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Abstract—For many types of robots, avoiding obstacles is
necessary to prevent damage to the robot and environment.
As a result, obstacle avoidance has historically been an im-
portant problem in robot path planning and control. Soft
robots represent a paradigm shift with respect to obstacle
avoidance because their low mass and compliant bodies can
make collisions with obstacles inherently safe. Here we consider
the benefits of intentional obstacle collisions for soft robot
navigation. We develop and experimentally verify a model
of robot-obstacle interaction for a tip-extending soft robot.
Building on the obstacle interaction model, we develop an
algorithm to determine the path of a growing robot that takes
into account obstacle collisions. We find that obstacle collisions
can be beneficial for open-loop navigation of growing robots
because the obstacles passively steer the robot, both reducing
the uncertainty of the location of the robot and directing
the robot to targets that do not lie on a straight path from
the starting point. Our work shows that for a robot with
predictable and safe interactions with obstacles, target locations
in a cluttered, mapped environment can be reached reliably by
simply setting the initial trajectory. This has implications for
the control and design of robots with minimal active steering.

I. INTRODUCTION

Motivated by goals of safety and efficiency, there is a large
body of research on obstacle avoidance using robotic motion
planning and control [1], [2]. This work includes avoidance
of static and moving obstacles for nonholonomic robots and
robot swarms [3], [4], [5]. However, for soft robots, obstacle
avoidance is often less relevant than it is for rigid-bodied
robots because the low inertia and compliant bodies of soft
robots make obstacle collisions less dangerous for both the
robot and object [6]. In applications such as search and
rescue and inspection, which involve navigation of cluttered
or constrained environments, obstacle interaction may be
unavoidable and even advantageous. In these scenarios, a
system that allows for and utilizes robot-obstacle interaction
is desirable.

Estimating, compensating for, and understanding the im-
pact of contact with obstacles is an important task for serial
manipulators, which has been addressed by a large body
of work [7], [8], [9]. In the area of soft robotics, Coevoet
et al. [10] predict deformations of soft robots caused by
environmental contact, and the model-less control strategy
for tendon-based manipulators of Yip and Camarillo [11]
performs online estimation of a tip Jacobian. For mobile
robots, models have been developed to predict the effects of
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Fig. 1.  We present a heuristic model that enables computation of paths
that involve contact between a soft growing robot and the environment. We
find that obstacles can be beneficial for navigation of a robot because they
serve to passively guide the robot and reduce uncertainty in its motion. This
is illustrated by the region of robot trajectories (top, cyan) being narrowed
to a single path. The extended robot is shown (bottom).

interactions with obstacles while moving through unknown
environments [12], [13].

Other research examines using obstacles to the benefit
of the robot. For example, hyper-redundant snake robots
could actively use obstacles in their environment to propel
the snake robot forward and thereby aid locomotion [14],
[15], [16] . Another class of robot that uses environmental
constraints to benefit mobility is pipe robots. It is only at pipe
junctions that the robots have to make navigation decisions,
otherwise they are directed along a path set by the shape of
their environment [17].

Our work falls into this second category of research
that uses obstacles to benefit the robot. In particular, we
investigate how obstacle collisions affect navigation of a tip-
extending, or “growing,” soft robot (Fig. 1). These robots are
inspired by organisms in nature that grow from the tip, such
as vines and developing neurons, and have rich interactions
with obstacles in their environment. In previous work, we
developed an approach for realizing growth in a robot using
pneumatically driven tip eversion [18] (Fig. 2(a)). Using this
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Fig. 2. (a) A schematic shows the concept of a tip-extending, or “growing”
robot, based on an inverted pressurized tube that everts at the tip. Image of
growing body shown at bottom. Adapted from [18]. (b-d) Model states of
the lumped parameter model consist of the tip point, p, and contact points
C1l,...,Cn. Obstacles in this figure are labeled O1 and O2. Pictures show
the robot at three progressive time steps. From (b) to (c), point p" moves
with the robot’s tip, and ¢; is constant. From (c) to (d), p’ moves with the
robot’s tip and €2 is added to indicate a more distal point of the robot’s
backbone, which is in contact with obstacle O2.

method, we demonstrated extension of the growing robot by
about 250 times the robot body’s original length. Advantages
of movement by growth include a stationary power source,
no sliding friction and the ability to penetrate tight and
cluttered spaces. These advantages are due to the fact that a
growing robot’s body does not need to slide with respect to
its environment to move.

In this paper, we formalize interactions between these tip-
extending robots and planar obstacles (i.e. obstacles that
are extruded along the third dimension). First, Section II
gives a differential kinematic interaction model that describes
infinitesimal motions of the robot when in contact with
an obstacle. Second, Section III describes an algorithm to
compute the predicted path of a robot that is interacting
with obstacles. Then, Section IV presents experiments that
verify the interaction model with various obstacles and show
that the path computation model can predict trajectories of
the soft growing robot in a cluttered environment. Finally,
in Section V, we discuss the implications of our results,
limitations of the model, and future work.

II. OBSTACLE INTERACTION MODEL

In this section, we develop a simple heuristic model that
describes the differential kinematics of a soft growing robot
that is in contact with its environment. A soft growing robot
consists of a pneumatic backbone that can extend in length
and a turning mechanism that allows the growing robot to be
steered from a straight-line trajectory to a destination. Several
mechanisms have been proposed to steer a growing robot,
including asymmetric lengthening of the robot’s backbone
at discrete intervals along its length [18] as well as constant
curvature bending of a growing robot’s backbone induced
by pneumatic artificial muscles that are attached along the

pneumatic backbone’s length [19], [20], [21]. Because we are
interested in understanding obstacle interactions for growing
robots in general, we do not consider active steering in
this analysis. However, this work could be incorporated
into a motion model of an actively steered robot with little
modification.

The growing robot in this paper belongs to the class of
snake-like robots with flexible bodies known as continuum
robots. Precise models of the kinematics and dynamics of
continuum robots are developed using continuum mechanics
theory such as Cosserat rod theory [22] and the finite-
element method [10]. These methods are computationally
expensive and rely on material parameters that may be
difficult to estimate and change with time. A less exact,
but simpler approximate modeling method that has been
successfully used for certain continuum robots are lumped
parameter models. These models characterize a continuum
robot by specially chosen points along the robot’s backbone.
Examples of lumped parameter models of continuum robots
include the unicycle model developed by Park et al. [23] as
well as the bicycle model developed by Webster et al. [24],
both for steerable needles. We also use a lumped-parameter
model in this paper.

A. Model States

Our lumped-parameter model of the growing robot charac-
terizes its state by specifically chosen points along the robot’s
backbone labeled p and ¢1, ..., ¢, (Fig. 2). Point p, called
the tip point, is defined as the position of the robot’s tip and
Cl,...,Cn, called contact points, are defined as the points
of the robot’s backbone that are in contact with obstacles
and are distinct from p. If there is more than one contact
point per obstacle, the model stores the most distal point of
contact between each obstacle and the robot backbone. Note
that n varies with the number of contact points, and that
a new contact point is not generated for an obstacle while
the tip of the robot is in contact with it. The contact points
are ordered most proximal (¢1) to most distal (¢,,). The line
segment from ¢, to p represents the most distal segment of
the growing robot.

B. Differential Kinematics of the Model

1) Free Growth: Free growth occurs when the tip of the
growing robot is not in contact with an obstacle. Because
active turning is not considered, the tip of the robot will
extend in the direction of the most distal segment of the
backbone, which is parallel to p'— ¢,. We write the free
growth differential kinematics simply as

1

=UTs— =
17— Gl

=

p (0= ), ey
where u is the growth speed (rate of change of robot length),
which we assume is controlled. Note that ¢i,...,c, are
always updated to reflect the current contact points between
the growing robot and environment.
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Fig. 3. Interaction of the robot and a obstacle. Robot shown at three
successive time-steps (a-c). In (a), the robot comes into contact with the
obstacle, after which the robot tip starts moving along direction £, parallel
to the obstacle surface, pivoting about point ¢; (shown in b). In (c), the robot
has grown past the obstacle, and resumes free-growth kinematics with an
updated pivot point, ¢2. (d) Obstacle will exert a reaction force, F., that
has a transverse component. This will cause buckling about point ¢, at the
red highlighted surface.

2) Obstacle Contact: In this section, we describe a model
for movement of the growing robot when its tip is in
contact with an obstacle. We assume that the growing robot
will approach the obstacle in free growth as depicted in
Fig. 3. When the growing robot comes into contact with
the obstacle, it will switch from free growing kinematics
to obstacle contact kinematics.

We treat the growing robot as an inflatable beam con-
strained at point ¢, with a reaction force, F"r, applied by
the obstacle to the robot’s tip. F.. acts normal to the obstacle
surface (and ?), and is shown in Fig. 3(d). The reaction force
has components that are both transverse and parallel to the
robot’s backbone (ﬁt, ﬁ(,, respectively), both of which could
cause the inflated beam to buckle. F} will cause a transverse
beam buckling at the base [25], while F:l will cause an axial
buckling half way along the beam [26]. The magnitude of the
critical buckling force for each of these two modes depends
on many parameters, such as the pressure, wall thickness
and material, length, and diameter, but for pressures less
than 15kPa, wall material of low density polyethylene with
thickness on the order of 0.05mm, free length less than
a meter, and diameter on the order of 20 mm, transverse
buckling at the base will occur in any case when the angle
between the obstacle and the robot is greater than several
degrees [27].

Therefore, once a bending moment that is larger than the
compressed air in the tube can resist is applied, the robot’s
backbone will buckle at the point ¢,. The net effect is that the
tip of the robot will move tangent to the obstacle’s surface
(parallel to %), pivoting about point &,. Internal pressure in
the robot will ensure that its tip will remain in contact with
the obstacle until it grows past the obstacle’s edge. When this
happens, the robot will switch back to free growth kinematics
and a new contact point will be added to reflect the new point
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Fig. 4. Growing robot obstacle interaction kinematics with a round obstacle.
The reaction forces of the obstacle will direct the robot to the left (a-b) or
right side (c-d) of the obstacle depending on where the robot initially makes
contact with the obstacle since the obstacle’s contour tangent directions
(denoted by {) spatially vary over the obstacle boundary.

of contact between the robot and the obstacle it grew along.
Figs. 3 and 4 show the robot tip interacting with a wall
and cylinder, respectively. The robot’s tip flows around the
obstacles, and once past, its trajectory is dictated by the
pivot point, ¢,,. Obstacle interaction differential kinematics
are expressed mathematically as
sy PGl @)
t-(p—cn)
where, as before, u represents the controlled growth rate.
The scalar term maps growth rate to tip speed and is needed
because the tip velocity vector is aligned with the obstacle
contour rather than the body’s axis. Note that [|p]| > u
and that when ¢ and the robot’s body are parallel, the tip
speed is equal to the growth rate of the robot and as ¢ and
the robot’s body approach perpendicular orientations, the tip
speed grows without bound. Growth along a perpendicular
surface is a singularity of the obstacle interaction model and
its behavior cannot be predicted in this situation.

III. PATH COMPUTATION

In this section, we describe a recursive algorithm for
integrating the differential obstacle interaction kinematics to
determine the path of the tip of the robot while growing
through a two-dimensional environment with obstacles.

A. Preliminaries

We assume the following information is provided:

o A discretization of R?, Z, and a planar map of the
environment that contains the discretized location of all
obstacles, M C Z

e An obstacle set, O, which consists of the connected
subsets of M. M = Jpco O

o Initial state of the robot: P ¢}

« Final length of the robot, L

We will make use of the following notation:

e O(Z) € O refers to the unique obstacle that contains
point ¥

. Pi’ refers to a line of length L that goes
through points Ei and b and has length L (ie.

ab b—
Pyt = {a+i=5 ue[o,L}})
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Fig. 5. Three cases in Alg. 1. (a) Free growth not disturbed by an obstacle
(corresponds to lines 4 and 5). (b) Most proximal obstacle contact past &,
is a glancing contact (corresponds to lines 10 and 11). (c) Most proximal
contact past ¢y, is a head-on contact (corresponds to lines 8 and 9).

o NBD(Z) refers to the set of neighboring points of Z that
are in O(Z).

e BOR(O) C O refers to the set of points in an obstacle
that are on its border (i.e. they have neighboring points
that are not in the obstacle).

B. Algorithm Overview

Alg. 1 and Fig. 7 provide a high-level overview of the
recursive path computation algorithm. The algorithm takes
as input the initial state of the growing robot (Sec. II-A) as
well as a desired length that the growing robot will reach.
The output of the algorithm is the robot’s tip position when
it has grown to the final length, L.

The integral curve of free growth differential kinematics is
simply the line, P;""”, which goes through the robot tip, 7,
and most distal contact point, ¢&,. L, is the remaining length
to grow (calculated on line 2 of Alg. 1). We let Py = PN M
be the obstacle points that disrupt the free growth trajectory
of the growing robot. P, is computed on line 3 of Alg. 1
and it is depicted in Figs. 5(b) and 5(c).

If Pp = (), the robot will grow to its final length without
intersecting an obstacle, hence its tip path is simply P and
its final tip point is given in line 5 of the algorithm (also

Algorithm 1 Recursive Path Computation Algorithm

Input Model state and desired length
Output Tip position at desired length

procedure PATH(p), Fl’ ooy @nly D)

1:

2 Ly L= || - &l

3 P+ PIST;D ﬂM

4: if P; = () then

5: rfaturn Cn + Lr%

6 end if

7 0 arg minfEPd (f - 571) ' (ﬁ_ En)

8 if P; N O(6) £ BOR(O(0)) then

9: return HEADONCP(, [y, . . ., Cp], 0, L)
10 else

11: PdodeﬂO(6)

12: return GLANCINGCP(P, [¢1, - . ., Cn], Pio, L)
13: end if

14: end procedure

Fig. 6. Two examples of head-on contact paths. In (a), ¢2 is removed from
the system state as lateral deflection due to contact with O(&) causes the
robot backbone to move away from O;. This condition is checked on lines
5 and 6 of Alg. 2. In (b), the robot maintains contact with Oy and pivots
about €2 while its tip slides along O(0).

Compute Free Growth Path

\ 4
A

Path Intersects Map?

Glancing Head-On
Intersection No  Intersection
A 4 A\ 4
Advance one unit Advance by Advance one
with glancing remaining length unit with head-
kinematics and finish on kinematics
Fig. 7. Flowchart of high-level logic in Alg. 1

depicted in Fig. 5 (a)). Otherwise, P N M # () and obstacle
interaction must be considered.

C. Integrating Differential Obstacle Interaction Kinematics

At this point in Alg. 1, we assume P; # (, or in
other words, the robot tip will collide with an obstacle.
We let 6 € P; be the most proximal obstacle intersection
point (computed on line 7 of Alg. 1) and O(5) be the
corresponding obstacle that contains 0. There are two cases
that must be handled: a head-on contact between the tip of
the robot and O(&), which is handled on lines 8 and 9 of
Alg. 1 and a glancing contact of the robot and O(5), which
is handled on lines 10 and 11 of Alg. 1. These two cases are
described in Sec. III-D and Sec. III-E, respectively.

D. Head-On Contact Path

Head-on contact occurs when the tip of the growing robot
is in contact with an obstacle. Two examples of head-on
contact are depicted in Figs. 3 and 4. The kinematics of this
interaction are described by Eq. 2, which says that the robot
tip will simply follow the contour of obstacle O().

To integrate Eq. 2, we find the neighboring points of o
that are on the border of O(0) (line 2 of Alg. 2). Eq. 2
states that p’ will move to one of these points in the direction
that is most aligned with the distal segment of the robot’s
backbone (determined on line 4 of Alg. 2). After sliding the
tip along the obstacle one step, the most distal contact point,
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Fig. 8. Experimental trajectories of robot tip position when the robot comes
into contact with a wall. (a) Schematic showing two example trajectories
and relevant parameters. (b) Experimental trajectories from 20 trials of the
robot. As predicted by the model, the tip follows the wall trajectory, to the
right if 6 is positive, to the left if negative.

Cn, may have moved out of contact with M as depicted
in Fig. 6(a). (Technically, if several obstacles were arranged
perfectly tangent to the robot’s body, multiple contact points
would need to be removed, but we ignore this special-case
for the sake of brevity.) Lines 5 and 6 of Alg. 2 check for this
condition and if it is satisfied, strip the most distal contact
point from the system state. Fig. 6(b) shows a case when the
condition is not satisfied and the most distal contact point
remains in the system state. Finally, Alg. 1 is recursively
called with the updated tip point and updated contact points.

E. Glancing Contact Path

A glancing contact is depicted in Fig. 5(b) and corre-
sponds to the case that the free growth obstructions, P,
are restricted to the border of O(d). A new glancing contact
can arise in three situations: (i) The robot is situated so that
it will glance an obstacle as its tip grows past the obstacle
(a pathological case). (ii) The robot grew past an obstacle it
was in head-on contact with. This case is shown in Fig. 3(c).
(iii) The robot’s backbone comes into contact with a new

Algorithm 2 Head On Contact Path
Input Model state, proximal intersection point,
desired length
Output Tip position at desired length
procedure HEADONCP(p, [¢1, . . ., Cy], 0, L)
BP < NBD(4) N BOR(0(0))
CP «+ [617-~';En]

1:

2

3

4: Op 4= arg maxzepp(Z — 0) - (P — Cn)
5. if P 1 10(0) = 0 then

6 P« [51, ey Gy

7 end if

8 return PATH(G,,,CP, L)

9:

end procedure

7Cn71]

obstacle as a result of lateral movement (for example, due
to interactions with a more distal obstacle).

A glancing contact path is handled by adding a new
contact point to the model state that is computed on line
2 of Alg. 3. It corresponds to the most distal point of O(0)
(Fig. 5(c)). Next we check if the new contact point is more
distal than p. This would be true if a glancing contact arises
from cases (i) or (ii) above. If it is, we move p’ slightly past
(by €) Cp41- This is implemented on lines 3 and 4 of Alg. 3.
Finally, we recursively call the high level path computation
algorithm with the updated model state.

IV. EXPERIMENTAL RESULTS

In this section, we describe experiments that were per-
formed to test both the obstacle interaction model and path
computation algorithm presented in Sec. II and Sec. III. We
start with experiments that test obstacle interactions with
basic shapes such as walls and circles, and end with a more
complex scenario that chains multiple obstacle interactions
together. For all experiments, a 1.6 cm diameter robot made
out of 5 mm thick polyethylene was used. Air pressures
between 7 and 28 kPa were used to propel the robot.

A. Growth Into a Wall

As may be seen from Algs. 1 and 2 and depicted in Fig. 3,
our model predicts a simple behavior from the robot when
it grows into contact with a wall: the tip will slide along
the wall’s contour, pivoting about the most distal contact
point, ¢,. The model predicts that the robot will slide in the
direction that is most tangent to the robot’s approach path.

To test this model, we performed an experiment in which
we repeatedly grew the robot toward a wall from different ap-
proach angles. An overhead camera was used to capture the
trials. Using color-based image segmentation, we extracted
the position of the robot’s tip over the course of each trial
growth, forming a tip trajectory. Fig. 8(a) illustrates two ex-
ample starting angles, with the paths the obstacle interaction
model predicted and their corresponding tip trajectories in
colored lines. Fig. 8(b) shows the results of the experiment,
with 20 trial growths. Trajectories were colored by approach
angle (0° corresponding to perpendicular to the wall). As
predicted, the robot slid along the wall in the direction most
tangent to its approach angle.

Algorithm 3 Glancing Contact Path
Input Model state, free growth obstructions,
desired length
Output Tip position at desired length

1: procedure GLANCINGCP(P, [¢1,...,Cn], P4, L)
2 Cnt1 < argmaxgzep, (T — &) - (F— Cn)

3 if || — Cul| < ||Grt1 — Cnl| then

4: P+ En+1 + 6(5n+1 — €n)

5 end if

6 return PATH(D, [C1, ..., Cnt1], L)

7: end procedure
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Fig. 9.  Experiment of growth through a hole-in-the-wall. (a) Several
predicted trajectories of the tip of the growing robot for different approach
angles are shown at a fixed distance from the hole. When the approach angle
is within the light blue region with solid angle, 6, the robot will grow through
the hole. (b) Acceptable solid angle of initial orientations vs horizontal
distance from hole. (c) Probability of successfully growing through a hole
when there is uniform angular uncertainty (A#) versus horizontal point the
robot is nominally aimed at (), from a fixed location xq. This plot indicates
that with any uncertainty, it is better to aim to the side of the hole than at
it.

B. Growth Through a Hole in a Wall

A major feature of the soft growing robot relevant for
applications such as search and rescue, inspection, and
mining is its ability to penetrate tight spaces [18]. To study
this behavior, we performed an experiment in which we
repeatedly grew the robot through a hole in the wall, with a
width of 6.5 cm (Fig. 9(a)). From Sec. IV-A, we know that if
the robot is angled left of vertical, its tip will move along the
wall to the left. Furthermore, the model predicts that if the
ray extending from p’in the direction of p — ¢, extends into
the hole, it will grow through it. In this way, the obstacle
serves to passively guide the robot’s tip through the hole.
Three predicted tip trajectories are shown in Fig. 9(a).

For a fixed horizontal position, the model predicts that the
robot will successfully grow through a hole if its starting
orientation is within the shaded region in Fig. 9(a). This
region has starting orientations that range from just left of
perpendicular to tan~!(l/d) (aiming at the hole) where [ is
the horizontal distance from the hole and d is the vertical
distance from the wall. Fig. 9(b) shows the solid-angle of
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Fig. 10. Experimental trajectories during interaction of the robot with a
circular obstacle. (a) Robot was grown from a fixed starting position with
varying orientations, shown by color coding. Trajectories after the obstacle
are bimodal, with little variability in each mode. (b) Robot was grown with
fixed starting orientation and varying position. Trajectories after the obstacle
are bimodal, with orientation variability in each mode, but intersect each
other; the circular obstacle transforms uncertainty in approach position to
variability in orientation.

Fig. 11. Obstacle course with tip trajectories computed by Alg. 1. Four
exit positions are labeled as 1, 2, 3, and 4 and correspond to colors yellow,
blue, cyan, and pink, respectively. Depending on the starting orientation,
the robot will end at one of the four locations. Varying over the possible
starting orientations, there are seven transitions between ending points.
Representative trajectories from each orientation regime is shown, colored
to correspond to its ending location.



Fig. 12. Stills from key-points (transitions to/from head-on contact and glancing contacts) during four growths of the robot through an obstacle course.
All growths start from the same position, but different orientations. Each row corresponds to a growth. Obstacle contact points are denoted by blue circles,
and tip positions by pink circles.

starting orientations that will result in successfully growing
through the wall-hole versus normalized horizontal distance
from the wall for both the model and experimental trials.
Fig. 9(c) suggests that in the case that there is uncertainty
in the angle of approach, it is better to aim the robot at
the wall (x/x¢ > 0) rather than aiming directly at the hole
(x/xo = 0).

C. Growth Into a Circular Object

From the perspective of Eq. 2, a circle is a more compli-
cated interaction than a wall, due to its spatially varying
contour tangent, therefore we performed two experiments
to test interaction of our soft growing robot with a circular
obstacle. The first tested growth into a circular obstacle from
a fixed position but varying orientation (Fig 4(a)). Starting
orientations varied from —19° to 19°, with 0° corresponding
to vertical. The second tested growth into a circular obstacle
from a varying position, but fixed orientation (Fig. 4(b)).
Starting horizontal positions ranged from -15 cm to 15 cm,
with 0 cm corresponding to the center of the object.

Both experiments involved repeated trials that were cap-
tured with an overhead camera. As before, the tip trajectory
was computed from the video recordings. For the first
experiment (fixed position, varied orientation), the model
predicts that all starting orientations will end up in one of
two trajectory modes, with zero variability in each mode,
depending on whether the starting orientation was to the
left or the right of vertical. The experimental data supports
this prediction with a standard deviation of final trajectory
orientations of ~ 3° in each mode. Measured orientation
variability is likely due to measurement precision. For the
second experiment (fixed orientation, varied position), the

model predicts that the trajectories after the obstacle will
be bimodal with orientation variability, but little position
variability. Again, the data supports this with a standard
deviation of final trajectory orientations of ~ 16°.

D. Growth Through a Cluttered Environment

To demonstrate the path computation algorithm (Sec. III),
we created a planar environment with obstacles to grow
the robot through. Fig. 11 shows the obstacle course that
was used. It has four possible exits that are labeled 1, 2,
3, and 4. By starting at the same position, but varying
the orientation of the growing robot, its path is changed.
Sweeping the starting orientation over the range of possible
angles, the ending location changes six times. For example,
moving the starting orientation from vertical to just right
of vertical changes the ending location from the lower-
left corner (1) to the lower-right corner (4). Representative
tip trajectories predicted by Alg. 1 are overlaid in Fig. 11.
The path computation algorithm correctly predicted all exit
locations. Fig. 12 shows stills from four growths of the robot
through the cluttered environment, one to each of the four
corners. A deviation from the model is shown in trial 4 when
the robot is pushed away from an obstacle due to more distal
interactions of the robot’s tip. The path of the robot’s tip is
still correctly predicted in spite of this deviation because of
the shape of the map.

V. CONCLUSION AND FUTURE WORK

For robots moving through cluttered environments, it is
inevitable that the robot will interact with obstacles. Rather
than being inherently negative, obstacle interactions can be
advantageous for navigating the growing robot to a particular



destination, since interactions with obstacles can consolidate
many possible paths down to a single desired path and these
interactions can direct the robot to locations not on a straight
line path from its starting point. Though this principle was
shown for the specific case of a soft growing robot, it applies
more broadly to any robot that passively follows the contour
of an obstacle.

Our path computation method has several limitations. An
assumption of head-on contact (Secs. II and III-D) is that
the robot’s backbone will pivot about the most distal contact
point as its tip slides along an obstacle contour. This is only
true when the robot (i) buckles and (ii) the cause of buckling
is a transverse rather than axial load. These assumptions are
satisfied when the membrane material is sufficiently thin, air
pressure in the backbone is low enough, the free length is
short enough, and the angle of contact is above a few degrees
(Sec. II-B.2). If these are not true, the robot will either bend,
or buckle at a point that is more distal than the last contact
point. Though it will not affect the accuracy of the predicted
tip location for a single obstacle, it could affect the direction
of the most distal segment of the robot (¢, to p), and thus
the accuracy of tip predictions for multiple, chained obstacle
interactions (using, for example, Alg. 1). In addition, we do
not consider interactions with compliant obstacles. Future
work will investigate the effect of obstacle compliance on
the accuracy of the model.

The obstacle interaction model presented and experimen-
tally verified in this work can be used to understand and
predict the path of a soft growing robot that is growing while
interacting with obstacles, an important step for deploying
these robots in cluttered environments. Future work will in-
corporate active steering as described in [18] into the obstacle
interaction model. Depending on the layout of obstacles, not
all locations can be reached with open-loop control, making
some active steering critical for full exploration. Thus, we
plan to integrate the proposed algorithm into a planner to find
paths to a destination that reduce the need for active steering
by moving toward obstacles when beneficial, potentially
minimizing the complexity of robot design as well as the
probability that an erroneous steering event occurs. Further,
since obstacles can reduce uncertainty, such a minimally
actuated control scheme could allow soft robots to more
accurately navigate to target locations.

ACKNOWLEDGMENTS

The authors thank Dan Goldman for his contributions to
concept development.

REFERENCES

[1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” The International Journal of Robotics Research, vol. 5, no. 1,
pp- 90-98, 1986.

[2] S. M. LaValle, Planning Algorithms.
2006.

[3] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning:
Steering using sinusoids,” IEEE Transactions on Automatic Control,
vol. 38, no. 5, pp. 700-716, 1993.

[4] J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control
of formations of nonholonomic mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905-908, 2001.

Cambridge University Press,

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

Y. S. Nam, B. H. Lee, and M. S. Kim, “View-time based moving
obstacle avoidance using stochastic prediction of obstacle motion,” in
IEEE International Conference on Robotics and Automation, 1996,
pp. 1081-1086.

D. Rus and M. T. Tolley, “Design, fabrication and control of soft
robots,” Nature, vol. 521, no. 7553, pp. 467475, 2015.

Y.-F. Zheng and H. Hemami, ‘“Mathematical modeling of a robot
collision with its environment,” Journal of Field Robotics, vol. 2, no. 3,
pp- 289-307, 1985.

M. K. Vukobratovié¢ and V. Potkonjak, “Dynamics of contact tasks in
robotics. Part I: general model of robot interacting with environment,”
Mechanism and machine theory, vol. 34, no. 6, pp. 923-942, 1999.
A. Petrovskaya, J. Park, and O. Khatib, “Probabilistic estimation
of whole body contacts for multi-contact robot control,” in /EEE
International Conference on Robotics and Automation, 2007, pp. 568—
573.

E. Coevoet, A. Escande, and C. Duriez, “Optimization-based inverse
model of soft robots with contact handling,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1413-1419, 2017.

M. C. Yip and D. B. Camarillo, “Model-less feedback control of con-
tinuum manipulators in constrained environments,” IEEE Transactions
on Robotics, vol. 30, no. 4, pp. 880-889, 2014.

M. J. Travers, J. Whitman, P. Schiebel, D. I. Goldman, and H. Choset,
“Shape-based compliance in locomotion.” in Robotics: Science and
Systems, 2016.

F. Qian and D. I. Goldman, “The dynamics of legged locomotion
in heterogeneous terrain: universality in scattering and sensitivity to
initial conditions.” in Robotics: Science and Systems, 2015.

A. A. Transeth, R. I. Leine, C. Glocker, K. Y. Pettersen, and P. Lil-
jebéck, “Snake robot obstacle-aided locomotion: Modeling, simula-
tions, and experiments,” I[EEE Transactions on Robotics, vol. 24, no. 1,
pp. 88-104, 2008.

P. Liljeback, K. Y. Pettersen, and O. Stavdahl, “Modelling and control
of obstacle-aided snake robot locomotion based on jam resolution,”
in IEEE International Conference on Robotics and Automation, 2009,
pp. 3807-3814.

P. Liljeback, K. Y. Pettersen, (. Stavdahl, and J. T. Gravdahl, “Snake
robot locomotion in environments with obstacles,” IEEE/ASME Trans-
actions on Mechatronics, vol. 17, no. 6, pp. 1158-1169, 2012.

S.-g. Roh and H. R. Choi, “Differential-drive in-pipe robot for moving
inside urban gas pipelines,” IEEE transactions on robotics, vol. 21,
no. 1, pp. 1-17, 2005.

E. W. Hawkes, L. H. Blumenschein, J. D. Greer, and A. M. Okamura,
“A soft robot that navigates its environment through growth,” Science
Robotics, vol. 2, no. 8, p. eaan3028, 2017.

J. D. Greer, T. K. Morimoto, A. M. Okamura, and E. W. Hawkes,
“Series pneumatic artificial muscles (sSPAMs) and application to a soft
continuum robot,” in IEEE International Conference on Robotics and
Automation, 2017, pp. 5503-5510.

L. H. Blumenschein, L. Gan, J. Fan, A. M. Okamura, and E. W.
Hawkes, “A tip-extending soft robot enables reconfigurable and de-
ployable antennas,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 949-956, 2018.

L. H. Blumenschein, N. S. Usevitch, B. Do, E. W. Hawkes, and A. M.
Okamura, “Helical actuation on a soft inflated robot body,” in IEEE
International Conference on Soft Robotics (RoboSoft), in press, 2018.
D. Caleb Rucker and R. J. Webster, “Mechanics of continuum robots
with external loading and general tendon routing,” Springer Tracts in
Advanced Robotics, vol. 79, no. 6, pp. 645-654, 2014.

W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and G. S.
Chirikjian, “Diffusion-based motion planning for a nonholonomic
flexible needle model,” in IEEE International Conference on Robotics
and Automation, 2005, pp. 4600-4605.

R. J. Webster and B. A. Jones, “Design and Kinematic Modeling of
Constant Curvature Continuum Robots: A Review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661-1683, 2010.
P. Masser, R. Page, and W. Stoner, “Deflections of an inflated circular-
cylindrical cantilever beam,” AIAA journal, vol. 1, no. 7, 1963.

W. Fichter, “A theory for inflated thin-wall cylindrical beams,” 1966.
Z. M. Hammond, N. S. Usevitch, E. W. Hawkes, and S. Follmer,
“Pneumatic reel actuator: Design, modeling, and implementation,” in
IEEE International Conference on Robotics and Automation. 1EEE,
2017, pp. 626-633.



