




the pupillary signal, which arises due to changes in the illumination

or other persistent conditions; variousmethods have been presented

to compensate for these variations [37, 45, 49, 52].

3 DATA COLLECTION STUDY

We begin by collecting gaze and input data during a human-robot

shared manipulation task. We conducted a data collection study

to investigate eye gaze during human-robot shared manipulation

with and without assistance. Details about this data collection can

be found in prior work [32], but we summarize them here.

3.1 Design

We designed a within-subjects study to simulate eating, an im-

portant activity of daily living. Participants sat in front of a plate

containing three bite-sized morsels of food (marshmallows and

cake, chosen for their spearability) and were asked to spear one of

the three morsels using a fork held in the end-e�ector of a Kinova

MICO robot (Fig. 1). To do so, participants maneuvered the robot

above their desired piece of food using a 2-axis joystick. They then

pressed a button that prompted the robot to autonomously lower

the fork, spear the food, and serve it to the participant.

Because many degrees of freedom (DOFs) are required to com-

plete this task, the robot was operated in modal control, where

each mode corresponded to two DOFs operated by the two joystick

axes (Fig. 2). One control mode moved the robot in the x and �

directions along a single plane parallel to the table; a second control

mode moved the robot in the z direction and also controlled the

yaw rotation of the end e�ector; a third mode controlled the pitch

and roll orientations of the end e�ector.

Participants completed the task multiple times under four levels

of robot assistance:

(1) Teleoperation: participants fully controlled the robot using

the joystick with no assistance

(2) Autonomy: the robot autonomously selected one morsel at

random and speared it without participant intervention

(3) Shared autonomy: the robot attempted to predict the partici-

pant’s target morsel and assist toward retrieving that morsel

using a state-of-the-art shared autonomy framework [33]

(4) Blend: the robot and human provided separate control inputs

which were combined through an arbitration function based

on the robot’s con�dence [15].

Condition (1) mimics how current users of the Kinova MICO

robot primarily interact with their device [48]. Other than some pre-

programmed motions, people generally control the MICO directly

using the same interface they use to drive their powered wheelchair.

Condition (2) represents the opposite end of the assistance spec-

trum: the robot acts completely autonomously. In this mode, the

robot used a wrist-mounted depth camera to identify morsel posi-

tions automatically, then plans and executes a path to the target.

In the two assistance conditions (3 and 4), the robot combines

the user’s joystick control with some autonomous control based

on predictions of the user’s intent. The shared autonomy method

(condition 3) models the user as a partially observable Markov

decision process (POMDP), where user goals are the latent states

and joystick inputs are the observations [33]. The robot then assists

toward goals by solving the POMDP for the optimal action using

hindsight optimization. The blend method (condition 4) calculates

an autonomous robot policy and blends it with the human’s joystick

input based on the robot’s con�dence. Until the robot is within a

con�dence threshold of a morsel, the robot provides no assistance,

so control e�ectively replicates teleoperation.

We collect gaze using the Pupil Labs Pupil [53], a head-mounted

eye tracker, which consists of two cameras worn on a glasses-like

frame. An IR camera records the eye, and a forward-facing camera

records the world. Software provided by the eye tracker locates the

pupil position in the frame of the eye camera and matches it to a

pixel location in the world camera through a degree-2 polynomial

mapping, calibrated by having the user look at speci�c points.

3.2 Procedure

We recruited 24 able-bodied participants from the local community

(11 male, 13 female, ages 19 to 59). Participants were compensated

$10 for their participation. One participant was excluded from the

�nal analysis for failure to follow directions.

First, participants were instructed on how to control the robot

and given about 5 minutes to practice, in order to reduce the e�ect

of novelty. Then, participants completed �ve trials under each level

of robot assistance, for a total of twenty trials. All �ve trials of one

assistance condition were completed sequentially, and the order of

trials was fully counterbalanced across the participant pool. Each

trial lasted between 30 seconds and 6 minutes, depending on user

success at positioning the fork. The eye tracker was individually

calibrated at the beginning of the study and recorded participant

eye gaze during each trial. Between each trial, the robot was reset

to a constant starting position (about 30 cm above the plate).

4 ANALYSIS

We process the joystick control signals for analysis. We also �lter

and process the raw eye tracker data to extract meaningful features.

4.1 Processing Joystick Input Data

To characterize joystick use, we performed the following featur-

ization. First, we isolated periods of active joystick use by �nding

stretches of time during which the magnitude of the joystick input

remained above � = 0.0001 and fusing stretches 0.1 seconds or less

apart. Since joystick motion is highly axis-aligned (see 5.1), we la-

beled each isolated joystick operation with its primary direction

of motion (forward/back or left/right) and its corresponding robot

twist direction (x ,�, z, pitch, yaw, or roll).

4.2 Filtering Gaze Data

Gaze data quality depends heavily on the initial calibration, the

position of the eye tracker over time (i.e., slippage), and individual

user characteristics such as eye lashes, eyelid shape, and makeup.

We collected data from awide variety of participants, some of whom

yielded high quality gaze data and others who did not. In order to

analyze only high quality gaze data, we established �ltering criteria.

First, we excluded any gaze point that the Pupil Labs eye tracker

detected with less than 60% con�dence, as recommended by the

vendor. Next, we de�ned an extended calibration rectangle by taking

the smallest bounding rectangle enclosing all calibration points and

increasing its dimensions by 25% in each direction. Gaze points



near the calibration points (especially those within the convex hull

of calibration points) are likely to be the most accurate; outside the

extended rectangle, the extrapolation is less reliable. In our analysis,

we included only trials with at least 80% of gaze points within the

extended calibration rectangle. This �ltering process left us with

36% of the original trials. While our reasonably stringent require-

ments for quality led to a signi�cant reduction in data, this still

represents 95 minutes of data from 155 trials with 16 participants.

4.3 Extracting Gaze Features

Using the eye tracker, we collected the following data at 30Hz: (1)

raw world camera images, (2) the pixel location of the gaze position

in the world camera image (with detection con�dence) and (3) pupil

position and shape ellipse in pixels (with detection con�dence).

These data can be processed to extract spatio-temporal features of

gaze such as �xations, saccades, and smooth pursuits [37].

Visual �xations maintain the focus of gaze on a single loca-

tion. Fixation duration varies based on the task, but one �xation is

typically 100 − 500ms, although they can be as short as 30ms [29].

Saccades are rapid, ballistic eye movements (usually between 20 −

200ms) that abruptly change the point of �xation. They range in

amplitude from small movements made while reading to much

larger movements made while gazing around a room. Saccades

can be elicited voluntarily, but they occur re�exively whenever the

eyes are open, even when �xating on a target. Smooth pursuit

movements are slower tracking movements of the eyes that keep

a moving stimulus on the fovea. Such movements are voluntary

in that the observer can choose to track a moving stimulus, but

only highly trained people can make smooth pursuit movements

without a target to follow. Vestibulo-ocular movements stabi-

lize the eyes relative to the external world to compensate for head

movements. These re�ex responses prevent visual images from

slipping on the surface of the retina as head position changes.

4.3.1 Stabilizing vestibulo-ocular movements. We stabilized the

videos to compensate for vestibulo-ocular movements. Since par-

ticipants’ heads were not stationary during the trials, these move-

ments (head movements with the eyes �xed) appeared identical

to smooth pursuits (eye movements with head �xed), since each

contain smooth motion of the focal point relative to the head frame.

To counteract this e�ect, we performed ego-motion compensa-

tion [40]. Unlike [40], we used feature-based video stabilization,

which is more reliable when moving objects (i.e., the robot) are

present. Throughout the task, a scale-rotation-translation transfor-

mation between adjacent frames was detected, using FAST feature

points [54] and HOG features [14] to determine correspondences,

and implemented using MATLAB [50] built-in routines. The trans-

formation was detected using MSac [63], and transforms with more

than 10 inliers were accepted. Gaze points were then transformed

to a common reference frame, and these stabilized gaze points were

used for subsequent analysis. Over all trials, 99.96% of frames had

stable transformations. The presence of stabilization reduced the

rate of pursuit detection from 15.1% to 14.0% of all clusters, indicat-

ing that it likely compensated for some vestibulo-ocular motion.

4.3.2 Extracting fixations, saccades, and smooth pursuits. Though

eye movements can be extracted online [36, 59], here we used an

o�ine multistage detection approach, which allowed us to account

for only high-quality gaze signals. Given that all subjects were po-

sitioned roughly at the same distance to the robot arm, no subject-

speci�c parameter optimization was performed.

The approach starts by identifying �xation candidates based

on a Dispersion Threshold Identi�cation (I-DT) [57] �lter with

a minimum duration (durmin ) of 80ms and maximum dispersion

(dismax ) of 25 pixels as implemented by Eyetrace [44].

Although �xations are identi�ed reliably, smooth pursuits are

clustered in multiple adjacent �xations as the dispersion threshold

is continually exceeded during motion. Thus, adjacent �xation can-

didate clusters are merged if the dispersion between their adjacent

gaze positions does not exceed dismax . Resulting clusters are then

classi�ed as





smooth pursuit if ED > 2 ∗ dismax ;

�xation otherwise,

where ED is the Euclidean distance between the �rst and last point

in the cluster; this approach favors a more robust detection of longer

pursuits to the detriment of shorter ones.

This process might merge �xations at the beginning or end of

smooth pursuits into the pursuit cluster. Therefore, smooth pursuit

clusters are analyzed with a second I-DT pass (durmin = 300 ms,

dismax = 5 pixels) to separate and reclassify such �xations correctly.

Remaining non-classi�ed gaze points are set to





saccade if pupil con�dence > 0.6 ;

noise otherwise.

4.3.3 Identifying gaze points in the world. In general we did not

attempt to identify the target of gaze points in the world, for two

reasons. First, wewant to focus our analysis on the dynamics of gaze,

using features that can be extracted online from gaze movements.

There is evidence that gaze dynamics alone can reveal much about

an interaction, and our results support this observation. Second,

our study was not set up to reliably recognize the real-world targets

of gaze. To robustly identify the relevant objects in the scene, either

a detector would need to be trained or the videos would need exten-

sive manual coding, which was beyond the scope of this project. In

the future, �ducial markers can simplify this detection problem in a

constrained environment; robust object detection in unconstrained

environments is an active topic of computer vision research.

However, we did manually classify glances to the goal morsel.

A �xation was labeled a morsel glance if it had a clear preceding

saccade towards the morsel, and a clear following saccade away

from the morsel. Distinguishing morsel glances was di�cult when

the robot operated very close to the plate, as eye motion was small

and hard to distinguish from noise. In these cases, morsel �xations

were labeled only when the robot was not also moving in the di-

rection of the gaze motion and when independent �xations were

detected. Thus, morsel glances were identi�ed conservatively; it is

possible that the coding scheme underestimated the actual num-

ber of morsel �xations that occurred. Morsel glances were only

coded for conditions when robot assistance was always on (shared

autonomy) or never on (teleoperation).

Morsel glances were �rst performed with an automated heuristic

and then con�rmed by manually checking all of the heuristic’s
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Figure 3: Histogram of joystick control signal direction

across all trials, separated by robot assistance condition. Joy-

stick control was highly axis-aligned.

classi�cation against videos of the gaze points. A second coder

manually labeled 10% of the data (randomly selected); the resulting

Cohen’s � = 0.9415,p < 0.001 indicates high inter-rater reliability.

5 RESULTS

Understanding how people operate robots can provide vital insights

that enable better goal recognition for shared autonomy. Using the

data we collected (Section 3), we �rst establish some facts about

how people use the joystick (Sections 5.1 and 5.2). Then, we analyze

pupil size (Section 5.3) and scanpaths (Sections 5.4 and 5.5) to draw

insights about how gaze patterns reveal aspects of the interaction.

5.1 Joystick Control is Axis Aligned

The joystick in this study provides two-axis control in three modes:

x-� mode, z-yaw mode, and pitch-roll mode (Fig. 2). People’s joy-

stick control was strongly aligned to the cardinal directions of

movement. Even though participants could use the joystick to con-

trol two degrees of freedom simultaneously by pushing along a

diagonal (thus, for example, moving the robot in x and � at the

same time), people rarely moved the joystick in anything but a

cardinal direction. Fig. 3 shows the direction and magnitude of

joystick control in teleoperation and shared autonomy conditions.

There is slightly greater variance in the joystick directions in shared

autonomy than in teleoperation. (Standard deviations for shared

autonomy: +x: 0.27, +y: 0.30, -x: 0.28, -y: 0.29; SD for teleoperation:

+x: 0.25, +y: 0.24, -x: 0.22, -y: 0.19; all in radians.)

5.2 Robot Assistance A�ects Joystick Use

There are six possible joystick control directions (x , �, z, roll, pitch,

and yaw). During shared autonomy, most of people’s input to the

joystick was in x and � directions, whereas during teleoperation,

people’s joystick control inputs were more uniformly distributed

(Fig. 4). To identify whether the distribution of direction inputs

is di�erent between robot assistance conditions, we conducted a

�
2 test of homogeneity. We found that there is a signi�cant di�er-

ence in the frequencies of each control direction between shared

autonomy and teleoperation conditions (�2 (5) = 23.376,p = 0.032).

This is not terribly surprising: in shared autonomy, the robot’s

assistance took care of much of the z and rotation movements that

people had to handle themselves in teleoperation mode. Selecting

a particular morsel then became a matter of positioning the robot

along a 2D plane by moving it in the x and � directions. This result,

while unsurprising, underscores the fact that human behaviors are

di�erent during shared autonomy and teleoperation modes.

5.3 Pupil Size Increases During Joystick Use

To understand how people are behaving while they operate a ro-

bot, it can be valuable to monitor their real-time cognitive load.

One available metric is pupil size, which several studies [8, 12, 49]

demonstrate is correlated with a person’s cognitive e�ort. We ana-

lyzed participants’ pupil sizes while operating the robot.

First, we found that people’s pupil sizes varied bywhat assistance

the robot was providing. A one-way repeated measures ANOVA

tested the e�ect of assistance mode on pupil size, independent of

joystick control, and found a signi�cant e�ect (F (3, 18) = 7.774,p =

0.002). Post-hoc analysis with Bonferroni correction revealed no

signi�cant pairwise di�erences, though pupils were smaller in the

autonomous mode than in blend mode at a marginal level (p =

0.061). This discrepancy between signi�cance of main e�ects and

pairwise analysis is likely due to the low numbers of un�ltered trials

in this analysis; the relatively few acceptable trials and statistically

insigni�cant e�ects require con�rmation in future experiments.

Nevertheless, examination of pupil size averages (Fig. 5) suggests

that pupils were generally smaller in the autonomous condition

than any other condition, which could re�ect the increase cognitive

load required when controlling the robot at all.

We also found that people’s pupils were larger while they were

controlling the joystick than while they were not (Fig. 5). This

e�ect held across teleoperation, shared autonomy and blend as-

sistance conditions. (The autonomous condition had no joystick

control, so it was omitted from this analysis.) A two-way repeated

measures ANOVA tested the e�ect of assistance mode (teleoper-

ation, shared autonomy, or blend) and joystick actuation (on or

o�) on average pupil size. There was a signi�cant e�ect of joystick

actuation (F (1, 8) = 9.231,p = 0.016), but not assistance mode

(F (2, 16) = 0.434,p = 0.655). The interaction e�ect was not signif-

icant, though it was marginal (F (2, 16) = 3.180,p = 0.069). Thus,

we propose that the user’s increased pupil size while providing

actual control input re�ects a higher cognitive load, though we look

forward to con�rmation with more data.

The pupil size e�ect, while signi�cant, involves very small di�er-

ences. In prior work, pupil sizes changed about 0.1mm for a 4mm

pupil, a 2.5% increase during cognitive load [8]. We see a similar

2.5% increase in pupil sizes when the joystick was engaged relative

to pupil size during autonomous trials that had no joystick input.

Pupil sizes can also be a�ected by other factors such as ambi-

ent lighting or personal eye characteristics. This study involved a

naturalistic interaction, so we did not rigidly control visual stimuli

during each trial. However, participants experienced each condition

sequentially, so the ambient lighting varied very little between trials.

Since the order of conditions was counterbalanced, we do not be-

lieve there was a systematic e�ect of ambient lighting on pupil size.

Furthermore, because we perform the analysis as a repeated mea-

sures test, we account for any systematic personal characteristics

like emotional state or natural pupil size variability.

In addition, task-based factors other than cognitive e�ort may

have in�uenced pupil size. For example, because the eye tracker

reports pupil sizes as visible pixels in the eye image, it may be that
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Figure 4: Proportion of active control time spent actuating

the joystick in each control direction by robot assistance

type (teleoperation versus shared autonomy).

pupil size di�erences re�ect peripheral versus central gaze. Another

possibility is that blink behaviors occurred more frequently during

non-joystick control periods, and that the eyelid partially occluded

the pupil during blinks which led to smaller sizes detected. To

support the cognitive load hypothesis over the other possibilities,

future data collections should strictly control for lighting, blinks,

and other confounds. Future data collection should also supplement

pupil data with well-established subjective measures of pupil size,

such as the NASA TLX [25], to further establish their validity.

5.4 People Use Visual Feedback For Alignment

By analyzing a participant’s eye behavior during a single trial, we

can identify persistent patterns of gaze behavior. Fig. 6 shows the

vertical position of the participant’s gaze during a teleoperation

trial after stabilization. Since the robot remains above the plate for

the duration of the trial, vertical gaze position is suggestive of what

object the participant is looking at: the participant moves their gaze

up to look at the robot and down to look at the plate. Morsel glances

(see Section 4.3.3) are circled.

The participant begins by glancing at the morsel (at 1s) before

moving the robot at all. Then, the participant performs rough po-

sitioning in x and � (1s-6s). At 7s, the participant begins moving

the robot down (in z) to just above the plate, and we see a clear

pattern wherein the participant alternates looking at the morsel

and at the end-e�ector, likely to monitor their distance visually.

Then, from 12 s to 24 s, the participant rotates the end-e�ector and

looks only at di�erent parts of the robot (presumably to check for

internal collisions). Next (24s-33s), the participant performs a �ne

positioning step in x and �, with repeated glances between the end-

e�ector and the morsel to ensure alignment. Finally (34s-36s), the

participant does some last minor adjustments (with gaze patterns

too small to be distinguished by the �xation classi�er) and triggers

the autonomous spearing action (41s).

We can identify several patterns during this process. First, we

distinguish between two types of morsel glances: planning andmon-

itoring. Monitoring glances are plate glances that occur during

joystick control operations, while the joystick is engaged. Plan-

ning glances are plate glances that occur between joystick control

operations, when the joystick is not engaged.

We found that people perform planning glances to the morsel

before initiating motion, as at the beginning in Fig. 6, in 76% of

trials. This gaze behavior accords with observations during human

manipulation: people saccade to a manipulation target before their
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Figure 5: Pupil sizes by (a) robot assistance mode and (b) the

presence of joystick actuation. Pupil sizes are systematically

larger during joystick actuation. The autonomous assistance

mode is omitted from (b) since there is no joystick control.

hand begins moving [35, 46]. However, we failed to �nd regular

planning glances in a one-second window before each manipulator

movement. For both teleoperation and shared autonomy conditions,

only a small proportion of the one-second windows preceding

joystick control contained any planning glances to the plate (14%

for teleoperation and 13% for shared autonomy). Thus, we see

overall planning behavior, but individual motions do not exhibit

the same e�ect.

A second pattern of gaze behavior suggested by Fig. 6 is that

people use visual feedback (monitoring glances) mainly during

translation. This pattern holds across all teleoperation trials: a one-

way ANOVA showed a signi�cant e�ect of joystick control direc-

tion (x , �, z, pitch, yaw, roll) on frequency of monitoring glances

(F (5, 144) = 4.5,p < 0.001). A post-hoc analysis revealed that peo-

ple displayed signi�cantly more plate-monitoring glances while

operating the joystick in the � direction than roll (p = 0.035), pitch

(p = 0.018), or yaw (p = 0.002) directions. Similarly, people dis-

played signi�cantly more plate-monitoring glances while operating

the joystick in the x direction than the yaw (p = 0.029) direction.

The inferential analysis was performed only for the teleoperation

condition; in shared autonomy, there were almost no instances of

joystick control other than in x-� mode (Section 5.2), so the analy-

sis was not performed. The frequency of morsel glances by robot

motion direction are shown in Fig. 7.

This pattern of people using visual feedback is further estab-

lished by examining the frequency of repeated monitoring glances,

instances of operation during a single mode that contain two or

more monitoring glances. Fig. 6 shows two examples of these re-

peated glances (shaded in the �gure): from 7s to 14s, the participant

repeatedly looks at the morsel to monitor the distance between it

and the end-e�ector, and from 24s to 33s, the participant checks

the x-y position of the morsel while aligning the end-e�ector in

that plane. Across the data, we �nd this pattern occurs more often

during translation than rotation. Speci�cally, a one-way ANOVA

for the e�ect of joystick control mode (x-�, z-yaw, pitch-roll) on fre-

quency of repeated monitoring glance sequences (length ≥ 2) �nds

a signi�cant di�erence (F (2, 16) = 7.810,p = 0.004). A post-hoc

test with Bonferroni correction revealed that repeated monitor-

ing glances occurred signi�cantly more often in x-� mode than

in pitch-roll mode (mean di�erence = 0.292, p = 0.015). However,

the absolute frequency of modes with repeated glances is less than

half in any control mode. We note several possible reasons for this

e�ect. First, during coarse motion far from the morsel, repeated

visual feedback may not be necessary since perfect alignment is



Figure 6: Vertical position of gaze points in theworld image over time froma representative trial.Twist direction colors indicate

which DOF is being controlled by the participant through the joystick; physiological gaze colors and dots indicate detected

�xations, smooth pursuits, and saccades. Plate glances are outlined with either a black square (planning glance) or colored

circle (monitoring glance). Shaded sections highlight two examples of repeated monitoring glances.
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Figure 7: Mean frequency of planning and monitoring

glances to the plate during each robot assistancemode. Mon-

itoring glances are subdivided by joystick control direction.

* indicates signi�cance at the � = 0.05 level; ** at � = 0.01.

not required (in Fig. 6, the participant uses a single planning glance

before the �rst x-y motion but does not monitor during the pro-

cess). Second, when the robot is operating very close to the morsel,

two e�ects may occur: the end-e�ector tip and morsel may be

too close to distinguish separate �xations, as in Fig. 6 near 35 s,

and the participant may be using peripheral vision for feedback

and not using separate glances at all. Thus, while we see that this

pattern occurs more often in translation than in rotation, users

need not deploy it consistently during robot operation. In addi-

tion, when we analyzed repeated monitoring glances by individual

joystick directions, rather than 2-axis mode, we failed to �nd a

signi�cant e�ect. A one-way ANOVA testing the e�ect of joystick

direction (x , �, z, roll, pitch, yaw) on frequency of repeated moni-

toring glances was not signi�cant (F (5, 14.110) = 1.115,p = 0.348,

with Greenhouse-Geisser correction because sphericity assumption

is violated). Qualitatively, it appears that there are many examples

of people switching between x and � directions during sequences

of repeated monitoring glances.

5.5 Scanpath Predicts Assistance Condition

Repetitive patterns, such as the above-mentioned plate glances or

pursuits of the robot trajectory, represent behavioral strategies. In
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Figure 8: Proportion of joystick control sequences of the

same mode that contained multiple (≥ 2) monitoring

glances, subdivided by their control mode. * indicates signif-

icance at the � = 0.05 level.

addition to manually identifying patterns, we performed automatic

classi�cation of one-second-long sequences of eye movement pat-

terns to discern their discriminative capability [43]. Showing that

these subsequences can be distinguished by assistance mode further

demonstrates that eye gaze provides a rich source of information

about the operator’s intentions.

We �rst establish a metric of similarity between the sequences.

We used an edge bundling approach [64] that allows us to visually

adjust the clustering strength (Fig. 9a). This is an extension of the

mean-shift clustering approach for trajectory data and shifts all

trajectories towards the neighboring area of highest trajectory den-

sity. Data of all participants and trials was clustered jointly, and the

number of iterations and advection speed was adjusted manually

as shown in Figure 9a. Next, we performed a k-means assignment

of trajectories to pattern clusters. Occurrence frequencies of cluster

representatives were used as features in a k-nearest neighbor classi-

�er (with k = 3) after feature selection using a fast correlation-based

�lter [70]. Three out of 200 such patterns were found to be most

discriminative between autonomous and teleoperation conditions

(Fig. 9b) and allowed for a classi�cation accuracy of 83% in a leave-

one-out cross-validation. Interestingly, the discriminative patterns

seem to identify transitions between the table and an upper location,

probably the robot arm, during the critical aiming phase. Because

this analysis was conducted on non-stabilized data, the clusters
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