. In particular, finding the active
set AS is a search problem that can be solved well using smart
data structures. Furthermore, if the data structure is dynamic and
efficient, then the gradient updates will also be efficient.

For a node i with weight w; and input x, its activation is a
monotonic function of the inner product wlT - x. Thus, selecting
the active set AS is equivalent to searching through a collection of
weight vectors for the ones that have large inner products with the
input x. Equivalently, from a query processing perspective, if we
treat the input x as a query, then the search problem of selecting top
k% nodes can be solved in sub-linear time using the recent advances
in maximum inner product search (MIPS) [25]. Our proposal is to
create hash tables with indexes generated by asymmetric locality
sensitive hash functions tailored for inner products. With such hash
tables, we can very efficiently approximate the active set AS for a
given query input x.

One last implementation challenge is how to update the nodes
(weights associated with them) in the AS, during the gradient up-
date. If we can perform these updates in O(AS) instead of O(n), then
we save a significant amount of computation. Therefore, we need a
data structure where updates are also efficient. We describe our the
details of our system in Section 4.2.

4.2 Hashing-Based Back-Propagation

We use randomized hash functions to build hash tables from the
nodes in each hidden layer. We sample nodes from the hash table
with probability proportional to the node’s activation in sub-linear
time. We then perform forward and back propagation only on the
active nodes retrieved from the hash tables. We later update the
hash tables to reorganize only the modified weights.

Figure 2 illustrates an example neural network with two hidden
layers, five input nodes, and two output nodes. Hash tables are
built for each hidden layer, where the weighted connections for
each node are hashed to place the node in its corresponding bucket.
Creating hash tables to store all the initial parameters is a one-time
operation which requires cost linear in the number of parameters.

During a forward propagation pass, the input to the hidden
layer is hashed with the same hash function used to build the
hidden layer’s hash table. The input’s fingerprint is used to collect
the active set AS nodes from the hash table. The hash table only
contains pointers to the nodes in the hidden layer. Then, forward
propagation is performed only on the nodes in the active set AS.

Note: As argued, unlike exact nearest-neighbor search, we report
everything retrieved from buckets as the active set AS, without
any filtration of the candidates. Our randomized hashing approach

Algorithm 1 Deep Learning with Randomized Hashing

// HF - Layer | Hash Function
// HT| - Layer | Hash Tables
/] ASy - Layer [Active Set
/] 61145 € W/ZLS’ bqu - Layer [Active Set parameters
Randomly initialize parameters wl, b! for each layer [
HF; = constructHashFunction(k, L)
HT; = constructHashTable(W!, HF;)
while not stopping criteria do
for each training epoch do
// Forward Propagation
forlayer/=1...N do
fingerprint; = HF;(a;)
AS; = collectActiveSet(HT;, fingerprint;)
for each node i in AS; do
o7~ Fvlal)
end for
end for
// Backpropagation
forlayer/=1...N do

AJ(Q}AS) = computeGradient(Oll‘\S, AS))
91145 = updateParameters(@iS, AJ(045))
end for
for each Layer [-> updateHashTables(HF;, HT}, ol
end for
end while

adaptively samples [29] from all of the candidates. (See Section 6.1
for the sampling view of our algorithms)

The rest of the hidden layer’s nodes, which are not part of the
active set, are ignored and automatically switched off. On the back-
propagation pass, the active set is reused to determine the gradient
and to update the parameters. We rehash the nodes in each hidden
layer to account for the changes in the network during training.

In detail, the hash function for each hidden layer is composed of
K randomized hash functions. We use the sign of an asymmetrically
transformed random projection to generate the K bits for each data
vector. (See Shrivastava and Li [27] for details) The K bits are stored
together efficiently as an integer, forming a fingerprint for the data
vector. We create a hash table of 2K buckets, but we only keep the
nonempty buckets to minimize the memory footprint (analogous
to hash-maps in Java). Each bucket stores pointers to the nodes
whose fingerprints match the bucket’s id instead of the node itself.
In figure 2, we showed only one hash table, which is likely to miss
valuable nodes in practice. In our implementation, we generate
L hash tables for each hidden layer, and each hash table has an
independent set of K random projections. Our final active set from
these L hash tables is the union of the buckets selected from each
hash table. For each layer, we have L hash tables. Effectively, we
have two tunable parameters, K bits and L tables to control the size
and the quality of the active sets. The K bits increase the precision
of the fingerprint, meaning the nodes in a bucket are more likely
to generate higher activation values for a given input. The L tables
increase the probability of finding useful nodes that are missed
because of the randomness in the hash functions.

Efficient Query and Updates: Our algorithm critically depends
on the efficiency of the query and update procedure. The hash table
is one of the most efficient data structures, so this is not a difficult
challenge. We only store references to the weight vectors, which
makes the hash table a very light entity. Furthermore, we reduce
the number of hash tables L by using Multi-Probe LSH [19]. A large
number of tables L increases the hashing time and memory cost. A
simple solution is to probe multiple "nearby" buckets in every hash
table rather than probing only a single bucket. Multi-Probe LSH
for a binary hash function is quite straightforward. We just have to
randomly flip a few bits of the meta-hash fingerprint to generate
more addresses.

The gradient update to a weight vector associated with a node
may change its location in the hash table. Updating the node’s loca-
tion only requires one insertion and one deletion in the respective
buckets. There are plenty of data structures available for represent-
ing the buckets that have efficient insert and delete operations. In
theory, we can use a red-black-tree to ensure both insertion and
deletion cost is logarithmic in the size of the bucket. However, in
our implementation, the buckets are represented by simple arrays
because they are easy to parallelize, and the buckets are relatively
sparse. Arrays have constant-time O(1) insertion and linear-time
O(b) deletion, where b is the size of buckets.

Overall Cost: For each layer, during every Stochastic Gradient
Descent (SGD) update, we compute K X L hashes of the input data,
probe several buckets per hash table, and then take their union.
In our experiments, we use K = 6 and L = 5 — only 30 hash
computations per data point. There are many other techniques to
further reduce this hashing cost [1, 16, 24, 26]. The process gives us
the active set AS of nodes, which is significantly smaller than the
total number of nodes n. During SGD, we update all of the nodes in
the AS and then rebuild the hash tables. Overall, the cost is on the
order of the number of nodes in the active set AS. For 1000 nodes
per layer and an AS containing only 5% of the layer’s nodes, we
only have to update around 50 nodes. The primary bottleneck is
calculating the activation for each node in the AS. The performance
benefits will be even more significant for larger neural networks.

Bonus: Sparse Updates can be Parallelized: As mentioned,
we only need to update the set of weights associated with nodes
in the active set AS. If each AS is very sparse, then it is unlikely
that a group of active sets will significantly overlap. Small overlaps
imply fewer conflicts while updating the parameters. Fewer con-
flicts while updating is an ideal ground where SGD updates can
be parallelized without any overhead. In fact, it was shown both
theoretically and experimentally that random, sparse SGD updates
can be parallelized without compromising with the convergence
[23]. Vanilla SGD is a sequential operation, and parallel updates
lead to poor convergence, due to significant overwrites among
the gradient updates. Our experimental results, in Section 5.3, sup-
port this known phenomenon. Exploiting this unique property, we
show near-linear scaling without hurting convergence using our
algorithm, while increasing the number of concurrently running
models.

5 EVALUATIONS

We design experiments to answer the following six important ques-
tions:

(1) How much can we reduce computation without affecting
the neural network’s accuracy?

(2) How effective is adaptive sampling compared to a random
sampling of nodes?

(3) How does the accuracy of our approximate hashing-based
approach compare with the expensive, exact approaches of
adaptive dropouts [2] and Winner-Takes-all [20, 21]?

(4) How is the network’s convergence effected by increasing
number of cores when using asynchronous SGD?

(5) Is the sparse gradient update necessary? Is there any de-
terioration in performance, if we perform standard, dense
updates in parallel?

(6) How much does the walk-clock time decrease, as a function
of increasing number of cores?

For evaluation, we implemented the following five approaches
to compare and contrast against our approach.

e Standard (NN) : A full-connected neural network

e Dropout (VD) [30]: A neural network that disables the nodes
of a hidden layer using a fixed probability threshold

o Adaptive Dropout (AD) [2]: A neural network that disables
the nodes of a hidden layer using a probability threshold
based on the inner product of the node’s weights and the
input.

e Winner Take All (WTA) [20, 21]: A neural network that sorts
the activations of a hidden layer and selects the k% largest
activations

e Randomized Hashing (LSH): A neural network that selects
nodes using randomized hashing. A hard threshold limits
the active node set to k% sparsity

Dataset Train Size | Test Size
MNIST8M | 8,100,000 10,000

NORB 24,300 24,300

Convex 8,000 50,000
Rectangles 12,000 50,000

Figure 3: Dataset - Training + Test Size

5.1 Datasets

To test our neural network implementation, we used four publicly
available datasets - MNIST8M [18], NORB [14], CONVEX, and
RECTANGLES [13]. The statistics of these datasets are summarized
in Table 3. The MNIST8M, CONVEX, and RECTANGLES datasets

contain 28 X 28 images, forming 784-dimensional feature vectors.

The MNIST8M task is to classify each handwritten digit in the
image correctly. It is derived by applying random deformations and
translations to the MNIST dataset. The CONVEX dataset objective
is to identify if a single convex region exists in the image. The goal
for the RECTANGLES dataset is to discriminate between tall and

wide rectangles overlaid on a black and white background image.

The NORB dataset [14] contains images of 50 toys, belonging to 5
categories under various lighting conditions and camera angles.

5.2 Sustainability

5.2.1 Experimental Setting. All of the experiments for our ap-
proach and the other techniques were run on a 6-core Intel i7-3930K
machine with 16 GB of memory. Our approach uses stochastic gra-
dient descent with Momentum and Adagrad [5]. Since our approach
uniquely selects an active set of nodes for each hidden layer, we fo-
cused on a CPU-based approach to simplify combining randomized
hashing with neural networks. The ReLU activation function was
used for all methods. The learning rate for each approach ranged
between 1072 and 107, The parameters for the randomized hash
tables were K = 6 bits and L = 5 tables with multi-probe LSH [19].
For the experiments, we use a fixed threshold to cap the number of
active nodes selected from the hash tables to guarantee the amount
of computation is within a certain level.

5.2.2 Effect of computation levels. Figures 4, 5 show the accu-
racy of each method on neural networks with 2 and 3 hidden layers
with the percentage of active nodes ranging from [0.05, 0.10, 0.25,
0.5, 0.75, 0.9]. The standard neural network is our baseline in these
experiments and is marked with a dashed black line. Each hidden
layer contains 1000 nodes. The x-axis represents the average per-
centage of active nodes per epoch selected by each technique. Our
approach only performs the forward and back propagation steps
on the nodes selected in each hidden layer. The other baseline tech-
niques except for Dropout (VD) perform the forward propagation
step for all of the nodes first, before setting node activations to
zero based on the corresponding algorithm. Therefore, Dropout
(VD) and our proposal (LSH) require fewer multiplications than the
standard neural network training procedure.

Figures 4 and 5 summarizes the accuracy of different approaches
at various computations levels.

e Our method (LSH) gives the best overall accuracy with the
fewest number of active nodes. The fact that our approxi-
mate method is even slightly better than WTA and adaptive
dropouts is not surprising, as it is long known that a small
amount of random noise leads to better generalization. (See
Srivastava et al. [30] for examples)

e As the number of active nodes decreases from 90% to 5%,
LSH experiences the smallest drop in performance and less
performance volatility.

e VD experiences the greatest drop in performance when re-
ducing the number of active nodes from 50% to 5%.

e WTA performed better than VD when the percentage of
active nodes is less than 50%

e As the number of active nodes approaches 100%, the perfor-
mance stabilizes for each method.

Lowering the computational cost of running neural networks
and running fewer operations reduces the energy consumption and
heat produced by the processor. However, large neural networks
provide better accuracy and arbitrarily reducing the number of
active nodes hurts performance. Our experiments show that our
method (LSH) provides the best of both worlds - high performance
and low processor computation. This approach is ideal for mobile
phones because reducing the processor’s load directly translates
into longer battery life.

1.00 MNIST8M 1.00 NORB 0.80 Convex 0.80 Rectangles
S b = N S -
0.95 // 0.75
0.90 0.70
> > >
3 3 3
‘5 0.85 § é 0.65
< < <
080 --- Standard NN 0.60
0.75 = Randomized Hashing 0.55
= Vanilla Dropout
T
07602 0a o8 08 To 780 o0z 02 o8 o8 1o °Bo o0z 03 o5 o8 1o %80 02 o3 08 o8 10
% Active Nodes % Active Nodes % Active Nodes % Active Nodes
1.00 MNIST8M 1.00 NORB 0.80 Convex 0.80 Rectangles
R b o S pa— | -
0.95 0.95 0.75
0.90 0.90 0.70
> > >
3 3 9
So.85 Soss o.65
3 3 3
< < <
0.80 0.80 0.60
0.75 0.75 0.55
0'78.0 0.2 0.4 0.6 0.8 1.0 0'78.0 0.2 0.4 0.6 0.8 1.0 0'58.0 0.2 0.4 0.6 0.8 1.0 0'58.0 0. 0.4 0.6 0.8 1.0
% Active Nodes % Active Nodes % Active Nodes % Active Nodes

Figure 4: Classification accuracy under different levels of active nodes with networks on the MNIST (1st), NORB (2nd), Convex
(3rd) and Rectangles (4th) datasets. The standard neural network (dashed black line) is our baseline accuracy. We can clearly
see that adaptive sampling with hashing (LSH) is significantly more effective than random sampling (VD). Top Panels: 2 hidden
Layers. Bottom Panels: 3 hidden Layers

1.00 MNIST8M 1.00 0.80 Rectangles
0.95 0.95 0.75t 7
J
0.90 0.90 0.70
5085 5085 K 5065 o 50.65
< === Standard NN g g " g
080 = Randomized Hashing 080 060 0.60
0.75 === Winner-Take-All 0.75 0.55 0.55
Adaptive Dropout
T
0'78.0 0.2 0.4 0.6 0.8 1.0 0'78.0 0.2 0.4 0.6 0.8 1.0 0'58.0 0.2 0.4 0.6 0.8 1.0 0'58.0 0.2 0.4 0.6 0.8 1.0
% Active Nodes % Active Nodes % Active Nodes % Active Nodes
1.00 MNIST8M 1.00 NORB 0.80 Convex 0.80 Rectangles
S . o ...
0951 =**" 0.95 wia v
0.90 0.90 0.70
g g g g
5085 5085 5065 5065
< < < <
0.80 0.80 0.60 0.60
0.75 0.75 0.55 0.55
0785 0.2 0.8 o %783 0.2 0.8 o %8s 0.2 0.8 o %380 0.2 0.8 1.0

04 06 04 06 0.4 0.6 04 06
% Active Nodes % Active Nodes % Active Nodes % Active Nodes

Figure 5: Classification accuracy under different levels of active nodes with networks on the MNIST (1st), NORB (2nd), Convex
(3rd) and Rectangles (4th) datasets. The standard neural network (dashed black line) is our baseline accuracy. WTA and AD
(dashed red and yellow lines) perform the same amount of computation as the standard neural network. Those two techniques
select nodes with high activation values to achieve better accuracy, but they require computing the activation for every node
in the hidden layer. We compare our LSH approach to determine whether our randomized algorithm achieves comparable
performance, while reducing the total amount of computation. We do not have data for adaptive dropout at the 5% and 10%
computation levels because those models diverged when the number of active nodes dropped below 25%. Top Panels: 2 hidden
Layers. Bottom Panels: 3 hidden Layers

MNIST8M

NORB

Convex

Rectangles

1.00 1.00 0.80 0.80
0.95
0.98 bon 075 075 ﬁa‘:—:—'—--—-—m
0.70 0.70
0.85
g g g g
=1 5 0.80 5 0.65 5 0.65
8 0.04 g g g
< Y- < 0.75 < <
— L1SH1 0.60 0.60
0.70
0.92 = |SH-8 0.55 0.55
— LSH-56 065
0.90 0.60 0.50 0.50

10

20

30
Epochs

40 50

5 10 15

Epochs

20 25 30

10 20

w
o

40 50

Epochs

10 20 30

Epochs

40 50

Figure 6: The convergence of our randomized hashing approach (LSH-5%) over several training epochs using asynchronous
stochastic gradient (ASGD) with 1, 8, 56 cores. We used a (3 hidden layer) network on the MNIST (1st), NORB (2nd), Convex
(3rd) and Rectangles (4th) datasets. Only 5% of the standard network’s computation was performed in this experiment. ASGD
has no effect on convergence with the sparse, random gradient updates.

1.00 MNIST8M NORB 0.80 Convex 0.80 Rectangles
0.75 0.75
0.95 = 0.85
0.70 0.70
a0.90 ao.so 5065 50.65
So.85 o5 £0.60 0.60
3 3 3 g
2 < <055 <055
0.80 0.70 : -
0.50 0.50
0.75 — STD-56 465 045 045
= |SH-56 ! .
0.70 0.60 0.40 0.40

5 10

15
Epochs

20

5 10 15

Epochs

20 25 30

5 10

—
w

20 25 30

Epochs

5 10 15

Epochs

20 25 30

Figure 7: Performance comparison between our randomized hashing approach and a standard network using asynchronous
stochastic gradient descent (ASGD) on an Intel Xeon ES-2697 machine with 56-cores. We used (3 hidden layer) networks on
MNIST (1st), NORB (2nd), Convex (3rd) and Rectangles (4th). All networks were initialized with the same settings for this
experiment. We see that parallelizing the non-sparse gradient updates leads to poor convergence.

10° MNIST8M 104 NORB 104 Convex 10* Rectangles
7 G G 7
4 4 H 0
& &3 S, s S 3
<10* <10 210 <10
[[[[
£ £ £ £
[= = [

3 2 2 2
10313 2% 2 P I I L N N R LI L Lo PR L 2°

#Processors

#Processors

#Processors

#Processors

Figure 8: The wall-clock per epoch for our approach (LSH-5%) gained by using asynchronous stochastic gradient descent. We
used a (3 hidden layer) network on the MNIST (1st), NORB (2nd), Convex (3rd) and Rectangles (4th). We see smaller perfor-
mance gains with the Convex and Rectangles datasets because there are not enough training examples to use of all of the cores
effectively. Only 5% of the standard network’s computation was performed in this experiment.

5.3 Scalability

5.3.1 Experimental Setting. We now show experiments to demon-
strate the scalability of our approach to large-scale, distributed com-
puting environments. Specifically, we are testing if our approach
maintains accuracy and improves training time, as we increase the
number of cores. We use asynchronous stochastic gradient descent
with momentum and adagrad [5, 23]. Our implementation utilizes
data parallelism by running the same model on multiple training
examples concurrently. The gradient is applied without synchro-
nization to maximize performance. We run all of the experiments
on an Intel Xeon ES-2697 machine with 56 cores and 256 GB of
memory. The ReLU activation was used for all models, and the
learning rate ranged between 1072 and 1073,

5.3.2 Results with different number of cores. Figure 6 shows how
our method performs with asynchronous stochastic gradient de-
scent (ASGD) using only 5% of the neurons of a full-sized neural
network. The neural network has three hidden layers, and each hid-
den layer contains 1000 neurons. The x-axis represents the number
of epochs completed, and the y-axis shows the test accuracy for the
given epoch. We compare how our model converges with multiple
cores working concurrently. Since our ASGD implementation does
not use locks, it depends on the sparsity of the gradient to ensure
the model converges and performs well [23]. From our experiments,
we see that our method converges at a similar rate and obtains the
same accuracy regardless of the number of cores running ASGD.

Figure 8 illustrates how our method scales with multiple cores.
The inherent sparsity of our randomized hashing approach reduces
the number of simultaneous updates and allows for more asyn-
chronous models without any performance penalty. We show the
corresponding drop in wall-clock computation time per epoch while
adding more cores. We achieve roughly a 31x speed up while run-
ning ASGD with 56 cores.

5.3.3 ASGD Performance Comparison with Standard Neural Net-
work. Figure 7 compares the performance of our LSH approach
against a standard neural network (STD) when running ASGD with
56-cores. We clearly out-perform the standard network for all of our
experimental datasets. However, since there is a large number of
models running concurrently, their gradients are constantly being
overridden, preventing ASGD from converging to an optimal local
minimum. Our approach produces a spare gradient that reduces the
number of conflicts between the different models, while keeping
enough valuable gradients for ASGD to progress towards the local
minimum efficiently.

From Figures 6, 7 and 8, we conclude the following:

(1) The gradient updates are quite sparse with 5% LSH and
running them in parallel does not affect the convergence
rate of our hashing-based approach. Even when running 56
cores in parallel, the convergence is indistinguishable from
the sequential update (1 core) on all the four datasets.

(2) If we instead run vanilla SGD in parallel, then the conver-
gence is affected. The convergence is in general slower com-
pared the sparse 5% LSH. This slow convergence is due
to dense updates which leads to overwrites. Parallelizing
dense updates affects the four datasets differently. For con-
vex dataset, the convergence is very poor.

(3) As expected, we obtain near-perfect decrease in the wall
clock times with increasing the number of cores with LSH-
5%. Note, if there are too many overwrites, then atomic over-
writes are necessary, which will create additional overhead
and hurt the parallelism. Thus, the near-perfect scalability
also indicates fewer gradient overwrites.

(4) On the largest dataset - MNIST8M, the running time per
epoch for the 1-core implementation is 50,254 seconds. The
56-core implementation runs in 1,637 seconds. Since the
convergence is not affected, there is a 31x speedup in the
training process while using 56 cores.

(5) We see that the performance gains from data parallelism be-
come flat with the Convex and Rectangle datasets, especially
while using a large number of cores. This poor scaling oc-
curs because the two datasets have fewer training examples
than MNIST8M or NORB, so there is less parallel work for a
large number of cores. We do not see such behaviors with
MNIST8M which has around 8 million training examples.

6 DISCUSSIONS

Machine learning with a huge parameter space is becoming a com-
mon phenomenon. Stochastic Gradient Descent (SGD) remains
the most popular optimization algorithm due to its effectiveness
and simplicity. Each SGD update is expected to alter only a small
subset of the parameters significantly. Identifying that subset of
parameters is a search problem. We can exploit the rich literature in

approximate query processing to find this active set of parameters
efficiently. Of course, the approximate active set contains a small
amount of random noise, which is often good for generalization.
Sparsity and randomness enhance data parallelism because the
gradient updates are unlikely to overwrite each other. In conclu-
sion, we are reformulating the machine learning problem into an
approximate query processing problem, and then leveraging the
decades of research from the systems and database communities.
We have demonstrated one concrete example, by showing how
neural networks can be scaled-up using randomized hashing. We
believe that the combination of sparsity with approximate query
processing is the future of large-scale machine learning.

6.1 Equivalence with Adaptive Dropouts

From a statistical perspective, Asymmetric Locality-Sensitive Hash-
ing (ALSH) [25] for finding nodes with large inner products is
equivalent to Adaptive Dropout [2] with a non-trivial sampling
distribution.

The Adaptive Dropout technique uses the Bernoulli distribution
to sample nodes with large activation. In theory, any distribution
assigning probabilities in proportion to the node’s activation is
sufficient. We argue that the Bernoulli distribution is sub-optimal.
There is another non-intuitive, but a very efficient distribution. This
distribution comes from the theory of Locality-Sensitive Hashing
(LSH) [11], which is primarily considered a black-box technique for
fast sub-linear search. Our core idea comes from the observation
that, for a given search query ¢, the LSH algorithm inherently sam-
ples, in sub-linear time, points from a distribution with probability
proportional to 1 — (1 — pK)L [29]. Here, the collision probability p
is a monotonic function of the similarity between the query and
the retrieved point.

THEOREM 6.1. Hashing-Based Efficient Samplingt - For a
given input x to any layer of the neural network, any (K, L) pa-
rameterized LSH algorithm selects a node i, associated with weight
vector w;, with probability proportional to 1 — (1 — pX)L. Here, the
collision probability of the associated locality-sensitive hash function
isp = Pr[h(x) = h(w;)]. Thus, the sampling probability 1— (1—p*)L
is monotonic with respect to p.

6.2 Low-Rank vs Sparsity

The low-rank (or structured) assumption is very convenient for re-
ducing the complexity of general matrix operations. However, low-
rank, dense updates do not promote sparsity and are not friendly
for distributed computing. The same principle holds with deep
networks. We illustrate it with a simple example.

Consider a layer of the first network (left) shown in Figure 9.
The insight is that if the weight matrix W € R™*" for a hidden
layer has low-rank structure where rank r < min(m, n), then it
has a representation W = UV where U € R™" and V € R"™*".
This low-rank structure improves the storage requirements and
matrix-multiplication time from O(mn) to O(mr + rn). As shown
in Figure 9, there is an equivalent representation of the same net-
work using an intermediate hidden layer that contains r nodes
and uses the identity activation function. The weight matrices for
the hidden layers in the second network (right) map to the matrix
decomposition, U and V.

(2X3X4X
ALAI N T/
N\
\» \QP \') 1’
\DBAK
XA
A\ Q
AAA
1234
STATAT Y
Figure 9: (1) The single-layer network is characterized by the
weight matrix W € RMXN of constrained rank R such that
W = UV with U € RM*R and Vv e RR*N_(2) An equivalent
network contains two layers, represented by the matrices, U
and V. The first layer uses the identity activation function I.

(3) Both networks produce the same output. a = f(WTx) =
FWNTx) = f(vTUT)x) = F(VTIUT)

Sindhwani et al. [28] uses structured matrix transformations with
low-rank matrices to reduce the number of parameters for the fully-
connected layers of a neural network. The low-rank, structured
matrices require dense gradient updates, which is not ideally suited
for data parallelism [23]. In this work, we move away from the low-
rank assumption. Instead, we make use of sparsity to reduce the
amount of computation. We showed that due to random sparsity,
our approach is well-suited for Asynchronous Stochastic Gradient
Descent (ASGD), leading to near-linear scaling.

7 FUTURE WORK

One future direction is to optimize our approach for low-power,
mobile processors. There are many platforms including the Nvidia
Tegra, Qualcomm Snapdragon, and Movidius Myriad. The other
direction is to leverage the power of GPUs and distributed com-
puting. GPUs are commonly used to train deep networks because
of their high performance. The next logical step is to harness the
computational savings via randomized hashing on GPUs.

8 ACKNOWLEDGMENTS

The work was supported by NSF Awards IIS-1652131 and DMS-
1547433. We would like to thank reviewers of ICML 2016, NIPS 2016
and KDD 2017 for their encouraging remarks and suggestions.

REFERENCES

[1] Dimitris Achlioptas. 2003. Database-friendly Random Projections: Johnson-
Lindenstrauss with Binary Coins. J. Comput. Syst. Sci. 66, 4 (June 2003), 671-687.
https://doi.org/10.1016/S0022-0000(03)00025-4

[2] Jimmy Ba and Brendan Frey. 2013. Adaptive dropout for training deep neural
networks. In Advances in Neural Information Processing Systems 26. 3084-3092.

[3] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.
2015. Compressing Neural Networks with the Hashing Trick. In Proceedings of
the 32nd International Conference on Machine Learning. 2285-2294.

[4] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[5] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale

[10

[11

[12

(13

[14

[15

[16

[17

oy
&

[19

[20

[21

[22]

[23

[24

[25

[26

[27

[28

[29

[30

distributed deep networks. In Advances in Neural Information Processing Systems.
1223-1231.

Jinyang Gao, Hosagrahar Visvesvaraya Jagadish, Wei Lu, and Beng Chin Ooi. 2014.
DSH: data sensitive hashing for high-dimensional KNN search. In Proceedings of
the 2014 ACM SIGMOD. ACM, 1127-1138.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. VLDB 99, 6 (1999), 518-529.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. Signal Processing Magazine,
IEEE 29, 6 (2012), 82-97.

Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-aware locality-sensitive hashing for approximate nearest neighbor search.
Proceedings of the VLDB Endowment 9, 1 (2015), 1-12.

Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In STOC. Dallas, TX, 604-613.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097-1105.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. 2007. An empirical evaluation of deep architectures on problems with
many factors of variation. In Proceedings of the 24th international conference on
Machine learning. ACM, 473-480.

Yann LeCun, Fu Jie Huang, and Leon Bottou. 2004. Learning methods for generic
object recognition with invariance to pose and lighting. In Computer Vision
and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on, Vol. 2. IEEE, I1-97.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge University Press.

Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 287-296.

Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua Bengio.
2015. Neural Networks with Few Multiplications. arXiv preprint arXiv:1510.03009
(2015).

Gaélle Loosli, Stéphane Canu, and Léon Bottou. 2007. Training Invariant Support
Vector Machines using Selective Sampling. In Large Scale Kernel Machines, Léon
Bottou, Olivier Chapelle, Dennis DeCoste, and Jason Weston (Eds.). MIT Press,
Cambridge, MA., 301-320. http://leon.bottou.org/papers/loosli- canu-bottou-2006
Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-
probe LSH: efficient indexing for high-dimensional similarity search. In Pro-
ceedings of the 33rd international conference on Very large data bases. VLDB
Endowment, 950-961.

Alireza Makhzani and Brendan Frey. 2013. k-Sparse Autoencoders. arXiv preprint
arXiv:1312.5663 (2013).

Alireza Makhzani and Brendan J Frey. 2015. Winner-Take-All Autoencoders. In
Advances in Neural Information Processing Systems 28. 2791-2799.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2016. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS). http://arxiv.org/abs/1602.05629
Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
Neural Information Processing Systems. 693-701.

Anshumali Shrivastava. 2016. Simple and Efficient Weighted Minwise Hashing.
In Advances in Neural Information Processing Systems 29. 1498-1506.

Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS). In Advances in Neural Information
Processing Systems. 2321-2329.

Anshumali Shrivastava and Ping Li. 2014. Improved Densification of One Permu-
tation Hashing. In UAL Quebec, CA.

Anshumali Shrivastava and Ping Li. 2015. Improved Asymmetric Locality Sensi-
tive Hashing (ALSH) for Maximum Inner Product Search (MIPS). In Conference
on Uncertainty in Artificial Intelligence (UAI).

Vikas Sindhwani, Tara Sainath, and Sanjiv Kumar. 2015. Structured transforms
for small-footprint deep learning. In Advances in Neural Information Processing
Systems. 3070-3078.

Ryan Spring and Anshumali Shrivastava. 2017. A New Unbiased and Efficient
Class of LSH-Based Samplers and Estimators for Partition Function Computation
in Log-Linear Models. arXiv preprint arXiv:1703.05160 (2017).

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929-1958.

https://doi.org/10.1016/S0022-0000(03)00025-4
http://leon.bottou.org/papers/loosli-canu-bottou-2006
http://arxiv.org/abs/1602.05629

	Abstract
	1 Introduction
	1.1 Our Contributions:

	2 Related Work
	3 Background
	3.1 Locality-Sensitive Hashing (LSH)

	4 Proposed Methodology
	4.1 Intuition
	4.2 Hashing-Based Back-Propagation

	5 Evaluations
	5.1 Datasets
	5.2 Sustainability
	5.3 Scalability

	6 Discussions
	6.1 Equivalence with Adaptive Dropouts
	6.2 Low-Rank vs Sparsity

	7 Future Work
	8 Acknowledgments
	References

