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ABSTRACT

Trust is essential for human-robot collaboration and user adoption

of autonomous systems, such as robot assistants. This paper in-

troduces a computational model which integrates trust into robot

decision-making. Specifically, we learn from data a partially ob-

servable Markov decision process (POMDP) with human trust as

a latent variable. The trust-POMDP model provides a principled

approach for the robot to (i) infer the trust of a human teammate

through interaction, (ii) reason about the effect of its own actions

on human behaviors, and (iii) choose actions that maximize team

performance over the long term. We validated the model through

human subject experiments on a table-clearing task in simulation

(201 participants) and with a real robot (20 participants). The results

show that the trust-POMDP improves human-robot team perfor-

mance in this task. They further suggest that maximizing trust in

itself may not improve team performance.
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Figure 1: A robot and a human collaborate to clear a table.

The human, with low initial trust in the robot, intervenes to

stop the robot from moving the wine glass.

1 INTRODUCTION

Trust is essential for seamless human-robot collaboration and user

adoption of autonomous systems, such as robot assistants. Mis-

guided trust in robot autonomy may lead to over-reliance or under-

reliance with negative effects on task performance [20]. For exam-

ple, in our study, a human participant and a robot collaborated to

clear a table (Figure 1). Although the robot was fully capable of

handling all objects on the table, inexperienced participants often

stopped the robot from moving the wine glass initially. They did

not trust the robot and felt that it was too risky to let the robot

move the glass. Clearly human trust in the robot directly affected

the perception of risk [30] and consequently, the interaction.

To enable more fluent human-robot collaboration, we propose

a computational model that integrates human trust into robot de-

cision making. Since human trust is not directly observable to the

robot, we model it as a latent variable in a partially observable

Markov decision process (POMDP) [16]. Our trust-POMDP model

contains two key components: (i) a trust dynamics model, which

captures the evolution of human trust in the robot, and (ii) a human

decision model, which connects trust with human actions. Our

POMDP formulation can accommodate a variety of trust dynamics

and human decision models. Here, we adopt a data-driven approach

and learn these models from data.

Although prior work has studied human trust elicitation and

modeling [9, 19, 31, 32], we close the loop between trust modeling
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human players in game AI applications [21]. The model has been

successfully applied to real-world tasks, such as autonomous driv-

ing where the robot car interacts with pedestrians and human

drivers [1, 2, 10]. When the state and action space of the POMDP

model become continuous, one can use hindsight optimization [14],

or value of information heuristics [29], which generate approximate

solutions but are computationally more efficient.

Nikolaidis et al. [26] proposed to infer the human type or prefer-

ence online using models learned from joint-action demonstrations.

This formalism recently extended from one-way adaptation (from

robot to human) to human-robot mutual adaptation [24, 25], where

the human may choose to change their preference and follow a

policy demonstrated by the robot in the recent history. In this work,

we provide a general way to link the whole interaction history with

the human policy, by incorporating human trust dynamics into the

planning framework.

3 TRUST-POMDP

3.1 Human-robot team model

We formalize the human-robot team as a Markov Decision Pro-

cess (MDP), with world state x ∈ X , robot action aR ∈ AR, and

human action aH ∈ AH. The system evolves according to a proba-

bilistic state transition function p(x ′ |x ,aR,aH) which specifies the

probability of transitioning from state x to state x ′ when actions

aRand aH are applied in state x . After transitioning, the team re-

ceives a real-valued reward r (x ,aR,aH,x ′), which is constructed to

elicit the desirable team behaviors.

We denote byht = {x0,a
R
0 ,a

H
0 ,x1, r1, . . . ,xt−1,a

R
t−1,a

H
t−1,xt , rt }

∈ Ht as the history of interaction between robot and human until

time step t . In this paper, we assume that the human observes the

robot’s current action and then decides his own action. In the most

general setting, the human uses the entire interaction history ht
to decide the action. Thus, we can write the human’s (possibly sto-

chastic) policy as πH(aH
t
|xt ,a

R
t
,ht ) which outputs the probability

of each human action aH
t
.

Given a robot policy πR, the value, i.e., the expected total dis-

counted reward of starting at a state x0 and following the robot and

human policies is

v(x0 |π
R
,πH) = E

a
R
t
∼π R

,aH
t
∼πH

∞∑

t=0

γ t r (xt ,a
R
t ,a

H
t ), (1)

and the robot’s optimal policy πR
∗ can be computed as

πR
∗ = argmax

π R

v(x0 |π
R
,πH). (2)

In our case, however, the robot does not know the human policy

in advance. It computes the optimal policy under expectation over

the human policy:

πR
∗ = argmax

π R

E
πH

v(x0 |π
R
,πH). (3)

Key to solving Eq. 3 is for the robot to model the human policy,

which potentially depends on the entire history ht . The history

ht may grow arbitrary long and make the optimization extremely

difficult.

3.2 Trust-dependent human behaviors

Our insight is that in a number of human-robot collaboration sce-

narios, trust is a compact approximation of the interaction history ht .

This allows us to condition human behavior on the inferred trust

level and in turn find the optimal policy that maximizes team per-

formance.

Following previous work on trust modeling [32], we assume that

trust can be represented as a single scaler random variable θ . Thus,

the human policy is rewritten as

πH(aHt |xt ,a
R
t ,θt ) = πH(aHt |xt ,a

R
t ,ht ). (4)

3.3 Trust dynamics

Human trust changes over time.We adopt a common assumption on

the trust dynamics: trust evolves based on the robot’s performance

et [19, 32]. Performance can depend not just on the current and

transitioned world state but also the human and robot’s actions

et+1 = performance(xt+1,xt ,a
R
t ,a

H
t ). (5)

For example, performancemay indicate success or failure of the ro-

bot to accomplish a task. This allows us to write our trust dynamics

equation as

θt+1 ∼ p(θt+1 |θt , et+1). (6)

We detail in Section 4 how trust dynamics is learned via interaction.

3.4 Maximizing team performance

Trust cannot be directly observed by the robot and therefore must

be inferred from the human’s actions. In addition, armed with a

model, the robot may actively modulate the human’s trust for the

team’s long-term reward.

We achieve this behavior by modeling the interaction as a par-

tially observable Markov decision process (POMDP), which pro-

vides a principled general framework for sequential decision mak-

ing under uncertainty. A graphical model of the Trust-POMDP and

a flowchart of the interaction are shown in Figure 3.

To build trust-POMDP, we create an augmented state space

with the augmented state s = (x ,θ ) composed of the fully-observed

world state x and the partially-observed human trust θ . We maintain

a belief b over the human’s trust. The trust dynamics and human

behavioral policy are embedded in the transition dynamics of trust-

POMDP. We describe in Section 4 how we learn the trust dynamics

and the human behavioral policy.

The robot now has two distinct objectives through its actions:

• Exploitation.Maximize the team’s reward

• Exploration. Reveal and change the human’s trust so that

future actions are rewarded better.

The solution to a Trust-POMDP is a policy that maps belief

states to robot actions, i.e., aR = πR(bt ,xt ). To compute the optimal

policy, we use the SARSOP algorithm [18], which is computationally

efficient and has been previously used in various robotic tasks [2].

4 LEARNING TRUST DYNAMICS AND
HUMAN BEHAVIORAL POLICIES

Nested within the trust-POMDP is a model of human trust dynam-

ics p(θt+1 |θt , et+1), and behavioral policy πH(aH
t
|xt ,a

R
t
,θt ). We
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Figure 3: The trust-POMDP graphical model (left) and the

team interaction flowchart (right). The robot’s action aR
t
de-

pends on the world state xt and its belief over trust θt .

adopted a data-driven approach and built the two models for the ta-

ble clearing task from data collected in an online AMT experiment.

Suitable probabilistic models derived via alternative approaches

can be substituted for these learned models (e.g., for other tasks

and domains).

4.1 Data Collection

Table clearing task. A human and a robot collaborate to clear

objects off a table. The objects include three water bottles, one fish

can, and one wine glass. At each time step, the robot picks up one

of the remaining objects. Once the robot starts moving towards

the intended object, the human can choose between two actions:

{intervene and pick up the object that the robot is moving towards,

stay put and let the robot pick the object by itself}. This process is

repeated until all the objects are cleared from the table.

Each object is associatedwith a different reward, based onwhether

the robot successfully clears it from the table (which we call SP-

success), the robot fails in clearing it (SP-fail), or the human inter-

venes and puts it on the tray (IT). Table 1 shows the rewards for

each object and outcome. We assume that a robot success is always

better than a human intervention, since it reduces human effort.

Additionally, there is no penalty if the robot fails by dropping one

of the sealed water bottles, since the human can pick it up. On the

other hand, dropping the fish can results in some penalty, since

its contents will be spilled on the floor. Breaking the glass results

in the highest penalty. We see that staying put when the robot

attempts to pick up the bottle has the lowest risk, since there is no

penalty if the robot fails. On the other hand, staying put in the case

of the glass object has the largest risk-return trade off. We expect

the human to let the robot pick up the bottle even if their trust is

low, since there is no penalty if the robot fails. On the other hand,

if the human does not trust the robot, we expect them to likely

intervene on glass or can, rather than risking a high penalty in case

of robot failure. When we conduct the experiment, we assume that

the robot never fails in the table clearing task, and this information

is unknown to the participants. One can use the same approach as

described to learn trust dynamics for robot failures as well.

Table 1: The reward function R for the table-clearing task.

Bottle Fish Can Wine Glass

SP-success 1 2 3

SP-fail 0 −4 −9

IT 0 0 0

Table 2: Muir’s questionnaire.

1. To what extent can the robot’s behavior be predicted from

moment to moment?

2. To what extent can you count on the robot to do its job?

3. What degree of faith do you have that the robot will be able

to cope with similar situations in the future?

4. Overall how much do you trust the robot?

In this work, we choose the table clearing task to test our trust-

POMDP model, because it is simple and allows us to analyze ex-

perimentally the core technical issues on human trust without

interference from confounding factors. Note that the primary ob-

jective and contribution of this work are to develop a mathematical

model of trust embedded in a decision framework, and to show that

this model improves human robot collaboration. In addition, we be-

lieve that the overall technical approach in our work is general and

not restricted to this particular simplified task. What we learned

here on the trust-POMDP for a simplified task will be a stepstone

towards more complex, large-scale applications.

Participants. For the data collection, we recruited 81 participants

through Amazon’s Mechanical Turk (AMT). The participants are all

from United States, aged 18-65 and with approval rate higher than

95%. Each participant was compensated $1 for completing the study.

To ensure the quality of the recorded data, we asked all participants

an attention check question that tested their attention to the task.

We removed 5 data points either because the participants failed

on the attention check question or the their data were incomplete.

This left us 76 valid data points for model learning.

Procedure. Each participant is asked to perform an online table

clearing task together with a robot. Before the task starts, the par-

ticipant is informed of the reward function in Table 1. We first

collect the participant’s initial trust in the robot. We used Muir’s

questionnaire [23], with a seven-point Likert scale as a human trust

metric, i.e., trust ranges from 1 to 7. The Muir’s questionnaire we

used is listed in Table 2. At each time step, the participant watches a

video of the robot attempting to pick up an object, and are asked to

choose to intervene or stay put. They then watch a video of either

the robot picking up the object, or them intervening based on their

action selection. Then, they report their updated trust in the robot.

We are interested in learning the trust dynamics and the human

behavioral policies for any state and robot action. However, the

number of open-loop 1 robot policies is O(K !), where K is the

number of objects on the table. In order to focus the learning on

a few interesting robot policies (i.e. picking up the glass in the

beginning vs in the end), while still covering a large space of policies,

we split the data collection process, so that in one half of the trials

1When collecting data from AMT, the robot follows an open-loop policy, i.e., it does
not adapt to the human behavior.
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