


one computer rendered shape or mesh into another. This

problem is often divided into several sub tasks: finding a

compatible mesh of the two target shapes [13], and perform-

ing a morph that ensures a smooth and natural deformation

between shapes [14,15]. Our problem differs significantly

from this work in that we have a fixed mesh topology, and

our robot has physical and kinematic constraints that are not

present in the computer graphics context.

II. MODEL FORMALIZATION AND PROBLEM STATEMENT

Formally, we model a Linear Actuator Robot (LAR) as a

framework consisting of a graph and vertex positions. The

graph is denoted as G = {V, E}, where V = {1...N}
are the vertices of the graph, and E = {...{i, j}...} are

the undirected edges of the graph. The position of each

vertex is assigned pi ∈ R
3. We will perform only kinematic

analysis of the network, and leave dynamic analysis of the

network for future work. The kinematic state of the robot is

fully represented by the concatenation of all vertex positions

x = [p1x, ..., pnx, p1y, ..., pny, p1z, ..., pnz]
T . We define a

length vector L, which is a concatenated vector of the lengths

of all edges in the graph Lk = ‖pi − pj‖, where an actuator

between nodes i and j is represented by an edge ek ∈ E .

The vector L is of length nL, or the number of edges of the

graph, and can be directly computed from the pair (G, x)
(note that this is the “inverse kinematics” for LAR robots,

which is trivial, as noted by [1]). In contrast, we aim to

present algorithms to control the positions of the vertices

by controlling the lengths of the actuators (the “forward

kinematics”) in a coordinated fashion, to locomote or to

change from an initial shape to a target shape.
We now introduce a notion of feasibility describe the

configuration of the LAR that satisfy physical constraints:
Definition 1: A framework (G, x) is feasible if it meets

two types of physical constraints: (i) the lengths of all bars

fall within a fixed maximum and minimum length range, and

(ii) the actuators do not physically intersect (except at their

endpoints, where they are joined).
The squared length of an actuator e that connects nodes

{i, j}, is quadratic in x and can be computed using a partial

graph Laplacian Lk where Lii = Ljj = 1,Lij = Lji = −1,

and all other entries in L are 0. The constraint can then be

written as follows:

L2
min ≤ xT

[

Lk ⊗ Id
]

x ≤ L2
max. (1)

We note that constraints of the quadratic form xTQx > 0
are convex if and only if Q is positive semi-definite. The

Laplacian matrix is always positive semi-definite, meaning

that the maximum length constraint is convex in the node

positions, while the minimum length constraint is not. Our

algorithms will handle non-convex and nonlinear constraints

by considering only differential constraints, which are linear.
To determine if two actuators cross, the minimum distance

between them must be greater than dmin, a positive diameter

of the actuator assuming that the actuator can be represented

as a cylinder. The minimum distance between actuators

connecting vertices i, j and k, l is denoted as dklij , and can

be expressed as follows:

dklij = min‖(pi+α(pj−pi))−(pk+γ(pl−pk))‖ α, γ ∈ (0, 1)
(2)

These links are not in collision if dklij > dmin. Efficient

algorithms for this computation have been explored previ-

ously [16]. Computing if a configuration of nL links contains

any collisions requires
(n2

L
−nL)
2 collision checks of the type

detailed in equation 2.

Future work will consider a constraint that keeps the

minimum angles between two actuators connected at a vertex

above a minimum value.

A. Problem Statement

In this paper, two primary applications of LAR robots will

be explored: how to change the robot between a wide variety

of shapes, and how to drive such a robot to locomote.

Problem 1: (Locomotion): Move the center of mass of the

robot in a prescribed direction vcm, or along a prescribed

trajectory xcm(τ).
Problem 2: (Shape Matching): Given a target shape Q and

an initial network configuration (G, x0), find a configuration

(G, x∗) such that x∗ is as close as possible to Q, while

(G, x∗) remains feasible. Also determine a path x(t), t ∈
[0, 1] that leads from x0 to x∗ such that x(t) is feasible for

all t ∈ [0, 1].

III. KINEMATICS

This section discusses the kinematics that relate the chang-

ing actuator lengths to the changing vertex positions. Central

to understanding the relationship between node positions and

edge lengths is the concept of the rigidity of a framework.

In a network of linear actuators, each link length imposes

one constraint on the system. These constraints can be

written as follows

Lk = ‖pi − pj‖∀({i, j} ∈ E). (3)

One method of finding the vertex position from the link

lengths is to find vertex positions that satisfy all constraint

equations in the network, up to translation and rotation

of the entire network. Several classes of solutions exist,

based on the rigidity of the underlying graph. If the system

of equations has infinite solutions, the framework is not

rigid, as it is possible to move the system relative to itself

without violating length constraints. A framework is rigid

if there are a discrete number of solutions to the constraint

equations, and all deflections of the system relative to itself

violate the length constraints. A more restrictive, but easier

to test category is infinitesimal rigidity, which means that

all infinitesimal deflections of the system relative to itself

violate the length constraints.

Of particular interest in the design of LARs are minimally

rigid graphs. A minimally rigid graph is a rigid graph where

the removal of any link causes the graph to lose rigidity.

These minimally rigid graphs provide a lower bound on the

number of links necessary to constrain a certain number of

nodes. For a graph in 3 dimensions, at least 3n − 6 edges

are necessary for minimal rigidity, which can be understood

intuitively based on a degree of freedom argument. Each

node in R
3 has three degrees of freedom, and each edge

removes at most one degree of freedom by imposing a

constraint. The final structure has 6 degrees of freedom in its

rigid body motion. An infinitesimally rigid graph in R
3 with

3n− 6 links is minimally rigid, although 3n− 6 nodes does
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The system remains controllable, but now the input space

is constricted such that only combinations of link velocities

that satisfy the constraints can be physically realized. L̇m can

be picked arbitrarily, but L̇s must be chosen to satisfy the

constraint equation. We note that which links chosen as the

master and slave may be partially up to the users discretion,

and could change based on configuration.

This system can be expressed in the standard form of

a linear dynamical system, ẋ = Ax + Bu where A = 0,

u = [L̇T ḞT ]T , and B = H−1. We now make a proposition

regarding the controllability of the system:

Proposition 2: A framework that is infinitesimally rigid is

controllable.

The controllability matrix is given by C =
[B,AB,A2B...An−1B]. Because the matrix B is full

row rank, the entire system is controllable. This means

that for an infinitesimally rigid system, any instantaneous

velocity of the nodes can be achieved given control of the

rate of change of the link lengths and the contact points.

If the contact points are not controlled, (meaning that we

cannot control Ḟ ), then all unconstrained motions of the

system are controllable.

This has the key advantage of allowing us to plan our

motion in terms of node positions, and then use the [RTCT ]T

matrix to determine what input to apply to the actuators.

IV. LOCOMOTION

We define locomotion as controllably moving the center

of mass of the system through the environment. For our pur-

poses, we will neglect any inertial forces. While restrictive,

if the linear actuator network is moving slowly, the inertial

forces will be quite small. We will consider quasistatic

locomotion, meaning that at each instant, the center of mass

of the system remains inside the support polygon defined

by vertices that are on the ground. If, after applying some

control, the center of mass leaves the support polygon, then

the structure rolls about the edge of the support polygon

closest to the new center of mass until the next point is in

contact. This process is repeated until the center of mass is

inside the support polygon.

Several other studies that developed punctuated rolling

type locomotion strategies have focused on developing a gait,

or a repeated periodic input to the actuators that, when re-

solved with environmental forces, causes the robot to move.

Our strategy is different in that our controller solves a series

of quadratic programs at each time step, based on the robots

current configuration, to determine what inputs to apply. This

has the advantage of being able to more readily adapt to

variability in terrain, whereas a gait could become stuck. A

higher level planner, or even a human operator could also

provide high level instructions of how to move the center of

mass, while the proposed control algorithm could determine

how to move the large number of individual actuators to

achieve the desired motion. If a method of detecting failed

actuators was available, this method could also adapt to

failed actuators as it was moving. While these advantages

are important, our strategy requires continuous, centralized

computation, while following a simple gait strategies could

potentially be executed by just having each link follow a

preset length profile.

A. Controlling the Velocity of the Center of Mass

The position of the center of mass is defined in terms of

the mass matrix of the system, M ∈ R
3×3n. if all mass is

concentrated at the nodes of the system.

ẋcom = Mẋ = MH−1L̇ (11)

We can now pick any L̇ that achieves a desired motion of

the center of mass. The maximum rank of M is 3, so for a

system with many vertices MH−1 will have more columns

than rows, and there is freedom in which ẋ is selected to

move the center of mass.

B. Constraint Satisfaction

The previous method does not consider the inherent phys-

ical constraints in the system. The constraints as previously

formulated were based on both the graph, G, and the position

of the vertices, x, and can be written in the form of

f(G, x) > 0. By taking the derivative of the constraints with

respect to time, the following expression is obtained, which

is linear in ẋ.

df(G, x)

dt
=

∂f(x)

∂x
ẋ > 0 (12)

This means that even though the constraints are nonlinear

functions of x, they can be enforced as linear constraints in ẋ
when they are close to being violated. This insight is used in

the following algorithm in order to determine the velocities

for the controllers to apply.

Algorithm 1 Constraint-Violation Free Motion

1: function NEXTCONFIG(G, x, ẋcm)

2: D=[]

3: Compute R(x)
4: Feasible = False
5: while Feasible == False do

6: ẋtemp = DesiredMotion(D, ẋcm)
7: xnew = x+ ẋtempdt
8: Active=0

9: for i = 1 to Nconstraints do

10: if Constraintsi(xnew) < 0 then

11: D=[D;
∂fi(x)
∂x

]

12: Active = Active+ 1
13: end if

14: end for

15: if Active == 0 then

16: Feasible = True
17: end if

18: end while

19: x(t+ dt) = xnew

20: L̇ = R(x)ẋtemp

21: end function

We note that this methodology works for any constraint

that can be expressed as f(G, x). In the case of locomotion,

we also enforce the constraint that vertices do not penetrate

the ground plane. The matrix D is composed of the linearized

version of any active constraints. This algorithm ensures that

x(t + dt ∗ k) for k = 1, 2..., is feasible, because only steps

that satisfy constraints are ever executed. However, there
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is no guarantee that the transition from x(t) to x(t + dt)
also does not violate constraints. With sufficiently small time

steps and small buffers this does not seem to pose a problem.

In this implementation, the constraints that are checked are

the minimum distance between actuators, the maximum and

minimum actuator length, and the constraint that points do

not penetrate the ground plane.

For fast computation,
∂fi(x)
∂x

is computed analytically

before operation. The most difficult part of this algorithm in

terms of computational resources is repeatedly checking the

nonlinear constraints. However, this process could be easily

parallelized in a future implementation.

C. Objective Function

The proposed algorithm relies on solving the DesiredMo-

tion subproblem on line 6 of Algorithm 1. This problem

must return the desired feasible velocity based on some

set of linear constraints. By defining this problem as an

optimization problem, the system will take the action that

instantaneously optimizes some objective, J(ẋ).

min
ẋ

‖J(ẋ)‖2 (13)

subject to

Cẋ = 0, Mẋ = ẋcm, Dẋ ≤ 0

where Cẋ = 0 represents the contact model, Mẋ = ẋcm

constrains the center of mass motion, and Dẋ ≤ 0 enforces

any active constraints.
One intuitive choice for the cost function is

J(ẋ) = ‖L̇‖2 = ‖Rẋ‖. (14)

This penalizes large velocities. In the absence of inequality

constraints, this solution can be obtained through the psuedo

inverse, while a quadratic program solver can be used in the

case of inequality constraints.
For mechanical simplicity, it may be desirable to try and

move as few links as possible. In this case, a sparse solution

could be obtained by minimizing the L1 norm of Rẋ.
Another potential consideration is to try and keep the

network as close as possible to a fixed operating point, such

as attempting to keep all actuators close to a nominal length

lN . However, as the control inputs are in terms of velocities

and not positions, a method is needed to express the objective

of equal length actuators, a function of x, in terms of the

velocities ẋ. The positions and velocities can be related by

a formation controller presented in [17]. This controller is

given by the following control law:

ẋi =
∑

j∈Ni

(‖xj − xi‖ − ln)
(xj − xi)

‖xj − xi‖
(15)

This can be rewritten as ẋ = −Lx + d, where L indicates

the graph Laplacian of the graph, and the vector d encodes

the formation, and is computed at each time step as follows:

di =
∑

j∈Ni

ln(xj − xi)

‖xj − xi‖
. (16)

The cost function could then be expressed

J(ẋ) = ‖ẋ+ Lx− d‖. (17)

D. Results

Results obtained from applying this method with the

objective function presented in (14) to a network of 108

Linear Actuator and 34 nodes are shown in Fig. 3. In order to

demonstrate the ability of the system to follow a trajectory,

the network was controlled to move towards waypoints that

make up the corners of a predefined trajectory, with the

resulting trajectories from using both (14) and (17) as the

cost functions shown in Fig. 4. The variance from the exact

prescribed trajectory result because of the rolling motion

caused when the greedy algorithm caused the center of

mass to leave the support polygon. In order to illustrate the

effectiveness of this method in preventing constraints from

being violated, Fig. 5 shows the lengths of the largest and

shortest actuator at each time step, as well as the minimum

distance between actuators that do not share a connection for

the case of the trajectories shown in Fig. 4. Note that while

the constraints are often active, they are not violated. Videos

of these test are included in the supplementary material.

Fig. 3: The movement of a linear actuator robot using

Algorithm 1 and the objective function given in equation

14. The system is an overconstrained 3D structure with 108

actuators and 34 vertices

This extended test also gives a sense of the robustness

of the network. A downside to the approach of repeatedly

solving the quadratic program is that persistent feasibility is

not guaranteed. In the case where the objective function was

(14), a configuration was reached where the device could

not continue to match the desired center of mass velocity

without violating constraints. With objective (17) completed

the trajectory. It is possible that over the course of the motion,

the network reaches a configuration where it cannot continue

without violating some constraint. In this case, a feasible

solution to the DesiredMotion problem would not exist.

Based on simulation results, the persistent feasibility seems

to strongly depend on the actuator limits, contact modeling,

and other factors. Future work will examine how to analyze

the problem of persistent feasibility.
Note that at each time step these methods instantaneously

minimize an objective while a desired velocity of the center

of mass is obtained. The algorithm can be thought of as

being greedy in trying to move the center of mass. However,

motion is not necessarily optimal for the entirety of the

trajectory. The algorithm does not take into account making

and breaking of contact with the surface, which would be

required to discuss the optimality of an entire trajectory.

V. SHAPE MORPHING

Here we describe an algorithm to move a Linear Actuator

Robot from a given starting configuration to a final con-

figuration that best approximates a target shape. The target
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of these vectors are concatenated to form a matrix B
such that Bx = xm

2) For fixed barycentric coordinate vectors B, find the

unconstrained gradient descent direction to minimize

the function

E =

∥

∥

∥

∥

[

B
S

]

x−

[

q
0

]
∥

∥

∥

∥

2

, (22)

and move the vertices of the robot in this gradient

direction, ẋ∗ = −∇E.

We then use this descent direction together with Algorithm

1 to ensure constraint satisfaction. We use the following

optimization for DesiredMotion in line 6 of the algorithm.

min
ẋ

‖ẋ∗ − ẋ‖

subject to

Dẋ ≤ 0 (23)

Results obtained from matching a network of 108 actuators

and 34 vertices to a cube and an ”L” shaped structure are

shown in figure 7. While providing good results if initialized

well, this method is susceptible to local minima. Future work

will focus on how to initialize the network and other methods

that may better avoid local minima.

Fig. 7: 3D shape morphing. The left column shows the initial

pyramid morphing to a cube, and the right column shows the

pyramid morphing to an “L” shape.

VI. CONCLUSION

We have presented a mathematical definition of a linear

actuator robot, together with the description of constraints

that ensure that a configuration is physically feasible. We

describe the differential kinematics for the system, and draw

connections between graph rigidity and controllability. A

sequential convex optimization algorithm is presented that

allows for the network to move in a direction to decrease

while always remaining feasible. This general approach is

applied to the task of locomotion, as well as to the task

of shape morphing to match a target shape. For this later

application, we see the potential to develop a type of robotic

graphics, in which large numbers of actuators and principles

from computer graphics could enable 3D physical displays.

In the future, we will also explore distributed algorithms

shape morphing and locomotion.
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