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Helical actuation on a soft inflated robot body

Laura H. Blumenschein, Nathan S. Usevitch, Brian H. Do, Elliot W. Hawkes, and Allison M. Okamura

Abstract— Continuum and soft robots can leverage routed
actuation schemes to take on useful shapes with few actuated
degrees of freedom. The addition of vine-like growth to soft
continuum robots opens up possibilities for creating deployable
structures from compact packages and allowing manipulation
and grasping of objects in cluttered or difficult-to-navigate envi-
ronments. Helical shapes, with constant curvature and torsion,
provide a starting point for the shapes and actuation strategies
required for such applications. Building on the geometric and
static solutions for continuum robot kinematics given constant
curvature assumptions, we develop a static model of helical
actuation and present the implementation and validation of
this model. We also discuss the forces applied by the soft robot
when wrapped around an object that deforms the static shape,
allowing a quantification of grasping capabilities.

I. INTRODUCTION

Compliance in soft or continuum robots allows them to
take on a wide variety of shapes [1]. Continuum robots are
often said to have “infinite” passive degrees of freedom,
any of which can potentially be actuated. Designing actu-
ators that leverage these continuous degrees of freedom in
interesting ways enables numerous compelling behaviors and
applications. However, in general, well-informed design of
actuation strategies for soft robots requires knowledge of the
relationship between the actuator design and the resulting
kinematics. While some types of continuum robots have
well described kinematics and dynamics, existing solutions
cannot easily be extended to soft robots with compressible
backbones.

In the design space for soft robot actuation, even very
simple actuation strategies can lead to a wide range of
behaviors, as can be seen in the design of generalized
fiber-reinforced elastomeric actuators [2]—[5]. Many soft and
continuum robots extend this approach to more degrees of
freedom. These robots incorporate multiple actuated tendons
into the surface of a long compliant body to shorten or
lengthen surface paths and therefore cause the full structure
to bend. In most designs, three straight actuators are used
to control tip position, although some add a fourth tendon
to allow for stiffness control [6]. The addition of helically
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Fig. 1. A soft, inflated robot is grown into a helical antenna. Shape is
mechanically pre-programmed by pinching the thin walled plastic tube along
a line of actuation. Growth is achieved by feeding more material through the
center to be everted at the tip, and the material is flexible but not stretchable.

routed tendons to straight tendons can increase the workspace
and dexterity of the robot tip [7], [8].

One type of continuum robot that has been recently
developed is a soft inflatable robot that extends by growing
like a plant (Fig. 1) [9], [10]. These robots rely on materials
that are flexible but relatively inextensible (such as fabrics
or thin plastic sheeting), meaning that deformation of the
overall shape occurs by the material wrinkling, as opposed
to material stretching. This robot grows by everting new
material at the tip. Movement by growth allows for large
length change of the robot and for the robot to access
tight spaces or difficult to navigate environments. Previous
work has examined the use of this growth to navigate an
environment, needing only simple shape actuation to achieve
movement in two or three dimensions [9]. The compact
starting package for the robot relative to its final size lends
itself to creating deployable structures [11]. Manipulation can
be achieved by using the robot body as a grasper, an idea
investigated in continuum robots imitating elephant trunks
and octopus tentacles [12], [13]. The soft inflatable structure
lends itself to creating the large shape changes needed for
these applications. The use of inextensible materials means
that shapes requiring large deformations can potentially be
reached with less energy input than soft robots relying on
extensible materials, because large amounts of elastic energy



need not be stored in the material.

Simple bending alone is not always the ideal actuation
to achieve a shape for a desired application. One shape
that could be effective in many applications is a uniform
helix. Helical antennas, such as the prototype in Fig. 1,
provide desirable operating characteristics and a deployable
helical antenna is potentially useful in space exploration and
search and rescue [14]. In addition, helical wrapping grasps
can efficiently enclose objects leading to useful grasping
mechanics for object acquisition and manipulation, as well
as climbing [15]. To design actuators to achieve these desired
shapes, we must develop the kinematics for helical actuation
of soft inflated robots.

The large number of passive and active degrees of freedom
in a continuum robot make traditional robotic kinematic and
dynamic analysis difficult, even for uniformly routed helical
actuators. As a result, this problem has been tackled at a va-
riety of levels of complexity and accuracy. The most general
solutions use Cosserat rod and Cosserat string theories to
develop mechanics models of general tendon routings [16].
This model has been applied recently to helical actuation
of a flexible backbone continuum robot [7]. However, these
Cosserat-based models have been specifically developed for
continuum robots with flexible backbones that are stiff in
compression and require knowledge of material properties.
Simpler models begin with geometrically constrained solu-
tions. For the simplest tendon routings, i.e., straight tendons
parallel to the backbone, the problem geometry results in
piecewise-constant curvature sections, and this shape is a
simple function of the tendon displacement [6]. This method
of employing geometric constraints is translated easily to
soft inflated robots. The importance of adding torsion to
these models has been discussed [17] but has not yet been
implemented in deriving the kinematics of a soft robot. In
this work we derive the geometric constraints for helical
actuation on a pneumatic soft robot and develop and validate
a static kinematic model. This expands constant curvature
kinematic models for continuum robots with the addition of
constant, non-zero, torsion.

The remainder of the paper is organized as follows.
Section II presents the geometric solution for helical actu-
ation. This begins with discussion of the parameterization
of the actuator and final achieved shape. We then define
the geometric constraints used to relate the actuator to the
robot shape and present the closed-form solution. Section
III presents experimental results of the helical actuation,
including prototypes implementing the described actuation,
validation and discussion of the closed form solution, and
measurements of forces applied by the soft robot when its
shape is deformed.

II. CONSTANT CURVATURE AND TORSION TENDONS

The piecewise constant curvature formulation of tendon
actuated continuum robots can be extended for continuum
robots where large torsion of the backbone is allowable. We
focus the problem solution on an inflated tube robot, and a
similar argument could be applied to other continuum robots.
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Fig. 2. Visualization of different types of uniform cable routings and
their effect on robot shape, with the actuated cable shown in blue. In (a),
contraction of a longitudinal cable creates a constant moment that leads
to a constant curvature arc. In (b), pure torsion results from actuation of
circumferential cables. In (c¢), the robot with helical cables is shown in both
unactuated and actuated states. The actuator is shown with the blue line and
the diametrically opposite line is in red. The actuator parameters, 6, D, A,
and shape parameters, R,, R;, b, are displayed.

Constant Moment and Torsion
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To develop this geometric model, we define the problem,
including the actuator parameterization and geometric con-
straints, and then present the closed-form solution.

A. Shape Model

1) Geometric Model of Actuator Shape with Helical Ten-
dons: To achieve a uniform deformed shape, the continuum
robot actuator must route in a uniform path on the surface
of the body. Uniform tendons may be routed on the robot’s
surface axially, circumferentially, and at an intermediate
angle. The traditional routing of tendons on a continuum
robot in a straight path parallel to the undeformed backbone
leads to constant-curvature, zero-torsion deformation when
actuated (Fig. 2a) . A circumferential routing of an actuator,
if realizable, would lead to pure torsion of the backbone
(Fig. 2b). Helical tendon routing is a mixture of these two
extremes and leads to both curvature and torsion of the
backbone when actuated (Fig. 2c).

We will quantify the relationship between the helical
path of an actuator around an undeformed pneumatic tube
and the resulting helical shape of the actuated pneumatic
tube. To develop this relationship, we first give the standard
parameterization of a helix in terms of its radius and pitch,

Rsin(s)
R cos(s)
bs

(M

r(s)

where R is the radius of a helical path and b is the normalized
pitch parameter such that 27b is the height achieved by one
revolution of the helix. The actuator must lie on the body of
the robot, so the actuator radius is equal to the thin-walled



tube radius. In our parameterization of the helical actuator
path around the tube we use variations of these standard
parameters. For the intuitiveness of our formulation and to
allow our model to cover the straight actuator case as well,
it is convenient to use the tube diameter, D, in place of the
radius and to replace the pitch, b, with the angle of the path
with respect to the straight actuator, 6, which is defined as

D
0 = arctan —

e 2)

where D is the diameter of the tube, and b, is the normalized
pitch of the actuator about the undeformed tube.

These parameters define the path of the uncontracted ac-
tuator. A third parameter is necessary to describe the amount
of actuation along the helical path. For a purely geometric
model, we parameterize the actuation using the relative
shortening of the path length when actuated compared to
the path length when not actuated. We use A to represent
this ratio. Figure 2c shows the parameters used to describe
the actuator shape on the initial tube and the parameters of
the resulting helix after actuation discussed in the subsequent
section.

2) Resulting Helical Shape: Because the helical actuator
path is uniform and generates both curvature and torsion in
the soft robot backbone, the resulting backbone path will
have constant curvature and constant torsion. A path with
both of these properties is a helix.

To understand the resulting shape further, we observe how
the soft pneumatic beam robot deforms to achieve the final
shape. The pneumatic beam is made of inextensible plastic or
fabric so it can only shorten to change shape, not lengthen. It
accomplishes this length change by wrinkling the thin wall
of the material at discrete locations. While a tip load will
only cause one or a few buckle points to occur in the body,
the distributed loading caused by a body-embedded tendon
causes distributed wrinkling that approximates a continuous
shortening along the path of the actuator. The maximum
wrinkling will occur at the location of the actuator, and no
wrinkling will occur diametrically opposite to the point of
highest wrinkling.

We define the robot shape by parameterizing the actuator
path 7;(s) (the path with the highest wrinkling) and the path
diametrically opposite the actuator r,(s) (the path with no
wrinkling) with a common parameter s (Fig. 3) as follows:

—

7i(s) = [Ri sin(s) R;cos(s) bs]T 3)

—

To

“)

(s) = [Rosin(s) Rocos(s) b S]T
where R; is the radius of the inner helix, R, is the radius of
the outer helix, and b is the normalized pitch of the helices.

In addition to the actuator paths, we can also define the
center path of the robot as:

(&)
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Fig. 3. Diagram of the geometric relationships between the actuator
path (blue) and the diametrically opposite path (red). The two paths are
parameterized by s. The points 7, (s) and r;(s) are separated by a distance
D. The tangent vectors to these curves (1o (s) and T;(s)) are orthogonal to
ro(8)—7;(s). The angle between each tangent vector and the center tangent
(Te(s)) is 0, giving a total of 26 between the inner and outer tangent vectors.
The blue circular cross section is normal to the center tangent vector T (s).

3) Geometric Constraints: The relationship between the
parameters defining the spiraling path around the unactuated
tube and actuation state of the actuators (6,D,\) and the
parameters defining the final shape of an actuated helix
(R,,R;,b) are developed through an understanding of the ge-
ometric constraints imposed by the tube material. We define
constraints to relate properties of the shortest and longest
helical paths to each other with the actuator parameters.

Looking at the full paths, we know that the ratio of the
outer arc length and inner arc length over any portion of
the robot should be equal to the contraction ratio. For the
helices described in Eq. 3 and 4, and looking at the interval
s € [0,.5], this constraint can be written:

\ V(SB)Z+ (SR)2 02+ R?
- V/(Sb)2+ (SR,)? /b + R2

This constraint is defined by how much the inner path is
shortened relative to the outer, unwrinkled, path.

The remaining constraints define the relationship between
the inner and outer paths for any points 7;(s) and r,(s)
for a common value s along the robot. These constraints
are portrayed graphically in Fig. 3. When the tube is under
pressure, the restriction imposed by the tube is that disks
normal to the backbone r.(s) (s € [0,S5]) are circles of
diameter D. As the tube wrinkles, these cross-sections move
relative to one another but remain approximately circular.
This circular shape imposes the constraint that the distance
between two points r,(s) and r;(s) is the tube diameter,
which in terms of the parameters can be expressed:

(6)

D=R,-R; 7N

The final constraint is that the angle between each tangent
vector and the center line is 6. This follows from the
observation that the tangent vectors to the inner, outer, and
center curves (ﬁ(s), fo(s) and fc(s)) are all normal to
(ro(s) — ri(s)), and that (r,(s) — r;(s)) is normal to the



TABLE I
SUMMARY OF THE FORWARD AND INVERSE STATIC SOLUTIONS OF HELICAL ACTUATION

Inverse Solution

Radius and Pitch Parameterized Forward Solution

Curvature and Torsion Parameterized Forward Solution

N— VORHRE R — R | B o DU-Acos20)  p _ Dx(cos(20)-2) o = 1-2cos(26) _ Asin(20)
~ J/b2+R2 — o g © 7 1+A2-2Xcos(20) © T 1422 —-2) cos(20) o= D - D
2 Ro+b> DXsin(26) cos(20)—\ sin(26)
0 = L arccos(——Liflotb” b= Asmiel) 1o, = coslet)=A — smn(20)
2 ( WH{?\/W) 1+A2—2X cos(26) g DX DX

center axis about which the helices spirals. This is equivalent
to saying that the angle between T} (s) and T,(s) is 26.

This constraint can also be viewed in terms of the normal
and tangent vectors obtained from a Frenet-Serret frame of
the parameterization in (1):

oy ) 1| sty .
O =T v | e @
; —sin(s)
T(s)
N(s) = — = |—cos(s 9
(&) = TR () ©)

where T'(s) is the unit tangent vector and N (s) is the unit
normal vector to the curve. Using the Frenet-Serret frame
representation, the normal vector to a helical path lies in the
zy plane and in the same direction for both paths. Since
the normal vectors are aligned, the tangent vectors for each
path can only differ by a simple rotation about the common
normal vector. We defined the angle between the actuator
path and the center body path in (2) as 6, and, since the inner
and outer paths are identical before actuation, the total angle
between the tangent vectors will be 26. This relationship is
diagrammed in Fig. 3. We can capture this relationship with
the dot product of the tangent vectors:

TI'T, = | T, ||| T, || cos(26) = cos(26) (10)
Substituting in the tangent vector from (8) we get the final
constraint:

 RiR, 41

20) =
cos(20) V0 + RA/b? + R?

Y

B. Closed-Form Solution

The three geometric constraints in (6), (7), and (11) define
the relationship between the actuator parameterization and
the robot shape parameterization. In fact, the equations in
their current form give a solution for the inverse problem,
taking the desired robot helical shape and giving the actuator
shape to achieve it. A forward solution can be solved from
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the equations as:
D(1 — Acos(20))

Bo = 14+ A2 — 2\ cos(20)
DA(cos(20) — \)
= 12
R 14 A2 —2Xcos(20) 12)
b Dsin(20)

14+ A2 — 2\ cos(26)

With these equations we can calculate the resulting helical
shape from an actuator configuration. These equations can
be reformulated in terms of curvature and torsion to get
additional insight, using the following substitution:

R b
7b2+R2 T7b2+R2
where « is the helix curvature and 7 is the helix torsion. With
this substitution, there are now four parameters describing
the robot body shape (x,, ki, 7o, and 7;) but still only three
equations. This can be remedied by adding the implied con-
straint that was assumed by setting the inner and outer pitch
equal when developing the robot body parameterization:

K

13)

To
2 2
TS+ K§

Ti
- 2 2
77 + K;

b=b, =b; = (14)

Substituting the solutions in (12) into the variable re-
parameterization in (13) gives:

1 — Acos(20) Asin(26)
Ro = ——(~ o— T~
D . D (15)
_cos(20) — A ~_ sin(260)
5 T T

The forward and inverse solutions for the constant curvature,
constant torsion actuation are summarized in Table I.

III. EXPERIMENTAL RESULTS

The geometric mapping developed in the analysis of
constant curvature and torsion actuation on a soft inflated
body was tested against physical prototypes to determine the
validity of the model. We begin by discussing three different
actuation methods with helical paths implemented on our
robot body. We then present validation of the developed
model using one of the described implementations and
discuss implications of the model equations. This is followed
by experiments showing the deformations of the static shapes
under radial and axial loading of the helix.



(a) Mechanically Programmed

(b) Pull String and Stopper

(c) Pneumatic Artificial Muscles

Fig. 4. Implementation of helix actuation. (a) Mechanically programmed implementation uses discrete removal of material using tape along line of actuation
to achieve a single static shape that can be grown. (b) Pull string and stopper implementation creates one shape when the string is fully relaxed and another
when the stoppers are fully connected, allowing actuation between two shapes. (¢) IPAM implementation [18] allows for approximately continuous change
of A during actuation. Material wrinkles along the full line of actuation to reduce length.

A. Implementation

We implemented the helical actuation of our soft inflated
robot body using three different methods, as shown in Fig. 4.
These methods allow different amounts of control of the
shape, from growth into a single set shape to actuation among
a range of helical shapes.

1) Mechanically Programmed: The first implementation
we refer to as being mechanically programmed, meaning that
the shape is pre-determined by the manufacturing process.
The robot body can then be grown into this predetermined
shape. In tasks where the desired path is known or can be
planned ahead of time this implementation allows precise
shape control. Despite this implementation not being ‘“ac-
tuated” in the sense that it changes shape actively, we can
use the same ideas of actuator routing and shortening of the
actuator path to describe the permanent shapes achieved.

The robot body is mechanically programmed by removing
discrete sections of material along a length. These sections
are pinched together and held by tape. The tape pieces
are narrow to approximate a wrinkle in the material cross-
section that is maximized at the line of actuation. Though
the actual description of the model describes a proportional
shortening along the entire length of actuation, this can
be well approximated by alternating pinched and straight
sections at a sufficiently tight spacing, as seen in Fig. 4a.

2) Pull String and Stoppers: The second implementation
can be used to actuate between two shapes, usually a straight
tube and a desired helical shape. This is done by arranging
alternating gaps and stoppers along the line of actuation
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(Fig. 4b). A pull cable is fed through the stoppers and
attached to the far end of the robot. When this string is
pulled, the gaps collapse along the line of actuation and
only the stoppers are left. This is similar to the mechanically
programmed implementation, in which discrete sections are
fully wrinkled and the remaining material is left extended.
The value of A will be the ratio between the stopper length
and the stopper and gap length together.

We created this actuation using PTFE tubing for the
stoppers and high molecular weight polyethylene braided
line for the pull cable. This combination provided a low
coefficient of friction, which is beneficial since the force
needed to pull the cable will increase as the helical path
is formed [19]. The pull cable implementation can only
be used to actuate between two discrete shapes because a
uniform value for A along the line of actuation will not
be guaranteed until the cable is fully actuated and all the
stoppers are touching. In practice, this happens because, as
the cable is actuated, the tube will buckle first at a single
point. This buckled point will have a much lower stiffness
than the unbuckled tube and so will continue to be the
location of bending until the stoppers touch. Then a new
buckling point will appear. This will repeat until all the
stoppers are touching, at which point uniform actuation can
be guaranteed.

3) Pneumatic Artificial Muscles: Pneumatic muscles are
a class of actuators that change length or shape based on
the internal pressure in the actuator [18], [20], [21]. When
made uniformly, the muscles will have uniform contraction
or expansion along the length.
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Fig. 5. Helix prototypes varying A and 6. Helix tightens as A is decreased
and 6 changes the ratio between the pitch and the radius.

For our final implementation we used inverse pneumatic
artificial muscles (IPAMs). These pneumatically powered ac-
tuators extend uniformly as the internal pressure is increased
and can be constructed for high stroke [18]. Constructing
a robot with an IPAM along the line of actuation, we can
achieve an implementation that can continuously change A
value within a range with a set 6 and D (Fig. 4c). Unlike the
mechanically programmed and pull cable implementations,
the value of A is not inherently known from the construction,
so either a mapping must be developed to relate the pressure
to the shape or another measurement of the actuator strain
will be needed.

B. Shape Model Validation

The static solution developed in Section II was tested
by creating actuated helical shapes while varying A and
6. To quickly and easily create desired test shapes with
a range of parameters, we used mechanically programmed
implementation described in Section III-A.1. Values for 6
were 2.5°, 5°,and 10°, and values of \ were between 0.9
and 0.5. The tube diameter, D, was held constant for the
test shapes at 3.31 cm. A selection of the resulting test
helices can be seen displayed in a grid format in Fig. 5. For
a one-to-one comparison, the constructed helices all started
with the same initial tube length. Qualitatively, changes in 6
changed the relationship between the pitch and radius of the
path, modifying the slope of the helix, while changes in A
tightened or loosened the helix.
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Fig. 6. Scaling up D by 2.5 times and holding A and 6 constant leads to
direct scaling of final shape parameters by 2.5 times as expected.

Diameter variation was not needed because the equations
for R,, R;, and b of the resulting helical shape are all
proportional to D as seen in Table I. So the expected effect
of changing D is a direct scaling of the resulting shape, given
the same A and 6. This was verified for a single case of the
test shapes, constructing a helical actuation with the diameter
increased by 2.5 times and with 6 equal to 5° and A equal to
0.66 (Fig. 6). The resulting larger helix had the same shape
as the original helix but with radii and pitch scaled up by
2.5 times.

The shape of a test helix was measured by identifying a
single rotation of the helix and then measuring the inside and
outside arc lengths. This measurement technique assumed
that the test helices have a uniform shape, which was verified
visually. The helix parameters could be found from the arc
lengths and tube diameter by the relationship:

R _L2-12 D _L3-L1; 3D
° " 8m2D 2 T 8w2D 2
(16)
L2
b o _ R2
472 ©

where L, is the outer arc length and L; is the inner arc length
of the helix. These equations are derived from the arc length
calculation for uniform helices, which for a single revolution
is:

L=

(27R)2 + (27b)2 (17)

We can solve for the parameters, R,, R;, and b, with the
addition of the diameter constraint in (7). For shapes that
did not make a full rotation in the given length, a half
rotation arc length was measured and doubled. The parameter
measurements of the test helices were compared to the
parameters predicted by the equations in Table I and the
results for R, and b are plotted in Fig. 7. The data from the
test helices matched the predicted relationships well with an
average error of 2.6 mm for the outer radius and 3.3 mm for
the pitch parameter.
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Fig. 7. Comparison of the model to test helices. Model is shown for the
full contraction range, A, and for three values of actuator angle, 6. All tests
were done with a tube diameter, D, of 3.31 cm. Values of pitch below the
dotted red line are not realizable as the robot will self-intersect.

The start and end conditions for the curves are indicated
by filled circles. For R, all the curves start and end at the
same point, while b curves start separately and end at a single
point. At a A = 1, the start point for R, is the radius of the
tube and the b curve will be at the pitch parameter of the
actuator, since on the un-actuated tube the outer line will be
a helix on the surface of the tube, as described in Section
II-A.1. On the other extreme, though a A = 0 is not actually
realizable, we can think of this situation as collapsing the
actuator line to a single point, which will result in a torus
with an inner radius of zero. So the curves will end at a
pitch, b, of zero and an outer radius, R,, equal to the tube
diameter.

C. Applied Forces

While actuation into a helical shape alone is advantageous
for a variety of tasks, many applications will require the soft
robot to apply forces as well. Helical climbing is used by
a variety of snake-like robots to climb external structures,
a behavior that can be leveraged to support a navigating
robot or a deploying structure. Secure helical grasps will be
dependent on the forces that can be applied [22]. We describe
the experimental setup for finding the relationship between
the helical shape and the applied forces to characterize these
“grasping” behaviors and present the experimental results.

1) Experimental Procedures: An instrumented cylinder
with a diameter of 4.0 cm and a height of 12 cm was used to
investigate the grasping forces of a helical shaped soft robot
(Fig. 8). The instrumented cylinder is composed of two 3-D
printed half-cylinders made of acrylonitrile butadiene styrene
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(b)

©

Fig. 8.  Test set-up with instrumented cylinder to measure axial forces
when deforming natural shape. a) Photograph of the instrumented cylinder
assembly with soft robot wrapped around it in a helix. b) View of
instrumented cylinder. The two half-cylinders each have recessions allowing
for the placement of the F/T sensor shown in red. The two halves can be fit
together to form a single cylinder with the F/T sensor located in the middle.
¢) Top view of forces on cylinder shown in purple. The cylinder converts
radial forces into linear compressive forces that can be measured by the
sensor. Only the components of the distributed forces normal to the sensor
are measured.

(ABS). These two half-cylinders are separated from each
other by a gap of 3 mm and joined by a 6-axis force/torque
sensor (ATT Nano-17), which is lightly pressed into the half-
cylinders. The sensor has a range of 12 N and a resolution
of 0.3 mN. The gap between the two half-cylinders ensures
that the normal components of the radial compressive forces
are transmitted between the two halves solely through the
6-axis force/torque sensor (Fig. 8c).

The soft actuators used for these tests were mechanically
programmed, as described in Section III-A.1, to each have a
pitch of 8.0 cm and were constructed in the same manner.
Since we only expect grasp forces when the grasper radius
is smaller than the object radius, radii less than or equal to
4.0 cm were tested. Radii deflections, AR;, equal to 0, 2,
and 4 mm were tested. During the tests, 1.5 revolutions of
the robot were wrapped around the instrumented cylinder.
Pressure was measured by an analog pressure gauge (NXP
MPX5100) read through an Arduino Uno, and was manually
incremented throughout the test.

2) Test Results: As seen in Fig. 9, there is a linear
relationship between pressure and force, with the average
R? value of 0.958. Additionally, a larger AR; results in an
increase in the magnitude of the radial compressive forces
recorded.

The linear trend between grasping force and pressure can
be understood through an argument from virtual work. By
imagining a virtual contraction between the two halves of
the cylinder as shown in Fig. 8c, we can relate the work
done by the measured force F' over the distance of a virtual
contraction dL to the work done by the pressure P due to a
volume change dV, i.e. F'dL = PdV. Solving for force we
get:
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Fig. 9. The relationship between the compressive force between the two

halves of the instrumented cylinder and pressure for three different robots
and resulting force to deform soft robot.

r=p

dL (18)

v

Because o7 is a geometric term and the cylinder size
constrains the robot geometry, for a fixed cylinder size the
force will increase linearly with pressure, as seen in Fig. 9.
For larger AR; the fl—‘L/ term is larger, leading to higher forces
at the same pressures.

This virtual work argument does imply that a AR; equal
to 0 mm will apply zero force. However, the instrumented
object was slightly elliptical in cross-section due to the gap
between the half-cylinders, so this actuator was still deflected
by the instrumented object.

IV. CONCLUSION

In summary, we have developed a static kinematic model
for inflated soft robots using a geometric approach. The
model parameterizes the helical actuator and resultant shape
and develops the geometric constraints necessary to relate
the two parameterizations. The helical actuation is imple-
mented, validated and some initial deformation responses are
investigated. In this work we assumed the resulting shapes
were uniform helices and just measure the pitch and radius
parameters. Measuring the entire shape of the resulting robot
will further validate the shape and uniformity of the actuated
helices. The grasping force results show promise for using
helical body grasping. Future work will model these grasping
strategies with soft robot bodies.

This geometric model facilitates the design of actuators to
achieve desired helical shapes for deployable antennas and
soft body grasping. In the future, the model can be extended
to investigate more general shape actuation of inflated soft
robots by allowing the actuator parameters to vary along the
length. This will be supported by developing actuators that
can achieve these more general actuations.
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