














destination, since interactions with obstacles can consolidate

many possible paths down to a single desired path and these

interactions can direct the robot to locations not on a straight

line path from its starting point. Though this principle was

shown for the specific case of a soft growing robot, it applies

more broadly to any robot that passively follows the contour

of an obstacle.

Our path computation method has several limitations. An

assumption of head-on contact (Secs. II and III-D) is that

the robot’s backbone will pivot about the most distal contact

point as its tip slides along an obstacle contour. This is only

true when the robot (i) buckles and (ii) the cause of buckling

is a transverse rather than axial load. These assumptions are

satisfied when the membrane material is sufficiently thin, air

pressure in the backbone is low enough, the free length is

short enough, and the angle of contact is above a few degrees

(Sec. II-B.2). If these are not true, the robot will either bend,

or buckle at a point that is more distal than the last contact

point. Though it will not affect the accuracy of the predicted

tip location for a single obstacle, it could affect the direction

of the most distal segment of the robot (~cn to ~p), and thus

the accuracy of tip predictions for multiple, chained obstacle

interactions (using, for example, Alg. 1). In addition, we do

not consider interactions with compliant obstacles. Future

work will investigate the effect of obstacle compliance on

the accuracy of the model.

The obstacle interaction model presented and experimen-

tally verified in this work can be used to understand and

predict the path of a soft growing robot that is growing while

interacting with obstacles, an important step for deploying

these robots in cluttered environments. Future work will in-

corporate active steering as described in [18] into the obstacle

interaction model. Depending on the layout of obstacles, not

all locations can be reached with open-loop control, making

some active steering critical for full exploration. Thus, we

plan to integrate the proposed algorithm into a planner to find

paths to a destination that reduce the need for active steering

by moving toward obstacles when beneficial, potentially

minimizing the complexity of robot design as well as the

probability that an erroneous steering event occurs. Further,

since obstacles can reduce uncertainty, such a minimally

actuated control scheme could allow soft robots to more

accurately navigate to target locations.
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