2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 24-28, 2017, Vancouver, BC, Canada

Linear Actuator Robots: Differential Kinematics, Controllability, and
Algorithms for Locomotion and Shape Morphing

Nathan Usevitch, Zachary Hammond, Sean Follmer, Mac Schwager

Abstract— We consider a class of robotic systems composed
of high elongation linear actuators connected at universal joints.
We derive the differential kinematics of such robots, and
formalize concepts of controllability based on graph rigidity.
Control methods are then developed for two separate applica-
tions: locomotion and shape morphing. The control algorithm
in both cases solves a series of linearly constrained quadratic
programs at each time step to minimize an objective function
while ensuring physical feasibility. We present simulation results
for locomotion along a prescribed path, and morphing to a
target shape.

I. INTRODUCTION

In this paper we present a control methodology for robots
made up of high-elongation linear actuators connected at
universal joints into a network, which we call Linear Ac-
tuator Robots (LARs). Such robots can change their shape
dramatically through the coordinated actuation of their linear
members. This shape change ability can be used for a
multitude of tasks, including locomotion, manipulation, and
matching of 3D target shapes (shape morphing), examples
of which are shown in Fig. 1. We present a differential
kinematic analysis of LARs, relating the velocities of the
vertices in the structure to the rate of change of the actuator
lengths. This allows us to link concepts from graph rigidity to
the controllability of the robot structure. We use this kine-
matic analysis to derive control algorithms for locomotion
and shape morphing, both based on the same underlying
sequential convex programming algorithm tailored to the
kinematics and constraints of LARs.

LARs have the potential to change their shape to interact
with the environment, such as growing legs to traverse obsta-
cles, turning into a ball to roll down hills, or morphing into
the shape needed to manipulate an object with complicated
geometry. Such a robot would be valuable in the unstructured
environments of search and rescue missions. LARs can also
serve as a type of high-speed 3D printer, changing shape to
represent 3D objects and responding to a human designer’s
digital manipulations in real time.

Our work builds upon significant advancements in
the modeling and control of TETROBOTs [1]-[3], as
well as other tetrahedron-based modular robot systems.
TETROBOTs are a type of LAR that have a particular
repeating graphical motif which facilitates kinematics com-
putations. The focus of existing work in TETROBOTS is
in the physical design of the robot, algorithms for propa-
gating kinematic chains of tetrahedrons or octahedrons [1],
and centralized and decentralized algorithms for dynamic

This work was supported in part by National Science Foundation Award
1637446, ONR grant N00014-16-1-2787, and US Army Medical Research
and Materiel Command grant W81XWH-15-C-0091.

978-1-5386-2682-5/17/$31.00 ©2017 IEEE

Shape Change

Starting Configuration

Fig. 1: We present algorithms for Linear Actuator Robots
(LARSs) to change shape and to locomote. A LAR composed
of 108 linear actuators and 34 vertices morphs from a
pyramid to a cube (top right), and locomotes (bottom right).

locomotion [2,3]. Other work has focused on designing
gaits for similar systems [4]. Our approach differs from the
TETROBOT work in that we propose models and control
algorithms for robots of arbitrary graphical structure, not
limited to tetrahedrons or octahedrons. We treat differential
kinematics (rather than solving kinematics algebraically),
which allows for general solutions regardless of robot graph
topology. Also, unlike existing work in TETROBOTS, we
focus on controlling the 3D shape of our robots. Compact
linear actuators have recently been developed that can extend
up to 10 times their nominal length [5,6]. This greatly
expands the types of shapes that a LAR can reach, and
motivates this work. In future work we plan to implement
the proposed algorithms on a system composed of pneumatic
reel actuators developed by the authors in [6].

Other work has considered 3D shape morphing robots
in different contexts. In [7], linear actuators and joints are
connected to form structures capable of some local shape
change, including a self leveling bridge. Mazzone et al.
present an active-surface type device that uses prismatic
joints to deform a surface into arbitrary shapes while re-
specting some constraints [8]. Tetrahedral robots have been
considered as a candidate for planetary exploration due to
their ability to locomote over varied terrain [9]. Tensegrity
robots are similar to tetrahedral robots in that their form
can be changed by varying the lengths of some members,
but with the additional constraint that some elements must
remain in tension. Several controllers have been proposed
for locomotion of tensegrity robots, many of them based
on evolutionary or machine learning approaches [10]. Other
work has also focused on mechanism design for robots
with linear actuators [11,12]. The majority of these studies
have been limited to using actuators that can undergo only
moderate extension. Our algorithm for shape morphing also
builds upon existing work in computer graphics for morphing

5361

one computer rendered shape or mesh into another. This
problem is often divided into several sub tasks: finding a
compatible mesh of the two target shapes [13], and perform-
ing a morph that ensures a smooth and natural deformation
between shapes [14,15]. Our problem differs significantly
from this work in that we have a fixed mesh topology, and
our robot has physical and kinematic constraints that are not
present in the computer graphics context.

II. MODEL FORMALIZATION AND PROBLEM STATEMENT

Formally, we model a Linear Actuator Robot (LAR) as a
framework consisting of a graph and vertex positions. The
graph is denoted as G = {V,&}, where V = {l..N}
are the vertices of the graph, and £ = {...{7,j}...} are
the undirected edges of the graph. The position of each
vertex is assigned p; € R®. We will perform only kinematic
analysis of the network, and leave dynamic analysis of the
network for future work. The kinematic state of the robot is
fully represented by the concatenation of all vertex positions
Tr = [pl:va-~-apnw7p1y7~-~7pny>p1z>~-~7pnz]T~ We define a
length vector L, which is a concatenated vector of the lengths
of all edges in the graph Ly = ||p; — p;||, where an actuator
between nodes 7 and j is represented by an edge e, € &.
The vector L is of length ny, or the number of edges of the
graph, and can be directly computed from the pair (G,)
(note that this is the “inverse kinematics” for LAR robots,
which is trivial, as noted by [1]). In contrast, we aim to
present algorithms to control the positions of the vertices
by controlling the lengths of the actuators (the “forward
kinematics”) in a coordinated fashion, to locomote or to
change from an initial shape to a target shape.

We now introduce a notion of feasibility describe the
configuration of the LAR that satisfy physical constraints:

Definition 1: A framework (G,z) is feasible if it meets
two types of physical constraints: (i) the lengths of all bars
fall within a fixed maximum and minimum length range, and
(i1) the actuators do not physically intersect (except at their
endpoints, where they are joined).

The squared length of an actuator e that connects nodes
{1, 7}, is quadratic in = and can be computed using a partial
graph Laplacian £y, where L;; = L;; = 1,L;; = Lj; = —1,
and all other entries in £ are 0. The constraint can then be
written as follows:

L2 <a" [Ly®) x < L2 (1)

min max*

We note that constraints of the quadratic form z7Qz > 0
are convex if and only if @ is positive semi-definite. The
Laplacian matrix is always positive semi-definite, meaning
that the maximum length constraint is convex in the node
positions, while the minimum length constraint is not. Our
algorithms will handle non-convex and nonlinear constraints
by considering only differential constraints, which are linear.

To determine if two actuators cross, the minimum distance
between them must be greater than d,,,;,,, a positive diameter
of the actuator assuming that the actuator can be represented
as a cylinder. The minimum distance between actuators
connecting vertices ¢,j and k,[is denoted as dfj, and can
be expressed as follows:

dfgl = min|(pi+a(pj—pi)) —(pr+y(Pi—pr) || @, v € (0,(2

These links are not in collision if df! > dpn. Efficient
algorithms for this computation have been explored previ-

ously [16]. Computing if a configuration of ny, links contains

" ae (M=)
any collisions requires 5

detailed in equation 2.

Future work will consider a constraint that keeps the
minimum angles between two actuators connected at a vertex
above a minimum value.

collision checks of the type

A. Problem Statement

In this paper, two primary applications of LAR robots will
be explored: how to change the robot between a wide variety
of shapes, and how to drive such a robot to locomote.

Problem 1: (Locomotion): Move the center of mass of the
robot in a prescribed direction v.,,, or along a prescribed
trajectory Tem (7).

Problem 2: (Shape Matching): Given a target shape () and
an initial network configuration (G, zy), find a configuration
(G, x*) such that z* is as close as possible to), while
(G, x*) remains feasible. Also determine a path z(t),t €
[0,1] that leads from xo to ™ such that x(¢) is feasible for
all t € [0,1].

III. KINEMATICS

This section discusses the kinematics that relate the chang-
ing actuator lengths to the changing vertex positions. Central
to understanding the relationship between node positions and
edge lengths is the concept of the rigidity of a framework.

In a network of linear actuators, each link length imposes
one constraint on the system. These constraints can be
written as follows

Ly = |lpi — p;[IV({i, 7} € £). 3)

One method of finding the vertex position from the link
lengths is to find vertex positions that satisfy all constraint
equations in the network, up to translation and rotation
of the entire network. Several classes of solutions exist,
based on the rigidity of the underlying graph. If the system
of equations has infinite solutions, the framework is not
rigid, as it is possible to move the system relative to itself
without violating length constraints. A framework is rigid
if there are a discrete number of solutions to the constraint
equations, and all deflections of the system relative to itself
violate the length constraints. A more restrictive, but easier
to test category is infinitesimal rigidity, which means that
all infinitesimal deflections of the system relative to itself
violate the length constraints.

Of particular interest in the design of LARs are minimally
rigid graphs. A minimally rigid graph is a rigid graph where
the removal of any link causes the graph to lose rigidity.
These minimally rigid graphs provide a lower bound on the
number of links necessary to constrain a certain number of
nodes. For a graph in 3 dimensions, at least 3n — 6 edges
are necessary for minimal rigidity, which can be understood
intuitively based on a degree of freedom argument. Each
node in R3 has three degrees of freedom, and each edge
removes at most one degree of freedom by imposing a
constraint. The final structure has 6 degrees of freedom in its
rigid body motion. An infinitesimally rigid graph in R? with
3n — 6 links is minimally rigid, although 3n — 6 nodes does

5362

VY

| 1l 1 v

Fig. 2: ((13 A non-rigid(f)ramework. Ar(r(;ws show thf(: ()1irecti0n
nodes can be moved with no change to lengths. (ii) A
minimally infinitesimally rigid network. (iii) The network has
the same topology as (ii), and is rigid but not infinitesimally
rigid, and hence not controllable. No controlled motion is
possible in the direction of the arrows. (iv) An additional
edge is added to (ii), meaning the structure is no longer min-
imally rigid. Motions of the actuators must be coordinated,
and can not always be made independently.

not necessarily imply rigidity. Examples of these various
classes of rigidity are detailed in Fig. 2.

In the TETROBOT systems the robots were designed such
that the system could be decomposed into tetrahedron and
octahedral modules that could be analyzed [2]. However,
in a more general linear actuator network, there may not
be a clear method to decompose the problem. Instead of
directly dealing with solving large systems of interdependent
constraint equations, we will take a different approach, and
repeatedly linearize the system about the current operational
point. Such an idea is closely tied to the concept of infinites-
imal rigidity. We will show that the node positions of a graph
are fully controllable if the framework is infinitesimally rigid.

A. Differential Kinematics and Rigidity

To obtain useful expression of how changing link lengths
changes the position of the vertices, the system is linearized
about a given configuration by taking the derivative of
equation 3, which gives

dL? . . .
d—tk =2LiLy =2(pi — p;) pi +2(p; — i) Hj. @

This can be rewritten in matrix form as

L = R(x)i (5)

In this equation, R(x) is a scaled version of the well
known rigidity matrix, an important idea in the study of
rigidity [17,18]. Each row of R(x) represents a link Ly. For
example, let row m represent the link between nodes ¢ and
j. The only non-zero values of row m will be R(x)y,,; =

R(z)m.,; = (ﬁfj"l) For a graph in R? with n vertices and
m edges R € R™"3 The maximum rank of R is 3n — 6.
A framework is infinitesimally rigid if the matrix R(z) is of
maximum rank. Note that infinitesimal rigidity is dependent
on the configuration = and is not an inherent characteristic of
the graph G. Infinitesimally rigid frameworks are a subset of
rigid frameworks, meaning a framework can be rigid but not
infinitesimally rigid, but all infinitesimally rigid frameworks
are also rigid.

The current analysis is unchanged by any rigid body
transformations. We will now consider constraints between
the system and the environment. Sufficient constraints must

be used to assure that the location of the structure is fully
defined (6 relationships when the structure is in RS).. We can
encode these relationships in terms of the equation F' = C'z,
where the C' matrix relates the motion of the nodes (&) with
the changing environment (F'). The exact form of C' can be
determined based on how contact between the structure and
the environment is modeled. For our purposes, we let each
row of C' have one nonzero entry that is equal to 1, such that
each row of C' makes one node of the structure be stationary
in one coordinate of the environment.

L{] - [g} (] = He. ©)

If the system is infinitesimally minimally rigid, and a min-
imal set of constraints is applied that is linearly independent
of the link constraints, the combined matrix [RTCT17 is full
rank and square, and hence invertible,

. 1 |L
t=H { F] . 7

Note that this is exactly the form of a driftless dynamical
system. The fact that this matrix is invertible means that the
input space is all possible length velocities.

Proposition 1: Given an infinitesimally minimally rigid
framework with the minimum number of constraints to the
environment, the length of each edge can independently
change.

This means that it is not necessary to coordinate move-
ments between lengths as long as the infinitesimally mini-
mally rigid properties are maintained.

B. Controlling Over-constrained Networks

If the system is overconstrained, then the H matrix is
skinny, with more rows than columns. Taking the singular
value decomposition of the combined H matrix,

71 r;
] E = e
Us | |F 0

The bottom rows of this expression, U7 [LTFT|T =0 is
a constraint that encodes how certain lengths must move in
a coordinated fashion.

By utilizing this constraint, redundant rows of the H
matrix and their corresponding elements in the [LTFT]T
can be removed until it is square and full rank, and hence
invertible. Using master/slave terminology, each removed
row of H and element of L correspond to that row becomes
part of a slave group, while the remaining elements are part
of a master group. The reduced H matrix and L vector
are represented as H,, and L,, respectively. We denote the
removed rows of the matrix as Hg, and the removed link
inputs as Lg, which allows us to express the system as
follows:

b= [Hp(@)] " LL;”] ©)
st H, [ﬂ —0 (10)

5363

The system remains controllable, but now the input space
is constricted such that only combinations of link velocities
that satisfy the constraints can be physically realized. L,, can
be picked arbitrarily, but L; must be chosen to satisfy the
constraint equation. We note that which links chosen as the
master and slave may be partially up to the users discretion,
and could change based on configuration.

This system can be expressed in the standard form of
a linear dynamical system, & = Az + Bu where A = 0,
u=[LTFT)T, and B = H~!'. We now make a proposition
regarding the controllability of the system:

Proposition 2: A framework that is infinitesimally rigid is
controllable.

The controllability matrix is given by C =
[B,AB, A’B...A""'B]. Because the matrix B is full
row rank, the entire system is controllable. This means
that for an infinitesimally rigid system, any instantaneous
velocity of the nodes can be achieved given control of the
rate of change of the link lengths and the contact points.
If the contact points are not controlled, (meaning that we
cannot control F'), then all unconstrained motions of the
system are controllable.

This has the key advantage of allowing us to plan our
motion in terms of node positions, and then use the [RT CT]T
matrix to determine what input to apply to the actuators.

IV. LOCOMOTION

We define locomotion as controllably moving the center
of mass of the system through the environment. For our pur-
poses, we will neglect any inertial forces. While restrictive,
if the linear actuator network is moving slowly, the inertial
forces will be quite small. We will consider quasistatic
locomotion, meaning that at each instant, the center of mass
of the system remains inside the support polygon defined
by vertices that are on the ground. If, after applying some
control, the center of mass leaves the support polygon, then
the structure rolls about the edge of the support polygon
closest to the new center of mass until the next point is in
contact. This process is repeated until the center of mass is
inside the support polygon.

Several other studies that developed punctuated rolling
type locomotion strategies have focused on developing a gait,
or a repeated periodic input to the actuators that, when re-
solved with environmental forces, causes the robot to move.
Our strategy is different in that our controller solves a series
of quadratic programs at each time step, based on the robots
current configuration, to determine what inputs to apply. This
has the advantage of being able to more readily adapt to
variability in terrain, whereas a gait could become stuck. A
higher level planner, or even a human operator could also
provide high level instructions of how to move the center of
mass, while the proposed control algorithm could determine
how to move the large number of individual actuators to
achieve the desired motion. If a method of detecting failed
actuators was available, this method could also adapt to
failed actuators as it was moving. While these advantages
are important, our strategy requires continuous, centralized
computation, while following a simple gait strategies could
potentially be executed by just having each link follow a
preset length profile.

A. Controlling the Velocity of the Center of Mass

The position of the center of mass is defined in terms of
the mass matrix of the system, M € R3*3"_if all mass is
concentrated at the nodes of the system.

Feom = Mi = MH 'L (11)

We can now pick any L that achieves a desired motion of
the center of mass. The maximum rank of M is 3, so for a
system with many vertices M H ~' will have more columns
than rows, and there is freedom in which z is selected to
move the center of mass.

B. Constraint Satisfaction

The previous method does not consider the inherent phys-
ical constraints in the system. The constraints as previously
formulated were based on both the graph, GG, and the position
of the vertices, x, and can be written in the form of
f(G,x) > 0. By taking the derivative of the constraints with
respect to time, the following expression is obtained, which
is linear in 2.

df(G,z) _ 9f(x)
dt Oz

This means that even though the constraints are nonlinear
functions of z, they can be enforced as linear constraints in &
when they are close to being violated. This insight is used in
the following algorithm in order to determine the velocities
for the controllers to apply.

x>0

12)

Algorithm 1 Constraint-Violation Free Motion

1: function NEXTCONFIG(G, x, ¢)
2 D=[]

3 Compute R(z)

4: Feasible = False

5: while Feasible == False do
6

7

8

9

Ztemp = DesiredMotion(D, &cp,)
Tnew = T + i'tempdt

Active=0

: for i =1 to Nconstraints do
10: if Constraints;(Xpew) < 0 then
1 D=[D; 2Lz}
12: Active = Active + 1
13: end if
14: end for
15: if Active == 0 then
16: Feasible = True
17: end if
18: end while

19: .T(t + dt) = Tnew
20: L = R(z)Ztemp
21: end function

We note that this methodology works for any constraint
that can be expressed as f(G, z). In the case of locomotion,
we also enforce the constraint that vertices do not penetrate
the ground plane. The matrix D is composed of the linearized
version of any active constraints. This algorithm ensures that
z(t + dt x k) for k = 1,2..., is feasible, because only steps
that satisfy constraints are ever executed. However, there

5364

is no guarantee that the transition from z(t) to z(t + dt)
also does not violate constraints. With sufficiently small time
steps and small buffers this does not seem to pose a problem.
In this implementation, the constraints that are checked are
the minimum distance between actuators, the maximum and
minimum actuator length, and the constraint that points do
not penetrate the ground plane.

For fast computation, a%f) is computed analytically
before operation. The most difficult part of this algorithm in
terms of computational resources is repeatedly checking the
nonlinear constraints. However, this process could be easily
parallelized in a future implementation.

C. Objective Function

The proposed algorithm relies on solving the DesiredMo-
tion subproblem on line 6 of Algorithm 1. This problem
must return the desired feasible velocity based on some
set of linear constraints. By defining this problem as an
optimization problem, the system will take the action that
instantaneously optimizes some objective, J(&).

min [|J ()| (13)
subject to
Cr=0, Mi=2¢,, Di<O0

where C'z = 0 represents the contact model, M& = &,
constrains the center of mass motion, and Dz < 0 enforces
any active constraints.

One intuitive choice for the cost function is

J(@) = |IL]2 = || Rz (14)

This penalizes large velocities. In the absence of inequality
constraints, this solution can be obtained through the psuedo
inverse, while a quadratic program solver can be used in the
case of inequality constraints.

For mechanical simplicity, it may be desirable to try and
move as few links as possible. In this case, a sparse solution
could be obtained by minimizing the L1 norm of Rz.

Another potential consideration is to try and keep the
network as close as possible to a fixed operating point, such
as attempting to keep all actuators close to a nominal length
In. However, as the control inputs are in terms of velocities
and not positions, a method is needed to express the objective
of equal length actuators, a function of z, in terms of the
velocities &. The positions and velocities can be related by
a formation controller presented in [17]. This controller is
given by the following control law:

. Ti— T;
di= S (-l —) 22T s
P ey — il
This can be rewritten as & = —Lx + d, where L indicates

the graph Laplacian of the graph, and the vector d encodes
the formation, and is computed at each time step as follows:

ln(zj — ;)
d; = L (16)
ZN lo; — i
The cost function could then be expressed
J(&) = |1z + Lz — dJ|. 17)

D. Results

Results obtained from applying this method with the
objective function presented in (14) to a network of 108
Linear Actuator and 34 nodes are shown in Fig. 3. In order to
demonstrate the ability of the system to follow a trajectory,
the network was controlled to move towards waypoints that
make up the corners of a predefined trajectory, with the
resulting trajectories from using both (14) and (17) as the
cost functions shown in Fig. 4. The variance from the exact
prescribed trajectory result because of the rolling motion
caused when the greedy algorithm caused the center of
mass to leave the support polygon. In order to illustrate the
effectiveness of this method in preventing constraints from
being violated, Fig. 5 shows the lengths of the largest and
shortest actuator at each time step, as well as the minimum
distance between actuators that do not share a connection for
the case of the trajectories shown in Fig. 4. Note that while
the constraints are often active, they are not violated. Videos
of these test are included in the supplementary material.

2

Fig. 3: The movement of a linear actuator robot using
Algorithm 1 and the objective function given in equation
14. The system is an overconstrained 3D structure with 108
actuators and 34 vertices

This extended test also gives a sense of the robustness
of the network. A downside to the approach of repeatedly
solving the quadratic program is that persistent feasibility is
not guaranteed. In the case where the objective function was
(14), a configuration was reached where the device could
not continue to match the desired center of mass velocity
without violating constraints. With objective (17) completed
the trajectory. It is possible that over the course of the motion,
the network reaches a configuration where it cannot continue
without violating some constraint. In this case, a feasible
solution to the DesiredMotion problem would not exist.
Based on simulation results, the persistent feasibility seems
to strongly depend on the actuator limits, contact modeling,
and other factors. Future work will examine how to analyze
the problem of persistent feasibility.

Note that at each time step these methods instantaneously
minimize an objective while a desired velocity of the center
of mass is obtained. The algorithm can be thought of as
being greedy in trying to move the center of mass. However,
motion is not necessarily optimal for the entirety of the
trajectory. The algorithm does not take into account making
and breaking of contact with the surface, which would be
required to discuss the optimality of an entire trajectory.

V. SHAPE MORPHING

Here we describe an algorithm to move a Linear Actuator
Robot from a given starting configuration to a final con-
figuration that best approximates a target shape. The target

5365

Center of Mass Trajectory

Formation Controller
———— Least Norm Controller | _|
= = = Desired Path

Start.

Least Norm Failure

-4 -2 o 2 4 6

Fig. 4: The path of the center of mass of a LAR as it travels
to each waypoint of an “S”. When using the minimum norm
controller, the LAR fails to complete the trajectory

Maximum and Minimum Edge Length
T T T T T

T
Limaz Min Norm
Lumin Min Norm

Limaz Formation
----- Lmin s Liy, Formation

. . L L L L L
0 50 100 150 200 250 300 350 400
Time (s)

Minimum Distance Between Unconnected Actuators
T T T T T

Distance Between Links

0

0 5‘0 1(‘)0 15‘)0 2(;0 2;0 3[;0 3;0 400
Time (s)

Fig. 5: Plots showing how the lengths of the longest and

shortest actuators throughout the simulation shown in Fig. 4,

as well as the minimum distance between any two links that

do not share a joint. While constraints are active, they are

never violated.

shape is defined as a 3D point cloud ¢ = {q1,...,qm}-
These points can be obtained directly from a laser scanner,
or can be generated by the uniform sampling of a mesh. Our
algorithm is inspired by a mesh optimization algorithm first
introduced by Hughes Hoppe [19] for mesh optimization.

A. Shape Definition

We must first define the shape of the actuator network.
For our cases every vertex on the convex hull of a given
initial configuration of the robot is denoted and outer vertex,
with their positions given by x,. The convex hull will be a
polyhedron with planar faces. We then take a triangulation of
the planar faces to obtain a triangle mesh, M, = (K,,z,),
where K, defines the simplices of the triangulation.

The simplicial complex K, consists of vertices {1...1,},
and subsets of vertices. The O-simplices are the vertices, the
1-simplices have two elements and are the edges, and the 2-
simplices contain three vertices and are the faces. We define
the shape of the mesh as the union of the convex hulls of
the simplices, and denote this set of points as ¢ (z). Any

point z,, in ¢k (x) can be defined in terms of a barycentric
coordinate vector b such that b"'z = z,,, and b; € [0,1]Vi,
and }_.°, b; = 1. This represents every point on the surface
as a convex combination of the three points at the vertices of
the face in which it lies. Each barycentric coordinate vector
b has at most 3 nonzero coordinates, with only 2 nonzero
elements if the point lies on an edge of the mesh, and 1
nonzero element if the point is coincident with a vertex of
the graph.

While we defined the initial mesh in terms of the convex
hull of some nominal configuration, the shape need not
remain convex as it undergoes changes. The set of outer
faces remains constant while the shape morphs. Physically,
defining a fixed set of outer faces could mean that some sort
of extensible covering is placed over the outer faces of the
robot.

B. Energy Function Minimization

Our algorithm is based on iteratively minimizing an energy
function of a similar form to that presented by Hoppe [19],
which can be written as

E(G Goa x, xo) = Edist(Gw $0) + Espring(Ga .T) (18)

Xo3

XD,Z
Fig. 6: Illustration of how the sampled points g are projected
to the mesh defined by the outer nodes z,.

We define the Fg;5; term as the sum of all the squared
distances between each sample point and the set of all points
on the surface of the outer mesh ¢(x):

Buist = Y d*(qi, ().

19)
i=1
The spring-energy term is defined as
Espring(G,x) = Y &lpj —pil =Sz, (20)

{j.k}eG

where S is a matrix that for each row takes the appropriate
difference of matrix elements. Note that Esy,.;,g depends on
all nodes of the graph, not just the external nodes.

We then proceed with the morphing algorithm as follows.

1) With fixed vertex positions x, for each sample point
¢; find the closest point on the mesh ¢ (z), and
denote that point x,, ;, as shown in figure 6. Then find
barycentric coordinate vectors b; such that b,z = x,, ;.

b; = argminpek (||gi — bTxH) 2D

These coordinates are found by naively projecting
each sample point onto all faces, and then finding the
barycentric coordinates of the closest point z,, ;. Each

5366

of these vectors are concatenated to form a matrix B
such that Bx = z,,

2) For fixed barycentric coordinate vectors B, find the
unconstrained gradient descent direction to minimize

the function
B q
3]~ [¢

and move the vertices of the robot in this gradient
direction, * = —VE.
We then use this descent direction together with Algorithm
1 to ensure constraint satisfaction. We use the following
optimization for DesiredMotion in line 6 of the algorithm.

; (22)

5|
2

min [jz* — ||
x
subject to

Di <0 (23)

Results obtained from matching a network of 108 actuators
and 34 vertices to a cube and an “L” shaped structure are
shown in figure 7. While providing good results if initialized
well, this method is susceptible to local minima. Future work
will focus on how to initialize the network and other methods
that may better avoid local minima.

.

4\.\/’_
A 02

P22 g
Fig. 7: 3D shape morphing. The left column shows the initial
pyramid morphing to a cube, and the right column shows the
pyramid morphing to an “L” shape.

VI. CONCLUSION

We have presented a mathematical definition of a linear
actuator robot, together with the description of constraints
that ensure that a configuration is physically feasible. We
describe the differential kinematics for the system, and draw
connections between graph rigidity and controllability. A
sequential convex optimization algorithm is presented that
allows for the network to move in a direction to decrease
while always remaining feasible. This general approach is
applied to the task of locomotion, as well as to the task
of shape morphing to match a target shape. For this later

application, we see the potential to develop a type of robotic
graphics, in which large numbers of actuators and principles
from computer graphics could enable 3D physical displays.
In the future, we will also explore distributed algorithms
shape morphing and locomotion.

REFERENCES

[1] G. J. Hamlin and A. C. Sanderson, “Tetrobot: A modular approach
to parallel robotics,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 42-50, 1997.

[2] W. H. Lee and A. C. Sanderson, “Dynamics and distributed control
of tetrobot modular robots,” in Robotics and Automation, 1999.
Proceedings. 1999 IEEE International Conference on, vol. 4. 1EEE,
1999, pp. 2704-2710.

[3] W.H. Lee and A. Sanderson, “Dynamic rolling locomotion and control
of modular robots,” IEEE Transactions on robotics and automation,
vol. 18, no. 1, pp. 3241, 2002.

[4] M. Abrahantes, A. Silver, and L. Wendt, “Gait design and modeling
of a 12-tetrahedron walker robot,” in 2007 Thirty-Ninth Southeastern
Symposium on System Theory. 1EEE, 2007, pp. 21-25.

[5] F. Collins and M. Yim, “Design of a spherical robot arm with the
spiral zipper prismatic joint,” in Robotics and Automation (ICRA),
2016 IEEE International Conference on. 1EEE, 2016, pp. 2137-
2143.

[6] Z. Hammond, N. Usevitch, E. Hawkes, and S. Follmer, ‘“Pneumatic
reel actuator: Design, modeling, and implementation,” in International
Conference on Robotics and Automation, 2017. ICRA 2017. leee,
2017, pp. 883-888.

[7] C.-H. Yu, K. Haller, D. Ingber, and R. Nagpal, “Morpho: A self-
deformable modular robot inspired by cellular structure,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2008, pp. 3571-3578.

[8] A.Mazzone and A. Kunz, “Sketching the future of the smartmesh wide
area haptic feedback device by introducing the controlling concept for
such a deformable multi-loop mechanism,” Links, vol. 3, p. 248, 2005.

[9] S. Curtis, M. Brandt, G. Bowers, G. Brown, C. Cheung, C. Cooperider,
M. Desch, N. Desch, J. Dorband, K. Gregory et al., “Tetrahedral
robotics for space exploration,” IEEE Aerospace and Electronic Sys-
tems Magazine, vol. 22, no. 6, pp. 22-30, 2007.

[10] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control
of tensegrity robots for locomotion,” IEEE Transactions on Robotics,
vol. 22, no. 5, pp. 944-957, 2006.

[11] A. Sofla, D. Elzey, and H. Wadley, “Shape morphing hinged truss
structures,” Smart Materials and Structures, vol. 18, no. 6, p. 065012,
2009.

[12] A. Lyder, R. F. M. Garcia, and K. Stoy, “Mechanical design of odin,
an extendable heterogeneous deformable modular robot,” in Intelli-
gent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on. leee, 2008, pp. 883-888.

[13] W. V. Baxter III, P. Barla, and K.-i. Anjyo, “Compatible embedding
for 2d shape animation,” IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 5, pp. 867-879, 2009.

[14] M. Alexa, D. Cohen-Or, and D. Levin, “As-rigid-as-possible shape
interpolation,” in Proceedings of SIGGRAPH 2000. ACM
Press/Addison-Wesley Publishing Co., 2000, pp. 157-164.

[15] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-possible
shape manipulation,” in ACM transactions on Graphics (TOG), vol. 24,
no. 3. ACM, 2005, pp. 1134-1141.

[16] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp.
193-203, 1988.

[17] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinitesi-
mally rigid formations of multi-robot networks,” International Journal
of Control, vol. 82, no. 3, pp. 423-439, 2009.

[18] L. Asimow and B. Roth, “The rigidity of graphs,” Transactions of the
American Mathematical Society, vol. 245, pp. 279-289, 1978.

[19] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh optimization,” in Proceedings of SIGGRAPH 1992. ACM,
1993, pp. 19-26.

5367

