






TABLE I

SUMMARY OF THE FORWARD AND INVERSE STATIC SOLUTIONS OF HELICAL ACTUATION

Inverse Solution Radius and Pitch Parameterized Forward Solution Curvature and Torsion Parameterized Forward Solution
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center axis about which the helices spirals. This is equivalent

to saying that the angle between ~Ti(s) and ~To(s) is 2θ.

This constraint can also be viewed in terms of the normal

and tangent vectors obtained from a Frenet-Serret frame of

the parameterization in (1):
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ṙ(s)
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where T (s) is the unit tangent vector and N(s) is the unit

normal vector to the curve. Using the Frenet-Serret frame

representation, the normal vector to a helical path lies in the

xy plane and in the same direction for both paths. Since

the normal vectors are aligned, the tangent vectors for each

path can only differ by a simple rotation about the common

normal vector. We defined the angle between the actuator

path and the center body path in (2) as θ, and, since the inner

and outer paths are identical before actuation, the total angle

between the tangent vectors will be 2θ. This relationship is

diagrammed in Fig. 3. We can capture this relationship with

the dot product of the tangent vectors:
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Substituting in the tangent vector from (8) we get the final

constraint:
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B. Closed-Form Solution

The three geometric constraints in (6), (7), and (11) define

the relationship between the actuator parameterization and

the robot shape parameterization. In fact, the equations in

their current form give a solution for the inverse problem,

taking the desired robot helical shape and giving the actuator

shape to achieve it. A forward solution can be solved from

the equations as:
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With these equations we can calculate the resulting helical

shape from an actuator configuration. These equations can

be reformulated in terms of curvature and torsion to get

additional insight, using the following substitution:
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where κ is the helix curvature and τ is the helix torsion. With

this substitution, there are now four parameters describing

the robot body shape (κo, κi, τo, and τi) but still only three

equations. This can be remedied by adding the implied con-

straint that was assumed by setting the inner and outer pitch

equal when developing the robot body parameterization:
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Substituting the solutions in (12) into the variable re-

parameterization in (13) gives:
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The forward and inverse solutions for the constant curvature,

constant torsion actuation are summarized in Table I.

III. EXPERIMENTAL RESULTS

The geometric mapping developed in the analysis of

constant curvature and torsion actuation on a soft inflated

body was tested against physical prototypes to determine the

validity of the model. We begin by discussing three different

actuation methods with helical paths implemented on our

robot body. We then present validation of the developed

model using one of the described implementations and

discuss implications of the model equations. This is followed

by experiments showing the deformations of the static shapes

under radial and axial loading of the helix.
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