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The large hierarchy between the Planck scale and the weak scale can be explained by the dynamical 
breaking of supersymmetry in strongly coupled gauge theories. Similarly, the hierarchy between the 
Planck scale and the energy scale of inflation may also originate from strong dynamics, which 
dynamically generate the inflaton potential. We present a model of the hidden sector which unifies these 
two ideas, i.e., in which the scales of inflation and supersymmetry breaking are provided by the dynamics 
of the same gauge group. The resultant inflation model is chaotic inflation with a fractional power-law 
potential in accord with the upper bound on the tensor-to-scalar ratio. The supersymmetry breaking scale 
can be much smaller than the inflation scale, so that the solution to the large hierarchy problem of the 
weak scale remains intact. As an intrinsic feature of our model, we find that the sgoldstino, which might 
disturb the inflationary dynamics, is automatically stabilized during inflation by dynamically generated 
corrections in the strongly coupled sector. This renders our model a field-theoretical realization of what 
is sometimes referred to as sgoldstino-less inflation.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Cosmic inflation not only solves the flatness and horizon prob-
lems of big bang cosmology [1–4], but also explains the origin of 
the primordial density fluctuations that seed the large-scale struc-
ture of the universe [5–9]. To satisfy the upper bound on the 
tensor-to-scalar ratio in the power spectrum of the cosmic mi-
crowave background (CMB) [10], the potential energy during in-
flation must be much smaller than the scale of gravity, �inf =
V 1/4 � 10−2MPl. The smallness of the energy scale of inflation, 
�inf, is nicely explained if the inflaton potential V is generated by 
means of dimensional transmutation in a strongly coupled gauge 
theory. Refs. [11–14] and [15–18] proposed models of small-field 
and large-field inflation along this idea, respectively.

The electroweak scale also suffers from a hierarchy problem, 
vew � MPl, which can be solved by supersymmetry and its break-
ing at a low energy scale [19–22]. Again, a plausible explanation 
for the smallness of the supersymmetry breaking scale, �SUSY �
MPl, would be to presume that supersymmetry is broken dynam-
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ically by strong dynamics [21]. So far, no evidence for superpart-
ners of the standard model particles has been found at the LHC, 
which has brought about the little hierarchy problem, vew �mSUSY
(where mSUSY denotes a typical soft superparticle mass). But super-
symmetry nonetheless solves the large hierarchy problem, predicts 
the unification of the standard model gauge couplings and provides 
a particle candidate for dark matter. For these reasons, we take up 
the attitude that supersymmetry as well as its dynamical break-
ing are some of the leading candidates for new physics beyond the 
standard model.

In this letter, we propose a model of the hidden sector which 
unifies these two ideas of dynamically generated energy scales. 
The model resembles that of Refs. [15–17] during inflation; but 
the potential energy is non-zero even after the end of inflation, 
which breaks supersymmetry. The inflationary dynamics are those 
of chaotic inflation [23] with a fractional power-law potential. The 
model is thus free from an initial conditions problem; and it is 
consistent with the recent PLANCK data [10]. See Refs. [24,25] for 
other models of chaotic inflation with fractional power-law po-
tentials. We also refer to Ref. [13] for an earlier proposal for the 
unified and dynamical generation of the energy scales of infla-
tion and supersymmetry breaking, which results in a scenario of 
hybrid inflation [26,27]. This work has been followed up more 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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recently in Refs. [28,29], where it is demonstrated how the dynam-
ical breaking of supersymmetry at a very high energy scale may 
result in scenarios of F-term and D-term inflation, respectively. Fi-
nally, we refer to Ref. [30], which considers a perturbative model 
(as opposed to our strongly coupled models) in which the infla-
ton potential as well as the breaking of supersymmetry are both 
provided by the F term of a single chiral field.

2. Dynamical chaotic inflation

We first review the idea of dynamical chaotic inflation (DCI) 
proposed in Refs. [15–17]. We start from a strongly coupled gauge 
theory which generates a potential energy proportional to some 
power of the dynamical scale �,

Vdyn ∝ �n. (1)

To this theory, we add a pair of particles, q and q̄, that obtain their 
mass from a coupling to the inflaton field φ,

L = λφ qq̄. (2)

For a large field value of the inflaton, such that λφ � �, the fields 
q and q̄ decouple; and around the dynamical scale the potential 
energy in Eq. (1) is generated. Since the energy scale at which qq̄
decouples depends on the inflaton field value, the dynamical scale 
also depends on it, through the running of the gauge coupling con-
stant,

d

d lnμ

8π2

g2(μ)
= b, (3)

where μ is the renormalization scale. We shall denote the beta 
function coefficient b in the high/low-energy theory with/without 
qq̄ as bHE and bLE, respectively. Then the effective dynamical scale 
�(λφ) follows from

8π2

g2(μ0)
− 8π2

g2(λφ)
= bHE ln

μ0

λφ
,

8π2

g2(λφ)
= bLE ln

λφ

�(λφ)
, (4)

where g formally diverges, g (�) → ∞, at the dynamical scale. 
Matching the running of the gauge coupling constant at the qq̄
mass threshold, we obtain the dependence

� ∝ φ(bLE−bHE)/bLE . (5)

Together with Eq. (1), this results in a power-law potential for the 
inflaton, φp , with the power p given as

p = n
bLE − bHE

bLE
. (6)

This potential is suitable for inflation at large values of the inflaton 
field, φ � MPl, which is nothing but a (dynamical) realization of 
the idea of chaotic inflation.

The implementation of the above scheme into supersymmetric 
theories is straightforward. We start from a model of dynamical 
supersymmetry breaking, add chiral multiplets q and q̄, and cou-
ple these chiral multiplets to the inflaton multiplet �. To avoid the 
eta problem in supergravity [31–34] for a large field value of the 
inflaton, we introduce an approximate shift symmetry � → � + iC
in the Kähler potential [35,36]. The negative contribution to the 
potential energy is suppressed as long as the supersymmetry-
breaking (Polonyi) field has a field value much smaller than the 
Planck scale during inflation.
Table 1
Matter content of the SU (5) × Sp(2) model.

Q D̄ Ū q̄1,2 L

SU (5) 5 5̄ 5̄ 5̄ 1
Sp(2) 4 1 1 1 4

3. Dynamical chaotic inflation and supersymmetry breaking 
unified

In this section, we propose a model of dynamical chaotic in-
flation in which the gauge dynamics also break supersymmetry 
in the true vacuum after the end of inflation. The basic idea is 
the following: We start from a dynamical supersymmetry breaking 
model with a product group G1 × G2, such that supersymmetry is 
broken by the strong dynamics of G2, while the gauge interactions 
of G1 merely lift flat directions by a classical D-term potential. To 
this model, we add G2-charged matter fields � and couple them 
to an inflaton multiplet, W = λ��2. Supersymmetry is broken by 
the gauge dynamics of G2 for large inflaton field values, where 
the new matter multiplets decouple. But for small field values, 
the gauge dynamics flow into a different phase; and the poten-
tial energy proportional to the dynamical scale of G2 and hence 
the inflaton potential vanish. By a suitable choice of matter fields 
and couplings, supersymmetry is instead now broken by the strong 
dynamics of G1 (or a subgroup of G1, if the strong dynamics of 
G2 partially break G1). The supersymmetry breaking scale in the 
vacuum can be naturally much smaller than the scale of inflation, 
provided there is a hierarchy between the dynamical scales of G1
and G2 and/or the breaking of supersymmetry by the strong dy-
namics of G1 involves particularly small couplings (realized, e.g., 
in the form of higher-dimensional operators). In this paper, we 
shall present a simple realization of this idea based on the groups 
G1 = SU (5) and G2 = Sp(2). Other examples will be given else-
where.

3.1. SU (5) × Sp(2) model during inflation

Let us apply the idea described in Sec. 2 to the SU (5) × Sp(2)
model of supersymmetry breaking [37], which is a generaliza-
tion of the so-called 3–2 model [38]. The model is based on 
SU (5) × Sp(2) gauge dynamics and features chiral multiplets Q , 
Ū , D̄ L, q̄1,2 in representations of the gauge group as listed in Ta-
ble 1. Our convention for Sp(N) groups is such that Sp(1) ∼= SU (2). 
The theory contains the following flat directions,

Q Q̄ L, Q Q Q̄ Q̄ , (7)

where Q̄ ∈ {
D̄, Ū , q̄i

}
. The flat directions are lifted by introducing 

the following tree level superpotential,

W tree = yQ D̄L + 1

M∗
Q Q q̄1q̄2 . (8)

In this paper, we concentrate on the case where the dynam-
ical scale of SU (5) is much smaller than that of Sp(2), �SU �
�Sp . Supersymmetry is then broken by the deformed moduli con-
straint [39] of the Sp(2) dynamics, which results in non-zero F 
terms for D̄ and the flat direction Q Q q̄1q̄2. The potential energy 
is given by [40]

V Sp ∼ y3/2
(

�Sp

M∗

)1/2

�4
Sp. (9)

To turn this supersymmetry breaking model into a model of dy-
namical chaotic inflation, we add Sp(2)-charged chiral multiplets �
and couple them to the inflaton field �,
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W = λ��2. (10)

For λ� � �Sp the extra multiplets � decouple from the gauge 
dynamics. The theory then exhibits supersymmetry breaking and 
generates a non-zero potential energy.

The supersymmetry-breaking field is contained in D̄ and 
Q Q q̄1q̄2. Its scalar component, the sgoldstino, is a flat direction at 
tree level, which could potentially disturb the inflationary dynam-
ics. It, however, obtains a mass from strong-coupling corrections in 
the Kähler potential,

m ∼ y7/8
�

9/8
Sp

M1/8∗
, (11)

as is the case in generic models of dynamical supersymmetry 
breaking. Unless y is small, m is much larger than the Hubble 
scale, which provides a field-theoretical realization of the so-called 
sgoldstino-less inflation [41]. This is a generic feature in models 
of dynamical chaotic inflation. We note that the stabilization by 
a Hubble-induced mass would already be enough to ignore the 
sgoldstino dynamics [35,36]; but the stabilization via IR quantum 
corrections is advantageous in the sense that it is independent of 
the unknown UV physics which determine the sign and the mag-
nitude of the Hubble-induced mass.

3.2. Flow into SU (5) model in the vacuum

After inflation, at λ� � �Sp , the extra multiplets � no longer 
decouple, but participate in the gauge interactions just like the 
other Sp(2) flavors. In Refs. [15–17], the fields � as well as their 
couplings were chosen so that the theory reaches a phase of s-
confinement at low energies, where all flat directions are lifted and 
supersymmetry is restored. In this paper, we are instead going to 
chose the matter content and couplings such that supersymmetry 
remains broken even in the true vacuum after inflation.

We add a pair of Sp(2) fundamentals, �1 and �2, and introduce 
a coupling to the inflaton multiplet �,

W = λ��1�2 (12)

The beta function coefficient of the Sp(2) gauge coupling at high 
and low energies is then given as bHE = 5 and bLE = 6, respectively. 
The potential energy during inflation scales like �Sp to the power 
n = 9/2, see Eq. (9), so that the exponent of the inflaton potential 
is given by p = 3/4, see Eq. (6). The dynamical scale around the 
vacuum, �̃Sp , and the dynamical scale during inflation �Sp are 
related to each other as follows, see Eq. (5),

�Sp = �̃Sp

(
λ�

�̃Sp

)1/6

. (13)

Around � = 0, the Sp(2) gauge theory reaches a phase of s-
confinement; and the low-energy theory is described in terms of 
28 gauge-invariant, composite meson fields,

MQ Q , MQ L , MQ �1,2 , ML�1,2 , M�1�2 . (14)

The fields (MQ L, D̄) and (M�1�2 , �) obtain their masses from the 
superpotential in Eqs. (8) and (12), respectively. The inflaton mass 
around the origin is thus given by

m� ∼ λ�̃Sp . (15)

After those fields decouple, the theory still contains the follow-
ing chiral multiplets

MQ Q (10), MQ �1,2 (5), ML�1,2 (1), Ū (5̄), q̄1,2 (5̄), (16)
where the numbers in bold refer to representations of SU (5). The 
superpotential in the s-confined phase reads

W ∼ �̃Sp

M∗
MQ Q q̄1q̄2

+ 1

�̃Sp
M2

Q Q

(
MQ �1ML�2 + MQ �2ML�1

)
. (17)

Here, the second line is generated by the Sp(2) dynamics.
The theory now contains one 10, two 5’s, and three 5̄’s of 

SU (5). By giving masses to two pairs of 5 + 5̄, the theory becomes 
nothing but the chiral supersymmetry breaking model based on 
SU (5), featuring one 10 and one 5̄ of SU (5) [42]. The vacuum en-
ergy is then given by

Vvac ∼ �̃4
SU , (18)

where �̃SU is the dynamical scale of SU (5) in the low-energy ef-
fective theory containing only 10 + 5̄. We may obtain a hierarchy 
between the inflation scale and the supersymmetry breaking scale 
by choosing �̃SU � �Sp .

The SU (5) singlets ML�1 and ML�2 remain massless. We can 
stabilize these fields by introducing Sp(2) singlets and coupling 
them to L�1 and L�2 in the quark picture at high energies. Another 
possibility would be to simply introduce a higher-dimensional op-
erator, W = L�i L� j .

Depending on how we give masses to the two pairs of 5 + 5̄, 
the inflaton potential could be affected. We may, e.g., remove the 
fields MQ �1,2 and q̄1,2 by adding the following superpotential in 
the quark picture,

W = κ1Q �1q̄1 + κ2Q �2q̄2 , (19)

such that the matter content of the SU (5) supersymmetry break-
ing model is provided by the chiral fields MQ Q and Ū . After s-
confinement of Sp(2), those terms give masses to the (MQ �1 , ̄q1)
and (MQ �2 , ̄q2) pairs. At the same time, during inflation and after 
integrating out �1�2, this superpotential also generates the second 
term in Eq. (8) with M∗ ∝ �. When this inflaton-dependent term 
dominates over the �-independent one, the inflaton potential be-
comes the one with p = 3/4 − 1/2 = 1/4. If they are comparable 
to each other, we have p = 1/4 for small field values and p = 3/4
for large field values.

4. Phenomenology of inflation

4.1. CMB observables

Taken all together, the model constructed in Sec. 3 results in an 
inflaton potential of the following form,

V = c

∣∣∣∣∣ e
iα

M∗
+ 1

φ

∣∣∣∣∣
1/2 (

λφ

�Sp

)3/4

�
9/2
Sp . (20)

Here, we choose a convention in which both φ and M∗ are real 
and positive; and the phase difference between these two complex 
parameters is accounted for by the phase α. The parameter c is a 
numerical constant, which we will set to c = 1 in the following. 
The scalar potential is only monotonically increasing for positive 
φ as long as |α/π | ≤ 5/6. For values of |α/π | closer to unity, the 
potential exhibits a false vacuum at small field values.

From the potential in Eq. (20), we derive the predictions for the 
CMB observables, i.e., for the scalar spectral index ns as well as 
for the tensor-to-scalar ratio r. The result of our analysis is shown 
in Fig. 1. The predictions for both parameters only depend on M∗
and α. If there is a clear hierarchy between M∗ and φ for all times 
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Table 2
Charges under the Z2 symmetry that for-
bids the decay of the inflaton into the su-
persymmetry breaking sector.

� D̄ q̄1 L �1 Q Ū q̄2 �2

Z2 − +

during inflation, we simply recover the predictions for chaotic in-
flation based on a standard power-law potential, V ∝ φp ,

ns = 1− p + 2

2Ne
= 1− 0.025

(
p + 2

3/4+ 2

)(
55

Ne

)
, (21)

r = 4p

Ne
= 0.055

(
p

3/4

)(
55

Ne

)
, (22)

where Ne is the number of e-folds at the CMB pivot scale. For 
M−1∗ � M−1

Pl , the M−1∗ term in Eq. (20) clearly dominates over 
the φ−1 term. In this case, we effectively obtain p = 3/4. On the 
other hand, if the M−1∗ term should be suppressed by a small 
coupling in Eq. (8) or by an (approximate) symmetry, such that 
M−1∗ � 0.01M−1

Pl , it can be neglected throughout inflation and we 
can effectively work with p = 1/4. For intermediate values of M∗ , 
the predictions for ns and r are more complicated, as they become 
sensitive to the phase α. This is evident from Fig. 1, where we 
show the variation of ns and r for different values of α. In partic-
ular, we observe how, for fixed α, the variation of M∗ results in 
orbits in the ns–r plane that connect the predictions for p = 3/4
and p = 1/4.

The parametric freedom of our model makes it easy to achieve 
consistency with the recent PLANCK data [10]. Our model pre-
dicts values of r in the r ∼ 0.01 · · ·0.1 range and is, therefore, 
in accord with the current upper bound, r � 0.1. In particular, 
close-to-maximal values of the phase, α � 5/6π , allow to achieve 
rather large values of r, which are going to be tested in future 
CMB experiments. Our model moreover prefers values of ns in the 
ns ∼ 0.97 · · ·0.99 range, which is slightly above the current best-
fit value, ns � 0.965. It is however interesting to note that the 
data still admits such relatively large values of ns , if it is fit by 
a �CDM + r + Neff model, which also accounts for the possibility 
of dark radiation.

For given values of M∗ and α, the observed amplitude of the 
scalar power spectrum, As � 2 × 10−9, fixes the parameter combi-
nation λ1/5�Sp in Eq. (20). We find that, in the entire parameter 
space of interest, this product is required to take a value of around 
λ1/5�Sp ∼ 1016 GeV. At the same time, λ should not be too small, 
since otherwise the matter fields �1 and �2 do not decouple for 
the entire duration of inflation. We demand that λφ � �Sp at all 
times during inflation, which roughly translates into λ � 10−2, see 
Ref. [17] for details. Given this lower bound on λ, we then find 
that the required value of �Sp is always remarkably close to the 
scale of grand unification.

4.2. Reheating

After inflation, the energy density stored in the inflaton field 
must be transferred into standard model particles. In our model, 
the inflaton resides in the supersymmetry breaking sector, such 
that it may dominantly decay into particles in this sector. Those 
particles eventually decay into gravitinos, which easily leads to an 
overproduction of gravitinos. We can forbid the decay mode into 
the supersymmetry breaking sector by symmetry arguments. For 
example, we can impose the Z2 symmetry shown in Table 2, under 
which the inflaton is odd. The particles in the SU (5) model, MQ Q
and Ū , are Z2-even and, hence, the inflaton does not decay into 
these states. The other Z2-odd particles obtain masses proportional 
Fig. 1. Predictions of our model for ns and r, compared with the latest constraints 
according to the PLANCK 2015 data (68% and 95% C. L., TT, TE, EE+ lowP) [10]. The 
blue contours correspond to the standard �CDM + r fit, whereas the red contours 
also take into account the possibility of a non-standard number of relativistic de-
grees of freedom, Neff , at the time of photon decoupling. The color scale indicates 
the value of the phase α, which we vary on a linear scale. For each value of α, we 
vary the mass scale M∗ in the interval [10−3,103

]
MPl on a logarithmic scale. This 

results in orbits in the ns–r plane that smoothly connect the predictions of the pure 
power-law potentials φ3/4 and φ1/4. The local density of points in the above plot 
can be regarded as a measure for how “generic” or “typical” a certain prediction is. 
A low density of points indicates a rather special parameter choice, while a high 
density of points indicates that a prediction is stable under small variations of the 
input parameters M∗ and α. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

to �̃Sp . If λ is sufficiently small, the inflaton ends up being the 
lightest particle in the supersymmetry breaking sector, so that it 
does not decay into any particles in this sector.

The Z2 symmetry also forbids the operator Q Q q̄1q̄2 in Eq. (8). 
Therefore, if the Z2 is an exact symmetry, the M−1∗ term in Eq. (20)
is actually no longer present. In our analysis, this corresponds to 
taking the limit M∗ → ∞, such that the scalar potential reduces to 
an exact power-law with p = 1/4. On the other hand, if the Z2 is 
only an approximate symmetry, it only suppresses the M−1∗ term 
to some degree. In this case, we have to work with the full scalar 
potential in Eq. (20) and the predictions for the CMB observables 
depend on the exact hierarchy between M−1∗ and φ−1, as discussed 
in the previous section.

The inflaton can decay, e.g., via a coupling to the Higgs multi-
plets Hu,d in the minimal supersymmetric standard model, W =
ε �HuHd . In this case, the μ term is generated via Z2 symmetry 
breaking. We may also identify the Z2 with R parity and introduce 
W = εi �Li Hu , where the Li denote the standard model lepton 
doublets [43].

5. Discussion

In this letter, we presented a strongly coupled model of the 
hidden sector based on SU (5) × Sp(2) gauge dynamics. Our model 
combines the ideas of dynamical supersymmetry breaking and dy-
namical chaotic inflation and, hence, explains the hierarchy be-
tween the scales of supersymmetry breaking, inflation, and gravity, 
�SUSY � �inf � MPl. During inflation, supersymmetry is broken 
because of the Sp(2) deformed moduli constraint. This results in 
an inflaton potential that interpolates between the power-law po-
tentials φ3/4 and φ1/4, see Fig. 1. The pseudoflat sgoldstino di-
rection is automatically stabilized during inflation by dynamically 
generated corrections in the Kähler potential. After inflation, the 
Sp(2) sector reaches a phase of s-confinement and supersymmetry 
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is broken by the SU (5) gauge interactions. In fact, at low energies, 
our model reduces to the chiral SU (5) model of dynamical super-
symmetry breaking.

In the SU (5) model, some approximate global symmetries are 
believed to be spontaneously broken, which results in the presence 
of (pseudo-) Nambu–Goldstone bosons. These bosons obtain non-
zero field values in the early universe and may affect the cosmo-
logical history. Among them, the R axion is potentially dangerous, 
since it has a mass squared of O(m3/2�̃SU ) through the explicit 
breaking of R symmetry [44] and because it dominantly decays 
into gravitinos. The gravitino eventually decays into the lightest 
supersymmetric particle (LSP), which may lead to its overproduc-
tion. Assuming that the initial amplitude of the R axion is as large 
as �̃SU , the LSP abundance is estimated as

ρLSP

s
∼mLSP

TRH

MPl

(
m3/2

MPl

)1/4

, (23)

where s is the entropy density and TRH the reheating temperature. 
Here, we imposed the condition that the universe must reach a flat 
Minkowski vacuum after inflation, m3/2MPl ∼ �̃2

SU . Requiring that 
ρLSP/s < 4 × 10−10 GeV, we obtain an upper bound on TRH,

TRH � 109 GeV

(
100TeV

m3/2

)1/4 (
1 TeV

mLSP

)
. (24)

In the SU (5) model, the gaugino masses of the minimal super-
symmetric standard model are generated only via anomaly medi-
ation [45–50], meaning that they are loop-suppressed compared 
to the gravitino mass. The scalar masses, on the other hand, fol-
low from the tree-level Kähler potential and are as large as (or 
larger than) the gravitino mass. For m3/2 ∼ O (100 · · ·1000) TeV, 
our model is thus compatible with the scenario of high-scale su-
persymmetry breaking [46,51,52], which has gained considerable 
interest after the discovery of the standard model Higgs boson 
with a mass of 126 GeV [53,54].

By choosing a different gauge group, we may also obtain a 
model of gauge mediation. For example, we can modify our model 
by gauging only the SU (3) × SU (2) × U (1) subgroup of SU (5). By 
adding an appropriate superpotential term, supersymmetry is bro-
ken via the 3–2 model in the vacuum. The U (1) symmetry may 
be used as the messenger hypercharge [55]. We leave a detailed 
discussion of modifications of our model for future work.
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