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Abstract

Multi-layer distributed systems, such as those found in corporate systems, are often the target of multi-
stage attacks. Such attacks utilize multiple victim machines, in a series, to compromise a target asset deep
inside the corporate network. Under such attacks, it is difficult to identify the upstream attacker’s identity
from a downstream victim machine because of the mixing of multiple network flows. This is known as the
attribution problem in security domains. We present MAAT, a system that solves such attribution problems

for multi-stage attacks. It does this by using moving target defense, ie, shuffling the assignment of clients
to server replicas, which is achieved through software defined networking. As alerts are generated, MAAT
maintains state about the level of risk for each network flow and progressively isolates the malicious flows.
Using a simulation, we show that MAAT can identify single and multiple attackers in a variety of systems
with different numbers of servers, layers, and clients.
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1. Introduction Multi-stage attacks operate on top of distributed
systems where each distributed layer has different
access privileges to sensitive business assets. An
attacker must penetrate multiple layers to access some
protected information, a crown jewel. As the attacker
progresses, she generates some intrusion alerts due to
some traffic with a malicious signature passing through
intrusion detection systems (IDS) [6, 12]. These alerts,
while useful for finding single stage attacks, are less
useful in the MSA because the {source,destination} pairs
are both machines inside of the distributed system,
instead of an external attributable source (as would be
the case for an Internet-facing web server, for example).
Consequently, there is no obvious relationship between
alerts deep in the distributed system and the outsider,
and this problem is referred to as the attribution,
traceback or un-mixing problem [3, 23]. In this context,
an attributable alert is one which identifies an external
source directly, and an unattributable alert is one
which identifies no source or identifies an internal
or intermediate source, which cannot actually be the

Multi-stage attacks (MSA) have plagued distributed
system administrators for decades. In these attacks,
multiple computers are used simultaneously to breach
a particular target, and attackers often rely on a series
of privilege escalation attacks to circumvent access
controls protecting assets. One of the most challenging
aspects of MSA comes as an attribution, mixing, or
traceability problem [4, 5]. Defenders wish to know
what particular network traffic resulted in a privilege
escalation, to prevent it in the future, but from a
network perspective, the traffic output at each stage is
not associated with any particular input. Consequently,
defenders cannot distinguish legitimate from malicious
network traffic, and identifying, patching, or disrupting
vulnerabilities remains a daunting task. In this paper
we present MAAT (Multi-stage Attack ATtribution),
a technique for identifying malicious users and their
network traffic.
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Existing solutions [1, 2, 7, 16, 18, 19, 22] to the
attribution problem have a few common shortfalls that
MAAT addresses. First, solutions such as [1, 16, 19]
rely on attack graphs to perform alert inferencing,
where existing relationships between alerts are known
via expert system knowledge. For example, an expert
would claim that a port scanning alert deep in the
distributed system follows from a wrong password
alert in the Internet-facing layers. In practice, such
relationships are complex, numerous, and difficult to
derive. Furthermore, it is challenging to keep such
information updated because systems are dynamic with
new vulnerabilities being discovered, new digital assets
being brought online, and new users being added.
MAAT solves this issue without relying on attack
graphs, thus providing a more general, robust, and
adaptive solution to solving the attribution problem.
Second, solutions such as [2, 7, 18, 22] rely on causal
links between stages or layers of the MSA. For example,
inside the system, it is known that input I; causes
output O, and these relationships are logged and
analyzed so that network traffic can be effectively
tagged and tracked in the system. This approach relies
on application support, however, to provide the causal
links. MAAT does not rely on such information from
the underlying application and can identify attackers
without this causality link.

MAAT is a network-based solution to the attribution
problem. We represent incident flows from external
clients to alert sources in a directed acyclic graph,
where each node in the graph models the mixing
property of intermediate servers and softwares. Some
of these flows are malicious, and they generate one or
more alerts at various nodes, and at various depths, on
its path. For each alert, we generate and track partial
attribution for all clients that can reach the alerted node
as a stateful metric called risk factor, or equivalently,
risk value. MAAT, taking into consideration current
risk for each network flow, adjusts the servers that the
flow will pass through, using a process called shuffling
[11]. Through the shuffling process, MAAT isolates the
suspect flows and keeps adjusting the risk factor. With
a sufficient number of shuffles, the risk factor of the
malicious flows exceeds a user-set threshold, ie, the
cumulative partial attributions for an attacker reaches
a level of complete attribution, and the attacker is
identified'.

UTerminology clarification: In this paper, we will use the term
“attacker” synonymously with “attacking flow” or “malicious flow”.
Without loss of generality, we say for ease of exposition, that one
client generates one network flow and thus there is a one-to-one
correspondence. In parts of the paper, we use the term “client” for
“network flow” where such use will not lead to confusion. In places
where we talk of attributing an attack and increasing risk factors, we
use the term “client”.

In MAAT, we utilize detection techniques that
resemble moving target defenses (MTD) [10], through
our shuffling algorithms. Using software defined
networks (SDN) [14], MAAT is able to manipulate or
re-route the network flows to desired nodes that in
turn helps in identifying the attacker in the distributed
system. Using SDN-based load balancers [21], entering
flows from external clients are mapped to any replica of
an entry-level server in the distributed system. Then,
whenever an alert is generated, by an IDS placed
at a replica of any server in the system, some risk
is attributed to all flows that are passing through
that server replica. Using two different approaches
corresponding to two different variants of MAAT, it
tracks this risk and assigns clients so that the malicious
flows have progressively increasing risk factor. Finally,
those with risk values above a user-settable threshold
can be isolated, blocked, or studied in a honey-pot.

Using this approach, MAAT is able to identify a
single attacker in a system of 1000 clients and 3
servers at the entry layer in 6 shuffles, requiring 1000
seconds whenever the attacker repeats the attack for
approximately every 150 seconds. In the same system
with 4 attackers, all of the attackers are identified
in 27 shuffles. We also show that the same system
with 10 attackers, the shuffling mechanism requires the
attacker to repeat their exploits over 1000 times before
gaining access to the crown jewel, thus significantly
increasing the attacker’s efforts under MAAT. Finally,
we demonstrate how MAAT impacts the legitimate
clients, showing that after 3-4 shuffles a majority of
clients can retain continuous connectivity while the
attacker is still identified.

The main contributions that we present in this paper
are:

1. MAAT can attribute multi-stage attacks on a
distributed system to a single external source,
without relying on attack graphs or modifying the
server softwares.

2. The MTD-style defense significantly increases
attacker’s effort, and can support identification of
multiple simultaneous attackers.

3. MAAT can support high availability for legitimate
clients while still identifying attackers in the
system.

2. Background and Assumptions

2.1. System Model

MAAT is designed to protect a distributed system
where servers exist at multiple layers, starting from an
external-facing layer (layer 1) to moving progressively
within the periphery of the system. A schematic is
shown in Figure 1. Each layer comprises multiple
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Figure 1. A sample distributed system that can be protected
by MAAT. It shows a multi-layered application and different
network flows are intermixed at all layers of the system. Each
layer comprises multiple server instances and the connectivity
among layers is provided by SDN-enabled network switches.

server instances, or synonymously, server replicas,
which are used for load balancing purposes. MAAT
leverages these instances for the purpose of isolating
suspect network flows, as we will detail in Section
4. As a running example, we consider a web-based
e-Commerce system operated by a publicly traded
company. Normal clients access a web front end, layer
1, that connects to a database back end, layer 2, to
store orders, interact with inventory, and otherwise
manage transactions. In layer 3, a corporate reporting
server analyzes the database to create sales reports,
track hot products, and manage inventory at a macro
level. It interfaces with the database layer and stores
reports on layer 4, the corporate file servers. Inside
of the corporate file server is an upcoming earnings
statement for the next quarter (the crown jewel), and
its early release would allow for insider trading since
the company’s performance, relative to projections,
can have a significant impact on stock prices. The
attacker(s) wish to ex-filtrate the earnings report.
More generally, the protected system may comprise an
arbitrary number of layers and each layer may have
none, one, or more server replicas.

2.2. Network Structure

The overall network structure for MAAT is shown in
Fig. 1. A server type is each distinct kind of server—web
server, file server, database server, etc. Each server type
has multiple instances in our solution and each layer
has servers of one specific kind. Each layer is connected
to the next via an SDN capable switch and all these
switches are controlled by a centralized SDN controller.
The controller, through the switch, controls all layer-to-
layer interaction paths. In SDN, as the control plane
is separated from the data plane [8] it is possible to
dynamically route the traffic to the desired servers by
updating the flow table in each of the open flow switch.
We use this functionality to route any specific network

traffic flow through a specific set of server instances, as
determined by the algorithm in MAAT.

Intrusion Detection Systems. At its core, MAAT relies on
intrusion detection systems to provide the alerts that
drive its identification techniques. Each server itself has
an IDS running (shown as a firewall in the Fig. 1) so
that alerts can be generated due to ongoing attacks.
In today’s deployments, IDS are often placed at the
periphery, ie, at layer 1 of the network, and the alerts
are often noisy (false positive) due to the wide variety
of traffic that reaches the outer layers. MAAT utilizes
IDS that are placed deep in the network, and the traffic
at these layers is much more regulated due to the
more tightly controlled nature of the applications at
intermediate levels in the system. For example, a port
scan (or its signature) at layer 1 is not necessarily an
indication of an attack and is therefore not actionable.
At layer 2, however, a port scan is almost certainly a
strong alert because there is no legitimate reason for
such traffic to exist at that layer in the network. MAAT
uses IDS alerts from deep inside the network to regulate
the risk value of any network flow. However, due to the
stateful nature of its operation, it is capable of tolerating
occasional false alerts from some IDS, or even repeated
false alerts for a given flow from a small number of
layers of the system. An acceptable alternative is to
use a lesser number of IDS and/or to use correlation
techniques to generate alerts for a specific flow [17]. In
this paper, however, we make a simplifying assumption
that each server instance has an IDS.

2.3. Legitimate Client Model

We define a legitimate client as a system user that has
no malicious intent and is using the target application
for its designed purpose. Whenever the client wishes to
use the service, it makes a request to the outward facing
service IP address. The SDN maintains a whitelist
forwarding table in the Internet-facing switch, and the
new client (identified by {source IP, source port}) is
not in that list. This triggers a control action in the
SDN switch—it contacts the controller and asks where
to forward the client’s network flow. This allows the
SDN controller to assign the client to a particular
front end server. Once this assignment is complete,
the client continues to establish its application level
connection, eg, perform a three-way TCP handshake
and make web requests. Each client generates one
network flow that touches each of the layers of the
distributed application. Further details on this process
are described in Section 4.5.

2.4. Attacker Model

The attacker begins as a normal client establishing a
connection to the service. Once connected, the attacker
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looks for vulnerabilities in the outward facing layer 1.
If the attacker is detected, then the client is blocked
and the attacker must generate a new identity (through
a proxy for a new IP for example). Once an exploit is
found in layer 1, the attacker stages an attack on layer 2
from inside the periphery of the protected system, ie
from layer 1. In moving from one layer to an inside
layer, the attacker leverages elevated privileges that
she has gained at the outer layer server. If an ongoing
attack is flagged by an IDS at any layer, layer 2 and
further inside, then MAAT is activated. If the attack is
undetected, then it may proceed to the next layer, until
reaching the crown jewel. The attacker will persist until
isolated, and then the attacker’s exploit paths will be
patched via external traffic analysis, such as through a
honeypot. The assumption of persistence of the attack
is crucial for MAAT to be effective. If the crown jewel
is accessed through a flow that does not generate any
IDS alert, then the attacker is successful and MAAT
will never even be invoked. There may be multiple
attackers present concurrently in the system. MAAT
works by making a few assumptions about the nature
of the multi-stage attacker:

 Persistent Attacks (PA) if a server is reset, or the
attacker connects to a new server, then the attack
must be repeated. Predecessor stages in an attack
must be repeated if the attacker is re-connected to
a new server.

* Strong Alerts (SA) the attacker will generate at
least one strong alert during a MSA. The strong
alert is an alert that with high certainty is known
to be part of an attack (eg, brute force attacks,
known exploit signatures, or other high priority?
alerts). It is important to stress that only in the
case of a strong alert is the algorithm of MAAT
triggered. If no strong alert is input to MAAT,
then the attacker will be successful in reaching the
crown jewel.

* Non-zero Exploit Time (Tx) each stage of an
attack will take non-zero time, with the time for
an exploit to be successful (discovery to access
transition) being a random variable.

3. Solution Overview

MAAT utilizes software defined networks (SDN) and
intrusion detection systems (IDS) to monitor and
attribute alerts to specific attackers. At its core, MAAT
sits along side SDN controller software where it

2ht tp://manual-snort-org.s3-website-us-east-1.amazonaws.
com/node31.html#Snort_Default_Classifications in Snort, rules
are tagged with priority where “high” priority correlates with strong
in our solution

can observe the network flows and make decisions
about changes to the network. It is installed as an
application over a SDN open flow controller, such as
an OpenDaylight Controller [15], and interfaces with
IDS alerts generated throughout the distributed system.
The algorithm then chooses which clients will be
connected to which outward-facing servers, and which
downstream servers are connected to which upstream
servers in the distributed application.

MAAT’s algorithm operates by maintaining a risk
factor for each connected client and then modifying
that risk factor whenever alerts are generated. As
more alerts are generated, the attacker’s stateful risk
factor is increased until she can be discriminated from
the other connected clients. Whenever an alert is
generated, the risk is increased for all the flows that
are passing through the alerting service. The clients
are then shuffled based on their risk so that over
time, the attacker ends up with the maximum risk.
The risk factor is initialized to zero for all clients and
this monotonically increases with alerts in the system,
till the attacker is identified and isolated. Then the
risk factors of all the clients that are found to be
legitimate in retrospect are reduced (Risk Rebalancing
as explained in Section 4.4). We classify our protocol
as an instantiation of Moving Target Defense (MTD),
though it is somewhat different from the traditional
notion of MTD. Here we are moving the clients and
the assignment of flows to servers, while in traditional
MTD, the protected system is “moved”, ie reconfigured

[9].

3.1. MAAT's Intuition

Several challenges exist in protecting a distributed
system that has the structure shown in Fig. 1. First,
alerts generated at any layer (i + 1) (i > 1) look as if
they are coming from layer i, not from an external
attacker. This argues against the simple solution of
blocking flows from a particular source because that
would create a Denial of Service—if a server in layer (i +
1) blocks a server in layer i, then the application stops
working for all the clients connected to that particular
server in layer i. MAAT overcomes this limitation by
attributing an attack to all clients that are connected
to the alerting server in layer i and then stopping the
ongoing attack using the MTD approach. When an alert
event happens, all of the clients are disconnected from
the servers in layer 1 (for purposes of randomization),
assigned to new servers, and the alerting server is
refreshed to a clean state and restarted. MAAT then
constantly tracks the attack history of each client with
the help of the risk factor as we describe in detail in
Section 4.1, so that the attacker is identified due to
multiple alerts, which in turn is due to the persistence
of the attack (as assumed in our attack model). The
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persistent attack property fundamentally allows MAAT
to converge given a sufficient number of alerts.

3.2. Legitimate Client Impacts

The SDN-based shuffling in MAAT can have some
negative impacts on legitimate client connections.
First, whenever a shuffle involves a client, the client’s
connection is reset. This overhead cannot be avoided
since the attackers and legitimate clients share the same
network flow paths—a connection reset that disrupts
an attacker’s flow also disrupts the legitimate client’s
flow. Its impact can be mitigated, however, with state
management approaches [20]. Second, when a server is
being reset and restarted (to clear the infected status),
the clients assigned to that server cannot function. This
case can be minimized by using fast restart hardware
or by keeping hot spares for the server instances. The
rate of this exchange is related to the attacker’s time to
exploit (Tx), so that fast-moving attacks will generate
many alerts, which will require many hot spares.

4. Detailed Design of MAAT

MAAT identifies attackers performing multi-stage
attacks on a distributed system by algorithmically
tracking risky behaviors of the attackers until the
suspect flows are identified. In this section, we define
two alternate algorithms in MAAT that achieve this
goal, each with a different trade-off between the time
to identify attacker(s) and the amount of disruption to
clients.

4.1. Objective

Ultimately, MAAT is designed to identify attackers in
the system. Practically, however, attacker identification
in MAAT resembles a probabilistic function rather
than an absolute measure because we do not have
perfect internal causal relationships between alerts and
sources. Therefore, we define identification as an event
where a single client has the highest likelihood of
being an attacker. In the case of multiple attackers,
this process is repeated so that multiple identification
events occur until all of the attackers are exhausted.

Alert Group Attribution. In MAAT, there always exists a
mapping between a server in any particular layer and
the clients that, through any possible path, have access
to that server. For example, if clients 1-5 are assigned to
server S1 in layer L1, and S1/L1 is connected to S2/L2,
then an alert sourced from S2/L2 will be attributed to
all the clients 1-5. The relationship of how any given
flow passes through the servers at the different layers
is itself controlled by the SDN controller and thus
this relationship is always known to our algorithm.
Now we define a term client group. Consider that an
alerting server has flows Fy, F,,..., Fy, going through

it. By tracing each flow back to layer 1 servers, we can
map each flow F; to the client generating that flow C;.
The clients Cy, Cy, ..., Cy,, form the client group here.
Each such client has its stateful parameter, risk factor,
increased by NLG, where Ng is the number of clients in
that particular group. In the earlier example, each client
would have its risk increased by 1/5.

We use the notation N,g for the number of servers
(or in complete terms, server instances) at the layer at
which the alert is generated. If the alert is generated
at layer 2, and there are 3 database server instances as
in Fig. 1, then N5 = 3. In our model for the protected
system, there can be a different number of servers
at different layers. This parameter is important for
determining the convergence time of our algorithms, as
we will see next.

Likelihood of a Client Being the Attacker. We define the

likelihood as follows:
R(C;)

P(Ci = A) = Y R(Cj) ¥ R(C)) = R(C)) W

where C; is client i, C; = A is the indicator that C;
is an attacker, R(C;) is the risk factor of client i, and
¥ R(C;) > R(C;) implies that client j has a risk factor at
least as large as client 7, and i = j is allowed. In this way,
if a client has the highest risk factor of any client, then
this probability value becomes 1.

Control and Convergence. In MAAT, we control, through
SDN controller rules, the assignment between clients
and the layer 1 servers. Likewise we control the route
each flow takes through servers at different layers. The
full generality of the design space for MAAT allows
for a flow passing through server A in layer i to be
mapped to any server B in layer i+ 1. We call this
configuration the non stove-piped configuration and this
allows for the greatest flexibility to mix and isolate
the different flows as they flow through servers at the
different layers. However, this increases the amount of
state that needs to be maintained at the SDN controller
- the mapping of the flow through each layer. For a
simpler configuration option, we introduce the stove-
piped configuration whereby the grouping of flows that
are incident on a certain server at layer i is maintained
at layer 7 + 1, and this holds for all layers in the system.
We find that the overhead of state maintenance at the
SDN controller is fairly minimal for all but the largest
of deployments and therefore the non stove-piped
configuration is desired from a security standpoint.
The algorithm converges whenever:

i, P(C;=A) > (2)

The user-settable parameter 7 allows MAAT to control
the balance of false alarm and speed of identifying the
attacking flows. A higher value of 7 will mean fewer
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legitimate clients will be flagged but the convergence
time will also increase. In the extreme, setting 7 =1
will mean that only the flow with the highest risk factor
will be designated as malicious. Section 4.6 discusses
conditions where convergence may fail with multiple
attackers present.

4.2. Uniform Assignment Algorithm (“Uniform”)

The uniform assignment algorithm is responsible for
assigning arriving client flows at layer 1 to different
servers at layer 1. There are Ng assignment pools
available, where Ng is the number of servers in layer
1. For each client 7, an assignment is made: A: C; —
[1, Ng] such that the imbalance in risk between any two
servers is minimized. At the beginning of the operation
of the system, each client will have the same risk factor
and so this will be a uniform random assignment.
However, in subsequent mappings (which happen after
an alert arrives at MAAT) the risk factors will be
different and the mapping A will be a weighted random
assignment, using the risk factors as the weights. The
goal is to balance the aggregate risk at any of the servers
in level 1. The assignment process proceeds as follows:

1. A client seeks an assignment, either when it is
connecting to the protected system for the first
time, or in response to a disconnection forced by
MAAT.

2. The client is given the assignment to [1,Ng]
according to the assignment function A.

3. When a new alert is received, the assignments
between clients and servers are reset, and all
clients return to step 1 and re-assigned to new
servers.

This algorithm effectively assigns clients such that
there is a uniform aggregate risk assigned to any
particular server. In this way, each attribution event
reduces the set of ties (N7 = [V R(C;) > R(C;)|) to I\I}]—;,
where Nyg is the number of servers in the alert layer.
For example, initially, if there are 100 clients and 4
alert groups, and every client has a risk of 1, then by
Eq. 1, P(C; =A) = 11W V i. After an attribution event,
given uniform assignment (each server having balanced
risk of 25, thus 25 clients per server), then the likelihood
for those 25 becomes % because the 25 clients
that were attributed with risk have an additional 0.04
added. The size of the set |[R(C;) > R(C;)| is now % =
25, following the described reduction.

Convergence. Using this algorithm, with Njg servers
at the alert generating layer and N static clients, a
single attacker will be found after Ny = |'logNAS Nc]
alerts because the reduction of Nt by NLAS resembles
the height of a balanced tree with N leaves and

Nyg branches at each alert. In a multi-attacker case,
each attacker must be responsible for Ny alerts, where
each alert independently causes a shuffle, in order to
converge—as there are effectively N4 simultaneous risk
trees being built. Here in one case, the attacker who
generates alerts at a rate faster than the others will be
identified first. In some cases, multiple attackers will be
present in the same group, or multiple alerts will occur
before step 3 is achieved in this algorithm, and these
alerts will not count towards Ng. For example, if there
are a total of 3 alert groups, and each group generates
an alert before a shuffle event, then the risk of all the
clients goes up (uniformly in this case) and that makes
no progress toward convergence.

4.3. Low-Risk Isolation Algorithm (“LRA")

This variant of the algorithm extends the previous one
by sheltering low risk clients into a safe zone. A safe
zone is defined as a set of servers in layer 1 such
that clients which are assigned to this set are not
shuffled around by MAAT. Thus, these clients do not
suffer from any disconnections and their risk factors
do not change. Each alert/attribution event tells MAAT
something about who may be the attacker, but it can
also indicate who is not an attacker. In the uniform case,
the legitimate clients are mixed in with the attackers,
and this causes them to rise in risk, whenever they share
a server with the malicious clients. It also dilutes the
attribution power of a single attack since Ng remains
near-constant. The Low Risk Assignment (LRA) variant
avoids this issue by placing some portion of the clients
with the lowest risk into a safe zone:

1. Clients are assigned as in the uniform risk case,
except for clients that exist in a safe set Sg,
initialized as empty.

2. After an attribution event a portion of the clients,
Ig, Iz € (0, 1), is moved from the active set S, to
the safe set Sg. The |S,4]| - I clients with the lowest
risk are moved to Ss.

3. The assignment of the safe clients Sg is fixed
to a particular server, and then the clients in
the active set Sy are redistributed among the
remaining Ng — Ny, servers using the uniform
risk approach.

4. In the event an alert is generated from any of the
Sg clients, then the entire set of clients is moved
back to the Sy4 set.

Using this approach for a single attacker, much less
risk is assigned to the legitimate clients in the sys-
tem. Additionally, they are provided an uninterrupted
connection path to the protected application, therefore
decreasing the negative impacts from MAAT’s assign-
ment approach (Section 3.2).
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Convergence. This approach converges slightly slower
than the uniform risk for the same number of servers
Ns. Some servers at each layer are saved for handling
the clients in the safe set Sg, thus the convergence for
a single attacker is Ng = [logNAstsafe Nc] where Nyg is
the number of servers at the alert layer and Ny, is the
number of servers used for the safe zone. For multiple
attackers, there is a chance that an attacker ends up in
the Sg set of clients and causes a reset of the set back
into the S, set. This is advantageous to the attacker and
slows down the speed of convergence. However, if the
multiple attackers have very different times to exploit,
then there is less likelihood of the above case because
the malicious flows will rarely have low risk factors.
The LRA approach is designed to keep trusted clients
connected to the application continuously without
suffering from any disconnections due to the shuffles of
our algorithm.

4.4. Risk Rebalancing Approach (“RRB")

Once one of the attackers is identified by using any one
of the above described algorithms, the risk factor of the
remaining clients are updated using Risk Rebalancing
(RRB) technique in order to speed up the convergence to
identify the remaining attackers. Each alert attribution
is stored in the SDN controller that contains the list
of clients and the amount of risk factor attributed to
each client due to that particular alert. Whenever an
attacker is identified, the list of alerts is searched, and
the set of alerts that involved the attacker are collected.
The accumulated risk for each client due to each alert
in that list is removed because of the insight that the
alert is attributable to the now discovered attacker and
not the other clients. Thus, legitimate clients have their
risk lowered leading to faster identification of the other
attackers.

45. End-to-end Workflow

We detail the end-to-end workflow of MAAT in the
context of an SDN-based system:

1. Initial: The SDN switch at ingress node forwards
each new client’s request to the SDN controller
as the flow table will be initially empty. MAAT,
which is installed as an application over the SDN
controller, stores the associated risk and the server
allocated at each layer for all the clients.

2. Server Assignment: MAAT assigns each client
to a particular server at layer 1 as described in
Sections 4.2 and 4.3. Then the corresponding flow
rules are installed at the SDN switch in layer 1 and
subsequent layers. The initial risk factor of all the
clients are set to 0. We denote by T the time for
server assignment.

3. Connection Establishment: Each client estab-
lishes a connection with the servers at layer 1
using TCP 3-way handshake. At this point, all the
clients except the attackers can access the servers
in subsequent layers using their respective access
privilege. (T¢: Time to establish connection).

4. Attacker Exploration: In order to get access
to the subsequent layers, the attackers have to
explore the layer 1 server for vulnerabilities and
then exploit a vulnerability. Let T, denote the
time to exploit a server at a particular layer. T,
varies across different layers and across different
attackers.

5. Alert Generation: The attacker continues to
compromise the servers at subsequent layers until
an IDS detects a malicious action (e.g., port
scan, known CVE, etc.) or alert correlation from
multiple IDS alerts generates a strong alert. Let
T4 be the time to generate a strong alert.

6. Connection Termination: The strong alert is sent
to the SDN controller, which initiates the shuffling
by disconnecting the clients from the servers in
layer 1 (except those in the safe set for LRA) and
reassigning them.

7. Risk Updation: The risk factor of the clients are
updated according to either the Uniform or the
LRA scheme. Let Tg4 be the time to update risk
values.

8. Attacker Identification: After the risk updation,
the probability of each client is calculated using
Equation (1). The clients with a probability P(C; =
A) > t are identified as attackers and isolated.

9. Risk Rebalance: After the attacker is identified,
MAAT rebalances the risk factor of all the
remaining clients (Section 4.4).

10. Server Reset: MAAT instructs the SDN controller
to reset all the active servers in the network by
broadcasting a control message which ensures
that the attackers need to exploit it again, in order
to re-initiate the MSA. Let Tr be time to reset a
server.

11. Connection Re-establishment: All the clients
including the attackers will re-initiate connec-
tions to the servers in layer 1 and the steps repeat.

4.6. Multiple Attackers

Multiple simultaneous attackers can be handled by
MAAT, without any modification. We model multiple
attackers as each having independent, random times to
exploit (Tx), where a successful exploit results in an
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Figure 2. SDN model system considered for the evaluation
section.

Table 1. Default Network and Time Parameter Values.

Notation Meaning Default Value

Nc No. of clients 1000

Ny No. of attackers 4

Ns No. of servers at layer 1 3

N No. of layers 4

Tuters Strong alert layer number 2
Iy Ratio of clients moved from active set to safe set 0.25
Ts Server allocation time Tms
Tc Connection establishment time 30 ms
Ty Alert generation time 1 ms

Tra Risk assignment + attacker identification time Tms
Tx Server reset time 455 [13]
Tx Attacker Exploit Time Normal Distribution

alert being generated. If one attacker is more aggressive
(smaller Tx), then alerts will be generated due to this
attacker and this attacker will be identified by MAAT
before moving on to the next attacker. This essentially
makes the process of identifying multiple attackers
sequential. If on the other hand, there are multiple
attackers with similar Ty values, then it will be a matter
of chance which attacker gets identified first. But the
risk factor of the other attackers will be retained in
MAAT, thereby helping in the convergence time for the
subsequent attackers.

False Positives and Mitigation. It is possible for MAAT to
generate false positives with multiple attackers present
that have similar Tx. For example, if there are four
clients C1-C4, of which C2 and C4 are malicious and
two servers S1 and S2. In the first round, C1 and C2 are
assigned to S1 and C3 and C4 to S2. C2 alerts resulting
in reshuffling. In the next round, C1 and C4 happen
to be assigned to S1 and C2 and C3 to S2. Now C4
alerts and as a result, the legitimate client C1 is falsely
flagged. This is a relatively rare occurrence and we show
the false positive rate in Experiment 4 (it is below 5%
even in the most pathological case).

5. Experimentation

5.1. Model System

The figure 2 describes the default SDN Network and
tables 1 and 2 shows the default values for the
network parameters and the exploit time for 4 attackers
respectively that are considered for the evaluation of

Table 2. Default Attacker Exploit Time Tx for 4 Attackers.

Tx at Layer 1 Tx at Layer 2
Mean (s) | Variance (s) | Mean (s) | Variance (s)
1 20 5 30 5
2 40 5 60 5
3 10 2 15 2
4 80 5 80 5

Attacker No.

the experiments described in the below sections . All
the experiments are evaluated using the default values
unless otherwise specified. As shown in figure 2, for the
sake of simplicity we consider that each server in layer
i has a stove piped connection or one-one connection
(represented by different colors) to any server in layer
i+1 in order to avoid mixing of network flows at later
stages. The experiment 5 shows the convergence for
non-stove piped case. In LRA approach the server 3 is
considered to be safe server and the clients in active set
S, are shuffled between the server 1 and server 2.

Simulation Environment. Along with MAAT, the SDN
environment is remodeled using the network and
time parameters in C++°. Each event in the SDN
environment is represented by a corresponding time
component as described in section 4.5 and the network
elements are given by the parameters in table 1. The
clients are assigned to the available servers using
uniform random distribution and the attacker’s exploit
time is modeled based on normal distribution as in
table 2. For each attacker, the exploit time varies by
mean across each layer and varies by variance across
different iterations or shuffles. For some experiments,
where multiple simulations can be aggregated, we take
the median of 20 runs to provide data smoothness with
respect to the random attack times.

Evaluation Parameters. For simplification, we assume all
the clients send requests to the servers at layer 1 at
the same time. All the experiments described below are
evaluated using the following parameters:

Experiment Time: This parameter indicates the time
at which particular event like server assignment or alert
generation happens.

Convergence Time: The time at which single attacker
or all the attackers are found.

Probability of Attacker found (P,) This is the
probability of attacker being identified correctly as an
attacker given by equation 1

Percentage of Failed Transactions (PFT) This
parameter indicates the number of client disruptions
during the time of attacker identification. It is a
function of time given by

PET(1) = No.ofFailedTransactions
~ TotalNo.of Transactions

(3)

3ht tps://github.rcac.purdue.edu/DependableComputingSystemsLab/

TopHat
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where we model client transactions as continuous time
event for simplicity. We aggregate PFT across clients
and all time to compute a cumulative PFT for the
purpose of comparing per-simulation metrics. Note that
the PFT is per-client, and not all clients are disrupted
simultaneously during a shuffle event in MAAT.

5.2. Experiment 1: Convergence over Time

The experiment 1 demonstrate MAAT’s operation in
the time domain for both single and multiple attackers.
During each attack, the two primary metrics (PFT and
P,) are collected based on the experiment time at which
an alert is generated. Default values are used for all
parameters except Ny. Fig. 3 shows the results from our
simulation, with the single attacker in Fig. 3a and two
attackers in Fig. 3b. The results are explained in the next
sections.

Convergence. In case of single attacker, the convergence
is given directly by P4 and for two attacker’s case,
it is given by average probability. At each alert
generation, the probability is updated, and the value
for the attacker increases as shown in the figures. The
experiment time at which the P4 becomes is the time
at which the attacker is found. The uniform algorithm
converges more quickly in both cases primarily because
it has 3 servers to use for risk attribution while LRA
reserves a server for the safe pool and uses only 2
servers for risk attribution. The step function increases
as the number of ties are broken, and the attacker
is repeatedly involved in high-risk attribution events.
We find that the algorithm does converge and single
out the attacker in both cases given sufficient time,
demonstrating our primary claim.

In the case of multiple attackers, one attacker has
a faster exploit time than the other. Since shuffles
occur on the fast attacker’s alert, the slow attacker
is statistically unlikely to ever generate an alert until
the fast attacker has been disrupted. This causes a
time-domain crowding of alerts early in the simulation
until the first attacker is identified, and then the alerts
become more spaced out as opposed to an independent
case where the alerts would be interleaved. Upon close
inspection, one of the LRA’s potential weaknesses can
be seen in that it is using more shuffles to identify the
attacker in the two attacker case. Furthermore, because
the slow attacker has low risk, she can be placed in the
safe zone, and it is more likely that a slow attacker can
generate an alert inside of the safe area—something that
does not happen in this experiment, but will in a later
experiment. Of note, the dip in probability around 750
seconds for LRA is due to the metric being a mean: the
slow attacker’s probability goes down offsetting the rise
in the fast attacker’s probability.

PFT. The PFT shows how clients are impacted through
time. In all cases, the width of the PFT bar represents

the reset time for cleaning impacted servers in the
system Tg. For the uniform algorithm, all clients are re-
assigned and all servers on the attack path are cleaned,
resulting in outages for all of the clients, hence the
peak is always at 100. In the LRA case, only those
clients remaining in the active set are impacted for each
attack. This results in a decaying PFT over time as the
low risk clients are assigned to the safe server at the
rate Iz. Consequently, system operators have a choice
between faster convergence and attacker identification
(the Uniform variant) or slower convergence with better
client access (the LRA variant).

For multiple attackers, in the Uniform case the PFT
follows the single attacker profile, but it is repeated for
the second attacker with a higher width due to T. For
the LRA case, since less shuffling servers are available,
it takes more alerts to converge and thus more shuffles,
and more period of high PFT. Of note, however, is that
the PFT is never reset-that is the pool of safe clients
never generates an alert.

5.3. Experiment 2: Convergence vs. Parameters

This experiment explores the convergence properties
of both the Uniform and Low Risk Assessment (LRA)
approaches to attacker identification. We explore four
parameters: the number of clients N¢, servers at the
alert layer N, attackers N, and the LRA’s active-to-safe
movement ratio Ig. All of these results are in Fig. 4 and
described in the following sections.

Number of Clients. This experiment, show in Fig. 4a,
increases the number of clients connected to a system
with the default number of servers and attackers.
The x-axis is show in log scale, and the time to
find all attackers is linear in the convergence time
for the uniform case, matching the expectation from
Section 4.2. For the LRA, it is roughly linear, but
it suffers from placing attackers into the safe pool
of clients. In the PFT metric, the LRA performs
much better due to this safe pool, as expected.
This experiment confirms MAAT’s scalability with the
number of clients.

Number of Servers. Adding additional servers to

MAAT, thus increasing Nyg, improves convergence

log(Ng+1)
o, . . alog(NS) ' . .

additional servers provides finer granularity in the alert

attribution phase, thus singling out attackers more
quickly. Fig. 4b shows this convergence trend for the
two algorithms. The same general trends from earlier
experiments hold, but LRA’s advantage in PFT begins
to disappear with a large number of shuffling servers
and only a single safe server.

speed incrementally by This is because

Number of Attackers. As the number of attackers
increases, the number of alerts required to identify
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Figure 3. The convergence of MAAT is shown for the single attacker and two attacker cases with both the uniform and low-risk
assignment (LRA) algorithms. The LRA converges more slowly (top) but has better access for the legitimate clients (bottom).

the attacker increases linearly. Fig. 4c shows the trend
with Ny in the range of 2 to 10. At higher number of
attackers, it takes longer to converge as expected in the
uniform case, but it also impacts the LRA super-linearly
because it increases the probability that a slow, low-risk
attacker will enter the safe pool. Even with this risk, the
LRA is still able to outperform the Uniform algorithm
in the PFT metric.

LRA Movement Ratio. This experiment, as shown in
Fig. 4d, only applies to the LRA algorithm. The I
parameter controls how many clients are relocated from
the active set to the safe set after each shuffle. If this
ratio is too low, then the convergence speed and PFT
will be the same as uniform but with 1 less server in
the shulffle set. If this ratio is too high, then up to half
of the shuffles will be wasted on safe server alerts—
the alert will come from the server that has all of the
clients connected to it, and no useful attribution can
take place. At an ideal ratio, the attacker has limited
chance of being moved to the safe server, which in this
case is 75%. In future work, the ratio can be modulated
based on an estimate for the number of attackers in the
system.

5.4. Experiment 3: Attacker Effort

In this experiment, we demonstrate how MAAT, by
utilizing MTD, is able to increase the total attack effort
that must be expended to compromise the protected
system. We measure attacker effort as the number of
times a server must be compromised, at any layer, by
any attacker. This includes the effort spent exploiting

servers that have been reset. We also measure the
number of shuffles or alerts generated in the system,
and this metric covers the number of trials an attacker
has at penetrating a system for which the exploit is not
known.

Fig. 5 shows the effort in these two metrics. In
Fig. 5a, the total exploits goes up with the number of
attackers. This process is not linear, however, because
many attackers will be reset even when they do not
generate an alert themselves due to the moving target
nature of MAAT. Each attacker may penetrate layer 1
and be shuffled before making an attempt on layer 2,
for example. Consequently, MAAT is able to make it
much more difficult to attack the system when multiple
attackers are present, even if the attacker identification
takes some time. In Fig. 5b, the total number of resets
are shown. This scales roughly linearly with the number
of attackers because there is a lower limit to this
number until the attackers can be found, as described
in Section 4.2. Of note here, however, is that there are
a limited number of exploit attempts allowed at layer 2
before the attackers are identified and a layer 1 patch
can be created. These 5-100 alerts will attribute the
attacker, and upstream compromises (at layer 1) can be
patched as a result, a key benefit of MAAT.

5.5. Experiment 4: Effect of Risk Re-balancing

For this experiment, we evaluate the impact of the
risk re-balancing (RRB) technique (Section 4.4) on the
convergence time and the false positives. We stress the
system by having multiple attackers with the same
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Figure 4. Convergence time and the client's cumulative PFT is shown for four parameters in our simulation.

distribution for Tx. Without RRB, when an attacker
is identified, the risk for all other clients is reset to
zero. With RRB, when an attacker is identified, only
the legitimate clients that had been mixed in with the
identified attacker have their risk reduced, not reset to
Zero.

Fig. 6a shows the impact of RRB on both the Uniform
and the LRA algorithms. In both cases, the use of the
RRB speeds up convergence as expected. The number
of false positives is higher for LRA. This is because
the placement of many clients in the safe zone and
subsequent alerts from that zone can degrade the
process of identification of the attackers. MAAT is still
able to provide low false positive rates (less than 0.5%)
for small numbers of attackers relative to the total

number of clients (10), even in this challenging scenario
of similarly aggressive attackers.

5.6. Experiment 5: Effect of Number of Server
Replicas

For this experiment, we use a system with 5 layers
having [5, 4, 3, 2, 2] replicas in the layers, starting
from layer 1. The inter-layer connections are uniformly
balanced as much as possible. We evaluate the impact
of alert depth on the risk attribution algorithm. Fig. 6b
shows the impact of the alert layer on the convergence
speed of both algorithms. The number of replicas
decreases as one goes further inside the system. This
is not uncommon because the number of requests
that touch servers deep inside the enterprise typically
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decrease. We expect that alerts deep in the system
will provide less discriminating information about the
attackers because the shuffling can occur with coarser
granularity, thus lumping more number of clients
(legitimate with a few attacking) together on the same
server. In the case of LRA, the safe zone is on a single
stove-piped layer while the other shuffling servers are
all connected into the multi-layer system. As the layer
deepens, it is similar to reducing Ng because the size
of the alert group increases and the number of groups
Ng decreases. Therefore there is a logarithmic increase
in the convergence time as the depth of the alert layer
increases.

6. Discussion and Future Work

In this paper, we presented a solution to the attribution
problem using moving target style defense through
shuffling. This approach provides robust mitigation
for a variety of attacks for which strong IDS alerts
exist, which is a cornerstone assumption for MAAT.
This assumption can be relaxed with the use of a
more probabilistic risk assessment model that adapts
risk to the quality of the alert, so that alerts based
on weak signatures can still be useful in identifying
attackers. MAAT also relies on restricted intra-layer
communications which limits its applicability to some
applications. In some attack models, an attacker could
move laterally between one server and another if such
a channel exists. We can extend MAAT by requiring
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network IDS placement between servers in the same
layer, which will enable detection of such lateral
movement. Finally, in MAAT, we have not provided
any elastic replica management. In cloud environments,
it may be useful to scale the number of servers based
on the risk and alerts generated in the system to
more quickly find the adversary and restore client
connectivity. In future work, we will analyze when to
expand or contract the replica set.

7. Conclusion

In this paper, we presented MAAT, a solution to the
problem of attributing an alert to an attacker in a
multi-layered system. The problem is challenging due
to the mixing of multiple flows at servers inside the
periphery of the system. MAAT utilizes moving target
defense techniques, namely shuffling, implemented on
top of a software defined network infrastructure. We
provided two algorithms for shuffling, one that focuses
on convergence speed and another that focuses on
improving client connectivity during attacks. Further,
we show that MAAT increases the attackers effort by
requiring multiple re-exploiting of the target systems.
We evaluate MAAT using the metrics of time to
detect and isolate the attackers and the impact on
the legitimate clients in the system. Using our system,
network administrators can begin to attribute alerts and
attacks, to external flows so that they may be blocked or
studied for further defense improvement.
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