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Abstract— An important problem in statistical shape analysis
is the matching of geometric features across shapes, known as
registration. In short, given two objects, one wants to know the
correspondence of points on one shape to points on another.
Such a matching problem, with various levels of complexity, is
present regardless of the shape’s mathematical representation.
A recent framework for shape analysis of n-dimensional curves
combines an infinite-dimensional functional curve representation
with landmark information encoding important curve features.
In this setting, shape matching is performed by minimizing
an objective function with constraints, which respect landmark
correspondences. Currently, the minimizer in this approach is
found using piecewise dynamic programming; this does not
respect the smoothness requirement of the matching function.
Thus, the solution is not really a member of the group of
registration functions. In this work, we present a landmark-
constrained gradient descent algorithm, which searches for a
smooth matching function and respects landmark locations. We
compare the proposed method to the previously used approach
using examples from the MPEG-7 dataset.
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I. INTRODUCTION

The field of statistical shape analysis seeks to define tools
for representation, registration (matching), comparison and
various statistical analysis tasks for shape data. This type of
data is now common in many fields including biometrics,
biology, medicine, graphics, bioinformatics, etc. For instance,
researchers are often interested in correlating the shape of
outlines of anatomical structures in medical images to various
diseases. One major challenge in statistical shape analysis is
the choice of shape representation. Early literature on this
subject represented objects using a finite set of labeled points
called landmarks [7]. The shape of an object was then defined
as a property that is unaffected by the translation, rotation and
scaling of the landmark configuration. A lot of sophisticated
statistical machinery for shape analysis was developed under
this representation [4]. The main drawback of landmark-based
shape analysis is that only few points are used to represent
the entire object, i.e., there is significant loss of information.
Mathematical and technological advances have led to the
development of functional shape representations, where the en-
tire object boundary is treated as the data [16], [6], [13]. These
approaches prove more challenging, both conceptually and
computationally, due to an additional invariance requirement
of shapes: a reparameterization of the function representing
the object of interest does not alter its shape. All shape

078-1-5386-1842-4/17/$31.00 ©2017 IEEE

representations must account for the desired invariances before
statistical procedures can be employed.

The most basic task in statistical shape analysis is com-
parison, which requires the definition of a metric on an ap-
propriate shape space. This distance must be preserved under
all invariances listed previously. For functional shape analysis
approaches, this typically relies on finding a set of optimal
transformations, which provide a matching of one shape to the
other. In practice, this is most commonly done by searching
for a translation, rescaling, rotation and reparameterization
which are distance-minimizing. An optimal reparameterization
seeks to find the best “matching” of every point on one curve
to points on the other. The first three transformations can
be found rather simply using existing Procrustes methods.
The last transformation is the hardest to search for as it
involves optimizing over the infinite-dimensional group of
diffeomorphisms (we make the formulation of this problem
more precise in later sections).

This work addresses the search for an optimal reparameter-
ization within the landmark-constrained elastic shape analysis
framework [15]. Our method is based on an efficient landmark-
constrained gradient descent algorithm, and the proposed
formulation guarantees a solution in the correct space, i.e.,
the space of diffeomorphisms.

A. Previous Work

Gradient descent algorithms for optimal reparameteriza-
tion searches have been previously developed in the context
of elastic shape analysis when no landmark constraints are
present. In particular, Srivastava et al. [13], [14] describe one
such algorithm and derive all necessary components needed to
implement it. The algorithm proposed here is similar in spirit
to this previous work, albeit with the additional necessity of
preserving landmark correspondences. This development poses
new challenges in the specification of the energy gradient as
described later. A very common tool for unconstrained regis-
tration of time indexed curves is the dynamic programming
(DP) algorithm, also commonly referred to as dynamic time
warping (DTW) [3]. Unfortunately, as shown in [9], [13], the
naive DTW approach does not lead to a proper metric on
the shape space of curves. Thus, for landmark-free statistical
shape analysis, a modified registration problem, which does
not suffer from the same drawbacks, is usually defined. Then,
a modified version of the DP approach is used to solve this
problem; details can be found in [12], [9], [13]. Avant and



Gee [1] consider a similar problem of matching curves with
constraints under a morphometric framework.

Another popular shape matching approach is called Large
Deformation Diffeomorphic Metric Mapping (LDDMM) [2],
[5]. While these methods have considered both landmark-
based and functional shape representations, they solve an
entirely different problem. The formulation in those frame-
works seeks a diffeomorphism of the ambient space (e.g., R?
for planar curves) such that the two objects are optimally
deformed into each other. In the current work, we seek a
landmark-constrained diffeomorphism of the curve domain
(either [0,1] or S') such that points across the two curves
are optimally matched. In fact, there is very little existing
literature on the topic of landmark-constrained registration of
curves under a functional representation. One recent example
considers a piecewise dynamic programming (PDP) approach
[15]; in short, the given curves are first segmented into multiple
open curves based on the landmark constraints, and then a
separate DP algorithm is used to match each pair of these
segments. Unfortunately, as shown later, such an approach
does not generally result in a smooth reparameterization
function. Our work is most related to that of Kurtek et al. [10],
which considered landmark-constrained elastic shape analysis
of closed surfaces.

The rest of this paper is organized as follows. Section
II describes the optimization problem of interest and the
proposed solution. In Section III, we demonstrate our approach
on complex examples, and compare it to the previously used
PDP method. Finally, we close with a brief summary and some
directions for future work in Section IV.

II. LANDMARK-CONSTRAINED SHAPE REGISTRATION

In this section, we define the constrained optimization
problem of interest and derive the proposed gradient descent
solution. This includes a description of an appropriate initial-
ization scheme as well as a subsequent landmark-constrained
search over a subgroup of diffeomorphisms. Throughout this
paper we use |- | and (-,-) to denote the Euclidean norm and
inner product in R"™, respectively; we also use ||- || and ({-,-))
to denote the .2 norm and inner product, respectively.

A. Preliminaries

Let 8; : D — R?, i = 1,2 be two absolutely continuous,
planar curves with domain D (for open curves D = [0,1]
and for closed curves D = S'). In this paper, we only
consider planar curves, but the proposed method applies to
n-dimensional curves. In order to compare shapes of /5
and B35, we require a metric which respects the invariances
imposed by our definition of shape; specifically, it should be
invariant to the parameterizations of the curves (in addition
to the standard similarity group). We restrict the following
discussion to open curves. A reparameterization function is a
diffeomorphism of [0, 1], i.e., it is a member of the following
Lie group: T' = {y : [0,1] — [0,1]]4(0) = 0, (1) =
1, ~ is an orientation-preserving diffeomorphism}. Note that

group membership requires an increasing, smooth function.
Elements v € I" act on a curve S by composition: (3,v) =
B o «. The tangent space at the identity element, ~;4(¢) = ¢,
represents all possible “perturbations™ of ~;4. Formally, this
tangent space contains smooth functions, which vanish at the
boundaries: T.,,,(I') = {v : [0,1] — R|v(0) = v(1) =
0, v is smooth}.

It can be shown that the IL? metric on the space of absolutely
continuous curves is not preserved under reparameterizations;
this implies that any shape analysis framework, which uses this
metric to compare shapes, is not parameterization invariant.
However, Srivastava et al. [13] show that the .2 metric on the
space of square-root velocity function (SRVF) transformations
of absolutely continuous curves is invariant to reparameteri-

zations; the SRVF is defined as ¢ = \/%, where 3 is the
time-derivative of 3 (the inverse mapping is also simple to

compute). Under this representation, an element v € I' acts
on an SRVF q as (g,7) = (g o 7)y/7- The primary benefit of
the SRVF representation is the ability to use the .2 metric to
find optimal reparameterizations of curves; it also corresponds
to an elastic metric on the original space of curves, which
measures the amount of bending and stretching required to
deform one shape into another.

B. Landmark Constraints

Given a metric, one can find an optimal reparameteri-
zation between two planar curves by minimizing the dis-
tance between them. However, optimizing over elements in
I' does not preserve landmark locations; recall that land-
marks are selected to be in correspondence across shapes.
Thus, to constrain the problem, Strait et al. [15] define a
subgroup of I' which respects landmark locations. Sup-
pose that each curve is annotated using %k labeled land-
mark points 5;(s) = (Bi(s1),...,Bi(sk)), ¢ = 1,2, where
sj € [0,1] for all 5. The landmark-constrained reparam-

eterization group is defined as Ty = {y [0,1] —
1,...,k, v is an orientation-preserving diffeomorphism}. El-

ements of I'y preserve landmark correspondences across
shapes. Because I'g is a subgroup of I', the group action
remains the same.

The optimal landmark-constrained reparameterization is
then defined as the solution to the following minimization
problem:

~" = argmin H (y; 1, ¢2) = argmin [lg: — (g2,7)[*. (D)
YElo vETo
DP efficiently provides the optimal solution to this problem
when the search is over I' rather than I'y. Strait et al. [15]
find the optimal solution over I'y by employing a PDP
algorithm, i.e., instead of directly searching for a landmark-
constrained diffeomorphism of [0,1], they find the optimal
matching for each pair of curve segments after landmark-based
segmentation. In that case, the start and end points of each
piecewise matching function must correspond to a landmark
location, thus reducing the problem to multiple independent



DP searches for a diffeomorphism of [a,b] C [0,1]. While
that approach provides an efficient, approximate solution to the
problem at hand, the resulting -y is not smooth at the landmark
locations, and thus, is not a member of I'g. To alleviate this
problem, we propose an alternative gradient descent method
which searches directly over I'y. We refer to this approach as
landmark-constrained gradient descent (LCGD).

1) Initialization: The first step of the proposed algorithm
is to match the k given landmarks across the two curves. That
is, we seek a 4% € I, which solves the following minimization
problem:

~" = argmin E(y; q1,g2) = argmin |y(s") — 8> + ||y —yine|,
YET JET

_ 2
where s* denotes the set of landmark locations on curve i.
To prevent the minimization from being ill-posed, the second
term is included as a regularizer to push the solution toward
~int (as the parameter A is increased), the reparameterization
function which satisfies ~y;n:(s') = s and is parameterized by
arc-length between landmark constraints. Since landmarks are
defined as important points on objects that are in correspon-
dence across a population of shapes, this initialization step
searches for an initial reparameterization which only matches
the landmark sets. Such a function always exists in I', and we
find it using gradient descent.

First, we calculate the gradient of E, which can be ap-
proximated using an orthonormal basis of T, (T'). It can lge
shown that the directional derivative of E in tciw direction of
veT,,(I)is:

4 Bl +e)] Lo = 200(5),7(8") ~ 5 + 20y —3int, ). B)

A basis of T, ,(I") is given by [14]:

{—\/ilrn sin(2mnt), '\/ilﬂ_n (cos(2mnt) —1)ln=1,2,... } @

This basis is orthonormal under the first-order Palais metric
[11]. Denoting these basis elements by the set {b;,7 =
1,2,...}, the full gradient of E can be approximated by
truncating this basis and calculating the quantity:

n

VB 0) ~ Y (), 7(5") =8 + Ay = Yune,b0)) ), 5)

i=1
for large n. This leads to Algorithm 1, which solves the
initialization problem.

Algorithm 1: Initialization
1) Initialize k =0, 4% = 7iq, €1 > 0 and é; > 0.
2) Compute VE,_,(b) using Equation 5 and .
3) Update by setting y[x11] = via —€1V E,,(b) and
COI'IlpUtC Ye+1 = Yk © F}([k-l—}]]‘
4) If E(ygy1) < 01, return - = 7g41. Otherwise,
set k =k + 1 and return to step 2.

Through several simulations, we confirmed that the overall
LCGD framework is robust to the choice of the step size €; and
the regularization parameter A; we note that for a sufficiently
small €3, this algorithm guarantees to search in I" only. We give

our choices of these parameters in Section III, which appear
to work well for all of the experiments.

2) Landmark-Constrained Optimization: The second step
of the proposed algorithm is to find +*, which solves the
minimization problem in Equation 1, given the initial value
7%(s!) ~ s2 This optimization is solved using gradient
descent under a landmark-constrained basis. We provide the
details of the algorithm next.

Let () = (q o v)y/3- The gradient of H can be approx-
imated using directional derivatives of H given by (in any
direction v € T, (I'p)):

LHG+ )| o= 2~ (@), 10),  ©

where 77, = %n(%d—l—ev”s:u = év—i—%qt} is the differential of
7. In order to find the gradient of H, we require an orthonormal
basis for T, (o) defined as T, ,(I'o) = {v : [0,1] —
R|v(0) = v(s;) =v(1) =0, j=1,...,k, v is smooth}.
Unfortunately, the basis used for T',,,(I') from the initial-
ization step is not appropriate, as those functions do not vanish
at landmark locations. To construct an appropriate basis, we
begin with the basis in Equation 4 and truncate it to result in
B ={b;, 1=1,...,n}. To make sure that the basis functions
vanish at the landmarks, we define a new basis set as follows:

1) Let sq,..., s be the landmark locations and j = 1.
2) Choose the first b; € B where b;(s;) # 0.
3) Forall i # 1, set by = b — 2ep,.

4) Remove b; from B and set j = j+1. Repeat until j = k.
The set B = {b;, i = 1,...,n—k} forms an approximate basis
for T,,(I'g). This basis is orthonormalized using the Gram-
Schmidt procedure under the first-order Palais metric. Then,
we can approximate the full negative gradient of H by:

n—k .
~VH,, ()~ (a1 — @y dobi+ g@b)bi ()
i=1
Note that while I'y is not closed (i.e., the limit is not in the
group), this is not an issue because the closure will never
be obtained due to basis truncation. Algorithm 2 summarizes
the steps required to find the optimal landmark-constrained
reparameterization, which provides a correspondence between
two curves (3 and [3s.

Algorithm 2: Landmark-constrained reparameteri-

zation
1) Set k =0, 4% = ~° from Algorithm 1, €5 > 0
and 65 > 0.

2) Compute Gz = (g2, V)

3) Compute V H,_,(b) using Equation 7 and .

4) Update by setting Y[x4+1] = Yid —EQVH,M(E) and
COMpULe Yg 41 = Vi © V[k+1]-

5) If ||VH,M(I~3)| < b9, return ¥* = 1. Other-
wise, set K =k + 1 and return to step 2.

In Algorithm 2, v, represents the overall reparameterization,
which is updated by composition using small perturbations of
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Fig. 1. Left: Outlines of two deer. The starting point is marked in red, and
the remaining landmarks in green. Right: Approximate landmark-constrained
basis (truncated to 35 elements). Black points represent landmark locations.

7Yia Via the incremental functions 7(x41); these are found by
moving in the direction of the negative gradient in T%,,,(I'g).
Again, the step size eo is chosen appropriately for fast con-
vergence of the algorithm.

II1. EXPERIMENTAL RESULTS

In this section, we demonstrate the gradient-based optimiza-
tion over I’y on complex shapes from the MPEG-7 dataset'.
For comparison, we also compute optimal reparameterizations
using the PDP approach used by Strait et al. [15].

Motivating Example. An important use of landmark-
constrained shape analysis is in the comparison of two objects
which contain occluded features. This is well illustrated using
the outlines of two deer from the MPEG-7 dataset; they are
shown in Figure 1. The main difference between the two deer
is the occlusion of one of the front legs for the deer on the
right. As shown in [15], unconstrained elastic shape analysis
does not recognize the presence of the hidden front leg,
leading to an incorrect matching of features and an unnatural
deformation between the two shapes. Incorporating landmark
constraints allows the analysis to be guided by this additional
semantic information.

To compare the proposed LCGD registration method to
PDP, we mark six total landmarks on each deer (marked in
ereen and red); for closed curves, the first landmark (red)
is used to identify ¢ = 0. The deer with an occluded leg
is carefully marked with two landmarks near the occlusion.
We implement this comparison using N = 600 points on
each curve (specifying 100 points for each segment between
landmarks). Both deer are converted to their corresponding
SRVF representations and re-scaled to unit length. The optimal
rotation of the second deer to the first deer is also found prior
to finding the optimal reparameterization.

To find the optimal landmark-constrained reparameteriza-
tion to match the two deer using the LCGD method, we first
use Algorithm 1 to match the given landmarks. We specify
n = 40 basis elements to calculate the gradient given in
Equation 5, and set e = 0.1, §; = 1 x 107°, and A = 1.
Once this initialization step is completed, we then optimize
over I'y using Algorithm 2. Calculating the gradient given
in Equation 7 requires the landmark-constrained basis, which
vanishes at the landmark locations. For closed curves, the
starting point is always identified with ¢ = 0 where all of
the original basis elements already vanish. We additionally

Uhttp://www.dabi.temple.edu/shape/MPEG7/dataset.html
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Fig. 2. Top: Initialization solution in blue and final LCGD solution in red.
Black points mark landmark locations. Bottom: Energy for the initialization
step (left) and landmark-constrained optimization step (right).

apply the previously described procedure to ensure that each
basis function vanishes at the other five landmarks. The
resulting landmark-constrained orthonormal basis, 3, contains
35 elements and is shown in Figure 1. All of the displayed
functions vanish at the landmark locations (shown using black
points), which verifies the previously stated requirement. It
is clear that these 35 basis elements should be sufficient for
the subsequent optimization, i.e., both large and small-scale
changes to the initialized reparameterization are available. We
specify e2 = 0.005 and d2 = 0.01 in Algorithm 2. Unless
stated otherwise, we use the same parameter settings for
Algorithms 1 and 2 throughout this section.

The resulting initialization (blue) and optimal landmark-
constrained reparameterization (red) solutions to Equations 2
and 1, respectively, are shown in Figure 2; also shown are
energies E' and H, respectively, as functions of the iteration
number. The initialization required 638 iterations to converge;
the subsequent optimization over I'y required 805 additional
iterations (note that these two numbers depend on the values
of €1 and e3). Since the optimal reparameterization is obtained
using the negative gradient of H with respect to the landmark-
constrained basis, both solutions coincide at the landmark
locations as shown in the figure. This example shows that
the landmark specification dictates the large-scale matching
between the two deer; finer matching between landmarks is
found using Algorithm 2.

Next, we compare our solution to that produced by PDP.
The left panel of Figure 3 shows the two optimal reparam-
eterizations (LCGD in red, PDP in blue). The two repa-
rameterizations appear to be very similar for t € [0,0.5].
However, as another form of comparison, one can examine
their derivatives as functions of the parameter value; recall
that we want the solution to be a diffeomorphism. The right
panel of Figure 3 shows the corresponding two derivatives.
The PDP solution is generally not smooth due to its piecewise
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Fig. 3. Left: Optimal reparameterizations. Right: Derivative of optimal
reparameterizations. LCGD=red; PDP=blue.
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Fig. 4. Left: LCGD solutions using 5 (blue), 20 (red), 35 (black), 50 (green),
65 (magenta) basis elements. Right: Geodesic distance between deer using
different basis sizes.

construction and other aspects of DP. Thus, this solution is not
a valid element of I'g. On the other hand, the solution obtained
using the LCGD method has a smoothly varying derivative.
This helps illustrate that, while the piecewise solution appears
smooth when viewed globally, zooming-in shows its local non-
smoothness. In contrast, our solution is guaranteed to provide
a valid minimizer in the subgroup I'y. Computing time for
LCGD (14.24 seconds on a personal computer) is slightly
longer than PDP (0.13 seconds; ), but still reasonable.

The implications of using PDP versus the proposed LCGD
method extend to geodesic path and distance calculations.
These two quantities are heavily dependent on the registration
of points across shapes, which is impacted by differences (even
minuscule ones) in the reparameterizations. Figure 5 shows
the resulting shape distances along with the corresponding
geodesic paths. The LCGD method yields a slightly higher
distance due to the smoothness requirement imposed by I'g,
which is not enforced by PDP. The geodesic paths are also
impacted; while not drastic, there are noticeable differences
in how the antlers are deformed, as well as the gap between
the two front legs (where the occlusion occurs). The antlers
deform differently due to the difference between the two
reparamterization solutions for high parameter values, which
correspond to the location near the antlers.

We also study the impact of the basis approximation on
the solution obtained from the proposed LCGD algorithm;
truncation of the basis results in certain fine details being
ignored, but one expects that there is some value for which
the perceived improvement in the solution is marginal. For
instance, we used 35 landmark-constrained basis elements in
this example as an approximation to the full basis for T, , (I').
To understand the effect of truncating the basis, we computed
the LCGD solution for four other basis sizes: two smaller and

two larger. The solutions for these five basis approximations
are shown in Figure 4. In this example, the most prominent
difference occurs near the end of the reparameterizations. It
is clear that five basis elements are not enough to capture
any of the details captured by the larger bases (this solution
is substantially different from the others), and even 20 may
not be enough. However, it appears that using 35, 50, or 65
basis elements all seem to result in very similar solutions.
This is a direct consequence of the basis construction, where
some elements oscillate much more, allowing one to capture
finer details when matching shapes. These similarities also
carry through when calculating the geodesic distances between
shapes. When at least 35 basis elements are used, distances
are very similar, as shown in the table in Figure 4.

Camel Example. Figure 6 shows a comparison of two camels,
where the gaps between both the front and back legs are oc-
cluded. There are also differences in the structure of the humps
and the tail. Because of the occlusion, placing landmarks is
beneficial to our analysis. We used eight landmarks, with a
total of N = 800 points. We obtain similar solutions using
PDP and LCGD, but again, the proposed solution is guaranteed
to be an element of I'y. Figure 5 also shows the distances
and geodesic paths for the two solutions. Again, differences
are visible in the deformation of the front and back legs. In
this case, the LCGD approach significantly outperforms the
PDP algorithm in terms of the distance between the registered
shapes. LCGD converges in 55.85 seconds, as compared to
0.19 seconds for PDP.

Comparison on Larger Datasets. We justify the use of
LCGD (due to its search for a smooth solution) by evaluating
two quantities of the obtained PDP and LCGD solutions
for two classes of shapes within the MPEG-7 dataset: 20
bones and 20 horses. Each bone was manually annotated
with four landmarks, while each horse was marked with six
landmarks. The PDP and LCGD solutions were obtained for
all possible comparisons within each shape class (ie., 190
registrations per shape class). To evaluate smoothness, we
use two measures: (1) a local measure: average maximum
value of the derivative of the reparameterizations over all
comparisons; and (2) a global measure: average squared norm
of the reparameterization derivatives over all comparisons. The
results are provided in Table 1. As expected, we observe a
smaller maximum derivative on average using LCGD since
the algorithm searches for smooth solutions directly in I'y.
The global measure also results in lower values for both shape
classes using LCGD. These results clearly demonstrate the
benefits of LCGD over PDP.

IV. SUMMARY AND FUTURE WORK

The piecewise dynamic programming approach for match-
ing landmark-constrained shapes approximates the solution
well in many cases. However, the piecewise nature of the
resulting reparameterization violates the smoothness require-
ments of I, the subgroup of landmark-constrained diffeomor-
phisms. In this paper, we presented a gradient descent algo-
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Fig. 6. Top: Camel outlines with marked landmarks (green and red). Bottom:
Optimal reparameterizations (left) and their derivatives (right). LCGD=red;
PDP=blue.

Max Derivative Squared Norm of Derivative
Class PDP LCGD PDP LCGD
Bones || 0.0102 | 0.0056 || 1.04 x 107° | 6.83 x 10~ °
Horses || 0.0116 | 0.0096 || 5.17x 107° | 4.93 x 10~°

Table 1. Comparison of smoothness of registrations produced by PDP and
LCGD. Best performance is highlighted in bold.

rithm, which provides an alternative approach to finding the
optimal matching between landmark-constrained shapes while
satisfying this smoothness requirement. We demonstrate, using
several examples, that the proposed solution is often different
from the PDP solution (suggesting that the PDP solution may
not be an element of I'y). We also provide multiple quantitative
and qualitative assessments of the proposed algorithm.

In many applications, having a sufficiently smooth regis-
tration is important. Consider handwriting recognition, where
the task may be to detect forgeries from a batch of similar
signatures. The parameterization of a signature dictates the
speed at which the writer signs the name. To compare such
signatures, one may want to take into account such speed
variations. Methods for analyzing parameterization functions
often require a certain level of smoothness [8].

A possible extension of the proposed method is to use

Geodesic path and distance of (1) deer and (2) camels for PDP (top) and LCGD (bottom).

the Riemannian geometry of I'g to speed-up convergence of
the proposed optimization algorithms. In the unconstrained
case (where no landmarks are present), a solution to this
problem can be developed under a different representation of
reparameterizations, which can be shown to lie on the unit
Hilbert sphere. Thus, any updates to the current estimate of
the reparameterization can be found using fast geometric tools.
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