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ABSTRACT: This paper presents a statistical monitoring
methodology to identify and diagnose intermittent stochastic
faults occurring in a nonlinear dynamic chemical process. This
methodology addresses three important aspects in model-
based fault detection and diagnosis (FDD): model simplicity,
interpretability, and calibration. The goal is to generate a
surrogate model that can be easily interpreted while
maintaining model flexibility and efficiency. The key feature
is the use of an active set optimization in combination with a
Gaussian process (GP) model for fault detection and
classification. To optimally select measured variables for
inferring faults, an active set optimization with l1-norm
regularization is combined with statistical analysis. This can provide a trade-off between model dimensionality and model
prediction error. To ensure sufficient data for the calibration of GP models, an improvement in a probability-based model
adjustment algorithm is developed. The performance of the developed FDD scheme is illustrated with two examples: (i) a
chemical process consisting of two continuous, stirred tank reactors (CSTRs) and a flash tank separator, and (ii) the Tennessee
Eastman benchmark problem. In addition, to deal with multiple-root-cause faults, the GP model based classification was
investigated. The summary of the results show that the methodology in this work can cope with both individual and
simultaneous occurrences of multiple-root-cause faults in the presence of uncertainty.

1. INTRODUCTION

An important aspect for safe operation and improved product
quality of chemical processes is the early detection of abnormal
events and malfunctions that are defined as faults.1 For
detectable faults, the fault detection and diagnosis (FDD)
algorithm can provide symptomatic fault features, which will be
further used by an FDD scheme to identify the root cause of
any abnormal behavior. Different methods have been
developed in the literature for FDD. These methods can be
broadly categorized into three groups:2,3 (i) analytical methods
that are solely based on a first-principles model of process;4−7

(ii) surrogate (empirical) modeling methods such as multi-
variate statistical analysis that use the historical data collected
from the processes;8,9 (iii) semiempirical techniques that
integrate first-principles models with surrogate (empirical)
models.10−12

Each of these aforementioned modeling techniques for FDD
has its own advantages and disadvantages depending on the
process of interest. It is well-recognized that surrogate models
are easier to develop, while first-principles models have
superior extrapolation ability.13−15 This work will focus on
the development of a surrogate model for fault detection and

classification using historical data. Since data in chemical
processes generally exhibit high correlation over time and have
cross-correlation among variables, multivariate statistical
analysis (MVSA) techniques such as partial least squares
(PLS) have been used to reduce model complexity, thus
leading to improved accuracy.9 Lower dimensional representa-
tions formed with MVSA can often better generalize to new
process data, as compared to the representations using the full
dimensionality. The main drawback is that models built with
MVSA techniques are not interpretable, since they generally
rely on subspaces that involve linear combinations of the
original physical states.
To build a model in the original physical states, the least

absolute selection and shrinkage operator (Lasso) was
proposed to select significant variables based on the polyhedral
structure of the l1-norm regularization.16 However, the use of
Lasso may leave a larger number of variables, as compared to
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the conventional MVSA methods. To address this, the active
set method17,18 is used to keep the computational cost
relatively low and to improve model convergence. Models
generated with active set involve a set of physical variables that
have significant effects on a chemical process. However, the
resulting models are linear and may be less efficient to monitor
nonlinear chemical processes.6

Uncertainty is one of the major challenges for accurate fault
diagnosis and classification, since most of the FDD tools
generally rely on models that are not perfect.3 Such model
uncertainty may either result from intrinsic time-varying
phenomena that are not considered in the models or originate
from inaccurate calibration because of noise in the data used
for model calibration.12 Generally, the effect of uncertainty on
model predictions is typically ignored in the reported FDD
techniques, leading to a loss of accuracy.19 To account for the
effect of uncertainty on FDD, a Gaussian process (GP) model
can be used.20 GP models present a new, emerging, and
complementary approach for system identification21,22 and
design of robust controller.23,24 A significant feature of the GP
models is that they only involve a few tuning parameters, as
compared to other surrogate model based methods such as
neural networks.25 In addition, GP models can provide a
probabilistic description of uncertainty for hypothesis testing.26

It is important to note that FDD with GP models comprises
regression and classification components.25 The main differ-
ence between the regression and classification components is
how the measured quantities are linked to the faults, i.e.,
continuously or discretely. The regression is concerned with
the accurate prediction of the continuous quantities of faults.
In contrast, the results of classification are discrete class labels,
for which the prediction of possible faults is assigned into one
of the predefined classes. For brevity, the classification problem
with GP classification models is discussed in the Supporting
Information, and we mainly focus on the use of the GP
regression model for fault classification here.
Surrogate models to be used for FDD should describe the

relationship between faults and measured variables. These
models must be calibrated with data, and this calibration step is
sensitive to the amount and density of data used for model
training. Surrogate models can be inaccurate when dealing with
observations that were not used for model calibration.13 To
improve FDD, it is imperative to ensure that sufficient data are
available for model training in order to develop a robust model.
One possibility is to calibrate models with a large amount of
measurements. However, this may require performing many
physical experiments, which would be impractical and
expensive. Additionally, some measurements used for model

calibration may have little effect on improving model accuracy.
In this work, we develop a methodology that uses a
combination of actual measurements and synthetic data
obtained from simulations with the first-principles models for
improved model calibration. It should be noted that, if actual
data are not available, only simulated data that are selected
based on a cumulative probability criterion can be used. Actual
data can be used for other than simulations when there are
sufficient training data for model calibration.
In summary, a surrogate model is developed using physical

process variables while taking into account uncertainty. The
proposed method involves three consecutive steps:
(i) Data dimensionality reduction: An active set optimiza-

tion is combined with statistical analysis to find measured
variables that are sensitive to stochastic faults.
(ii) Adaptive GP model calibration: A surrogate model is

developed using a GP-based supervised learning method,
which is calibrated with synthetic data based on a minimal
model adjustment algorithm.
(iii) Stochastic fault detection and diagnosis: The GP model

is used to infer intermittent faults consisting of stochastic
perturbations superimposed on intermittently changing mean
values of a particular input. In addition, a GP classification
model is developed in order to deal with multiple-root-cause
faults (see the Supporting Information).
The paper is organized as follows. In section 2, the

formulation of a fault detection and classification problem is
presented, which is followed by the theoretical background of
the active set optimization and the GP theory. The fault
detection and diagnosis (FDD) algorithm developed in this
work is explained in section 3. A nonlinear chemical process,
consisting of two continuously stirred tank reactors (CSTRs)
and a flash tank separator, and the Tennessee Eastman
benchmark process are used as case studies in section 4.
Simulation results and brief discussion of the results are given
in section 5 followed by the conclusion in section 6. For
multiple-root-cause faults, the Lasso and GP model based
stochastic fault classification problem is discussed in the
Supporting Information for brevity.

2. PROBLEM FORMULATION AND MATHEMATICAL
BACKGROUND

2.1. Formulation of Intermittent Stochastic Faults. A
nonlinear chemical plant, subjected to uncertain parametric
input faults, is described by a dynamic model as

̇ = ≤ ≤ =x x u x xt t tG( , , ; ) 0 , (0)f 0 (1)

Figure 1. Fault profile denoting an intermittent stochastic input fault and resulting measured variable.
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where the vector x ∈ Rn represents the states of the system
including measured variables with initial conditions x0 ∈ Rn

over time domain [0, tf]; u denotes the known (measurable)
inputs of the system. The matrix G ∈ Rp×ng represents the
unknown (unmeasured) stochastic time-varying input faults,
which will be inferred with FDD algorithms. The function
builds the relationship between inputs (u and G) and system
states (x). It should be noted that G in this work denotes the
multiple-root-cause stochastic faults, i.e., G = [g1, ..., gj, ..., gp]
T, where gj (j = 1, ..., p) is a row vector involving a finite set of
mean values, i.e., ng. The definition of gj and the formulation of
faults will be further explained below using a single-root-cause
fault example, which can be subsequently further extended to
the multiple-root-cause fault problem in the Supporting
Information. Also, it is assumed that measured quantities
used for FDD in this work are corrupted by additive
measurement noise.
For brevity, only the formulation of fault detection

algorithms for a single-root-cause fault is discussed here to
show the definition of stochastic faults and to demonstrate
how the fault detection algorithm operates in this current
work. For clarify, let assume p = 1; thus G can be simplified as
a row vector, i.e., G = g = {gi}, where i = 1, ..., ng. The input
fault of g, consisting of stochastic perturbations superimposed
on ng sets of mean values, can be described in Figure 1a, which
can be further mathematically defined as

= ̅ + Δ =g g g i n( 1, ..., )i i i g (2)

where {g̅i} are a set of constant mean values (operating
modes); {Δgi} are stochastic variations around each mean
value. The statistical distributions of the changes Δgi are
assumed to be time invariant and estimated from a model
calibration algorithm. The occurrence of a new steady state,
i.e., the constancy of the mean values of {g̅i}, can be
experimentally inferred from the constancy of measured
variables in Figure, 1b, such as the manipulated variables.
As shown in Figure 1, the changes in the mean values of {g̅i}

(faults) follow a multilevel pseudorandom signal (ML-PRS).27

The faults defined in eq 2 are typical in chemical plants that
can experience changes in means of operating variables and
additional continuous random perturbations superimposed on
each of the means of faults.12 To illustrate the how the fault
classification algorithm operates, it is assumed that the system
in this work has been operated for long periods around a
specific mean value and the objective is to identify and
diagnose the mean value of the fault, i.e., {g̅i}, in the presence
of perturbations {Δgi}. In summary, the FDD algorithm in this
work has two following objectives.
Objective 1 (fault detection): The first objective is to

identify any possible stepwise changes between mean values of
{g̅i}, where each g̅i will be alternatively referred hereinafter as to
an operating mode in this current work.
Objective 2 (fault classification): The second objective is to

diagnose (or classify) a specific operating mode g̅i at a given
time instant t while taking into account the perturbation {Δgi}.
The FDD problem can be further extended to multiple-root-

cause faults. In this case, the objective of the fault detection is
to identify the possible step changes between mean values in
any row of G, whereas the objective of the fault classification is
to find a particular entry in G, which represents the operating
mode corresponding to a pair of specific mean values in G.
This will yield a classification problem that is discussed in the

Supporting Information. For brevity, only the FDD of a single-
root-cause fault is discussed here.

2.2. Active set Optimization with Regularization. To
select the measured variables that are most sensitive to faults,
let assume that, for the purpose of model training, measure-
ments of a single-root-cause fault G = g = {gi} and measured
variables x are known and can be rewritten as

= [ ]g g gg , ..., , ...,i m1
T

(3)

=

x x

x x

x x

X

n

i i n

m m n

1,1 1,

,1 ,

,1 , (4)

where m denotes the total number of measurements, and n is
the number of measured variables in eq 1. Each value in eq 3
can be compared to the set of mean values {g̅i} in eq 2 based
on a minimum distance criterion to identify the operating
mode, i.e., normal vs faulty.
Linear squares regression can find a linear combination of

{xj} (j = 1, ..., n) to approximate the relationship between g
and X. However, the variances of the regression coefficients
can be unacceptably high when n is large or the measured
variables are highly correlated as previously reported.16 Lasso
can be used to minimize the residual of regression with
constraints on the l1 regularization of regression coeffi-
cients,16,17 according to the following optimization problem:

∑ ∑ β= −
β β = =

J xmin
1
2

g
j

m

j
i

n

i j i,...,
1 1

,

2

n1 (5a)

subject to

∑ β α| | ≤
=i

n

i
1 (5b)

where α > 0. For smaller values of α, Lasso will ultimately drive
the regression coefficients toward zero, thus making the
algorithm useful for selecting variables while ruling out others.
However, it is not trivial to solve eq 5a, when n is large and the
number of measurements is limited.17 The active set method is
one of the most influential work since the original Lasso for
solving the optimization efficiently.
The optimization problem in eq 5a can be reformulated as

follows:

β β β= = − − =
β β β={ }

X X r rJ f g gmin
1
2

( )
1
2

( ) ( )
1
2,...,

T T

n1

(6a)

subject to

βψ ≥( ) 0 (6b)

where f is a continuous function to represent the cost function
of the regression problem, ψ(β) = α − ∑i=1

n |βi|, r = r(β) is a
vector of residuals related to regression coefficients β, and ψ(β)
is implicitly a function of α given by eq 5b. The optimization in
eq 6a can be solved with an iterative algorithm.17 A key feature
of the active set method is the use of a local linearization about
the current value of β whereby the basic procedure involves the
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computation of a correction h with respect to the local
linearization leading to the following optimization:

β= + hJ fmin ( )
h (7a)

subject to

θ β α+ ≤σ σ σh( )T
(7b)

= σh
h

P
0

T

(7c)

where P is a permutation matrix that collects the nonzero
components of β associated with the first |σ| components. At
each iterative step, the ith component of β is nonzero only if i
∈ σ, where σ is referred to as the index set (members of the
active set) and is updated at each step of the optimization. In
addition, θσ = sign(βσ) has entry 1 if the corresponding entry
in βσ is positive and −1 otherwise. For each step, β has to be
feasible with respect to eq 5b, i.e., θσ

Tβσ ≤ α. If the constraint is
active, the optimization results, satisfying the KKT (Karush−
Kuhn−Tucker) conditions of the optimization given by eq 7a,
are described as follows:

θ
θ

μ α
θ

= −σ σ σ σ

σ σ σ σ

−

−
X X X

X X
g

max 0,
( )

( )

T T 1 T

T T 1
(8a)

β θμ= − −σ σ σ σ σ σ σ
−h X X X Xg( ) ( ( ) )T 1 T

(8b)

where μ is a positive scalar, Xσ is a finite subset of
measurements defined with respect to the active set σ, which
is initially empty, and a zero-value element will be added to this
set at the end of each iteration. Specifically, elements that are
not included in σ and exhibit the largest violation will be added
to the active set. Let suppose β+ = β + h and define a violation
as follows:

=
σ

+
+

+
∞

v
X r
X r

T

T
(9)

where r+ = g − Xβ+. Note that variables outside the active set
will be 0 as will corresponding variables of h. Since sign(0) is
not well-defined, the θi (1 ≤ i ≤ σ) value for the variable to be
introduced into the active set is set to the sign of the
corresponding violation. If the magnitude of the violation for
all variables outside the active set is less than 1, then optimality
is considered to be achieved.17 Based on this, the variable that
results in the largest violation will be added to σ, and then
solve for μ and subsequently hσ. The optimization becomes
more complicated when a variable in the active set may change
sign during an iteration, which requires additional treat-
ments,17 but it is not discussed for brevity.
The active set method can handle data in which measured

variables are highly correlated. It is particularly useful when the
number of available measurements used for model training is
limited. Measured variables that have equal impact on the
faults will be given equal regression coefficients, and zero
regression weights will be given to variables that have
negligible effect on the faults. These properties of Lasso
make it useful for selecting a reduced set of measured variables
to be used for FDD. Further details on the use of the active set
method for measurement selection are given in section 3.
2.3. Gaussian Process Model. The modeling with

Gaussian process (GP) involves multivariate Gaussian

distributions of infinite dimensionality.25 For algorithm
clarification, we present the formulation of a GP model to
estimate values of g with measurements x. Based on a training
set = {(xi, gi)} (i = 1, ..., N) with N pairs of measurements, a
GP regression model is defined with respect to z-scored
measured variables, i.e., mean-centered around zero and scaled
by their standard deviations:

ε= +xg ( )i i i (10)

ε σ∼ (0, )i g
2

(11)

where is the GP surrogate model and εi is the residual,
which can be approximated with a Gaussian noise model
with a mean of zero and a standard deviation of σg.
Accordingly, gi is nonlinearly related to xi via an unknown
function that is approximated with a GP model.
Furthermore, each measurement within the training set X =
{xi} is related to another measurement through a covariance
function K = {kij} = {k(xi, xj)}. The covariance function K is a
squared exponential kernel function in this work,28 which is
defined as

σ σ δ= = − − +x x x x x xk k
l

( , ) exp
1

2
( ) ( , )ij i j G i j g i j

2
2

2 2

(12)

where δij denotes the Kronecker delta function. Unknown
parameters θ = (σG, l, σg) are referred to as hyperparameters. σG
is the maximum allowable covariance. For example, k(xi, xj)
will approach the maximum when xi ≈ xj, meaning that x( )i
is nearly perfectly correlated with x( )j . When xi is very distant
from xj, k(xi, xj) ≈ 0, implying that distant measurements may
have negligible effects to interpolate new measurements.
For measurements x in the training set and hyperparameters,

the covariance for all possible combinations of this N set of
data points can be calculated with eq 12. Suppose that K is the
covariance matrix of N training measurements; i.e., K = {kij}
and 1 ≤ i, j ≤ N. The covariance matrix K can be written as
follows:

=

x x x x x x

x x x x x x

x x x x x x

K

k k k

k k k

k k k

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

N

N

N N N N

1 1 1 2 1

2 1 2 2 2

1 2 (13)

where the diagonal element of K is σG
2 + σg

2. Using the
available measurements of a training set = {(xi, gi)}, the
objective is to predict g* for a set of new measurements of x*.
A key assumption in GP modeling is that measurements x can
be represented as samples from a multivariate Gaussian
distribution as

* = *
* **

K K

K K

g

g
0,

T

(14)

where

* = [ * * * ]x x x x x xK k k k( , ) ( , ) ( , )n1 2

K** = k(x*,x*), and “T” represents matrix transpose.25,28 Given
the measurements of g, the conditional probability p(g*|g)
follows a Gaussian distribution as
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*| = * **− * *
− −p K K K K K Kg g(g ) ( , )1 1 T

(15)

The best estimate of g* is the mean of the distribution in eq
15, which is defined as

*̅ = *
−K K gg 1

(16)

The uncertainty in the estimate can be calculated with its
variance as

* = **− * *
−K K K Kvar(g ) 1 T

(17)

These estimates are the key since the estimated mean is used
for fault classification and the variance or uncertainty of the
estimated mean is used for a model adjustment operation
explained in section 3.
As seen in eqs 16 and eq 17, the reliability of the prediction

of mean and variance is dependent on the covariance function
K, which is related to the hyperparameters θ. The calibration of
the GP requires determining the unknown hyperparameters in
eq 12, i.e., θ = {σG, l, σg}, based on a given training set . The
parameters θ can be obtained with an empirical Bayes
estimation technique by maximizing a likelihood function as28

θ π| = − − | |

− −

xp N K

K

g

g g

arg max log ( , )
1
2

log(2 )
1
2

log

1
2

( )T 1
(18)

This optimization can be simply solved with multivariate
optimization algorithms such as conjugate gradients,25,28 which
are used in this work. Figure 2 schematically shows the GP

training and prediction results, where Figure 2a shows a GP
posterior distribution, Figure 2b shows the distribution of the
measured variable around a mean, and Figure 2c shows the
corresponding model prediction with a GP model. The bins in
Figure 2c representing the distribution of the model prediction
such as faults are obtained from Monte Carlo sampling of the
resulting posterior distribution.
It is important to note that one major challenge using the

GP surrogate model is the computational burden for a high-
dimensional parameter space. For example, for a training set
with n-measured variables and m measurements of each
variable, the predictions require n m( )2 operations in addition
to the n( )3 operations involved in inverting the covariance
matrix,29 thus making GP computationally intensive for high-
dimensional application. To overcome this computational

challenge, the active set optimization based variables selection
algorithm explained in section 2.2 is first applied to identify
variables that are sensitive to faults. A GP model is then
generated with measurements of these sensitive variables for
fault classification.

3. FAULT DETECTION AND DIAGNOSIS ALGORITHMS
BASED ON GP MODELS

3.1. Selection of Measured Variables for FDD with
Active Set Optimization. Since some of the available data
may provide limited information on faults thus increasing
computational burden with no additional gain, the appropriate
selection of measured quantities that can be used for FDD is
useful. A multistep algorithm is developed for this purpose to
identify variables that are sensitive to faults. Specifically, the
active set optimization is combined with a Latin hypercube
sampling technique to reduce model dimensionality.
A linear regression model, describing the relationship

between faults and measured variables, can be formed to find
an optimal set of measured variables and to minimize the
residual sum of squared errors as

∑β β= + + ϵ
=

xgi
k

p

i k k i0
1

,
(19)

where ϵi is the error between the ith fault value and the model
prediction, i = 1, ..., m. To simplify the implementation, data of
faults {gi} is normalized by setting β0 to the mean value as g̅ =
∑i=1

m gi/m. Since each measured variable may have different
units and orders of magnitude, each of them is normalized with
respect to its mean value as done for the faults, thus resulting
in the following problem:

∑ β′ = ′ + ϵ
=

xg i
k

p

i k k i
1

,
(20)

where xi,k′ and gi′ are the normalized measurements (or
synthetic data) obtained from simulations with a first-
principles model, x′ ∈ Rp, and β ∈ Rp. The value of p that
represents the number of measured variables that are sensitive
to the faults while minimizing the error ϵi is determined with
the active set optimization method. It should be noted that the
linear regression model is used to determine measured
variables that are sensitive to the faults. If there is sufficient
evidence to support a more complicated model such as
nonlinear models, then nonlinear algebraic transformation can
be applied to the measurements of X and g to obtain better
models.
The number of available measurements required for training

according to eq 20 may affect the accuracy of regression
coefficients. To ensure sufficient data, a large amount of
measurements may be required, since some measurements may
contain little useful information. To overcome this challenge
while accounting for different faults, we propose in this work
the use of synthetic data generated by first-principles models,
instead of using actual measurements. A Latin hypercube
sampling (LHS) approach is used to generate synthetic data to
improve computational efficiency. The active set optimization
is then applied to identify measured variables that are sensitive
to faults. Once again, actual data can be used in lieu of
synthetic data, when there are sufficient data and/or first-
principles models are not available. The optimal selection of

Figure 2. Illustration of GP model and its prediction.
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sensitive measured variables used for generating an FDD
model (GP model) is summarized as per the following steps.
Step 1. To effectively identify sensitive measured variables,

eq 20 is reorganized as

∑ ∑ ∑ζ β= ϵ = ′ − ′
= = =

xg
i

m

i
i

m

i
k

p

i k k
1

2

1 1
,

2

(21)

where m is the total number of data used for sensitive variables
selection. The goal is to find a vector of significant measured
variables p and their corresponding regression parameters βk
that can minimize the sum of squared errors ζ between the
model predictions and the training data.
Step 2. To generate training data, a set of constant mean

values and stochastic variations around each mean of faults
must be first approximated from offline model calibration
algorithms.4 A Latin hypercube sampling (LHS) is used to
generate a training set with the estimated mean and variance.
For each mean value of the faults, ns samples are simulated
which results in M samples in total, i.e., M = ng × ns. Each
sample is then used to simulate measurements of x. This will
result in M measurements for each measured quantity.
Gaussian noise is added to each measurement. This step
generates a training set = {(xi′, gi′)} involving M pairs of
measurements (i = 1, ..., M).
Step 3. An optimal combination of the measured quantities

p in eq 21 will be identified with the training set and a cross-
validation procedure. For a specified value of α in eq 7b, a (1/b)
portion of the training set is randomly selected and used to
find the optimal solution of {βk} in eq 21, using the active-set
optimization with regularization. An initial subset of measured
variables, i.e., p′, is first considered to be the best selection.
Based on the optimization results of {βk} with the initial
subset, measured quantities will be removed from the initial
subset p′, when a regression coefficient βk is found to be zero
or smaller than a given threshold ζ. The total number of the
removed quantities is defined as r. For an updated subset with
(p′ − r) measured quantities, the optimization with eq 7a will
be repeated until the identified measured quantities p converge
to a constant value, and the corresponding optimization results
{βk} for the identified measured variables (p) are stored.
Step 4. Using the results obtained in step 3, a regression

model as eq 20 can be generated. The remaining portion of the
training set that was not used in step 3 is used for model
validation. The residual sum of squared errors {ϵi} between the
model predictions and the measurements of faults are
computed and stored.
Step 5. To avoid model overfitting, steps 3 and 5 can be

repeated several times. Each time, a (1/b) portion of the
training set is randomly selected. The frequency of the
measured quantities and the residual sum of squared errors are
recorded. The model is then generated with the measured
quantities that have the highest frequency and the lowest
residual sum of squared errors, thus leading to the successful
identification of variables that are most sensitive to any
possible faults.
It should be noted that the generation of a training set in

step 3 can also be repeated several times when the variance of
the faults is found to be relatively large. For different training
sets, steps 3 and 4 can be applied by following the same
procedure explained above. In addition, the use of the Latin
hypercube sampling (LHS) eliminates the possibility that
sampling points will come from the same local domain as

compared to the Monte Carlo simulations. This will be further
discussed in section 5 with an example.

3.2. GP Model Calibration. The active set optimization
based variables selection in a previous section finds a linear
relationship between faults and measured variables. However,
the FDD performance with the resulting linear model may be
low as found in the case study presented later. In contrast, the
GP model is a nonlinear model that can provide improved fault
classification.
For each set of available measurements x*, the GP model

can predict the dynamic value of g* by calculating its mean
value and its variance with eqs 16 and 17. However, the
prediction accuracy of the GP models is sensitive to the density
and amount of available data points that can be used for the
model calibration. To ensure that sufficient data is available for
the model calibration, a model adjustment algorithm is
developed, which will add new data of sensitive variables
into a training set for the improved model calibration. This
method will combine a cumulative distribution function
(CDF) using probability improvement with an adaptive
selection criterion of new training data as explained later.30

To quantify the amount of additional data required for GP
model calibration, a measure of the model discrepancy
between the GP model prediction and the actual value of
{gi} used for model calibration can be defined as

θε = − ∂ ̅ |xg g( , )i i i (22)

where xi and gi are the ith set of available data points in a given
initial training set, i.e., = { }x g( , )i i0 and i = 1, ..., N, and N

is the total number of measurement sets. In eq 22, ·( )
represents the GP model that can predict the mean value of
faults g̅i based on {xi} and hyperparameters θ that is obtained
with the initial training set 0. It is worth mentioning that {xi}
represents measurements of variables that are sensitive to
faults, which are identified with the active set optimization
explained in section 2. Figure 3 shows a schematic of the
model adjustment for clarification.

Based on the information on model discrepancy, a
cumulative distribution function (CDF) is used in this work
to identify an optimal amount of data that are necessary for
maximizing the probability improvement while minimizing the
model discrepancy beyond a predefined target T.30,31 The

Figure 3. Schematic of improvement in the probability for a target
value T.
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improvement in probability Pj used to search additional data
points for the GP model calibration can be defined as follows:

ψ= [ − ′| ′| ]x xP T E sg g( ( ))/ ( )j j j jj (23)

where ψ is a normal cumulative distribution function, E(·) is
the mean value, and s(·) is the standard deviation of model
discrepancy, respectively. For any given measurements xj, the
model prediction g̅j* can be defined with a probability density
function (PDF) since the GP model is used. The PDF is
compared with fault value gj, thus producing a PDF of the
model discrepancy, i.e., gj′ = gj − g̅*, which can be used to
calculate the mean and standard deviation in eq 23. In
addition, T is a predefined target value used to tune the model
and to evaluate the improvement in probability. For instance,
T can be defined as T = ε′ − 0.2|ε′| to produce at least a 20%
improvement (see Figure 3), where the red area, i.e., Pj, is the
maximum improvement of probability for a set of given
measurements x*.
The optimal selection of synthetic data used for model

adjustment can be summarized as follows.
(i) Build a GP model to obtain the initial hyperparameters θ0

with an initial training set 0.
(ii) Specify the model discrepancy criterion ε′ and calculate

the target value T for a predefined improvement in probability.
(iii) Generate new synthetic data 1 with simulations, which

consist of N1 values for n variables.
(iv) For each set of measurements xj in 1 (j = 1, ..., N1),

estimate the predicted mean value and the predicted standard
deviation of gj using the GP model with initial hyperparameters
θ0, and then calculate the difference with respect to training
data gj used to generate xj.
(v) Compute the probability improvement Pj with eq 23

with the estimated mean E(gj′|xj) and the standard deviation
s(gj′|xj).
(vi) Synthetic data in 1 with the maximum probability

improvement Pj will be used and added to the initial training
set 0. This will yield a new training set, which now consists of
(N + 1) set of data points for n variables.
(vii) Calibrate the GP model using the new training set

obtained in step vi, which involves (N + 1) set of samples. This
will provide a new set of hyperparameters θ0′.
(viii) Calculate the model discrepancy ε and θ0′.
(ix) Replace the initial hyperparameter θ0 with θ0′ calculated

before; repeat steps iii−viii and keep appending new synthetic
data into the initial training set 0 until ε < ε′.
It is worth mentioning that for any two given samples x and

x′, when x is distant from x′, the covariance function defined in
eq 13 is negligible, i.e., k(xi, xj) ≈ 0. In such a case, this pair of
samples may have aninsignificant effect on the interpolation of
a GP model. To take this information into account, a second
GP model adjustment criterion η can be developed, for which
each of the new samples that will be considered as an addition
to the original training set is further examined based on the
corresponding covariance value to ensure that the latter is
larger than a criterion η.
3.3. FDD Algorithm with GP Model. The main idea of

the GP model based FDD is to estimate the dynamic values of
faults g* using measurements x* of sensitive variables, and
then discretize the results using a minimum distance criterion
for fault classification. The FDD proceeds as per the following
procedures.

(a) Decide the total number of possible mean values {g̅i} of
a process by examining the constancy of measured quantities
such as manipulated and/or controlled variable.
(b) Estimate these mean values {g̅i} and their corresponding

variances using collected measurements through an offline
calibration step.4

(c) Identify measured quantities that are sensitive to faults
using the active set based optimization in combination with the
Latin hypercube sampling (LHS) technique as explained in
section 3.1.
(d) Generate a GP model for measured variables identified

from step c using the improvement in probability algorithm
developed in section 3.2.
(e) New collected measurements x* are normalized and

substituted into the GP model.
(f) The mean and the variance of g* are then approximated

with measurements of x* from eqs 16 and 17, respectively.
(g) The mean of faults obtained in step f is compared to a

finite set of mean values {g̅i} estimated in step b based on a
minimum distance criterion, from which the corresponding
operating mode (mean value) can be identified.
The minimum distance between the estimate of g* and each

of the mean values {g̅i} can be calculated as

= * − ̅J gmin (g )i i
2

(24)

̅ = { }g Joperating mode( ) arg mini i (25)

This criterion is performed for each estimate of faults {g*},
and then the minimum distance Ji given in eq 25 is used to
identify the mean value of the fault, i.e., classification of
operating mode.

4. CASE STUDY EXAMPLES
To demonstrate the efficiency of the FDD algorithm, two
examples are used in this current work. In the first example, a
nonlinear process involving two continuously stirred tank
reactors (CSTRs) and a separator with recycle unit is used.32,33

In the second example (section 5.4), the efficiency of FDD is
studied for the Tennessee Eastman process34,35 that has been
widely used as a standard benchmark problem. The objective is
to (i) identify significant measured variables that are sensitive
to faults affecting a system in a stochastic fashion, and (ii)
build a GP model with these identified variables for fault
classification while minimizing the model dimensionality.

4.1. Reactor-Separator Chemical Process (Example 1).
Figure 4 shows a schematic of the first example with three
temperature control loops in this work. As seen, a stream of
reactant A is added to each CSTR and converted to the final
product B, where C is the side product in this chemical
process. We deliberately chose this process, since it is
considered sufficiently large to illustrate the computational

Figure 4. Schematic diagram of the first example (reactor−separator
process).
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efficiency of the methodology and it involves nonlinear
behavior and uncertainty.
The feed mass fraction of reactant A (xA0) is assumed to be

the unknown (unmeasured) stochastic fault (g) in this work.
The changes in xA0 are schematically shown in Figure 4. It is
assumed that perturbations around three mean values
(operating modes) as described in eq 2 are normally
distributed. The first-principles model of this process is used
in this study in order to generate the synthetic data that can be
used to identify significant measured variables and for GP
model calibration. This process is controlled with three PI
controllers and can be described in their velocity formulations
by a set of ordinary differential equations (ODEs) as below.

ρ̇ = + −H A F F F(1/ )( )1 1 f1 R 1 (26)

ρ̇ = + − −x A H F x F x Fx k x(1/ )( )A1 1 1 f1 A0 R AR 1 A1 A1 A1 (27)

ρ̇ = − + −x A H F x Fx k x k x(1/ )( )B1 1 1 R BR 1 B1 A1 A1 B1 B1 (28)

ρ

ρ

̇ = + − −

Δ + Δ +

T A H F T F T FT C

k x H k x H Q A C H

(1/ )( ) (1/ )

( ) ( / )

p

p

1 1 1 f1 0 R R 1 1

A1 A1 A B1 B1 B 1 1 1 (29)

ρ̇ = + −H A F F F(1/ )( )2 2 f2 1 2 (30)

ρ̇ = + − −x A H F x Fx F x k x(1/ )( )A2 2 2 f2 A0 1 A1 2 A2 A2 A2 (31)

ρ̇ = − + −x A H Fx F x k x k x(1/ )( )B2 2 2 1 B1 2 B2 A2 A2 B2 B2
(32)

ρ

ρ

̇ = + − −

Δ + Δ +

T A H F T FT F T C

k x H k x H Q A C H

(1/ )( ) (1/ )

( ) ( / )

p

p

2 2 2 f2 0 1 1 2 2

A2 A2 A B2 B2 B 2 2 2 (33)

ρ̇ = − − −H A F F F F(1/ )( )3 3 2 D R 3 (34)

ρ̇ = − + −x A H F x F F x F x(1/ )( ( ) )A3 3 3 2 A2 R D AR 3 A3 (35)

ρ̇ = − + −x A H F x F F x F x(1/ )( ( ) )B3 3 3 2 B2 R D BR 3 B3 (36)

ρ
ρ

̇ = − + −
+

T A H F T F F T FT

Q A C H

(1/ )( ( ) )

( / )p

3 3 3 2 2 R D R 3 3

3 3 3 (37)

where the subscripts i in each equation (i.e., 1, 2, 3) refer to the
vessels, xi denotes the mass fraction of reactant A and chemical
product B, respectively, Ti is the temperature in each tank, Hi is
the level in each tank, Fi represents the flow rate, and the
reaction terms are defined as

=F k Hi i iv (38)

= −k k E RTexp( / )i iA A A (39)

= −k k E RTexp( / )i iB B B (40)

The recycle flow and the weight percent factors satisfy

=F F0.01D R (41)

α= ̅x x x/AR A A3 3 (42)

α= ̅x x x/BR B B3 3 (43)

α α α̅ = + +x x x x3 A A3 B B3 C C3 (44)

= − −x x x1C3 A3 B3 (45)

Each of the tank in this example has an external heat input
Qi that is controlled by a PI controller:

∫τ
= + −

+ − * *

Q t Q t K T T t

K T T t t

( ) ( ) ( ( ))

/ ( ( )) d

i ss i i i i

i i

t

i i

( ), p, (set),

p,
0

(set), (46)

The descriptions of these parameters, parameter values, and
controller parameters used for the computer experiments are
given in Tables 1, 2, and 3, respectively.

4.2. Tennessee Eastman Process (Example 2). The
Tennessee Eastman (TE) benchmark process has five major
units as shown in Figure 5, i.e., a product condenser, a recycle
compressor, a product stripper, a vapor−liquid separator, and a
reactor.34 This process in total has 41 measured variables, 12
manipulated variables, and 20 disturbances that can be
considered as faults. The decentralized multiloop control
strategy36 is used in this example. In this current work, the A/
C feed ratio and B composition in stream 4, i.e., load
disturbance IDV(1), is defined as the stochastic faults (g) to
demonstrate the efficiency of the proposed FDD algorithm.
Since large perturbations in the feed can be harmful, three
different mean values in IDV(1) are considered in this work.
The smallest mean value is treated as a normal operation, while
the rest denote the faulty operating conditions. The detailed
description of the normal and faulty operations will be
discussed in section 5.4. Note that the objective in this example
is to identify the mean value of the feed IDV(1) in the
presence of feed perturbations. The multiple-root-cause fault
classification is discussed in the Supporting Information.

5. RESULTS AND DISCUSSION
5.1. Faults Distribution and LHS Sampling. The goal in

the first example is to identify and diagnose (classify) the mean
value (operating mode) of the unmeasured (unknown) feed
mass fraction xA0 with available data of easily measured
quantities. For clarification, three mean values of the feed mass
fraction (xA0) are considered in this example, i.e., xA0 = 0.65,

Table 1. Process Variables

symbol description

xA1, xA2, xA3 mass fraction of A in vessels 1, 2, 3
xB1, xB2, xB3 mass fraction of B in vessels 1, 2, 3
xC3 mass fraction of C in vessel 3
xAR, xBR mass fraction of A, B in the recycle
T1, T2, T3 temperature in vessels 1, 2, 3
T(set),1, T(set),2,
T(set),3

temperature set point in vessels 1, 2, 3

T0 feed stream temperature
Ff1, Ff2 feed stream flow rates to vessels 1, 2
F1, F2, F3 effluent stream flow rates to vessels 1, 2, 3
FR, FD flow rate of recycle and purge
H1, H2, H3 level of vessels 1, 2, 3
Q1, Q2, Q3 manipulated input in vessels 1, 2, 3
ΔHA, ΔHB heats of reaction
kAi, kBi pre-exponential values of reactions 1, 2
αA, αB, αC relative volatilities of A, B, C
EA/R, EB/R ratio of activation energy and gas constant for reactions

1, 2
A1, A2, A3 cross-section area of vessels 1, 2, 3
Cp, ρ heat capacity, solution density
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0.75, and 0.85 (ng = 3 in eq 2). It is assumed that stochastic
perturbations in xA0 occur around each aforementioned mean
value, which follows a normal distribution with zero mean and
a standard deviation of 0.1.
To reduce the number of simulation runs for generating the

synthetic training set, the Latin hypercube sampling (LHS)
technique is used to encompass the entire domain of faults and
to reduce computational burden. The LHS can account for the
previously generated sample points, as compared to Monte
Carlo (MC) sampling techniques. This ensures that samples
are evenly distributed in the domain. A comparison between
LHS and random sampling with MC is shown in Figure 6.
For clarification, two mean values of faults are used in Figure

6, and five samples are generated around each mean with both

LHS and MC methods. For LHS and MC techniques, each
sample is normalized with respect to the maximum value of the
five samples for illustration. The two-dimensional fault domain
is divided into 5 × 5 subdomains with the LHS. As shown, the
fault domain is evenly covered. One sample is found in each
row and each column for LHS, whereas no samples fall into the
fourth row, the second and the third columns, with MC. Thus,
more samples are required for MC. This shows that the

Table 2. Parameter Values of Process Variables

symbol value units symbol value units symbol value units

Ff1 10 kg/s kv1 2.5 kg/m s ρ 0.15 kg/m3

Ff2 1 kg/s kv2 2.5 kg/m s A1 3 m2

FR 60 kg/s kv3 2.5 kg/m s A2 3 m2

T(set),1 315 K kA 0.02 1/s A3 1 m2

T(set),2 315 K KB 0.018 1/s αA 3.5
T(set),3 400 K EA/R −1000 K αB 1.1
T0 310 K EB/R −500 K αc 0.5
TR 310 K ΔHA −40 kJ/kg
Cp 2.5 kJ/kg K ΔHB −50 kJ/kg

Table 3. Controller Parameters

vessel

1 2 3

Kp,1 τ1 Kp,2 τ2 Kp,3 τ3

value 0.25 0.0025 0.25 0.0025 0.25 0.0025

Figure 5. Tennessee Eastman (TE) process described by Bathelt et al.34

Figure 6. Samples generated with LHS and MC (R, row; C, column).

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.8b01110
Ind. Eng. Chem. Res. 2018, 57, 8962−8977

8970

http://dx.doi.org/10.1021/acs.iecr.8b01110


computational cost for generating a training set used for
sensitivity analysis can be reduced with LHS, which is
particularly critical for problems involving large number of
variables.
5.2. Case Study 1. Single Stochastic Fault (Example

1). 5.2.1. Optimal Selection of Measured Variables for FDD.
To optimally choose training data for FDD, the active set
optimization is used as explained in section 3.1. To generate a
training set, 100 samples with the LHS technique are generated
around each mean value of xA0. This results in a training set
involving 300 samples of three faults, i.e., M = ng × ns = 3 ×
100 = 300. All variables including the faults are normalized
with respect to the mean value of 300 samples.
For the cross-validation procedure, one-third of the samples in

the training set , i.e., 100 pairs of measurements of faults and
measured variables, are used to solve {βk} in eq 21. The
remaining two-thirds of the samples are used as validation data
to evaluate the model accuracy that is assessed by the residual
sum of squared error (SSE) between the predictions and
simulated measurements of faults with the validation data. The
SSE is also chosen as a criterion to find the trade-off between
the model dimensionality and model accuracy. The cross-
validation procedure is repeated 100 times in this case study,
and the average of SSE is recorded. It should be noted that, for
each cross-validation procedure, one-third of the data is
randomly chosen from the training set and there are no
identical training sets.
To find the most sensitive variables, this method is evaluated

with different initial subsets of measured variables, i.e., p′ in
section 3.1. First, it is assumed in this case study that all
variables can be measured. Thus, there are 15 unknown
coefficients {βk} in eq 20, i.e., p = p′ = 15 and k = 1, ..., p. Each
coefficient βk determines the contribution of the kth parameter
to the total SSE. It is found that the regression coefficients {βk}
of the level {Hi} in three vessels are 0 as expected, since the
perturbations in mass fraction xA0 have negligible effect on the
level. In addition, the regression coefficients of the mass
fractions of A and B (i.e., xi) are smaller in each tank in this
case study, as compared to the coefficients of temperature and
external heat. To reduce the model dimensionality, a threshold
ζ1 = 0.001 is used to remove the measured variables that have
smaller coefficients, i.e., the mass fractions of reactant A and
product B. When all the variables are used in eq 21, the average
of SSE for the validation data for 100 repeated cross-validation
procedures is found to be ∼0.1108.
Based on the results above, eight additional cases are

investigated. Figure 7 shows the initial subset of variables used
in each case scenario and the sensitivity analysis results, where

the number beside a symbol represents the total number of
measured variables used in eq 21 in section 3.1. The sensitivity
analysis is evaluated with the SSE for each case and used to
determine the variables that can be used for FDD. For
example, it is found that the temperatures {Ti} in case 8 have
negligible effect on the model predictions, since the regression
coefficients {βk} of {Ti} are smaller as compared to the
manipulated variable {Qi}. This result is expected since the
temperatures are controlled variables and less sensitive to the
variations in the feed xA0.
As seen in Figure 7, the SSE for case scenarios 3, 6, 7, 8, and

9 are very similar. For example, the SSE is ∼0.1201 for case 8,
when all measurements of {Ti} and {Qi} are used. In contrast,
the SSE is ∼0.13 when only the external heat of Q1 is used to
estimate the faults in case 3. In addition, as compared to the
above-mentioned study where all variables are used for model
predictions (case 9 in Figure 7), the difference in SSE is
negligible. As mentioned, the SSE is found to be ∼0.1108
when 15 variables are used in eq 20. As compared to the case 3
here, the SSE is only slightly increased from ∼0.1108 to ∼0.13.
The sensitivity analysis with active set optimization is also

investigated for two additional case studies; i.e., Q2 and Q3 are
used alone in eq 20. As shown in Figure 7, the SSE values of
cases 1 and 2 are clearly larger as compared to the others. Due
to the small difference in the prediction errors, only Q1 is used
for model calibration in this case study, since it is found to be
the most sensitive variable.

5.2.2. Calibration of GP Model. Single Fault. Using the
measurements of Q1, an initial training set = { }Q g( , )i i0 1, (i

= 1, ..., 30) with 30 pairs of synthetic samples are generated.
The model calibration results using the model adjustment
algorithm explained in section 3.2 are given in Table 4. For the

improvement in probability, the model discrepancy is defined
as ε′ = 1 × 10−2 in this case study, and a 15 percent point
probability improvement is used. Also, the second model
adjustment criterion η is set to 2 × 10−2.
As can be seen in Table 4, the GP model parameters

obtained from the minimal model adjustment algorithm in
section 3.2 are different from those computed without the GP
model adjustment procedure. The efficiency of the model

Figure 7. Illustration of trade-off between model dimensionality and model prediction accuracy. A number beside a symbol denotes the total
number of measured variables used for calculating SSE.

Table 4. Hyperparameters of GP Model

model σG l σg

no adjustment 1.0473 4.2163 0.1001
with adjustment 2.0086 4.5724 0.1010
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adjustment technique in this work will be further discussed in
terms of fault detection rate below. For the improvement in the
probability-based model adjustment, 206 sets of actual
measurements are simulated and 178 pairs of them (Q1 and
g) are added to the initial training set 0 following the steps in
section 3.2.
5.2.3. Evaluation of Performance. To evaluate the

efficiency of FDD, two indices are used,37 i.e., fault
classification rate rd and false alarm rate rf:

=r d D/id To (47)

=r m D/if Ff (48)

where di is the number of testing samples (e.g., xA0) that have
been correctly identified, mi is the number of samples that
indicates the occurrence of faults, but a fault has not occurred
actually, DFf is the total number of fault free testing samples,
and DTo is the number of testing samples including both faulty
and normal samples that are used for FDD.
It should be noted that the focus of this work is to identify

the switch between a normal operating mode and a faulty
operating mode in a process of an intermittent manner; thus
samples representing the normal operating mode are also
included in di for the evaluation of FDD performance. In other
words, the fault classification rate is used to evaluate the
capability of correctly identifying either a normal or a faulty
operating mode with available measurements. To evaluate the
FDD performance, a misdetection rate can be used. In this
work, the result of the misdetection rate is not given for
brevity. However, it can be easily calculated with the fault
classification rate. For example, the classification rate of the
normal and faulty operating modes with an FDD algorithm in
principle would be 1; i.e., all the normal and faulty operating
modes can be accurately identified. However, there is
misdetection due to uncertainty such as measurement noise,
and the classification rate is often smaller than 1. Thus, the
misdetection rate can be estimated by calculating the difference
between 1 and the fault classification rate rd obtained in eq 47.
The classification rate and the false alarm rate in this current

work are evaluated for two different case scenarios: (i) GP
model that is calibrated without the adjustment technique in
section 3.2 and (ii) GP model that was calibrated with the
probability improvement algorithm. The classification rates rd
are summarized in Table 5, while the false alarm rates rf are
given in Table 6.

As seen in Tables 5 and 6, the fault classification rates
decrease as the noise level increases, while the false alarm rates
increase. For example, as shown in Table 5, the GP model

calibrated with the probability improvement algorithm can
consistently provide better performance, as compared to a
model without using the model adjustment algorithm. This
confirms that the design of the training set is instrumental for
FDD performance.

5.3. Case Study 2. Single Fault and Model−Plant
Mismatch (Example 1). In the previous case studies, it is
assumed that the process is only affected by the perturbations
in the feed mass fraction xA0, and the other components are
perfectly known and accurate to a modeler. In contrast, this
case study investigates the FDD in the presence of one
parametric stochastic fault and unknown model−plant
mismatch. As done in a previous section, perturbations are
assumed to be superimposed on step changes of mean values
in the feed xA0 as shown in Figure 8. To introduce model−
plant mismatch, it is assumed that the ratio between the
activation energy and the universal gas constant in eq 39, i.e.,
EA/R, is not a fixed constant value. Instead, the ratio EA/R
follows a uniform distribution and varies randomly between
−980 and −1020 K with respect to time. However, this
uncertainty is assumed to be a priori unknown to the modeler.
The objectives are to (i) identify measured variables that are

sensitive to these variabilities in the feed and the ratio of EA/R,
(ii) build a GP model to improve FDD performance, and (iii)
diagnose the mean of g̅i of the feed mass fraction xA0. To
illustrate the variations in both the ratio EA/R and the feed xA0,
three mean values of xA0, i.e., 0.65, 0.75, and 0.85, are used as
investigated in the previous case study. Figure 8 shows the
perturbations in EA/R and xA0 for clarification.

5.3.1. Selection of Measured Variables for FDD. Similar to
the single fault study, the active set optimization in
combination with statistical analysis are used to identify
sensitive variables. To generate a synthetic training set, 100
samples are generated with the LHS technique for each mean
value of xA0. This produces a training set with 300 samples
of xA0. For each sample of xA0, a random value of the ratio EA/
R is sampled from the range of −980 to −1020 K to simulate
data to be used for sensitivity analysis. All variables including
the faults are normalized with respect to the mean value of 300
samples.
For the cross-validation procedure, a (one-third) portion of

the training set , i.e., 100 pairs of measurements of faults and
measured variables, is used to solve {βk} in eq 20. The
remaining 200 samples are used as validation data to calculate
the SSE. The cross-validation procedure is repeated 100 times
and the average of SSE for different initial sets of variables is
recorded. This is used as a criterion to find the trade-off
between the model dimensionality and prediction accuracy as
done in the first case study. Figure 9 summarizes the variables
used in each initial subset and the SSE results. The number
beside a symbol means the total number of measured variables
used for sensitivity analysis.
As shown in Figure 9, the SSE decreases as the model

dimensional increases. For example, the SSE for case 10 is
found to be ∼0.1441, where 15 variables are used in the initial
set in eq 20. Similar to the first case study, the regression
coefficients {βk} of the level {Hi}, mass fraction of reactant A
and product B (i.e., xi) are zero or have negligible effect on the
prediction of fault xA0. Thus, additional studies (cases 1−7),
focusing only on the external heat {Qi}, are investigated to find
the trade-off between model dimensionality and prediction
accuracy.

Table 5. Summary of the Fault Classification Rate

noise level

method 1% 2% 3%

GP 0.80 0.77 0.70
GP adjustment 0.88 0.86 0.83

Table 6. Summary of the False Alarm Rate

noise level

method 1% 2% 3%

GP 0.10 0.14 0.16
GP adjustment 0.06 0.09 0.12
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For the single fault study in the previous section, we found
that one measured variable Q1 can provide sufficiently accurate
results, as compared to the case where all variables are used for
predictions. On the other hand, it is found that Q1 alone, i.e.,
case 3 in Figure 9, fails to provide accurate predictions for the
current case study involving additional uncertainty. For
example, the SSE is ∼0.2557 for case 3, which is significantly
higher than case 10. It is also found that the SSE values for
cases 6−9 are quite similar, varying between ∼0.1612 and
∼0.1633. In summary, Q1 and Q2 as chosen in case 6 are
identified as the sensitive variables in this case study.
5.3.2. GP Model Calibration. An initial training set
= { }Q Q g( , , )i i i0 1, 2, (i = 1, ..., 50) with 50 sets of

measurements is generated. Following the GP model adjust-
ment method in section 3.2, the GP model parameters are
given in Table 7. The model discrepancy criterion is defined as

ε′ = 1 × 10−2, a 15% improvement in probability is used, and
the second model adjustment criterion η given in section 3.2 is
set to 2 × 10−2.
For the improvement in the probability-based GP model

adjustment, 343 set of synthetic samples are required and 295
pairs of them (Q1, Q2, and g) are appended to the initial
training data set 0. As expected, more training data are
required for the model calibration as two sources of
uncertainty are investigated in this case study, thus

necessitating more data points to satisfy the accuracy criterion
defined in eq 22.

5.3.3. Evaluation of Performance. To compare the fault
classification results, two different case scenarios are studied in
this work. For the first case scenario, the GP model is only
calibrated with an initial training set 0. The hyperparameters
shown in Table 7 are used to generate a two-dimensional GP
regression model of Q1 and Q2. For comparison, the
hyperparameters with the improvement in the probability
method are used to build a second GP model. For each case
studies, 1000 testing samples for each mean value of the feed
mass fraction xA0 are used to study the detection rate. To
introduce variations in the Arrhenius equation (i.e., EA/R),
different EA/R values are used for each sample of xA0. These
values are randomly selected from the range of −980 to −1020
K. For the simulations, all measurements are generated from
the model predictions corrupted with Gaussian noise.
For the first case scenario, the fault classification rate is

found to be ∼0.81 for the GP model with a model adjustment
step, whereas the fault classification rate is ∼0.70 for the GP
model calibrated only with an initial training set. The fault
classification rate is increased by ∼11 percent points with the
model adjustment steps outlined in section 3.2. This confirms
that the GP model is very sensitive to the density and amount
of data used for calibration. The false alarm rates are ∼0.11 and
∼0.14 for the GP model calibrated with a model adjustment
procedure and the GP model without adjustment, respectively.

5.4. Case Study 3. FDD of the Tennessee Eastman
Benchmark Process (Example 2). 5.4.1. Selection of
Measured Variables for FDD. To illustrate the efficiency,
the Tennessee Eastman process is used as a standard
benchmark problem in this case study. The FDD algorithm

Figure 8. Profiles of input faults xA0 and variations in Arrhenius equation parameter EA/R.

Figure 9. Illustration of trade-off between model dimensionality and model prediction accuracy. A number beside a symbol denotes the total
number of measured variables used for calculating SSE.

Table 7. Summary of Hyperparameters for GP Model

model σG l σg

no adjustment 1.8963 3.7231 0.1047
with adjustment 2.0199 4.7120 0.1103
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is used to identify and diagnose the operating modes (mean
values) when the system is operated at steady states in the
presence of feed perturbations. The load disturbance IDV(1),
i.e., A/C feed ratio, B composition constant in stream 4, is
assumed to be the unknown stochastic fault (g) in this case
study. Three different operating modes, as shown in Figure 5,
are defined in terms of the percent point of perturbations, since
significant variations in the feed IDV(1) may affect the product
quality, thus resulting in economic loss. Three mean values of
IDV(1) are defined as 5, 7, and 9%, respectively. It is assumed
here that the perturbations around each mean value follow a
normal distribution with a standard deviation of 1 percent
point. The first mean value is used to represent a normal
operation, while the other two mean values are two different
faulty operating modes.
Similar to previous case studies, the active set optimization is

first used to identify sensitive variables that can be used for
FDD. To build the training set, 100 samples are generated with
the LHS technique for each mean value of IDV(1), resulting in
a data set involving 300 samples. All variables including the
fault variables are normalized with respect to the mean value of
300 samples. For the cross-validation procedure, a (one-third)
portion of the training set , i.e., 100 pairs of measurements of
faults and measured variables, is used to solve {βk} in eq 20.
The remaining 200 samples are used as validation data to
calculate the SSE. The cross-validation procedure is repeated
100 times, and the average of SSE for different initial sets of
variables is recorded. For clarification, Figure 10 summarizes
different initial sets of manipulated variables that were used for
variable selection and their corresponding SSE results. The
number beside a symbol represents the total number of
manipulated variables used for sensitive variable selection in
each case study.
As shown in Figure 10, the SSE generally decreases as the

model dimensions increase. For example, the SSE for case 9 is
found to be ∼0.1001, where three variables are used in the
initial set in eq 20. In addition, it was found that the regression
coefficients {βk} of the compressor recycle valve XMV(5),
stripper steam valve XMV(9), and agitator speed XMV(12) are
zero and they have negligible effect on the prediction of faults
IDV(1). The regression coefficients of the separator pot liquid
flow XMV(7), stripper liquid product flow XMV(8), and
reactor cooling water flow XMV(10) are smaller, compared to
the coefficients of A feed flow XMV(3), A and C feed flow
XMV(4), and purge valve XMV(6). Thus, additional case
studies, i.e., cases 5−9 focusing only on XMV(3), XMV(4),
and XMV(6), are investigated to find the trade-off between
model dimensionality and the prediction accuracy. The SSE
results are compared with a case study where all manipulated

variables are used in eq 20. Note that the SSE values in these
case studies are quite similar, varying between ∼0.09 and
∼0.12. To maintain model simplicity, the A feed flow XMV(3)
is chosen as the sensitive variable in this case study that can be
used for FDD. The selection of this variable is in good
agreement with prior knowledge about the process, since the
manipulated variable, i.e., the feed flow of A, should be
changed to eliminate any perturbations in the A/C feed ratio
IDV(1).35,38

5.4.2. Calibration of GP Model and Evaluation of FDD
Performance. For the model calibration, an initial set of
measurements = { }x g( , )s i i, (i = 1, ..., 50) with 50 pairs of
measurements around each mean value are formulated. To
evaluate and compare the FDD performance, two different
case scenarios were investigated. For the first case study (GP-
1), only the initial training set of measurements was used to
identify the hyperparameters θ, whereas the hyperparameters for
the second case study (GP-2) were determined with the model
adjustment algorithm as explained in section 3.2. For the first
case study here, the hyperparameters of GP-1 are σG = 0.6879, l
= 1.3743, and σg = 0.1052, respectively. For the second case
study, 201 additional sets of measurements were simulated,
and 157 sets of them were ultimately appended to the initial
training set based on covariance values. The hyperparameters
of the second case study (GP-2) are σG = 1.1036, l = 1.8147,
and σg = 0.0901, respectively.
The efficiency of the model adjustment is further studied in

terms of the fault classification rate and the false alarm rate
with the TE process. It was found that the fault classification
rate is ∼0.89 using the GP model calibrated with the model
adjustment steps, while the fault classification rate is ∼0.81 for
the GP model which was only calibrated with the initial
training set . This indicates that the empirical model-based
FDD such as the GP model in this work is sensitive to the
training data set, and it is important to optimally select model
parameters with appropriate training data. The fault detection
results also confirm that the model adjustment procedures in
this current work can improve the FDD performance for large-
scale nonlinear chemical processes. Similar to the case studies
above, the model of the TE process (GP-2), calibrated with the
model adjustment steps in section 3.2, has lower false alarm
rates, i.e., ∼0.08, as compared to GP-1, which has a false alarm
rate of ∼0.15 without the adjustment procedures.

5.5. Comparison and Discussion. In this section, the GP
model-based FDD is compared with the other surrogate model
based methods, and the fault classification rate was used to
evaluate the FDD performance. For the fault (xA0) in the first
example, the accuracy of a GP model developed with an

Figure 10. Illustration of trade-off between model dimensionality and model prediction accuracy of the TE process. A number beside a symbol
denotes the total number of manipulated variables used for calculating SSE.
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improvement in the probability method is compared to the
partial least squares (PLS) regression, a linear Lasso regression
model generated with the active set optimization approach,
and the neural network.
The PLS model generates a linear regression model by

projecting the predicted variables and the measured variables
into a reduced subspace. Variables generated from the
subspace generally do not have direct physical explanation
and are not easy to interpret. The active set optimization can
find a linear relationship between faults and measured variables
as explained in section 3.1.
Different case scenarios are investigated. Three models are

developed with the PLS. All variables are used for model
training, and all the components after the linear projection are
remained to find the relation between faults and data, i.e., PLS-
1. For the second model, PLS-2, although all variables are used
for model training, only the first principal component is used
to identify the relation between faults and measurements. A
third model, PLS-3, is built to find the relation between the
faults and the most sensitive variable (Q1) identified from the
active set optimization. For the Lasso regression model, two
models are generated with the active set optimization. In the
first model to be referred as Lasso-1, all the variables are used
in eq 20 to build the relationship between faults and measured
quantities. For model Lasso-2, to reduce the model
dimensionality, only the most sensitive variable (Q1) is used
to identify the relationship between the faults and external
heat. Note that 300 sets of simulated measurements were used
for the calibration of the PLS and Lasso models.
Two GP models were developed to compare the FDD

results. With an initial training data set of 30 pairs of measured
quantities, all variables are used for model calibration for the
first GP model (GP-1). However, the improvement in
probability of model adjustment method is not used. Using
the sensitivity analysis results obtained with active set
optimization, a second GP model (GP-2) is generated with
the most sensitive variable Q1 and the improvement in
probability of model adjustment procedure is used. To further
demonstrate the capability of the GP model, it was compared
with a neural network that is another type of nonlinear
surrogate model. The artificial neural network (ANN) toolbox
of Matlab was used. For ANN training, 300 sets of data of
sensitive variables were used. The ANN involved two hidden
layers, and the tan-sigmoid function (“tansig”) was used as the
activation function. The rest of the parameters in the network
were set up by using the default setting in the ANN toolbox.
For example, the “trainlm” was used as the training function.
Table 8 summarizes the comparison results of these studies in
terms of fault detection rate.
In Table 8, the variation in xA0 follows the same assumptions

as explained in section 5.2, and 1% measurement noise is used
for simulations. As can be seen, the linear models generated
with Lasso are found to be inaccurate and lead to a higher
misdetection rate. The PLS models outperform Lasso models
because PLS can address correlations better than Lasso
models.
As compared to PLS and Lasso models, GP models provide

more accurate fault detection results. The results obtained with

ANN are ∼0.83, which are similar to the fault detection results
obtained with the GP models. However, it is worth mentioning
that 300 measurements were used for the calibration of PLS-1
and ANN models, which is larger than GP models. As
compared to the ANN model, the GP model in this work has
fewer training parameters and can provide a measure of
confidence interval in prediction.25,39 Also, for the single fault
case study as investigated in section 5.2, the fault classification
rate was found to be ∼0.80, when only the most sensitive
variable is used to generate GP model without an adjustment
procedure. The fault classification rate only increases by ∼1
percent point in Table 8 with GP-1, when all the variables were
used to calibrate the models. This clearly shows the
importance of identifying measured variables that are more
sensitive to variations in faults, since the classification rate can
only be improved slightly with a larger number of measure-
ments. The fault classification rate for the second GP model
(GP-2), which was generated with the most sensitive variable
and a model adjustment step, is ∼0.88. This clearly indicates
that the GP model in combination with the Lasso-based
sensitivity analysis can provide more accurate fault detection
results, as compared to other empirical models in this work.
Additionally, although simultaneous faults are less common

than single faults,40 the FDD method is validated with multiple
changes in a process. Especially, our objective is to investigate
whether changes such as mean value shifts in other
disturbances would be mistaken as mean value changes in
the chosen fault (process variable) of interest. For the reactor−
separator process, the feed mass fraction of reactant A is
assumed to be the fault of interest, but the gas constant (i.e.,
EA/R) in eq 39 can exceed the range defined in case study 2 in
section 5.3. That means random values of EA/R were sampled
from the range −960 to −1040 K other than the range
between −980 and −1060 K used in case study 2, thus
producing a different mean value. However, such a change was
assumed to be unknown to the modeler and measurements
were not available for the GP model calibration. In this case
study, it was found that the fault classification rate was ∼0.74,
which is approximately 5 percent points lower than the results
obtained in section 5.3. We further validated the algorithm, by
assuming that measurements when EA/R exceeds its assumed
range are available, and these measurements were then used for
recalibrating the GP model. It was found that a similar fault
classification rate, i.e., ∼0.79, can be obtained. This confirms
that the performance of GP models is sensitive to the data used
for model calibration, and therefore careful design of data to be
used for calibration is essential for detection accuracy. It
should be noted that the focus in this case study is to identify
and diagnose the mean value changes in the feed mass fraction
other than the mean value changes in the gas constant. When
the changes between mean values and fault magnitude for
multiple-root-cause faults have to be identified and estimated,
the GP approach can be extended to a fault classification
problem. An additional case study is presented in the
Supporting Information on how to extend the approach to a
classification problem, which is not discussed here for brevity.

Table 8. Summary of Fault Classification Rate with Different Models (Example 1)

PLS-1 PLS-2 PLS-3 Lasso-1 Lasso-2 ANN GP-1 GP-2

rrate 0.82 0.78 0.83 0.67 0.61 0.83 0.81 0.88
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6. CONCLUSION
In this work, the Gaussian process (GP) theory is combined
with the active set optimization to build a surrogate model to
identify and diagnose intermittent stochastic faults. Three
important aspects of surrogate modeling based fault detection
and diagnosis (FDD) have been discussed, i.e., model
simplicity, interpretability, and calibration. The proposed
method can find a trade-off between model dimensionality
and fault classification accuracy. Different from the dimension
reduction techniques in the literature, the sensitivity analysis
approach in this work does not rely on a transformed subspace
of measured variables, and it is performed with the physical
variables of the problem, thus facilitating interpretability of
surrogate models. To ensure sufficient data for GP model
calibration, an improvement in probability-based model
adjustment algorithm is developed to improve the model
accuracy. It is demonstrated that the GP model in combination
with the active set optimization based sensitivity analysis can
provide more accurate fault classification results, as compared
to other techniques such as multivariate analysis, Lasso-based
linear surrogate models, and artificial neural network.
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