
PSI4NUMPY: An Interactive Quantum Chemistry Programming
Environment for Reference Implementations and Rapid
Development
Daniel G. A. Smith,*,† Lori A. Burns,† Dominic A. Sirianni,† Daniel R. Nascimento,‡

Ashutosh Kumar,¶ Andrew M. James,¶ Jeffrey B. Schriber,§ Tianyuan Zhang,§ Boyi Zhang,∥

Adam S. Abbott,∥ Eric J. Berquist,⊥ Marvin H. Lechner,# Leonardo A. Cunha,□ Alexander G. Heide,Δ

Jonathan M. Waldrop,∇ Tyler Y. Takeshita,○ Asem Alenaizan,† Daniel Neuhauser,◊ Rollin A. King,Δ

Andrew C. Simmonett,● Justin M. Turney,∥ Henry F. Schaefer,∥ Francesco A. Evangelista,§

A. Eugene DePrince III,‡ T. Daniel Crawford,¶ Konrad Patkowski,∇ and C. David Sherrill†

†Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational
Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
‡Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
¶Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
§Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
∥Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
⊥University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
#Department of Chemistry, Technical University of Munich, 80333 Munich, Germany
□The Technical Institute of Aeronautics, Saõ Jose ́ dos Campos, 12228-900, Brazil
ΔDepartment of Chemistry, Bethel University, St. Paul, Minnesota 55112, United States
∇Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
●National Institutes of Health - National Heart, Lung and Blood Institute, Laboratory of Computational Biology, 5635 Fishers Lane,
T-900 Suite, Rockville, Maryland 20852, United States
○Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
◊Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States

*S Supporting Information

ABSTRACT: PSI4NUMPY demonstrates the use of efficient
computational kernels from the open-source PSI4 program
through the popular NUMPY library for linear algebra in Python
to facilitate the rapid development of clear, understandable
Python computer code for new quantum chemical methods,
while maintaining a relatively low execution time. Using these
tools, reference implementations have been created for a
number of methods, including self-consistent field (SCF), SCF
response, many-body perturbation theory, coupled-cluster
theory, configuration interaction, and symmetry-adapted
perturbation theory. Furthermore, several reference codes
have been integrated into Jupyter notebooks, allowing
background, underlying theory, and formula information to be associated with the implementation. PSI4NUMPY tools and
associated reference implementations can lower the barrier for future development of quantum chemistry methods. These
implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the PSI4 program.

1. INTRODUCTION

The inherent computational expense of most quantum
chemical (QC) methods creates substantial pressure for highly
optimized implementations. This is a challenge for ongoing
research in quantum chemistry as new theoretical methods are

typically complex and nontrivial to implement correctly.

Fundamentally, computationally efficient codes require a low-

Received: March 21, 2018
Published: May 17, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 3504−3511

© 2018 American Chemical Society 3504 DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

D
ow

nl
oa

de
d

vi
a

U
N

IV
 O

F
G

EO
R

G
IA

 o
n

Ju
ly

 3
0,

 2
01

8
at

 1
2:

53
:1

2
(U

TC
).

Se
e

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00286
http://dx.doi.org/10.1021/acs.jctc.8b00286

level programming language like C, C++, or Fortran and several
stages of code profiling, testing, and optimization to reach
production quality. Therefore, a method’s first implementation
is typically a messy computer program that is further
convoluted over the years by the demands of novel architecture
and expansion of features. Additionally, development is often
carried out by graduate students not yet proficient in
programming, resulting in unconventional coding styles. Future
researchers seeking to extend or enhance a method previously
developed in-house are often faced with the daunting prospect
of deciphering a quite complex existing code.
Still more challenging is implementing or extending an

existing method sourced solely from the literature. Often, a
paper describing a new quantum chemical method that
properly focuses on scientific detail falls short on algorithmic
or numerical detail sufficient for independent reimplementa-
tion. Indeed, methods are so complex that the original
equations frequently include typos, which are generally tracked
through institutional lore rather than published errata. Addi-
tionally, modern approaches often employ combinations of
approximations with multiple numerical cutoffs, exacerbating
the reproducibility problem. This paradigm is illustrated within
a recent comment,1 whereby several corrections to equations
originally published in 2011 for a two-level semiempirical
method2 were proposed after being re-engineered to reproduce
values computed using a binary program distributed with the
original publication. Even facilitated through private commu-
nication with the method’s author, this cycle of rediscovery and
reimplementation is both highly nontrivial and unsustainable.
In the specific case of ref 2, fortunately, an open-source
program3 has been made available by the commenting author
that implements the method and proposed changes, so that
further extensions of the method can proceed with this
program as a reference.

Such reference implementations (easy-to-read, unoptimized
computer programs solely targeting the correct result) can be a
helpful initial step toward developing or understanding a
complex method, yet they are not widely available in quantum
chemistry. To our knowledge, reference implementations and
benchmarking have only been performed in a large-scale way
for density functional theory (DFT) exchange-correlation
kernels4 and periodic boundary condition DFT with
pseudopotentials.5 One factor limiting more widespread use
of reference implementations for quantum chemistry is that
methods are often so computationally demanding that a basic,
unoptimized implementation is too slow for computations on
even the smallest molecules. What is needed is an alliance of a
QC code that is easy to peruse and manipulate with underlying
non-QC routines that are fast enough for testing on nontrivial
molecules.
Here we present PSI4NUMPY, a framework for the creation of

clear, readable reference implementations of quantum chemical
methods and for the rapid development of new methods.
PSI4NUMPY takes advantage of PSI4’s6 application programming
interface (API) that makes efficient computational kernels
written in C++ available from Python, a language that is easy to
learn and has become very popular in scientific computing. As a
high-level language, Python allows complex tasks to be specified
with relatively few lines of code. PSI4NUMPY capitalizes on the
straightforward conversion of PSI4 tensors to NUMPY,7 a
numerical linear algebra package and array manipulation tool.
NUMPY’s own low-level back-end is written in C to ensure that
all data arrays can use the optimized Basic Linear Algebra
Subprograms (BLAS) library8 for common linear algebra
operations. For working with arrays in Python, NUMPY provides
greater efficiency over native list and array representations. In
addition, NUMPY’s tensor syntax allows many operations to be
completed without writing “for” loops, leading to more concise

Figure 1. PSI4NUMPY draws linear algebra tools from NUMPY and fundamental quantum chemistry structures from PSI4 to bring together a practical
and convenient environment for code development, verification, and exploration. The most important data structures and functions are shown for
NUMPY and PSI4 as well as representative tutorial and reference implementations presently in PSI4NUMPY.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

3505

http://dx.doi.org/10.1021/acs.jctc.8b00286

code. PSI4NUMPY has been packaged for minimal setup,
requiring only several minutes, with no preinstalled compilers
necessary on 64-bit Linux, Mac, and Windows. Here we
introduce the main elements of the PSI4NUMPY framework and
illustrate them with a substantial collection of reference
implementations for standard quantum chemical methods and
numerical techniques. PSI4NUMPY is built entirely on Free and
Open Source Software (FOSS)9 as shown in Figure 1 to ensure
a barrierless entry to quantum chemistry programming.
There have been a number of tensor libraries for quantum

chemistry that also provide code for tensor contractions that
are easy to read and that follow the structure of the original
equations, including the Tensor Contraction Engine,10 the
Cyclops Tensor Framework,11 and LibTensor.12 These libraries
may be more optimal than NUMPY for large-scale tensor
operations, and, indeed, many of them also work for
distributed-parallel computing. However, we believe NUMPY is
a better choice for reference implementations and rapid
prototyping because it is broadly familiar in scientific
computing, can be installed using canonical Python package
managers already available on user systems, and does not
require compilation so that users can make changes and
evaluate the results in a matter of seconds. Along similar lines
to PSI4NUMPY, the PySCF13 package also employs NUMPY and
interfaces to C and C++ packages. However, PySCF is a
quantum chemistry package, rather than independent reference
implementations, and leans toward performance over read-
ability. The PSI4NUMPY project explicitly makes the choice to
prioritize readable and clear code with the understanding that
the code will be nonoptimal for any operations beyond those
that do make use of PSI4’s internal routines for computationally
intensive operations.
Several of the reference implementations have been

augmented by tutorial-style introductions to the relevant
theory. The PSI4NUMPY tutorial collection includes self-
consistent field (SCF), DFT,14 many-body perturbation theory
(MBPT),15 symmetry-adapted perturbation theory
(SAPT),16,17 coupled-cluster (CC),18 and configuration inter-
action (CI)19,20 theories, with additional sections detailing the
theory and implementation of linear response, geometry
optimizations, and Verlet integrators. It is our hope that
PSI4NUMPY and the accompanying reference code will lower
the barrier to implementing and understanding quantum
chemical methods.
Shortly before submission, the authors chanced upon the

Quantum Chemistry Program Exchange (QCPE),21 whose
goals of software (particularly self-contained software)
accessibility, algorithm explication, and free software “publish-
ing” PSI4NUMPY shares. The general tools embraced by
PSI4NUMPY (GitHub for communication, NUMPY for linear
algebra, Python for interfacing, and Jupyter for illumination)
further allow rapid prototyping and a gentle learning curve. As
part of PSI4NUMPY’s FOSS philosophy, we actively encourage
the community to submit new theories to the open GitHub
repository through canonical GitHub pull-request processes.
Contributions must minimally provide some metadata, some
checks to ensure the submitted code is correct, and be buildable
and testable through a continuous integration service.
Otherwise, contributions can be as independent of or reliant
upon PSI4 and NUMPY as authors need to illustrate their
approach. In this manner, PSI4NUMPY can be thought of as a
modern successor to QCPE built to serve the flexible needs of
the community.

2. BASIC TOOLS

The basic premise of PSI4NUMPY is to leverage PSI4 to generate
quantum chemistry-specific quantities and the NUMPY library7

for all other tensor manipulations. The latest version of PSI4
(version 1.1; May 2017) has added the option to import PSI4 as
a Python module. In this way, both the PSI4 and NUMPY
libraries can be loaded into a single Python script and used in
cooperation.
A key capacity in this enterprise is seamless translation

between the NUMPY and PSI4 data classes. For example,
converting from a NUMPY array to a PSI4 matrix and back again
can be easily accomplished:

At the core of this procedure is NUMPY’s array_inter-
face22 protocol, a basic specification for dense matrices
primarily consisting of

1. the starting memory location for an in-memory array

2. the overall “shape” of the array [(n,) for a vector, (n, m)

for a matrix, etc.]
3. the type of data involved (double64, int32, etc.)

This specification is compact and widely used by the
scientific Python community, including by SciPy23 for a
numerical integration and optimization, Dask24 for distributed
computing, and Tensorflow25 for GPU tensor operations.
Using the array_interface, it becomes straightforward
to allow NUMPY access to PSI4 data classes, enabling both PSI4
and NUMPY to access and manipulate the same data. For
example, the statement below will overwrite the data of the PSI4
Matrix class in place with a random NUMPY array:

In this way, the typical separation between general tensor
frameworks and custom quantum chemistry data structures is
removed.
A description of the full set of capabilities of the

array_interface is available in the PSI4 documentation:
http://psicode.org/psi4manual/master/numpy.html.

2.1. Wavefunction Objects. In PSI4 all built-in
methodologies have the option to return a Wavefunction
object that holds basic information about the previous
computation or, in some cases, holds functions for readily
computing advanced quantities. Obtaining the Wavefunc-
tion object in this manner is straightforward:

Once a Wavefunction object is obtained, a variety of
attributes can be queried using standard Python syntax:

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

3506

http://psicode.org/psi4manual/master/numpy.html
http://dx.doi.org/10.1021/acs.jctc.8b00286

In addition to generating useful information after a
computation, a Wavefunction object can also be passed
as reference state to a further computation. For PSI4NUMPY,
this means that reference implementations of post-Hartree−
Fock methods (MPn, CCSD, etc.) need not (but may) recode
their own Hartree−Fock program as all required quantities are
available from PSI4 through production-quality routines. This
simultaneously reduces code duplication and increases read-
ability, both of which are cornerstones of the PSI4NUMPY
project.
2.2. Integrals. PSI4 offers a wide selection of efficient C++

tools accessible directly in Python. These tools are largely
object-based and capable of storing quantities in memory or on
disk. One such object is the libmints6 library, which is
currently the primary interface for computing one- and two-
electron integrals in PSI4. This library is accessible through the
MintsHelper class that directs the efficient computation
and storage of molecular integrals Python-side:

Each of the above MintsHelper class methods returns a
PSI4 matrix which can be converted to a NUMPY array using
numpy.asarray(matrix) or modified in place with the
matrix.np accessor.
In addition to computing molecular integrals, the lib-

mints library also performs optimized electron repulsion
integral (ERI) transformations. For example, the N()5

transformation of the two-electron integrals between the
atomic orbital and molecular orbital basis is given by

μν λσ| = |μ ν λ σia jb C C C C() [[[()]]]i a j b (6)

with Greek letters labeling AOs and Latin letters labeling MOs
(i, j−occupied, a, b−virtual) and the Einstein summation
convention assumed in eq 6 and throughout the text. This
transformation can be performed easily with

In this manner, arbitrary ERI transformations may be
performed, allowing both speed and flexibility for constructing
reference implementations.
2.3. Coulomb and Exchange (JK) Matrix Objects. A key

component in SCF-level theories is the contraction of the 4-

index electron repulsion integrals with the 2-index density
matrix to form J and K matrices:

λσ μν≡ |λσ μνJ D D[] () (8)

λμ σν≡ |λσ μνK D D[] () (9)

PSI4 provides objects for computing Coulomb (J) and
Exchange (K) matrices, with specialized algorithms for integral-
direct, PK supermatrix,26 or density fitting (DF) scenarios. For
the DF-JK object, it is often advantageous to use a factorized
form of the density matrix

∑≡μν μ νD C C
p

p p
left right

(10)

where p is a general MO index. For example, in canonical
Restricted Hartree−Fock (RHF), the density matrix takes the
form

∑=μν μ νD C C
i

i i
RHF

(11)

where i runs only over occupied orbitals. The computation of
the RHF JK matrices can be translated directly to Python code
with the following lines:

In this fashion, virtually any SCF-level theory can be formulated
at the PSI4NUMPY layer by handling only 2-D arrays with
NUMPY (typically by threaded vendor BLAS) and leaving the 3-
and 4-D arrays to PSI4 libraries (using optimized C++
routines). Additional examples that can be written with JK
matrices are coupled-perturbed SCF, time-dependent SCF,
SCF stability analysis, and most terms found in symmetry-
adapted perturbation theory besides dispersion-like quantities.
Thus, SCF-level theories can be implemented with the same
efficiency as their pure C++ counterparts.
To illustrate this point, the PSI4 SCF program is compared

against a PSI4NUMPY implementation on an Intel i7-5930K
processor with the adenine·thymine complex in the aug-cc-
pVTZ basis (1127 basis functions) using a DF-JK build on six
cores. The PSI4 SCF program took 250 s while the PSI4NUMPY
implementation took 245 s. This should not be surprising as
each computation spent 94% of the total wall time computing
the J and K quantities (both implementations used 18 SCF
iterations), and all other operations of nonnegligible cost use
the same BLAS implementations.

3. RAPID DEVELOPMENT
A key objective of the PSI4NUMPY framework is to provide an
easy-to-use development environment for rapid prototyping.
Vital to this goal is NUMPY’s einsum function that performs
arbitrary tensor contractions using Einstein summation syntax.
The einsum syntax first requires a string of the indices of
contraction followed by the NUMPY arrays involved in the
einsum expression. For example, the atomic orbital to

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

3507

http://dx.doi.org/10.1021/acs.jctc.8b00286

molecular orbital 4-index transformation of eq 6 and code
snippet (7) could be accomplished by

Recently, one of us (D.G.A.S.) modified NUMPY’s einsum
function so that it will automatically factorize the incoming
tensor expression to reduce the cost of the operation from
naive N8 to the conventional N5 version. This feature is
available in NUMPY 1.12 and onward, with additional
optimizations and BLAS usage occurring in NUMPY 1.14. In
addition, a drop-in replacement for the einsum function,
which makes optimal use of vendor BLAS, can be found
through the Optimized Einsum project.27

Using the einsum function, it is straightforward to
transcribe existing equations directly into working code without

a compilation stage. While the resulting program is not as
efficient for post-SCF level theories as a full implementation in
a low-level language, the code is easy to read and modify
without the need for compilation, allowing considerable
flexibility when prototyping. In addition, the resulting program
will provide correct answers for the given expressions, sparing
the developer any worry whether low-level code is correct.
As an example of rapid prototyping, we consider an

intermediate quantity appearing in the CCSD amplitude
residual equations.28 For virtual indices a, b, c, d and occupied
indices i, j, k, eq 8 of ref 28 is written as

= ⟨ || ⟩ + ⟨ || ⟩ − ⟨ || ⟩ − + ⟨ || ⟩⎜ ⎟
⎛
⎝

⎞
⎠W ja ci t ja cd t jk ci t t t jk cd

1
2jaci i

d
k
a

ik
da

i
d
k
a

which can be directly translated into a function:

Here, MO holds the 4-index antisymmetrized integrals, T1 and
T2 the current amplitudes, and the o, v quantities are Python-
based slices so that MO[o, v, v, v] returns the occupied−
virtual−virtual−virtual block of the antisymmetrized integrals.
To our knowledge, the first implementations of symmetry-

adapted perturbation theory with complete active space SCF
references [SAPT(CASSCF)], fourth-order electron propaga-
tor theory, and transcorrelated theories have all been achieved
using these rapid prototyping techniques.

4. ACCESS AND CONTRIBUTIONS

To ensure ease of community access to the PSI4NUMPY project,
all software dependencies are made available as binary Conda
packages29 either by us (e.g., PSI4) or by Anaconda or Intel
(e.g., NUMPY, Matplotlib, Jupyter). Through this route, binary
distributions are installable in a single line to all common
computing platforms, so users are not required to compile, link
against the correct libraries, or debug runtime issues. We hope
that the ready accessibility of these tools facilitates their use in
methods development and in the creation of additional publicly
available reference implementations.
To lower the barrier to contribution, guidance is included in

the repository regarding attribution, citations, and testing.
Though the authors adhere to Python software development
best practices in their other projects, they avoid advanced
Python syntax, organization, file linking, or other jargon-ized
code in PSI4NUMPY in favor of straightforward scripts and
Jupyter notebooks for ease of community involvement.
Educators are encouraged to base lessons and laboratories
upon this work and are also referred to the PSI4EDUCATION
project.30

5. REFERENCE IMPLEMENTATIONS

To illustrate the PSI4NUMPY tools and to provide a resource to
the quantum chemistry methods development community, we

have created a number of reference implementations and made
them publicly available on GitHub at https://github.com/psi4/
psi4numpy. We intend to add to this collection over time.
Given the wide spectrum of quantum chemical methods, we
also encourage submissions from other developers.
The PSI4NUMPY reference implementations, while not

necessarily as efficient as optimized versions in a low-level
language, furnish at least the basic requirements for a
programmer to reproduce the methodology. These references
provide a medium to explain minute details that might not be
included in a corresponding paper and to record algorithmic
tricks used to improve numerical stability or computational
efficiency. In addition, these clear implementations will make
explicit any important steps that might not be mentioned in a
paper because they are assumed to be background knowledge
in a given subfield of quantum chemistry.
Programmers can use these reference implementations to

obtain intermediate quantities to validate a new implementa-
tion at every step, ensuring accuracy and assisting in the process
of debugging a new program. These reference implementations
can also be used as starting points for either building upon
existing methodologies or exploring new methodologies in
combination with the rapid prototyping aspects of this project.
Current reference implementations include

1. Self-Consistent Field
(a) Restricted simple and DIIS31-accelerated Hartree−

Fock
(b) Restricted, Unrestricted, and Restricted Open-

Shell Hartree−Fock
(c) Restricted, Unrestricted, and Restricted Open-

Shell Hartree−Fock time-independent orbital
Hessians

(d) Restricted time-dependent Hartree−Fock and
coupled-perturbed Hartree−Fock for dipole hy-
perpolarizabilities and polarizabilities

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

3508

https://github.com/psi4/psi4numpy
https://github.com/psi4/psi4numpy
http://dx.doi.org/10.1021/acs.jctc.8b00286

(e) Restricted Hartree−Fock nuclear gradients and
Hessians

2. Many-Body Perturbation Theory
(a) Canonical and density-fitted MP2
(b) Spin-integrated and spin−orbital MP3
(c) Arbitrary-order MP
(d) Stochastic-orbital RI-MP232

3. Coupled-Cluster
(a) Simple and DIIS-accelerated CCSD
(b) CCSD(T)
(c) CCSD linear response (dipole polarizabilities,

optical rotation)
(d) Time-dependent equation-of-motion CCSD

4. Configuration Interaction
(a) Excited-state CIS
(b) Canonical and Davidson−Liu CISD
(c) Full configuration interaction

5. Symmetry-Adapted Perturbation Theory
(a) Restricted and Restricted Open-Shell SAPT0
(b) Atomic orbital implementation of SAPT0
(c) SAPT0 without the single exchange approximation

6. Electron Propagator Theory
(a) Spin-integrated and spin−orbital EP2
(b) Spin−orbital EP3

7. Restrained Electrostatic Potential (RESP) Charge Fitting

5.1. Jupyter Notebook Integration. As a service to the
community, some of the reference implementations have been
augmented by additional, tutorial-style background information
on various subfields of quantum chemistry. We found it
convenient to add this additional information using the Jupyter
notebook web application,33 a popular integrated development
environment (IDE) for interactive computing in several
programming languages that is starting to be adopted by
chemists.34 This IDE allows code to be separated into blocks
that can be recomputed dynamically so that users can work on
each fundamental part of a new code or tutorial at a time
without needing to recompute all quantities before that point.
An example part of the restricted Hartree−Fock notebook can
be found in Figure 2.
These documents may be unique within quantum chemistry

in that they focus not only on theoretical considerations but
also on the details of a method’s implementation, such as why
certain programming choices were made. For example, the
comparison between a general matrix inversion and solving a
set of linear equations demonstrates instability issues that often
plague the former technique. Such illustrations should make the

Jupyter implementations useful both to new users in quantum
chemistry and to experienced users interested in exploring new
subfields.
Current tutorial-style Jupyter reference implementations

include the following:

1. Introductions to the PSI4NUMPY methodology
2. Introduction to Hartree−Fock, DIIS, and density fitting
3. Density Functional Theory: grids, LDA kernels, VV10

dispersion, and asymptotic corrections
4. Møller−Plesset Perturbation Theory: canonical and

density-fitted reference implementations of MP2
5. Molecular Properties: Integrals, CPHF, CIS
6. Symmetry-Adapted Perturbation Theory: Canonical and

atomic orbital SAPT0 algorithms
7. Orbital-Optimized Methods: OMP2
8. Coupled-Cluster Approximations: CEPA0, CCD
9. Geometry Optimization Techniques: Internal Coordi-

nates, Hessian guesses, and advanced Newton−Raphson
methods

Molecular-dynamics tutorials include the following:

1. Periodic Lennard-Jones simulation with Verlet integra-
tors

2. Periodic Ewald electrostatic summation

6. CONCLUSIONS
We believe that the benefits of the PSI4NUMPY framework to
the computational chemistry community are threefold.
Beginning researchers can use the PSI4NUMPY reference
implementations for education. Reference implementations
convey not just the underlying mathematical formulas of a
given theory but also how to implement these formulas in a
manner that avoids common pitfalls such as ill-conditioned
numerical equations. PSI4NUMPY is likely the most interactive
educational resource available in this field: thanks to the Jupyter
Notebook format, the learners can explore the implementation
step by step and easily try out various modifications and
additional approximations.
More advanced researchers who need to reimplement and/or

modify a given computational chemistry approach can use the
PSI4NUMPY reference implementations for validation, taking
advantage of the code that, thanks to the extensive use of the
NUMPY einsum functionality, provides a nearly one-to-one
correspondence between the terms in a formula and the lines of
Python code. As a result, it is trivial to switch off, for debugging
purposes, any subset of terms as well as generate an arbitrary

Figure 2. Extract from a Jupyter notebook demonstrating the construction of a SCF Fock matrix where I is the 4-index electron repulsion integral
array and Cocc is the occupied orbital matrix.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

3509

http://dx.doi.org/10.1021/acs.jctc.8b00286

intermediate without even recompiling any code. This feature
should be contrasted with the situation when one tries to
validate their code against a C++/Fortran implementation from
an established electronic-structure package. Once the relevant
fragment of code that does the actual computation is found
(which is not always trivial), various terms are typically
combined in nontrivial ways to improve computational
performance. As a result, getting out a specific intermediate
for checking the implementation in progress often requires
substantive changes to the reference code, not to mention its
recompilation. In addition, we include the programmed
formulas together with their implementation in the Jupyter
Notebooks to alleviate difficulties associated with incompatible
notation or even errors in the originally published expressions.
Finally, for researchers who want to develop new

functionality, PSI4NUMPY is a highly valuable platform for
initial implementation that is efficient enough for meaningful
testing, quick to generate, easy to debug, and has limited
opportunities for programming errors. All underlying quantum-
chemistry building blocks such as integrals, orbitals, density
matrices, and CI vectors are efficiently computed by PSI4 and
readily imported in the NUMPY format. In particular, a
PSI4NUMPY implementation of any one-electron theory such
as HF or DFT is already close to optimal as the most expensive
operations are all written in terms of generalized Coulomb and
exchange matrices which are supplied by PSI4. Some of us,
together with collaborators, have already taken advantage of the
PSI4NUMPY capabilities to rapidly generate pilot implementa-
tions of brand new electronic-structure approaches.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.jctc.8b00286.

Python reference implementations and tutorials associ-
ated with PSI4NUMPY 1.0 (ZIP)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: dgasmith@vt.edu.

ORCID
Daniel G. A. Smith: 0000-0001-8626-0900
Lori A. Burns: 0000-0003-2852-5864
Dominic A. Sirianni: 0000-0002-6464-0213
Daniel R. Nascimento: 0000-0002-2126-8378
Eric J. Berquist: 0000-0001-8186-9522
Tyler Y. Takeshita: 0000-0003-0067-2846
Asem Alenaizan: 0000-0002-0871-664X
Rollin A. King: 0000-0002-1173-4187
Andrew C. Simmonett: 0000-0002-5921-9272
Justin M. Turney: 0000-0003-3659-0711
Henry F. Schaefer: 0000-0003-0252-2083
Francesco A. Evangelista: 0000-0002-7917-6652
A. Eugene DePrince III: 0000-0003-1061-2521
T. Daniel Crawford: 0000-0002-7961-7016
Konrad Patkowski: 0000-0002-4468-207X
C. David Sherrill: 0000-0002-5570-7666
Notes
The authors declare no competing financial interest.

Documents reproducing all currently available reference
implementations and interactive tutorials are available free of
charge via the Internet at https://zenodo.org/record/1248189.
For all future materials, please see https://github.com/psi4/
psi4numpy.

■ ACKNOWLEDGMENTS
This work was supported in part by the U.S. National Science
Foundation through grants ACI-1449723 and CHE-1566192 to
C.D.S; CHE-1661604 to H.F.S; CHE-1554354 to A.E.D.; and
CAREER award CHE-1351978 to K.P. B.Z. and T.Y.T.’s
contributions to this work were also supported by a Software
Fellowship from the Molecular Sciences Software Institute,
which is funded by the U.S. National Science Foundation (ACI-
1547580). M.H.L. acknowledges financial support by the
Studienstiftung des Deutschen Volkes. A.A. was supported
jointly by the National Science Foundation and the NASA
Astrobiology Program, under the NSF Center for Chemical
Evolution, CHE-1504217. F.A.E acknowledges support by the
U.S. Department of Energy under Award No. DE-SC0016004
and by a Research Fellowship of the Alfred P. Sloan
Foundation. The development of the stochastic orbital
techniques was supported in part by the National Science
Foundation, grants CHE-1465064 and DMR-1611382.

■ REFERENCES
(1) Briling, K. R. Comment on “A new parametrizable model of
molecular electronic structure” [J. Chem. Phys. 135, 134120 (2011)].
J. Chem. Phys. 2017, 147, 157101.
(2) Laikov, D. N. A new parametrizable model of molecular
electronic structure. J. Chem. Phys. 2011, 135, 134120.
(3) Source code accompanying the comment [K. R. Briling, J. Chem.
Phys. 147, 157101(2017)]. https://github.com/briling/qm (accessed
September 20th, 2017).
(4) Density Functional Repository; Quantum Chemistry Group,
CCLRC Daresbury Laboratory, Daresbury, Cheshire, WA4 4AD
United Kingdom. http://www.cse.scitech.ac.uk/ccg/dft/ (accessed
September 11, 2017).
(5) Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.;
Blum, V.; Caliste, D.; Castelli, I. E.; Clark, S. J.; Dal Corso, A.; de
Gironcoli, S.; Deutsch, T.; Dewhurst, J. K.; Di Marco, I.; Draxl, C.;
Dułak, M.; Eriksson, O.; Flores-Livas, J. A.; Garrity, K. F.; Genovese,
L.; Giannozzi, P.; Giantomassi, M.; Goedecker, S.; Gonze, X.; GrÅnas̈,
O.; Gross, E. K. U.; Gulans, A.; Gygi, F.; Hamann, D. R.; Hasnip, P. J.;
Holzwarth, N. A. W.; Iusa̧n, D.; Jochym, D. B.; Jollet, F.; Jones, D.;
Kresse, G.; Koepernik, K.; Kücü̧kbenli, E.; Kvashnin, Y. O.; Locht, I. L.
M.; Lubeck, S.; Marsman, M.; Marzari, N.; Nitzsche, U.; Nordström,
L.; Ozaki, T.; Paulatto, L.; Pickard, C. J.; Poelmans, W.; Probert, M. I.
J.; Refson, K.; Richter, M.; Rignanese, G.-M.; Saha, S.; Scheffler, M.;
Schlipf, M.; Schwarz, K.; Sharma, S.; Tavazza, F.; Thunström, P.;
Tkatchenko, A.; Torrent, M.; Vanderbilt, D.; van Setten, M. J.; Van
Speybroeck, V.; Wills, J. M.; Yates, J. R.; Zhang, G.-X.; Cottenier, S.
Reproducibility in density functional theory calculations of solids.
Science 2016, 351, aad3000.
(6) Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.;
DePrince, A. E.; Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di
Remigio, R.; Richard, R. M.; Gonthier, J. F.; James, A. M.;
McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X.; Pritchard, B.
P.; Verma, P.; Schaefer, H. F.; Patkowski, K.; King, R. A.; Valeev, E. F.;
Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4
1.1: An Open-Source Electronic Structure Program Emphasizing
Automation, Advanced Libraries, and Interoperability. J. Chem. Theory
Comput. 2017, 13, 3185−3197.
(7) van der Walt, S.; Colbert, S. C.; Varoquaux, G. The NumPy
Array: A Structure for Efficient Numerical Computation. Comput. Sci.
Eng. 2011, 13, 22−30.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

3510

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.8b00286
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00286/suppl_file/ct8b00286_si_001.zip
mailto:dgasmith@vt.edu
http://orcid.org/0000-0001-8626-0900
http://orcid.org/0000-0003-2852-5864
http://orcid.org/0000-0002-6464-0213
http://orcid.org/0000-0002-2126-8378
http://orcid.org/0000-0001-8186-9522
http://orcid.org/0000-0003-0067-2846
http://orcid.org/0000-0002-0871-664X
http://orcid.org/0000-0002-1173-4187
http://orcid.org/0000-0002-5921-9272
http://orcid.org/0000-0003-3659-0711
http://orcid.org/0000-0003-0252-2083
http://orcid.org/0000-0002-7917-6652
http://orcid.org/0000-0003-1061-2521
http://orcid.org/0000-0002-7961-7016
http://orcid.org/0000-0002-4468-207X
http://orcid.org/0000-0002-5570-7666
https://zenodo.org/record/1248189
https://github.com/psi4/psi4numpy
https://github.com/psi4/psi4numpy
https://github.com/briling/qm
http://www.cse.scitech.ac.uk/ccg/dft/
http://dx.doi.org/10.1021/acs.jctc.8b00286

(8) Blackford, L. S.; Demmel, J.; Dongarra, J.; Duff, I.; Hammarling,
S.; Henry, G.; Heroux, M.; Kaufman, L.; Lumsdaine, A.; Petitet, A.;
Pozo, R.; Remington, K.; Whaley, R. C. An Updated Set of Basic
Linear Algebra Subprograms (BLAS). ACM Trans. Math. Soft. 2002,
28, 135−151.
(9) Open Source Initiative. https://opensource.org/osd (accessed
November 28th, 2017).
(10) Baumgartner, G.; Auer, A.; Bernholdt, D. E.; Bibireata, A.;
Choppella, V.; Cociorva, D.; Gao, X.; Harrison, R. J.; Hirata, S.;
Krishnamoorthy, S.; Krishnan, S.; Lam, C.-C.; Lu, Q.; Nooijen, M.;
Pitzer, R. M.; Ramanujam, J.; Sadayappan, P.; Sibiryakov, A. Synthesis
of High-Performance Parallel Programs for a Class of ab Initio
Quantum Chemistry Models. Proc. Proc. IEEE 2005, 93, 276−292.
(11) Solomonik, E.; Matthews, D.; Hammond, J. R.; Stanton, J. F.;
Demmel, J. A massively parallel tensor contraction framework for
coupled-cluster computations. J. Parallel Distrib. Comput. 2014, 74,
3176−3190.
(12) Manzer, S.; Epifanovsky, E.; Krylov, A. I.; Head-Gordon, M. A
General Sparse Tensor Framework for Electronic Structure Theory. J.
Chem. Theory Comput. 2017, 13, 1108−1116.
(13) Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.;
Li, Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters,
S.; Chan, G. K. PySCF: the Python-based simulations of chemistry
framework. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, e1340.
(14) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and
Molecules; International Series of Monographs on Chemistry; Oxford:
New York, 1989; Vol. 16.
(15) Bartlett, R. J. Many-Body Perturbation Theory and Coupled
Cluster Theory for Electron Correlation in Molecules. Annu. Rev. Phys.
Chem. 1981, 32, 359−401.
(16) Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory
Approach to Intermolecular Potential Energy Surfaces of van der
Waals Complexes. Chem. Rev. 1994, 94, 1887−1930.
(17) Szalewicz, K. Symmetry-adapted Perturbation Theory of
Intermolecular Forces. WIREs Comput. Mol. Sci. 2012, 2, 254−272.
(18) Purvis, G. D.; Bartlett, R. J. A Full Coupled-cluster Singles and
Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys.
1982, 76, 1910−1918.
(19) Shavitt, I. In Methods of Electronic Structure Theory; Schaefer, H.
F., Ed.; Plenum Press: New York, 1977; pp 189−275.
(20) Sherrill, C. D.; Schaefer, H. F. In Adv. Quantum Chem.; Löwdin,
P.-O., Ed.; Academic Press: New York, 1999; Vol. 34; pp 143−269.
(21) Boyd, D. B. ACS Symp. Ser. 2013, 1122, 221−273.
(22) NumPy Array Interface. https://docs.scipy.org/doc/numpy-1.
13.0/reference/arrays.interface.html (accessed May 9th, 2018).
(23) Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open source
scientific tools for Python. http://www.scipy.org/ (accessed May 9th,
2018).
(24) Dask Development Team, Dask: Library for dynamic task
scheduling. http://dask.pydata.org (accessed May 9th, 2018).
(25) Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro,
C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.;
Goodfellow, I. J.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Joźefowicz, R.;
Kaiser, L.; Kudlur, M.; Levenberg, J.; Mane,́ D.; Monga, R.; Moore, S.;
Murray, D. G.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
I.; Talwar, K.; Tucker, P. A.; Vanhoucke, V.; Vasudevan, V.; Vieǵas, F.
B.; Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng,
X. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. arXiv.org 2016, arXiv:1603.04467.
(26) Raffenetti, R. C. Pre-processing two-electron integrals for
efficient utilization in many-electron self-consistent field calculations.
Chem. Phys. Lett. 1973, 20, 335−338.
(27) Smith, D. G. A.; Støter, F.-R.; McGibbon, R. T.; Werner, N.
Optimized Einsum: v1.0. Zenodo 2016, DOI: 10.5281/zenodo.160842.
(28) Stanton, J. F.; Gauss, J.; Watts, J. D.; Bartlett, R. J. A direct
product decomposition approach for symmetry exploitation in many-
body methods. I. Energy calculations. J. Chem. Phys. 1991, 94, 4334−
4345.

(29) Python Anaconda. https://www.anaconda.com (accessed May
9th, 2018).
(30) Fortenberry, R. C.; McDonald, A. R.; Shepherd, T. D.; Kennedy,
M.; Sherrill, C. D. PSI4Education: Computational Chemistry Labs
Using Free Software. The Promise of Chemical Education: Addressing our
Students Needs 2015, 1193, 85−98.
(31) Pulay, P. Convergence acceleration of iterative sequences. The
case of SCF iteration. Chem. Phys. Lett. 1980, 73, 393−398.
(32) Takeshita, T. Y.; de Jong, W. A.; Neuhauser, D.; Baer, R.;
Rabani, E. Stochastic Formulation of the Resolution of Identity:
Application to Second Order Møller-Plesset Perturbation Theory. J.
Chem. Theory Comput. 2017, 13, 4605.
(33) Perez, F.; Granger, B. E. IPython: A System for Interactive
Scientific Computing. Comput. Sci. Eng. 2007, 9, 21−29.
(34) Weiss, C. J. Scientific Computing for Chemists: An Under-
graduate Course in Simulations, Data Processing, and Visualization. J.
Chem. Educ. 2017, 94, 592−597.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00286
J. Chem. Theory Comput. 2018, 14, 3504−3511

3511

https://opensource.org/osd
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html
http://www.scipy.org/
http://dask.pydata.org
http://dx.doi.org/10.5281/zenodo.160842
https://www.anaconda.com
http://dx.doi.org/10.1021/acs.jctc.8b00286

