
MINERVA: A Reinforcement Learning-based Technique for Optimal
Scheduling and Bottleneck Detection in Distributed Factory Operations1

Tara Elizabeth Thomas Jinkyu Koo Somali Chaterji Saurabh Bagchi
School of Electrical and Computer Engineering

Purdue University
{thoma579, kooj, schaterji, sbagchi}@purdue.edu

Abstract— In manufacturing systems, the term bottleneck
refers to a component that limits the entire throughput of a
system. A number of approaches have been attempted to find
out the bottleneck. However, existing solutions have their own
limitations, leaving the bottleneck identification still no trivial
task. To address this issue, we study Job Shop Scheduling
Problems (JSSP) with realistic extension that jobs are enqueued
periodically, and proposes a machine learning based solution
to such a problem, named MINERVA. MINERVA first finds the
optimal resource scheduling for a target interval, based on
a model-free reinforcement learning technique. Then, using a
classifier made from an artificial neural network, MINERVA
identifies the bottleneck resources for each target interval. We
evaluated MINERVA on two representative benchmarks and
found that MINERVA is able to detect the system bottleneck
with high accuracy of 95.2%, which is almost 25% better than
the best among the popular bottleneck identification methods.

I. INTRODUCTION

The advancements in miniaturized and communication-
enabled sensors and computer software for them are causing
significant changes in the field of factory operations and
manufacturing. With the increasing scale of factory oper-
ations and the large amounts of real-time data available
from various embedded sensors, there is a higher emphasis
on optimizing the factory operations using the data. A
logical and cost-effective way to come up with the desirable
design points is to use simulation-based modeling of factory
operations [23]. System simulations have been agreed upon
as crucial in planning and improving factory performance
because they let the system owner play with the system
configurations without actually making a change on the real
system, which can be expensive or even infeasible due to
production pressures.

Finding an optimal resource allocation and scheduling
policy for jobshop scheduling is a non trivial problem [17].
Many times, factories (or more generically, any kind of
distributed system) might have bottlenecks that prevent them
from reaching optimal performance. A bottleneck is defined
simply as a machine (resource) in the system which limits the

1This work was supported by General Electric (GE) Corporation through the
PRIAM center funded at Purdue. The design and use cases have benefited
from discussion with researchers at GE Global Research in New York.
However, any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the sponsor.

throughput and increasing the capacity of a bottlenecked ma-
chine/resource improves performance. It is crucial to identify
and eliminate these bottlenecks to achieve the best possible
performance [16], [29]. In many cases, these bottlenecks
are dynamic i.e.,, they vary with time and other system
parameters like the job distribution [3].

In this paper we solve the two related problems in the
context of a distributed factory operation with multiple
sensor-equipped machines: optimal scheduling of arriving
jobs to machines and bottleneck identification (under the
optimal scheduling policy) to improve the throughput till the
desired throughput is achieved.

The classic job shop scheduling problem (JSSP) where the
goal is to assign a given number of job types to a given set of
machine pools (also called resource pools in the context of
this paper) so that some objective is optimized is well studied
in the literature [8], [31], [13]. This has been considered
an important problem for factory operations and hence the
above papers have presented a variety of solution approaches,
which we analyze in detail in Section VII. Fundamentally,
these JSSP models have a fixed number of job types and
fixed number of resource pools. Each resource pool consists
of some number of identical machines, which is referred to
as the capacity of the resource pool. After a job has been
scheduled and started to be processed on a machine, the
machine can process another job only after the completion
of the current one, i.e., there is no preemption. Each job
type has a fixed sequence of resource pools that it has to
be processed on. Each machine is able to process only one
job at a time. But, this classic JSSP is a much simplified
version of the real factory/manufacturing operations. In a
more realistic scenario, there is not just a fixed number of
jobs of each job type to be processed, but rather a continuous
stream of jobs arriving to be processed [7]. This indicates
that there is a change in the state of the system as time
progresses. There is stochasticity in the arrival rate of the
jobs, and hence the system is not completely known at the
beginning of the operation, as all prior work assumes. Hence,
it is essential to change the scheduling policy based on the
state, so as to achieve the best throughput. The scheduling
policy is the rule that determines the assignment of jobs to
the available machine pools.

The problem of finding the optimal scheduling policy
can be effectively solved by using reinforcement learning



(RL), because for any system that can be modeled as a
Markov decision process, reinforcement learning is capable
of getting a software agent to learn about its environment
based on the feedback it gets when it performs different
actions. In the case of this problem, since our objective is
to maximize the throughput, when the agent makes a good
scheduling decision, the throughput increases, and hence
it gets a positive reward, which can further reinforce this
action. Vice-versa, if the agent takes an action that is a bad
scheduling decision, the throughput would decrease, thereby
providing a penalty that discourages the agent from taking
such decisions in the future. This technique is also generic
in the sense that it can be applied to any factory/JSSP model
because RL starts out by treating its environment as a black
box, and learns about the environment as time progresses,
through the reward feedback. Another reason why RL is
a good fit for our problem is because it can focus on
maximizing the cumulative long term reward as opposed to a
very short term objective maximization. This means that the
agent will be able to learn a scheduling policy that will give
more throughput increase in the long run, even if it does
not result in an immediate increase in throughput. Some
prior works have successfully used reinforcement learning
algorithms to solve the classic jobshop problem [25], [5],
[30], [32]. However, none of them are applicable in the case
of continuous arrival of jobs to the system, as they all assume
that the number of jobs is constant. Moreover, none of them
has addressed the problem of finding the bottleneck resource
in the system.

In this paper, we present a new technique called MIN-
ERVA, which solves two problems in a distributed workflow
representative of a factory floor—first, it creates an optimal
schedule of the jobs on the resource pools for a continuously
arriving set of jobs and second, it identifies which machine
pool is the bottleneck and relieves the bottleneck by adding
capacity. A schematic of MINERVA is given in Figure 1.
MINERVA first optimizes the scheduling of the various jobs
within the factory model using reinforcement learning. It
learns the scheduling actions that would lead to maximization
of cumulative rewards using Q-learning, thereby increasing
the throughput of the system. Since the state space of a
realistic factory model is huge (it grows exponentially with
the numbers of jobs currently active in the system and the
number of different types of machine pools), it is impractical
to use simple Q learning as it would take too much time to
converge because it would need millions of iterations to cover
all these states multiple times to learn the optimal policy.
So, MINERVA uses an approximate Q-learning method that
uses neural networks to approximate the Q-function that
have been proven to work well on real time systems with
huge state spaces [21], [22]. If the throughput with the
optimal schedule is still less than the desired throughput,
MINERVA finds the bottleneck machine pool in the system,
so that its capacity could be increased for further increase in
the throughput. MINERVA leverages some of the bottleneck
identification metrics already existing in literature, such as
the length of the queue at each machine pool, which can be

observed from the factory model. It then applies a previously
learned neural network to identify the system bottleneck
based on these metrics. Once the bottleneck resource pool is
identified, its capacity is increased by 1 unit, mimicking the
addition of a machine to that machine pool. This updated
system is then simulated and the above steps are repeated
until the desired throughput is reached.

Fig. 1. Schematic of MINERVA

We consider a physically distributed set of resources and
jobs that have to be physically routed among them. Thus,
there are physical transfer times involved as well as digital
communication times involved for the metrics to reach the
central scheduler (such as, queue length at any resource)
and for the scheduler to dispatch its bottleneck mitigation
command. We incorporate these delays into our formulation
and solution and study their effect on the overall throughput.

In summary, this paper makes the following key contribu-
tions:

1) We develop MINERVA, an approximate reinforcement
learning-based technique to ensure optimal scheduling
for the dynamic job shop scheduling problem. We
demonstrate how effectively neural networks can be
used to approximate the Q-functions for these prob-
lems which have a huge state space.

2) We develop a neural network-based bottleneck iden-
tification technique to identify and eliminate system
bottlenecks that limit the throughput in these factory
systems.

3) We implement the above mentioned technique on
representative and well-studied benchmarks, but now
extended to the case of continuous arrival of jobs. We
show that MINERVA performs much better than the
popular techniques used today.

II. BACKGROUND

A. JSSP and scheduling

Classic job shop scheduling problem (JSSP) [31] has been
an important research area in both industrial engineering
and operations research for half a century. The goal is
to allocate a specified number of job types to a limited



number of resource pools (machine pools) in such a way
that some specific objective is optimized. A job-shop has n
different possible job types, J1, J2 . . . Jn, and m different
resource pools P1, P2 . . . Pm. Each job within a job type has
a particular fixed, sequence of operations to be performed
on it to transform the input into the final desired product. A
particular operation on a job can be performed by machines
of a particular resource pool, and takes a fixed amount of
processing time to complete.

A job is finished after completion of its last operation.
Typically, the number of resource pools is less than or equal
to the number of job types. After a job has been scheduled
and started to be processed on a machine, the machine
can process another job only after the completion of the
current one. The desired optimization in JSSP is usually
the minimization of makespan, which is simply the time of
completion of all the jobs in the system.

One of the examples of a classic job shop problem, usually
referred to as ft06 [4] and its solution [15] is given in Figure 2
for a better understanding. Each row in the table represents
a job, and the columns have the machine number and the
processing time for the different operations on the job. The
operations have to be performed in the sequence. For job 1,
it has to be processed first on machine 3 and that takes 1
time unit. Then it has to be processed on machine 1 and that
takes 3 time units, and then on machine 2 for 6 time units,
and so on. Each job here goes through a 6-stage pipeline.

For this paper, we consider the more realistic extension
of this job shop problem where the jobs keep coming in
with some stochastic distribution, and are enqueued for the
resource pools they need. The resource pools could have
more than 1 machine each, as opposed to the classic JSSP
model. The objective is to find a schedule for the system that
maximizes the throughput.

Fig. 2. The FT06 JSSP and a Gantt chart representing its optimal solution.

B. Reinforcement learning

Reinforcement learning is an area of machine learning
inspired by behavioral psychology, which aims at making a
software agent learn the optimal action for each system state.
This is an automated, non-supervised learning technique
where the agent, which initially does not have any knowledge

of its environment, starts out by taking random actions. Then
it iteratively takes different actions that might change the
state of the agent, and might also give it a positive or negative
reward as feedback depending on whether the result of the
action is favorable or unfavorable. Based on this reward, the
agent eventually learns which actions are optimal for each
state. The optimal action would be the one that maximizes
the agent’s expected long term reward. Q-learning is a model
free RL technique that can find the optimal action-selection
policy for any given Markov Decision Process. It works by
learning an action-value function, called the Q-function, that
eventually gives the expected utility of taking a particular
action in a particular state and following the optimal policy
thereafter. The core of the learning is simple iteration process
based on equation below.

(st, at)← (1− α)Q(st, at) + α

(
rt + γmax

at′
Q(st′ , at′)

)
(1)

where st, at, rt are the state, action and reward at the t time.
Here, α < 1 is called the learning rate, denoting the extent
to which the current observation affects the Q-value, and γ
is a discounting factor of future rewards.

In the realistic cases of the distributed factory operations
that we observed, the possible state space is huge, so the
normal Q-learning would not converge in any reasonable
amount of time as it would have to learn the best action for
each of these states separately to reach an optimal policy. The
number of iterations required for this is extremely high and
we need to apply approximate Q-learning. In such scenarios,
approximate Q-learning techniques where the Q-function is
approximated by decision trees or neural networks is used.
Using deep neural networks as Q-function approximators
has been proved efficient in various applications, including
Google AlphaGo [21], [22].

III. SYSTEM MODEL

We consider a factory model where many jobs (tasks) of
different types are to be processed on different machines
(resources). Jobs of n different job types J1, J2 . . . Jn en-
ter the system, each with Poisson distributed arrival rates
λ1, λ2, . . . , λn. The factory has m sets of different resource
pools: P1, P2, . . . Pm. Each resource pool Pi has ci identical
resources/machines which can perform a fixed set of opera-
tions. Every machine can be either ‘busy’ which means it is
currently performing an operation on a job, or ‘idle’ which
means it is not performing any operations on jobs at that
time. The ci is called the capacity of the resource pool Pi.
Because of practical cost constraints in factory setups, the
total possible capacities of all resource pools is limited to
the maximum capacity c̄i.

Each job type has a fixed set of operations to be performed
on it sequentially, to convert it to the final product. Each
of these operations has two values associated with it: the
machine on which the operation can be performed, and
the processing time needed for the operation to complete.
For example, operation o1(3, 1) means that operation o1



requires a machine from resource pool P3 for 1 time unit.
We consider only deterministic processing times in this
paper. It is important to note that different job types require
different sequence of operations to be performed on them.
The resources are physically distributed and thus, there is
a delay for any job to travel from one machine to another.
We consider this delay as an experimental parameter in our
simulations. There is a desired throughput for this factory
model, and our goal is to achieve it by optimal scheduling
and proper bottleneck identification and elimination.

For this purpose, we consider the factory model
as a single (MDP) where the state of the system
at any time t, st is comprised of the information
about the processing status of different jobs and re-
source pools in the system. This can be represented
as st = (sit,1, . . . , s

i
t,m, s

o
t,11, . . . , s

o
t,nm, s

c
t,1, . . . , s

c
t,m, s

h
t ),

where sit,k is 1 if there is an idle machine in the k-th resource
pool and 0 if all machines in the k-th resource pool are busy;
sot,lk ∈ [0, 1] is an indicator of number of jobs of job type
l waiting for k-th resource pool (Llk). The sot,lk is 1 if Llk

is greater than a threshold value L̄k, and sot,lk = Lkl/L̄k

otherwise; sct,k ∈ (0, 1) where sct,k is ck/c̄k and sht is a
ratio of the current throughput to the desired throughput.
Furthermore, the terminal state (sT ) occurs when the system
has been simulated for the time interval of our concern (T ).

To detect the bottleneck resource pools in the system,
the model also collects bottleneck metrics like the average
waiting time (Wi), the average queue length (Li) and average
utilization of each (Ui) resource pool over each time interval.
The information bnData = {Wi, Li, Ui and ci for each Pi}
is stored for each time interval over which the bottleneck has
to be detected.

IV. DESIGN

A. The machine learning based decision making agents
MINERVA has two machine learning based decision mak-

ing agents: the scheduling agent and the bottleneck detection
agent. The first one which can be referred to as the inner loop
decision making agent takes scheduling decisions. This agent
comes into play at times t when either of the following events
of scheduling interest happen: when a resource becomes idle,
or when a new job arrives to be processed by an idle machine
that has no other jobs waiting for it. It decides which among
the jobs waiting for a resource, to pick. The resource then
starts processing that job and the simulation continues until
another/same resource becomes idle again. Based on whether
the schedule picked was good (leads to more throughput)
or bad, the simulation model provides a feedback to the
decision making agent, which uses this to refine its future
decisions. This agent is essentially a reinforcement learning
agent that learns the optimal scheduling action for each
system state, over time. The possible actions at ∈ A taken by
the scheduling RL agent at any instant of time t describes the
selected job type to be scheduled and the resource pool on
which it is to be scheduled. The complete set of all possible
actions is A = {ajp}, where ajp is the action of scheduling
a job type j on resource pool p. Though this complete set

of possible actions is fixed, the set of actions possible at any
particular time varies dynamically because not all resource
pools will have a free machine at that instant, and neither
will all the different job types be waiting for a particular
resource pool at that time. This is different from typical RL
problems where the action space is fixed. We developed our
RL algorithm such that it can handle a dynamic action space
by choosing only from the set of possible actions, which will
be communicated to the agent from the simulation model.
The overall aim of the scheduling RL agent is to find a
scheduling policy π that maximizes accumulated reward over
time. The reward for the agent is dependent on the throughput
of the system, which is the objective to be maximized in our
problem. For each action at that results in the next state st′ ,
we give a small reward proportional to the throughput. For
the final state, if the throughput is greater than a threshold,
we give a big positive reward, and if the throughput is
lesser, we give a big negative reward (penalty). This can
be represented as

rt =


k1 ·Ht if st 6= sT

k2 if st = sT and Ht ≥ H
−k2 if st = sT and Ht ≤ H

where k1 and k2 are all positive numbers (k2 >> k1),
Ht is the throughput at time t, and H denotes the desired
throughput. Once the simulation has been iterated enough,
the Q-learning cost function becomes minimal and the policy
converges. This means that the agent has learned an accept-
able schedule and the training phase is completed and the
agent continues to schedule using this learned policy.

MINERVA also finds the bottleneck in the system at regular
intervals of time, if the throughput is less than the desired
throughput using the bottleneck detection agent which is a
neural network based classifier. Any one among the resource
pools can be the system bottleneck at any given time. The
agent is initially trained using Algorithm 1 in IV-B. At
periodic intervals, this trained agent looks at the bottleneck
metrics (bnData) of the system for that interval, and outputs
the bottleneck resource pool Pbn in the system. Then it
increases the capacity of the bottleneck resource pool by one
unit to increase the throughput of the system and continues
to run the simulation. The possible outputs for the bottleneck
prediction agent, always an integer from 0 to m, denoting one
of the resource pools as bottleneck (1 to m) or no bottleneck
in the system (0).

B. The Learning Algorithm

MINERVA uses an approximate Q-learning technique,
where neural networks are used to approximate the Q-
function for implementing the scheduling agent. We use the
ε greedy strategy to ensure that exploration of the state space
is given priority initially, and once it has learned sufficiently
about the state space, it tries to reduce random exploration
and sticks with the actions that give good rewards. ε denotes
the extent of exploration to be done- ε = 1 means that the
agent always takes random actions for maximum exploration,



and ε = 0 means that the agent always follows the currently
known optimal policy with no random actions. The ε greedy
strategy works by having a high value for ε initially, so that
it gets to explore the state space, and gradually reducing
the ε value over time. Every simulation run by the agent is
called an episode. MINERVA also utilizes a technique called
experience replay [20] where a set consisting of the state,
action, next state and the reward which we call ‘experience’
at each time-step, et = (st, at, rt, st′) is collected over many
episodes into a replay memory data-set D = e1 . . . eN , of
fixed size. The algorithm used is in Algorithm 2.

A minibatch of random experience samples e ∈ D
are taken from the replay memory with all the experience
samples. Q-learning updates as in II-B are performed on
this minibatch of samples. This leads to updated Q-function.
After performing this experience replay, the agent selects
and executes an action according to an ε greedy policy.
Then the reward is obtained and this experience is added
to the replay memory. These steps are repeated multiple
times until a convergent policy is obtained. Since each
experience entry is used in many weight updates during
the learning process, it results in higher data efficiency. If
online policies are used, there is a possibility of undesirable
feedback loops arising during the learning, which could lead
to the parameters getting stuck in a poor local minimum, or
even diverging hugely [28]. By using experience replay, the
behavior distribution is averaged over many of its prior states,
hence, smoothing out learning and avoiding oscillations.

Algorithm 1 Learning to identify bottleneck resources
1: procedure VERIFY TRUE BOTTLENECK(seed)
2: Run the AnyLogic system model for chosen seed.
3: Note bnData = {Wi, Li, Ui and ci for each Pi.}
4: for i ≤ numResourcePools do
5: Increase capacity of Pi by 1.
6: Run the AnyLogic model and note throughput.
7: end for
8: Mark Pi whose increase in capacity led to maximum throughput as

the true bottleneck (Pbn).
9: Return the bnData and Pbn.

10: end procedure
11: procedure LEARN BOTTLENECK IDENTIFICATION
12: repeat
13: Choose a random seed, with random model parameters.
14: Run procedure VERIFY TRUE BOTTLENECK.
15: Store the returned bnData and Pbn as an entry in the data set

for supervised learning.
16: dataSetSize← dataSetSize+ 1
17: until dataSetSize = Dss

18: Separate out the collected data into disjoint training data (datatr),
validation data (datavl) and testing data(datats).

19: Use datatr to train a neural network to detect Pbn from bnData
.

20: Cross validate the neural network using the datavl.
21: Test the accuracy of the neural network using datats.
22: end procedure

The overall workflow of MINERVA is represented in Figure
3.While the scheduling agent is called continuously in the
model, with time, whenever relevant scheduling events occur,
the bottleneck identification agent is called only once per a
fixed time interval.

Algorithm 2 Learning the optimal scheduling
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1 :M do
4: Initialize system state s1.
5: for t ∈ (1, T ) when an event of scheduling interest happens do
6: With probability ε select a random action at. Each action at

represents processing particular job on a particular machine
7: Otherwise select at = argmaxaQ(st, a)
8: Execute action at in the AnyLogic jobshop model.
9: Store transition (st) in D

10: Sample a minibatch of transitions (st, at, rt, st′ ) from D
11: if st′ is a terminal state then
12: Set: yt ← rt
13: else
14: Set yt ← rt +maxaQ(st′ ; a)
15: end if
16: Perform a gradient descent step on (yt −Q(st, at))2

17: end for
18: end for

Fig. 3. Overall workflow of MINERVA

V. IMPLEMENTATION

The factory models to be optimized were created as
discrete event simulation models in AnyLogic 7 [1] which
is a very widely used Java based multi-method simulation
software. The reinforcement learning agent was also im-
plemented in Java. The reinforcement learning agent was
implemented using Java based open source deep learning
library, dl4j [2] for tight integration with AnyLogic.

The agents described in IV-A as well as the simulation
model explained above are part of the top level AnyLogic
experiment. The simulation model implements an MDP
interface that provides functions for the agents to easily start
a new instance of the simulation model, to pause, run and
reset a simulation. This interface also provides the agents
the encapsulated information about the current simulation
system state, the possible action space, the reward, and an
indication of the simulation termination. It also provides a
way for the agents to communicate the next action to be
taken, to the simulation model.

VI. EVALUATION AND RESULTS

We used an extension of the ft06 problem as described in
Section III to evaluate MINERVA. The model was created
in AnyLogic as a discrete event simulation model. The
scheduling agent was integrated into the model using the



MDP interface and was run with the objective of finding
an optimal schedule. It was observed that the agent found a
schedule that gave an average throughput of 56 jobs/time
unit which is significantly higher than throughputs using
the baseline techniques, FIFO and Shortest Processing Time
(SPT), which are the most common dispatching rules being
used currently in the industry. MINERVA gets this improve-
ment because it uses the relevant information like the queue
length for each operation and the number of resources in
each pool from the simulation model to make a scheduling
decision, rather than just naively following a fixed rule.
Figure 4 summarizes this result. We evaluated the bottleneck

Fig. 4. Comparison of throughput when scheduled by MINERVA compared
to popular scheduling rules

identification agent detailed in IV on the realistic extension
of the classic FT06 JSSP with continuous job arrivals. It was
seen that Minerva was able to identify system bottlenecks
with a much higher accuracy (92.6%) when compared to
other traditional techniques, which all had an accuracy of
less than 75% on the same test set as shown in Figure 4.
This is because one bottleneck metric alone is not really
sufficient to detect the bottleneck. For instance, if a resource
pool has a long queue length, but if all the jobs waiting in
the queue have a very short processing time, this resource
pool might not actually be a bottleneck. Or for example, the
average waiting time of a resource pool could have been high
because of some particular job that takes a long processing
time, and might not be really due to the resource pool being a
bottleneck. MINERVA performs better than these individual
methods because it looks at a more holistic picture of the
system than what is indicated by one bottleneck metric.
However, MINERVA still fails when it is not able to judge
the bottleneck resource pool with certainty based on the
information it has.

To get a better idea of the performance of MINERVA
with respect to the other bottleneck methods, we used
another benchmark model from [3] which we refer to in
the remainder of the paper as the AD05 benchmark. This
benchmark model has 4 resource pools and five job types.
The benchmark is described in Figure 6. This indicates that
Job 1 had to be processed on resource pool 1 for 2 time

Fig. 5. Comparison of accuracy of bottleneck detection by MINERVA
compared to popular bottleneck detection methods for extension of FT06
benchmark

units, then on resource pool 4 for 3 time units etc. The
extended model with continuous job arrival has a stochastic
Poisson distributed arrival rate of 1 job per 3 time units. It
was seen that MINERVA was able to identify bottlenecks to
an accuracy of 95.6% which is over 25% better than the
accuracy of the best one among other methods. Figure 7
shows this comparison.

Fig. 6. Figure representing the AD05 JSSP benchmark.

Fig. 7. Comparison of accuracy of bottleneck detection by MINERVA
compared to popular bottleneck detection methods for extension of AD05
benchmark

We also studied the variation of throughput with increase
in resource pool capacity for the two benchmarks. This was
done so as to get a feel of how effective each bottleneck
identification method is, in terms of increase in through-



put. We used each of the different bottleneck identification
methods - Minerva, average queue length, utilization, and
average waiting time to detect the bottlenecks separately.
The capacity of the identified bottleneck resource is then
increased by 1 unit. The simulation is then continued for
the same interval of time, and this bottleneck identification
and elimination step is repeated for 4 more steps. Then, we
plot the throughput vs increase in capacity for each of the 4
bottleneck identification methods. The graphs are shown in
Figures 8 and 9. It is seen that MINERVA performs the best
because it detects true bottlenecks with more accuracy than
the other methods. This means that with MINERVA, when
the actual bottleneck resource pool’s capacity is increased,
the greatest increase in throughput can be obtained.

Fig. 8. Line graph for throughput vs increase in resource pool capacity
as identified by various bottleneck identification methods for extension of
FT06 benchmark

Fig. 9. Line graph for throughput vs increase in resource pool capacity
as identified by various bottleneck identification methods for extension of
AD05 benchmark

An important factor that affects the throughput in systems
of our concern is latency. These simulations were done with
the assumption of zero communication latency as well as
zero physical latency for the jobs after they are processed
by a resource pool. However, in reality, there would be
some time delay in communicating this information to the
centralized agent and for the agent to communicate the
bottleneck mitigation action to the machines. There will
also be delays in physically transferring jobs to the resource

pools. We performed an experiment where we included this
delay in the simulation model and varied its value from
within a reasonable range. For both benchmarks, we vary this
delay from 0 to 1 time unit. The relevant graph is in Figure
10. It is seen that there is a linear decrease of throughput with
respect to the latency and hence it is of utmost importance
to take necessary measures to reduce it. The decrease in
throughput with increase in latency is steeper for AD05
benchmark as compared to FT06 benchmark because, in
general, the processing times of operations in the AD05
benchmark is lower compared to that in FT06 benchmark.
This means that the latency to total processing time ratio of
most jobs would be higher in AD05 than FT06 and hence,
the effect of increased latency is more prominent in AD05.

Fig. 10. Line graph for throughput vs latency for extension of FT06 and
AD05 benchmarks.

VII. RELATED WORK

In industrial settings, a bottleneck is a resource pool
among the different required resource pools, such that its
limited capacity limits the throughput of the whole system.
Having a bottleneck could result in stalls in production,
supply overstock, pressure from customers and hence is
undesirable. It is important to identify these bottlenecks and
eliminate them if possible (such as through reprogramming
parts of the pipeline [6]), to make the system as efficient
as possible [16], [29]. There are several techniques of varied
complexity proposed in literature for the same. Traditionally,
utilization based methods [17] have been used to identify
bottleneck machines, whereby the machine with the high-
est utilization is considered to be the system bottleneck.
Other commonly used bottleneck identification metrics are
the queue length of jobs waiting at each machine [24]
and the average waiting time for the machines [17]. There
have been many system theoretical approaches to bottleneck
identification over the years. Sengupta et al. [26] propose to
analyze the inter-departure time of the different machines
in the system to identify the bottlenecks. Chiang et al.
[12] suggest using frequencies of machine blockages and
starvations as indicators of bottlenecks. The blockage and
starvation probability of the machines are used to identify
bottlenecks in [18]. However, these approaches are based on
flowshop-like models where there are machines that perform



consecutive tasks arranged with buffers in between. Hence,
they need information related to the structure of the factory
system which are generally not fixed in the case of job shops
as the sequence of machines depends on the job that is
being processed. Also, several other proposed techniques like
maximum average per hop delay [14] and workload matrix
based convex analysis [9] make specific assumptions like
M/M/1 system and a closed queuing network respectively
and are not applicable to generic factory models and job
shops. An orthogonal dimension is how to measure the input
metrics that will feed into the various types of models. There
is a rich literature in monitoring operational systems, through
software add-ons [11], [10] or through specialized hardware
working with the software add-ons [27], [19]. In this work,
we see that a combination of these different methods, where
the combination is done through a powerful technique like
neural network, yields a more accurate indication of the
bottleneck than when the methods are used in isolation.

VIII. CONCLUSION

This paper introduces MINERVA, a novel technique to
improve factory performance that uses approximate rein-
forcement learning to optimize scheduling and uses neural
networks to predict system bottlenecks. MINERVA is im-
plemented on realistic extensions of representative classic
JSSP benchmarks and the effectiveness is demonstrated.
MINERVA is also evaluated by comparing the results to other
possible techniques and it is observed that MINERVA gives a
significantly better throughput. The effect of latency on the
performance of the system is also studied. A future extension
of this work would be to extend it to models with stochastic
processing times.

REFERENCES

[1] AnyLogic: Multimethod Simulation Software and Solutions.
https://www.anylogic.com/.

[2] Deep Learning for Java. https://deeplearning4j.org/.
[3] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure

for job shop scheduling. Management science, 34(3):391–401, 1988.
[4] N. I. Anuar and A. Saptari. Performance evaluation of different types

of particle representation procedures of particle swarm optimization
in job-shop scheduling problems. In IOP Materials Science and
Engineering. IOP Publishing, 2016.

[5] M. E. Aydin and E. Öztemel. Dynamic job-shop scheduling using
reinforcement learning agents. Robotics and Autonomous Systems,
33(2):169–178, 2000.

[6] S. Bagchi, N. B. Shroff, I. M. Khalil, R. K. Panta, M. D. Krasniewski,
and J. V. Krogmeier. Protocol for secure and energy-efficient repro-
gramming of wireless multi-hop sensor networks, Jan. 31 2012. US
Patent 8,107,397.

[7] C. Bierwirth and D. C. Mattfeld. Production scheduling and reschedul-
ing with genetic algorithms. Evolutionary computation, 7(1):1–17,
1999.

[8] J. Błażewicz, W. Domschke, and E. Pesch. The job shop scheduling
problem: Conventional and new solution techniques. European journal
of operational research, 93(1):1–33, 1996.

[9] G. Casale and G. Serazzi. Bottlenecks identification in multiclass
queueing networks using convex polytopes. In MASCOTS, pages 223–
230. IEEE, 2004.

[10] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource allocation for
shared data centers using online measurements. ACM SIGMETRICS
Performance Evaluation Review, 31(1):300–301, 2003.

[11] A. Charapko, A. Ailijiang, M. Demirbas, and S. Kulkarni. Retro-
spective lightweight distributed snapshots using loosely synchronized
clocks. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th
International Conference on, pages 2061–2066. IEEE, 2017.

[12] S.-Y. Chiang, C.-T. Kuo, J.-T. Lim, and S. Meerkov. Improvability of
assembly systems i: Problem formulation and performance evaluation.
Mathematical Problems in Engineering, 6(4):321–357, 2000.

[13] L. Davis. Job shop scheduling with genetic algorithms. In Proceed-
ings of an international conference on genetic algorithms and their
applications, volume 140, 1985.

[14] G. F. Elmasry and C. J. McCann. Bottleneck discovery in large-scale
networks based on the expected value of per-hop delay. In IEEE
MILCOM, volume 1, pages 405–410. IEEE, 2003.

[15] T. Gabel and M. Riedmiller. Adaptive reactive job-shop scheduling
with reinforcement learning agents. International Journal of Informa-
tion Technology and Intelligent Computing, 24(4), 2008.

[16] I. Laguna, S. Mitra, F. A. Arshad, N. Theera-Ampornpunt, Z. Zhu,
S. Bagchi, S. P. Midkiff, M. Kistler, and A. Gheith. Automatic problem
localization via multi-dimensional metric profiling. In 32nd IEEE
International Symposium on Reliable Distributed Systems (SRDS),
pages 121–132. IEEE, 2013.

[17] A. M. Law, W. D. Kelton, and W. D. Kelton. Simulation modeling
and analysis, volume 2. McGraw-Hill New York, 1991.

[18] L. Li. Bottleneck detection of complex manufacturing systems using
a data-driven method. International Journal of Production Research,
47(24):6929–6940, 2009.

[19] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and
J. Beutel. Flocklab: A testbed for distributed, synchronized tracing
and profiling of wireless embedded systems. In Proceedings of the
12th international conference on Information processing in sensor
networks, pages 153–166. ACM, 2013.

[20] L.-J. Lin. Reinforcement learning for robots using neural networks.
Technical report, CMU, 1993.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602, 2013.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[23] D. Mourtzis, N. Papakostas, D. Mavrikios, S. Makris, and K. Alex-
opoulos. The role of simulation in digital manufacturing: applications
and outlook. International journal of computer integrated manufac-
turing, 28(1):3–24, 2015.

[24] P. Pollett. Modelling congestion in closed queueing networks. Inter-
national Transactions in Operational Research, 7(4-5):319–330, 2000.

[25] S. Riedmiller and M. Riedmiller. A neural reinforcement learning
approach to learn local dispatching policies in production scheduling.
In IJCAI, volume 2, pages 764–771, 1999.

[26] S. Sengupta, K. Das, and R. P. VanTil. A new method for bottleneck
detection. In Proceedings of the 40th conference on Winter simulation,
pages 1741–1745, 2008.

[27] M. Tancreti, M. S. Hossain, S. Bagchi, and V. Raghunathan. Aveksha:
A hardware-software approach for non-intrusive tracing and profiling
of wireless embedded systems. In Proceedings of the 9th ACM
Conference on Embedded Networked Sensor Systems, pages 288–301.
ACM, 2011.

[28] J. N. Tsitsiklis and B. Van Roy. Analysis of temporal-diffference
learning with function approximation. In NIPS, pages 1075–1081,
1997.

[29] Y. Wang, Q. Zhao, and D. Zheng. Bottlenecks in production networks:
An overview. Journal of Systems Science and Systems Engineering,
14(3):347–363, 2005.

[30] Y.-C. Wang. Application of reinforcement learning to multi-agent
production scheduling. 2003.

[31] T. Yamada and R. Nakano. Job shop scheduling. IEE control
Engineering series, pages 134–160, 1997.

[32] Z. Zhang, L. Zheng, and M. X. Weng. Dynamic parallel machine
scheduling with mean weighted tardiness objective by q-learning. J.
of Advanced Manufacturing Technology, 34:968–980, 2007.


