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Highlights

• We propose an approach to investigate the joint placement of Photovoltaic (PV) panels,

the fastest growing renewable technology, and green roofs, a sustainable solution for

energy saving, to improve the output efficiency of PV panels.

• We develop a two-stage stochastic programming model to incorporate PV panel/green

roof placement decisions under different, at times conflicting, climate models to max-

imize the overall profit from energy generated and saved.

• We calibrate the models using historical data, industry reports, future projections of

temperature and precipitation, as well as expert opinion to examine a real-world case

study and provide insights.

• Due to the large solution space of the case study, we used a Benders’ decomposition

(L-shaped method) to obtain the solution within a tractable time frame.

• The results show that the joint placement of PV panels and green roofs contributes to

a higher profit through additional energy generated.

• The results suggest that the PV-GR integration efficiency increase is an important

contributing factor in the placement decisions, hence highlighting the need for further

investigation in characterizing this factor in future studies.

• The results suggest that the model is sensitive with respect to green roof-related pa-

rameters, suggesting the need for careful calibration of these parameters before large

scale implementation in any climate region.

• The results indicate that considering the long-term changes in the rate of energy

consumption affects the distribution of budget/rooftop areas between PV panels and

green roofs.
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Abstract

Photovoltaic (PV) panels directly convert sunlight into electricity; but, sunlight also heats

the panels, negatively impacting their efficiency. Green roofs are vegetative layers grown on

rooftops, mainly to provide added insulation on the roof to save energy. Green roofs also

cool near-surface air temperature. Hence, the joint installation of PV panels and green roofs

may potentially lead to higher efficiency of PV panels in certain climates. We develop a two-

stage stochastic programming model to optimally place PV panels and green roofs under

climate change uncertainty to maximize the overall profit from energy generated and saved.

We calibrate the model using the literature, industry reports, and the data from different,

at times conflicting, climate projections. We then conduct a case study for a mid-size city

in the U.S., perform extensive sensitivity and robustness analyses and provide insights.

Keywords: Stochastic optimization, renewable energy generation, energy savings,

climate change

1. Introduction

Greenhouse gases are the most important contributing factor to the increase of average

global temperatures over time (Bose, 2010); at the current pace, it is estimated that the
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global temperature will rise by up to 5.8 degrees Celsius over the next century (Rehman et al.,

2007). Greenhouse gas emissions are primarily caused by burning fossil fuels (Schneising5

et al., 2014) and without a significant change in energy production policies, specifically to

reduce the reliance on fossil fuels, the current concentrations of greenhouse gases in the

atmosphere is only expected to grow (Hoffert et al., 1998).

Solar power is a clean, free, and promising renewable energy source that helps reduce

greenhouse gas emissions and hence, mitigate global warming and climate change. Photo-10

voltaic (PV) panels, which can directly convert sunlight into electricity, are one of the most

efficient methods of harnessing solar power. PV panels are the fastest growing renewable

technology in the recent years at an annual average rate of 6.8% (EIA, 2015). The number

of panels installed within the U.S. increased by 63% between 2007 and 2008 (Scherba et al.,

2011), with an estimated increase of approximately 30% per year from 2013 through 2016 in15

the residential sector (EIA, 2015). This rate of growth can be attributed to the decreasing

costs of PV panels (Feldman et al., 2014) as well as the incentives provided by state and

federal governments. The falling prices of PV panels, coupled with the overall increases in

power costs from conventional sources, suggest that PV panels are on track to become a

strategically advantageous solution to sustainable energy production (Yang, 2010). It is,20

however, important to note that despite the increase in demand and the popularity of PV

panels, efficiency of PV panels is still limited and depend mainly on the panels’ cell ma-

terial and their operating temperature. The open circuit voltage shows a drop of 2.3 mV

per 1 degree Celsius rise in temperature, which translates to a 0.5% drop in efficiency per

degree Celsius rise in temperature (Witmer, 2010). While there is ongoing research into en-25

gineering solutions to increase the efficiency of PV panels, this paper explores an immediate

operational solution through improved, systemic placement decisions.

According to the U.S. Energy Information Administration (EIA), 47.7% of the energy

consumed by residential households and 34% of the energy used by the commercial sector

is due to space conditioning (i.e., heating and cooling) (EIA, 2015). Given an expected30

average growth rate of 0.4%–1.2% and 0.9%–1.1% in the residential and commercial sectors,

respectively, it is estimated that by 2040 the number of residential households grows to 150
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Figure 1: GR integrated PV panel installed over a rooftop in Hailey, Idaho (SVS, 2017).

million and the commercial space increases to 110 billion square feet (EIA, 2015). Hence, any

reduction in the energy required for space conditioning can result in substantial cost/energy

savings. Green roofs (GRs), which are vegetative layers grown on rooftops, can provide35

added insulation on the roof and cool near-surface air temperature through decreasing the

absorption rate of solar radiation by the building structure (Dunec, 2012). This cooling ef-

fect can contribute to an approximately 30% drop in the surface temperature (Dunec, 2012).

Several long-term studies are currently underway to quantify the thermal performance of

GRs (Niachou et al., 2001; Sonne, 2006) as well as the relationship between GRs and energy40

savings (Coma et al., 2016; Refahi and Talkhabi, 2015) under different climatic conditions.

So far, it is estimated that widespread installation of GRs throughout the U.S. can result

in $7−$10 billion in savings (Dunec, 2012).

In addition to direct savings in space conditioning costs, GRs can contribute to energy

production of PV panels if they are jointly installed. Specifically, GRs create a cool micro-45

climate in hot weather and reduce the temperature of their surrounding area. Hence, their

joint installation with PV panels (Figure 1) can help cool down the panels, allowing them

to function at a higher efficiency. The increase in panel efficiency is consistently reported

in the literature; however, the degree of this increase varies from one study to another,

ranging between 0.08% and 8.3% across studies of various lengths, conducted in different50
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Figure 2: The daily maximum and minimum temperatures for the City of Knoxville, Tennessee from ten
different climate projections for the year 2030. The dashed lines present the maximum and minimum tem-
peratures across the ten projections over the year. (For details on the climate projections refer to Table 3.)

climates (Chemisana and Lamnatou, 2014; Hui and Chan, 2011; Köhler et al., 2007; Witmer

and Brownson, 2011).

The degree of benefit from PV panels and GRs highly depends on the weather and climate

conditions of the location in which they are installed (Refahi and Talkhabi, 2015; Witmer,

2010). However, the information on how the weather and/or climate conditions evolve55

over time in specific regions/locations are limited and often unreliable. Indeed, although the

global trend of climate change is consistently reported, in general there is no consensus among

current climate projections and their evolution over time in specific regions/locations (Jun

et al., 2008). For instance, Figure 2 presents the daily maximum and minimum temperatures

for the City of Knoxville, Tennessee from ten different climate projections for the year 2030,60

provided by Oak Ridge National Laboratory’s Urban Dynamics Institute (UDI) (UDI, 2017)

and Oak Ridge National Laboratory’s Climate Change Science Institute (CCSI) (CCSI,

2017). As seen in the figure, the projections can differ by up to approximately 25.4 and

37.1 degrees Celsius for daily maximum and minimum temperatures, respectively, in a given
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day. Hence, using each of these forecasts to guide future benefits of installing PV panels65

and GRs, either separately or jointly, may result in a different set of recommendations.

PV panels and GRs are relatively expensive and have long lifespans, and hence, they are

both considered long-term investments. PV panels can generally retain a high efficiency of

80%-85% up to 20 years after installment (Energy Informative, 2017). Similarly, GRs are

reported to last on the order of 40 years (Porsche and Köhler, 2013; Minnesota Stormwa-70

ter Manual, 2018), almost twice as long as traditional roofs. Therefore, it is important to

carefully plan such investments to maximize their expected return.

In this paper, we present an approach to consolidate a set of future climate projections

when making long-term investment decisions on the installation of PV panels and GRs, from

the perspective of a regional governing body. Specifically, we develop a two-stage stochastic75

programming model to determine the optimal placement of PV panels and GRs, either sep-

arately or jointly, among a set of candidate rooftops. Our objective is to maximize the profit

from the energy generated and saved using these practices, considering the uncertainties in

the future evolution of the climate and the positive interaction of PV panels and GRs in

increasing PV panels’ efficiency. We develop a profit-maximizing model to allow governing80

bodies and policy makers to carefully evaluate their options before making an investment.

Optimal placement problems are studied in a wide array of domains and applications (e.g.,

for the placement of distributed generation source (Wang and Nehrir, 2004), phasor mea-

surement units (Gou, 2008), multiple allocation hubs (Correia et al., 2018), and wind tur-

bines (Marmidis et al., 2008), or in facility location problems (Albareda-Sambola et al.,85

2011)). In this paper, we formulate an optimal placement problem for joint installation

of PV panels and GRs. In the literature, studies involving PV panels mostly focus on

underlying PV material or cell technology (Tyagi et al., 2013; Chow, 2010; Kasper et al.,

2014). Alternatively, there is a body of work that aims to determine the best placement

option for individual PV panels. For instance, there are a number of studies that evaluate90

rooftop characteristics to calculate individual rooftop solar access using geographic informa-

tion system (GIS) (Levinson et al., 2009; Wiese et al., 2010; Van Hoesen and Letendre, 2010;

Ordóñez et al., 2010), or aim to develop GIS-based models to optimize electricity generation

6
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estimation of PV panels installed on rooftops (Hong et al., 2014).

Additionally, there exist studies whose objectives are to find the optimal installation95

criteria for PV panels, e.g., size, tilt angle, converter properties. An integrated multi-

objective optimization model is developed in (Koo et al., 2016) to determine rooftop-specific

installation criteria for PV panels to maximize their energy production effectiveness and

efficiency. Similarly, a particle swarm optimization algorithm is developed in (Kornelakis,

2010) to find the optimal installation details (i.e., number of PV modules, their optimal100

tilt angle and distribution among the DC-AC converters) for a grid-connected PV system to

maximize the total net profit and environmental benefits of the system. In another study (Liu

et al., 2012), a simulation model is developed to find the optimal size and slope of PV systems

under certain climate conditions subject to equipment costs as well as electricity and sale-

back tariffs. In a similar vein, in (Chen, 2013), a Bayesian approach is used to optimally105

size stand-alone PV systems under climate change uncertainty.

There exist only a few large scale studies that attempt to optimize the implementation of

PV panels. In (Arnette, 2013), the output of large scale renewable energy farms (both wind

and solar) is evaluated and compared with that of rooftop PV panels, after minimizing energy

generation costs and greenhouse gas emissions. In another study (Park et al., 2016), the110

optimal strategy to implement PV systems to achieve national carbon emission reduction

targets is proposed. None of these large scale studies, however, consider future climate

scenarios to capture the uncertainty in output of PV panels, nor do they take into account

GRs, their energy saving properties, or their interactions with PV panels.

The literature related to GRs mainly focuses on their many potential environmental ben-115

efits, e.g., management of runoff water quality and quantity (Berndtsson, 2010), reduction

of heat island and improvement of urban comfort (Santamouris, 2014), contribution to plant

and ecological diversity (Cook-Patton and Bauerle, 2012), and reduction of urban air pollu-

tion (Yang et al., 2008), to name a few. Also, a major group of studies explore GRs’ physical

properties, e.g., types of substrate (Ampim et al., 2010), hydrologic performance (Li and120

Babcock, 2014), thermal behavior (Niachou et al., 2001), and vegetation types (Snodgrass

and Snodgrass, 2006).
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There exits a few studies in the literature that attempt to optimize energy savings/cost

reductions achieved using GRs. For instance, Gargari et al. (2016) simulate the thermal

behavior of a building covered with GRs in order to optimize the energy savings achieved by125

installing green media on the rooftop of a building. The results show that the installation

of GRs for buildings that meet the most recent insulation regulations leads to moderate

levels of energy savings. In another study, Kim et al. (2012) investigate the economic and

environmental benefits of GRs through an optimal-scenario selection model. The authors

preform life-cycle cost analysis for fifteen different types of GRs and conclude that the cost130

reductions and environmental benefits achieved by GRs are noteworthy. Chang et al. (2010)

conduct a cost-benefit optimization on GR sizes. Their results show that the amount of en-

ergy savings increases in the size of GR. Despite their contributions, none of these studies,

however, examine the optimal placement of GRs in a large scale study.

Stochastic programming has been extensively used in the literature for modeling long-135

term planning problems under uncertainty (Birge and Louveaux, 2011). Specifically, two-

stage stochastic programming has been widely applied in a variety of studies including but

not limited to portfolio selection (Abdelaziz et al., 2007), transportation planning (Bar-

barosolu and Arda, 2004), disaster management (Noyan, 2012), waste management (Maq-

sood and Huang, 2003), scheduling (Parisio and Jones, 2015), and distributed energy systems140

(Zhou et al., 2013). Similar to other works in the literature, here we aim to incorporate un-

certainty about the future through a set of possible scenarios. However, to the best of our

knowledge, this is the first study that uses such approach for incorporating climate change

into urban planning over a long planning horizon.

Various cities or states in the U.S. have invested in, or are currently leading, projects145

to place green infrastructure and/or energy-efficient practices and technologies EPA (2009);

The City of Knoxville (2018); EPA (2017). Most of these projects, however, are focused on

investing in a single geographic region or a small community, and involve a single type of

practice alone (e.g., solar panels, LED lights, green infrastructure). In this study, we take a

forward-looking view and provide a general model that can account for joint placement of150

GRs and PV panels across various geographical regions simultaneously. To the best of our

8
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knowledge, this is the first model that accounts for multi-region, multi-practice placement,

hence allowing policy makers to plan large-scale implementations, while accounting for the

potential interactions between the practices.

The remainder of this paper is organized as follows. First we clearly define the scope155

of the problem and present the model formulation in Section 2. Next, in Section 3, we

calibrate the model using the literature, industry reports and a few datasets. In Section 4,

we first discuss the solution approach. Next we conduct a case study for a mid-sized city

in the U.S., namely, Knoxville, Tennessee, perform sensitivity and robustness analyses, and

provide environmental insights. Lastly, we conclude in Section 5.160

2. Model Formulation

In this section, we present a two-stage stochastic programming model with complete

recourse to determine the placement of PV panels and GRs to maximize the overall profit.

The first stage decisions are to choose a set of candidate sites to install PV panels and GRs,

either separately or jointly. After all uncertainties are realized, second stage decisions, i.e.,165

the amount of electricity sold to or purchased from the grid, are made. Note that consistent

with the current practice, we assume that excess energy generated by PV panels can be sold

to the grid (Banos et al., 2011). In the remainder of the paper, the word energy refers to

electrical energy unless otherwise stated.

Let T denote the planning horizon and K denote the set of regions, where Iκ denotes the170

set of candidate sites within region κ ∈ K. Let the discrete random variable W with proba-

bility mass function pW denote the sample path of the future climate evolution for the regions

of interest over the planning horizon. Let ηω denote the the realization probability of scenario

ω ∈ Ω, where Ω is a finite discrete set of projected climate scenarios, i.e., ηω = pW (ω).

Let the first stage binary variables xκi and yκi denote whether or not PV panels and GR175

are installed at candidate site i ∈ Iκ, respectively, where each assumes the value 1 if the

corresponding practice is installed at site i ∈ Iκ and equals to 0, otherwise. Let kκi denote

the total area of PV panel installed at site i ∈ Iκ. Let cκi and gκi denote the cost of installing

PV system and GR at site i ∈ Iκ, respectively.

9
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Sets
Ω Set of climate scenarios, where ω ∈ Ω
K Set of regions, where κ ∈ K
Iκ Set of candidate sites in region κ ∈ K, where i ∈ Iκ
First Stage Variables
xκi Equals 1 if PV panels are installed at site i in region κ and 0, otherwise
yκi Equals 1 if GR is installed at site i in region κ and 0, otherwise
cκi Installation cost of PV system at site i in region κ (USD)
gκi Installation cost of GR at site i in region κ (USD)
kκi Area of PV panel installed at site i in region κ (m2)
Second Stage Variables
eκiω Energy generated by PV panels at site i in region κ under scenario ω (kWh)
sκiω Energy saved by GR at site i in region κ under scenario ω (kWh)
rκω Energy sold to the grid in region κ under scenario ω (kWh)
φκω Energy purchased from the grid in region κ under scenario ω (kWh)
Parameters
F PV system fixed cost (USD)
Q PV panel output (W)
B Initial budget available for investment (USD)
γ Cost per kWh purchased from the grid (USD)
µ Price per kWh sold to the grid (USD)
α Percentage energy saving in cooling degree-hours due to GR installation
β Percentage energy saving in heating degree-hours due to GR installation
θ Percentage efficiency increase in the output of PV panels due to integration with GRs
δ Percentage change in energy consumed for space conditioning over the planning horizon
V κ PV system variable cost in region κ (USD)
Cκ Total maintenance cost per m2 PV panel installed in region κ (USD)
P κ Cost per m2 for installing GR in region κ (USD)
Rκ Total energy requirement for space conditioning in region κ over the planning horizon (kWh)
ηω The realization probability of scenario ω, where

∑
ω ηω = 1

Aκi Rooftop surface available at site i in region κ (m2)
Hκ
i Average hourly electricity consumption for space conditioning at site i in region κ (kWh)

ικi Rooftop radiation potential of site i in region κ
Stochastic Parameters

Lκω
Total number of peak sunlight hours available in region κ under scenario ω over
the planning horizon

λκω Total number of cooling degree-hours in region κ under scenario ω over the planning horizon
τκω Total number of heating degree-hours in region κ under scenario ω over the planning horizon

Table 1: Notation used in the model.

10
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Let the second stage variables eκiω and sκiω denote the amount of energy generated and180

saved in kWh at candidate site i ∈ Iκ under scenario ω ∈ Ω, respectively. Additionally,

let Hκ
i denote the average hourly electricity consumption at each candidate site i ∈ Iκ to

maintain the building temperature via air conditioning, and Rκ denote the total required

electricity for space conditioning in region κ ∈ K over the planning horizon. Let δ denote

the percentage change in energy consumed for space conditioning over the planning horizon,185

due to an array of technological, sociological, climatic, and economic factors. Lastly, let B

denote the initial budget available for investment.

PV panels rely on solar irradiation to generate electricity and their outputs significantly

differ depending on the number of hours they are exposed to sunlight. A ‘peak sunlight hour’

is typically used to describe the intensity of sunlight in a specific area, where 1 peak sunlight190

hour is equivalent to 1 kWh/m2 (Aurora Energy, 2018; Solar Power Authority, 2018). Hence,

the number of peak sunlight hours for a day represents the accumulative solar irradiation

over the course of the day. Additionally, the level of solar radiation received by any rooftop

depends on a variety of factors, e.g., aspect of the building, rooftop slope, and the shadowing

effect or solar access to buildings. Let ικi denote the rooftop solar radiation potential at195

site i ∈ Iκ, which quantifies the percentage of daily available sunlight that an average rooftop

at site i ∈ Iκ receives. Let the stochastic parameter Lκω denote the total number of peak

sunlight hours available over the planning horizon in region κ ∈ K under scenario ω ∈ Ω.

Cooling and heating degree-hours are measures of how many degrees and for how long

the outside temperature is above or below certain base temperatures, respectively (Degree200

Days Weather Data, 2017). These metrics are typically used to determine whether or not

space heating and cooling are required for buildings. Let λκω and τκω denote the total number

of cooling and heating degree-hours over the planning horizon, during which space cooling

and heating are required, respectively, for buildings in region κ ∈ K under scenario ω ∈ Ω.

Additionally, let α and β denote the percentage of energy saving due to GR installation in205

cooling and heating degree-hours, respectively. Lastly, recall that the joint installation of PV

panels and GRs positively affect the PV panels output. Let θ denote the percentage increase

in the output of PV panels as a result of their integration with GRs. Table 1 summarizes

11
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all the notation used in model formulation.

Recall that our objective is to maximize the profit from energy generated and saved, i.e.,

Z = max
∑

i

∑

κ

−(Fxκi + kκi V
κ + Aκi P

κyκi ) +
∑

ω

∑

κ

ηω(rκωµ− φκωγ). (1)

The first term inside the maximization corresponds to the installation cost of PV panels and

GRs in a subset of candidate sites across all regions. The second term inside the maximiza-

tion corresponds to energy generated and saved under all scenarios across all regions. The

following equations, i.e., Equations (2) - (9), present the constraints of the model,

gκi = Aκi P
κyκi ∀ i, κ, (2)

cκi = Fxκi + kκi (V κ + Cκ) ∀i, κ, (3)

∑

i

∑

κ

(cκi + gκi ) ≤ B, (4)

kκi ≤ Aκi x
κ
i ∀ i, κ, (5)

eκiω = QLκωk
κ
i ι
κ
i (1 + yκi θ) ∀ i, ω, κ, (6)

sκiω = Hκ
i y

κ
i (αλκω + βτκω ) ∀ i, ω, κ, (7)

∑

i

(eκiω + sκiω) + φκω − rκω ≥ (1 + δ)Rκ ∀ω, κ, (8)

rκω ≤
∑

i

eκiω ∀ κ, ω. (9)

12
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Consistent with the literature (Coma et al., 2016; Refahi and Talkhabi, 2015; Dunec, 2012),210

we assume that if the decision is to install GR at site i ∈ Iκ, it must be large enough to

completely cover the rooftop; hence, Equation (2) calculates the GR installation cost at site i

in region κ. Equation (3) links the PV system cost, cκi , to its two different components,

namely, PV system fixed cost, denoted by F , and PV system variable and maintenance

costs in region κ, denoted by V κ and Cκ, respectively. Note that PV panels require very215

little maintenance (Boston Solar, 2018; Whaley, 2016), while extensive GRs are essentially

cost-saving compared with conventional roofs when it comes to maintenance (GSA, 2011;

Green Infrastructure Foundation, 2017; Wong et al., 2011). In this study, we assume the

property owner is responsible for maintenance costs, whether or not their properties are

selected by the model as candidates for placement of the green practices, i.e., Cκ = 0. We220

revisit this assumption in our computational study in Section 4.3 to investigate the impact

of incorporating maintenance costs directly into the model.

Equation (4) limits the total cost of PV systems and GRs to a given budget B. Equa-

tion (5) guarantees that the area covered with PV panels cannot exceed the available rooftop

surface. Note that simultaneous installation of PV panels and GRs on a rooftop is possible225

as PV panels are generally installed slightly elevated above the roof surface.

Recall that the integration of PV panels and GRs can help cool down the panels, thereby

resulting in a higher electricity output. Therefore, Equation (6) calculates the energy gen-

erated by PV panels at site i ∈ Iκ under scenario ω ∈ Ω.

The amount of energy savings from GR at each candidate site is given by Equation (7).230

The amount of electricity sold to or purchased from the grid, rκω and φκω, respectively, serve

as second stage decisions in the model. We assume that each region has certain energy

requirements for space conditioning over the planning horizon. Hence, Equation (8) guar-

antees that for each region the total energy generated, eκiω, and saved, sκiω, and the total

electricity sold to the grid, rκω, or purchased from the grid, φκω, is at least equal to the en-235

ergy requirement for space conditioning of the region. Lastly, Equation (9) assures that the

electricity sold to the grid cannot exceed the electricity generated by systems.

Note that the placement problem (1)-(9) has complete recourse. That is, for all the first-
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stage decisions, regardless of the uncertainties, there exists at least one feasible second-stage

decision (Birge and Louveaux, 2011).240

3. Model Calibration

In this section, we use the literature and a series of datasets to calibrate the model

formulated in Section 2 to further conduct a case study for the City of Knoxville, Tennessee.

3.1. Parameters Estimated From the Literature

In the following, we use the literature and industry reports to estimate model parameters.245

Planning horizon, T . In this paper, we use two planning horizons of 10 years and 20 years.

These two horizons are chosen based on the availability of future climate projections as well

as the lifespan of current commercially available PV panels and GRs.

PV system fixed cost, F , and PV system variable cost in region κ, V κ. The cost of installing

PV system includes the workforce cost, plus the costs of the system components, i.e., solar250

modules (which is referred to the PV cell circuits sealed in an environmentally protective

laminate (Florida Solar Energy Center, 2018)), mounting device, DC-AC power inverter, and

wiring. Note that both workforce and component costs consist of fixed costs and variable

costs, i.e., some of these costs are fixed for any installation, regardless of the size of the

PV system, whereas the others are functions of the size of the system. For instance, the255

workforce cost consists of a fixed cost for engineering design, permit, and contract fees, plus

a variable labor cost to install the system. Similarly, the PV system cost consists of a fixed

cost for DC-AC power inverter and wiring, plus a variable cost for PV modules and mounting

device that is a function of the PV system size. In the following, we first calculate the fixed

and variable costs of the workforce. Next, we estimate the fixed and variable costs of the260

PV system components. We then use these values to estimate PV system fixed cost, F , and

PV system variable cost in our region of interest, V κ.

According to a 2015 report by the National Renewable Energy Laboratory (NREL) (Chung

et al., 2015), installing a 5 kW PV system with a size of 37.5 m2 (400 ft2) on a residential

rooftop costs $7,950, which includes the one-time engineering design, permit, and contract265
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fees, plus the labor costs. In contrast, the cost of installing a commercial system of size 743.2

m2 (8000 ft2) equals $92,132, including the one-time fees and labor costs. We assume the

labor costs for installing the PV system increase linearly in the system size, and the one-time

fees are equivalent. Let W denote the total workforce cost needed to install PV system and

recall that kκi denotes the area of PV panel installed at site i ∈ Iκ. Hence, using linear regres-270

sion, we obtain W = 3500+120kκi . Consequently, we use the intercept of $3,500 and the slope

of $120 per m2 as the fixed and variable costs of workforce required for installing a PV system.

Connecting the PV system to the grid requires inverters to convert the direct cur-

rent (DC) from PV panels into alternating current (AC). These inverters generally cost

between $1,000 and $5,000 based on their capacity and quality (Solar Quotes, 2017; Whole-275

sale Solar, 2018), with relatively limited additional cost for wiring. In this study, we consider

the average cost of $3,500 for the fixed cost of PV system components, which depending on

the brand, is sufficient enough for purchasing inverters with a size of 3,000 W to 12,000 W

(Wholesale Solar, 2018). Hence, the PV system fixed cost, F , equals to $7,000, which con-

sists of the fixed part of total workforce cost, i.e., $3,500, plus the inverter and wiring costs,280

i.e., $3,500.

As of 2017, PV modules cost between $0.85 and $1.5 per W. That is, for a panel with

the size of 1 m2 and 150 W–250 W output on top efficiency, the module cost ranges from

$128 to $375, while the mounting device (frame) costs an additional $60 per m2. Therefore,

the PV system variable cost, V κ, for the City of Knoxville, including the variable part of285

workforce cost, i.e., $120 per m2, plus module and mounting device cost, ranges between

$310 and $560 per m2.

PV panel output, Q. Commonly available PV panels have an efficiency ranging from 13.5%

to 20% (Chung et al., 2015). Therefore, the real output of 1 m2 panel during an hour of

peak sunlight ranges from 135–200 W.290

Total maintenance cost per m2 PV panel installed in region κ, Cκ. PV panels are made of

tempered glass, making them able to withstand harsh weather conditions. Moreover, PV

panels have no moving parts, except for panels with tracking mounts, making them very re-

liable and able to continue operation with minimal maintenance (Boston Solar, 2018). Most
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PV panel manufacturers guarantee their products for 20 to 25 years (Whaley, 2016). There-295

fore, if PV panels cease working, the PV panel companies will fix the issue at no cost. How-

ever, in order to utilize PV panels on their full potential, the surface of PV panels should be

cleaned throughout their lifespan, which imposes an annual cleaning cost of $0.25 to $1.5 per

panel (Whaley, 2016), or equivalently $0.15 to $0.92 per m2 of panel (Energy Saving Trust,

2015). Note that these costs do not consider the positive impact of GRs on reducing air300

borne pollutants and dust in GR integrated PV panels (Green Roof Technology, 2018).

Recall that in this study we use two planning horizon lengths, i.e., T = 10 and T = 20

years. Hence, assuming that the current estimated maintenance costs of $0.15 to $0.92

per m2 of panel increase with inflation, we consider the total maintenance Cκ, incurring in

the beginning of the planning horizon, to range between $1.5 and $9.2 when T = 10 years305

and between $3 and $18.4 when T = 20 years.

Average hourly electricity consumption for space conditioning at site i in region κ, Hκ
i .

Generally speaking, electricity consumption increases in building size (EIA, 2017c). We

use the data available from a 2009 survey by the EIA (EIA, 2017c) to characterize the

relationship between the average hourly energy consumption for space conditioning and

building size. Note that we consider a residential level of energy consumption for all the

candidate sites in this study. The data suggests a strong linear relationship between the

energy consumption and the building size, where it ranges between 25 m2 and 400 m2.

Recall that Aκi denotes the available rooftop surface at candidate site i. We assume that the

total size of each building is equal to its available rooftop surface, and each candidate site

corresponds to a single unit. Hence, the relationship can be best approximated as

Hκ
i = 0.508 + 0.004Aκi . (10)

(For further details about the data and model, please refer to Appendix A.)

Cost per m2 for installing GR in region κ, P κ. GRs are typically classified into three main

types, namely, extensive, semi-intensive, and intensive, mainly based on their types of veg-

etation and properties, such as weight, use, and maintenance (IGRA, 2017). In this study,310
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consistent with the existing literature that focuses on energy saving aspect of GRs, we only

consider extensive GR, which is the least expensive and most resilient type of GR (Coma

et al., 2016; Refahi and Talkhabi, 2015; Dunec, 2012). According to the U.S. General Ser-

vices Administration (GSA), the cost per m2 of extensive GR is approximately $12 (GSA,

2011) which includes the drainage layer cost as well as labor cost. Consistent with published315

reports, we do not consider setup costs for GRs (GSA, 2011).

Price per kWh sold to the grid, and cost per kWh purchased from the grid, γ and µ, re-

spectively. Selling excess electricity generated to the grid and being paid in return (Feed-in

Tariffs, 2018), known as feed-in tariffs, or more specifically export tariffs (Feed-in Tariffs,

2018), is not generally offered in the U.S., except in a limited number of states (Energy In-320

formative, 2014). However, net metering, which allows for sending the extra electricity

generated to the grid at normal retail value and receiving credit for it, is supported by most

utility providers (SEIA, 2018). Therefore, consistent with these methods, we consider the

same value for the electricity sold to and purchased from the grid as we assume the excess

electricity that is sent to the grid can be credited and hence, used by any of the candidate325

sites. According to EIA (2017), as of 2017, each kWh of electricity purchased from the grid

costs approximately 10.3 cents. Hence, we set µ and γ equal to 10.3 cents.

Percentage energy saving in cooling degree-hours due to GR installation, α, and percentage

energy saving in heating degree-hours due to GR installation, β. The percentage of energy

saving in cooling degree-hours achieved due to the installation of GRs differs across various330

studies, ranging from 10% to 16.7% (Coma et al., 2016; Dunec, 2012; Ascione et al., 2013;

Zhao and Srebric, 2012; Feng and Hewage, 2014; Spala et al., 2008; Raji et al., 2015). While

almost all studies agree on the fact that using GRs results in savings in cooling degree-hours,

there is a lack of consensus on the impact of GRs in heating degree-hours. Indeed, a few

empirical studies report that using GRs contribute to energy loss in heating degree-hours335

while others suggest that it results in energy savings. For instance, a recent, long-term

study reports that GRs increase the required amount of energy to heat the space to a

comfortable level (i.e., 22 degrees Celsius in this study) in heating degree-hours by 6.2%

(Coma et al., 2016). Consistently, another study performed in different climates throughout

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Europe reports up to 1% GR-related energy loss in cold seasons in certain climates (Ascione340

et al., 2013). In contrast, two empirical studies suggest that the energy savings from GR

in heating degree-hours is negligible and can be ignored (Feng and Hewage, 2014; Spala

et al., 2008). However, there exists another group of studies that report reductions of 4%

to 10% in energy savings as a result of GRs in heating degree-hours (Dunec, 2012; Ascione

et al., 2013; Raji et al., 2015; Zhao and Srebric, 2012). Therefore, in this study, we let α345

and β assume a wide range of values to capture the different, and sometimes contradicting,

estimates reported in the literature. Specifically, we let α range from 10% to 20% and β

range from -10% to 10%.

Percentage efficiency increase in the output of PV panels due to integration with GRs, θ.

As the results from the previous studies show, integrating PV panels with GRs results in350

a higher panel efficiency, mainly due to the cooling effect of GRs. However, these studies

report a relatively wide range of values for the percentage efficiency increase, i.e., from 3.33%

to 8% (Chemisana and Lamnatou, 2014; Hui and Chan, 2011).

Percentage change in energy consumed for space conditioning over the planning horizon, δ.

In general, changes in human behavior with respect to energy consumption is not always355

easily quantifiable and can be impacted by various technological, sociological, climatic, and

economic factors (Hostick et al., 2014; Hand, 2012). Over the past few decades, the level of

energy consumption for space conditioning in the U.S. residential sector has experienced a

steady decline, decreasing from 58% of overall energy consumption per household in 1993,

to 48% in 2009 (EIA, 2018a). The projections for the energy consumption for space condi-360

tioning, on the other hand, are mixed (EIA, 2018b; Hostick et al., 2014). Published studies

report various degrees of increase/decrease in the level of energy consumption for space

heating and cooling (Rosenthal et al., 1995; Amato et al., 2005; Mansur et al., 2005; Belzer,

2009; Huang, 2006; Loveland and Brown, 1996; Scott et al., 2005; Ruth and Lin, 2006; Sailor,

2001; Sailor and Pavlova, 2003). For instance, Scott et al. (2005) project the decrease of365

24% in the level of energy consumption for space heating and the increase of 39% in the

level of energy consumption for space cooling by year 2020. In other studies, Huang (2006)

and Amato et al. (2005) project the decrease of as much as 33% and 13% in the level of
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Parameter Ranges Levels Sources

PV system variable cost, V κ (USD) [210, 435] 100, 200, 400, 600 Chung et al. (2015)

Annual maintenance cost per m2 PV

panel installed in region κ,
Cκ

T
(USD)

[0.15, 0.92] 0.15, 0.62, 0.92 (Boston Solar, 2018; Whaley, 2016)

PV panel output, Q (W) [135, 200] 100, 200 Chung et al. (2015); Solar Quotes (2017)
Percentage energy saving in cooling
degree-hours due to GR installation, α

[10%, 16.7%] 10%, 20% Ascione et al. (2013); Coma et al. (2016);
Dunec (2012); Feng and Hewage (2014);
Raji et al. (2015); Spala et al. (2008); Zhao
and Srebric (2012)

Percentage energy saving in heating
degree-hours due to GR installation, β

[−6.1%, 10%] −10%, 10% Ascione et al. (2013); Coma et al. (2016);
Dunec (2012); Feng and Hewage (2014);
Raji et al. (2015); Spala et al. (2008); Zhao
and Srebric (2012)

Percentage efficiency increase in the
output of PV panels due to integration
with GRs, θ

[3.33%, 8%] 2.5%, 10% Chemisana and Lamnatou (2014); Hui and
Chan (2011)

Percentage change in energy consumed
for space conditioning over the planning
horizon, δ

[−60%, 60%] −60%,−40%,−20%,
0%, 20%, 40%, 60%

Amato et al. (2005); Belzer (2009); EIA
(2018b,a); Huang (2006); Loveland and
Brown (1996); Mansur et al. (2005); Rosen-
thal et al. (1995); Ruth and Lin (2006);
Sailor (2001); Sailor and Pavlova (2003);
Scott et al. (2005)

Table 2: Parameter values estimated from the literature and industry reports.

energy consumption for space heating, and the increase of as much as 158% and 40% for

space cooling by years 2080 and 2030, respectively. Note that according to EIA (2017c),370

only a quarter of the total energy consumed for space conditioning in the U.S. residential

sector is used for space cooling, while the remaining three quarters is used for space heating.

Hence, in this study to capture a wide array of variability, we use a weighted average of

the reported values for space heating and cooling, and consequently, account for up to 60%

change in total energy consumption for space conditioning.375

Initial budget available for investment, B. The net budget for 2017-2018 for the City of

Knoxville is equal to $378.8 million. The City dedicates a fraction of the budget to various

long-term urban development projects. For instance, in the 2017-2018 budget, $17.8 million

is dedicated to the conversion of approximately 300,000 street lights across the City to the

LED technology, for which the payback period is anticipated to be less than a decade (The380

City of Knoxville, 2018). Consistent with the budget allocated to this project and other

investments in green technologies, in our case study, we set the initial budget available for

investment, B, equal to $20 million.

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2 summarizes the parameters that are calibrated from the literature and considered

in our numerical studies. The table presents the ranges of values obtained from the litera-385

ture. In our numerical studies, however, we capture a range slightly larger than the reported

values to account for additional uncertainty and possible parameter estimation errors. We

conduct our numerical studies at the discrete levels provided in the table.

3.2. Parameters Estimated From Data

To estimate the remaining parameters, we use a few datasets including climate projec-390

tions and solar insolation provided by UDI (UDI, 2017) and CCSI (CCSI, 2017).

Total number of cooling degree-hours, λκω, and heating degree-hours, τκω , in region κ under sce-

nario ω over the planning horizon. The climate system evolves as a result of slow changes in

boundary conditions, physical parameters, ocean and sea ice, etc. (IPCC, 2017). General cir-

culation models (GCMs) are climate models which exploit the general circulation mathemat-395

ical model of a planetary atmosphere (atmospheric GCMs) or ocean (oceanic GCMs) to nu-

merically simulate and project changes in Earth’s climate system. Coupled GCMs (CGCMs)

consist of models that combine atmospheric GCM (AGCM) with oceanic GCM (OGCM)

into interactive ocean-atmosphere models (Yongqiang et al., 2004). In this study, we use

the climate projections from ten CGCMs as listed in Table 3. The available projections400

consist of daily precipitation as well as minimum and maximum temperatures for 1 km2

and 4 km2 grids for the City of Knoxville from January 2011 through December 2050. In

this study, we use the data for two planning horizons of length T = 10 years and T = 20

years, starting from January 2011. In order to reduce the computational effort, we use each

climate projection as a scenario in our model, after averaging the daily projections for all405

grids spanning the City of Knoxville. We examine the impact of using the exact projections

for each grid on the results in Section 4.3.

Note that the ten CGCMs are based on similar empirical or theoretical assumptions,

hence they are somewhat correlated (Jun et al., 2008). However, as discussed in Section 1,

the projected daily temperatures and precipitation values vary across the ten CGCMs. Ta-410

ble 4 presents the maximum, average and the range of standard deviation for daily pairwise
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Model Institute of development

Japanese Meteorological Research Institute Coupled Global
Climate Model (MRI-CGCM3)

Meteorological Research Institute of the Japan Meteorological
Agency (JMA, 2017)

Max-Planck-Institute Earth System Model Mixed Resolu-
tion (MPI-ESM-MR)

Max Planck Institute for Meteorology (MPI, 2017)

Geophysical Fluid Dynamics Laboratory Earth System
Model (GFDL-ESM2M)

Geophysical Fluid Dynamics Laboratory (Princeton University,
2017)

The Australian Community Climate and Earth System
Simulator (ACCESS)

Commonwealth Scientific and Industrial Research Organiza-
tion (CSIRO, 2017)

The NCAR’s Community Climate System Model (CCSM4) Climate and Global Dynamics Laboratory at the National Center
for Atmospheric Research (NCAR, 2017)

The Institute Pierre Simon Laplace Climate Model (IPSL-
CM5A)

Institute Pierre Simon Laplace (IPSL, 2017)

The Beijing Climate Center Climate System Model (BCC-
CSM)

Beijing Climate Center, China Meteorological Administra-
tion (BCC, 2017)

Norwegian Earth System Model (NorESM1-M) Multi-institutional, Coordinated Climate Research in Nor-
way (EarthClim, 2017)

The Centro Euro-Mediterraneo sui Cambiamenti Climatici
Climate Model (CMCC-CM)

Euro-Mediterranean Center on Climate Change (CMCC, 2017)

Flexible Global Ocean Atmosphere Land Sys-
tem (FGOALS)

Institute of Atmospheric Physics, Chinese Academy of Sciences,
State Key Laboratory of Numerical Modeling for Atmospheric
Sciences and Geophysical Fluid Dynamics (LASG, 2017)

Table 3: Ten coupled general circulation models (CGCMs) generated at Oak Ridge National Laboratory’s
Climate Change Science Institute (CCSI, 2017) using high-performance computing resources, including
Titan, America’s fastest supercomputer (CCSI, 2017).

comparisons across the ten projections over the given planning horizon. As seen in Table 4,

the average value of the pairwise differences for daily maximum and minimum temperatures

for both T = 10 years and T = 20 years are on the order of 5 degrees Celsius, which highlight

the existing variations in the projected values. (For detailed plots on daily/monthly/yearly415

average temperatures for the City of Knoxville, Tennessee for the ten different climate pro-

jections, please see Appendix B.)

T=10 T=20

Parameter Maximum Average
Standard deviation

range
Maximum Average

Standard deviation
range

Daily maximum temperature (◦C) 30.63 4.71 [0.89,7.95] 31.41 4.72 [0.79,7.95]
Daily minimum temperature (◦C) 41.58 4.82 [0.47,11.13] 41.58 4.79 [0.47,11.22]
Daily precipitation (mm) 105.26 5.40 [0.02,38.88] 105.26 5.45 [0.02,38.88]

Table 4: Maximum, average and the standard deviation range for daily pairwise comparisons across the
projections from ten CGCMs, presented in Table 3, over two planning horizons of length T = 10 years and
T = 20 years, starting from January 2011.

As discussed, the data generated by CGCMs are on a daily basis. However, to ac-

curately calibrate the model formulated in Section 2, we require hourly data. Hence, we
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use the widely accepted cosine function to disaggregate the temperature data into hourly

predictions (Green and Kozek, 2003), i.e.,

Yt = a cos

(
π(t+ b)

12

)
+ c+ ε. (11)

Using this function requires daily minimum and maximum temperatures, and the time

of the day during which these extreme temperatures occur. Hence, to estimate these data

points, we use the hourly historical data from 2010 to 2012 provided by McGhee Tyson420

Airport weather station in Knoxville (CRONOS, 2017), to obtain the time at which the daily

minimum and maximum temperatures were previously observed. As shown in Figure 3a,

the daily minimum and maximum temperatures occur at different times during the day

dependent on the month of the year. For instance, in the month of May, the daily minimum

and maximum temperatures on average occur at 7 A.M. and 4 P.M., respectively, while in425

January, the daily minimum and the maximum temperatures on average occur at 9 A.M.

and 5 P.M., respectively. Figure 3b shows the hourly temperatures for ACCESS CGCM

obtained from Equation (11) and calibrated with the data presented in Figure 3a. The same

approach is used to obtain the hourly temperatures from the remaining nine CGCMs.

In order to estimate the total number of cooling and heating degree-hours during a given430

day, we need cut-off values to guide when cooling and heating are required. Recommended

comfort human temperatures are often reported as 20-23.3 degrees Celsius in winter and 22.8

to 25.6 degrees Celsius in summer (Burroughs and Hansen, 2013). A 2009 survey conducted

by the EIA (EIA, 2018b) shows that in the U.S., residential households usually use space

conditioning for heating and cooling when the outdoor temperature ranges between 14.4 and435

17.8 degrees Celsius, and 17.8 and 19.4 degrees Celsius, respectively. In this study, consistent

with the recent published works, we set the cut-off values for heating and cooling degree-

hours to 22 and 18 degrees Celsius, respectively (Coma et al., 2016; Degree Days Weather

Data, 2017).

Total number of peak sunlight hours available in region κ under scenario ω over the planning440

horizon, Lκω. Our datasets report projected temperature and precipitation, but do not
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(a) The hourly temperatures in a day, averaged across
month of the year from 2010 to 2012 based on the
historical data (CRONOS, 2017).
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(b) The ACCESS CGCM projected hourly temper-
atures in a day, averaged across month of the year
from 2011 to 2021, obtained using Equation (11).

Figure 3: Example hourly temperature values for the City of Knoxville.

include the daily peak sunlight hours. Also note that the number of daily peak sunlight hours

is different from the readily available number of daily sunlight hours (Solar Direct, 2017).

Hence, we use the amount of daily precipitation to estimate the total number of peak sunlight

hours available, Lκω. Specifically, we assume that any day with a precipitation greater than445

10 mm is a cloudy day, and hence no peak sunlight hour is considered for such days. We

obtain the estimate of 10 mm by comparing the results for the years 2011 and 2012 with the

annual average peak sunlight hours (Current Results Weather and Science Facts, 2017).

Rooftop radiation potential, ικi , rooftop surface available, Aκi , at site i in region κ, and total

energy requirement for space conditioning in region κ over the planning horizon, Rκ. To ob-450

tain rooftop radiation potential, we use the solar insolation dataset provided by UDI (UDI,

2017) and CCSI (CCSI, 2017). This dataset includes the information about the rooftop

size and solar insolation for 209,183 buildings in the City of Knoxville for the year 2003.

The model that produces the data uses GIS and high-resolution Light Detection And Rang-

ing (LiDAR) data to generate solar radiation intensity values for each building (Kodysh455

et al., 2013). This high spatial and temporal resolution dataset is depicted in Figure 4. As

seen in Figure 4, large rooftops generally have high solar insolation values mainly due to

their flat surface and unobstructed access to the sunlight.

To estimate the values of ικi , we first obtain the per m2 solar insolation values by dividing

the solar insolation value of each rooftop by the size of the rooftop (in m2). We then rescale460

them to range between 0 and 1.
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 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

High	

Low	

Solar	Insolation

Figure 4: Visual-SOLAR radiation map for the City of Knoxville, Tennessee (Kodysh et al., 2013).

NREL (Gagnon et al., 2016) defines three categories for building sizes, i.e., small (with

rooftop sizes less than 185 m2), medium (with rooftop sizes between 185 m2 and 2,500 m2),

and large (with rooftop sizes larger than 2,500 m2). Figures 5a and 5b respectively show

the distribution of rooftop sizes and solar insolation values for the 209,183 buildings in the465

City of Knoxville. As seen in Figure 5b, in general, the larger the building, the larger the

solar insolation value.

Recall that in Section 3.1, we assume that the total size of each building is equal to its

available rooftop surface, and each candidate site corresponds to a single unit. Accordingly,

Equation (10) approximates the relationship between the available rooftop surface at a given470

candidate site and the corresponding average hourly electricity consumption for space condi-

tioning at that site. Hence, based on the data provided by Kodysh et al. (2013), we estimate

the total energy requirement for space conditioning in the City of Knoxville to be approxi-

mately equal to 6.4 million GWh and 12.8 million GWh for T = 10 and T = 20, respectively.

The realization probability of scenario ω, ηω. In this study we use the climate projections475
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Figure 5: Rooftop size and solar insolation for the 209,183 buildings in the City of Knoxville, stratified
across rooftop size category.

discussed earlier in this section as our scenarios. The parameter ηω gives the likelihood

that a scenario is realized. As discussed, climate projections can be correlated (Jun et al.,

2008). However, due to the lack of information about the exact development process of the

CGCMs, here we assume that all scenarios are equally probable, i.e., ηω = 0.1 ∀ω ∈ Ω.

4. Computational Study480

In this section, we provide extensive numerical results. First, we discuss the solution

approach and introduce additional metrics in Section 4.1. Next, in Section 4.2 we provide

a case study and discuss the results. Next, in Sections 4.3 and 4.4, we conduct extensive

sensitivity and robustness analyses on model parameters, respectively, and provide insights.

Finally, in Section 4.5 we discuss the environmental implications of the optimal solutions485

obtained in the case study.

4.1. Solution Approach and Additional Metrics

We use the L-shaped decomposition algorithm (Van Slyke and Wets, 1969) to efficiently

solve the problem. In order to implement this method, we linearize Equation (6). To remove

the non-linearity caused by kκi y
κ
i , we employ the big M method (Griva et al., 2009). We add
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two new continuous variables ζ1κi and ζ2κi to the model such that

ζ1κi + ζ2κi = kκi , ζ1κi ≤Myκi , ζ2κi ≤M(1− yκi ) ∀i, κ, (12)

where M is a sufficiently large number. We add the set of constraints in Equation (12) to

the model and replace Equation (6) with the following set of constraints:

eκiω = QLκωk
κ
i ι
κ
i +QLκωι

κ
i ζ

1κ
i θ ∀ i, ω, κ. (13)

In the following we introduce two new metrics. These metrics are used to facilitate the

comparison of the results.

Return on investment, ROI. Recall that our objective is to maximize the overall profit from490

energy generated and saved. However, to more easily compare the efficiency of the prescribed

investment options, we introduce this new metric. Specifically, return on investment is

calculated by dividing the net profit by the cost of investment multiplied by 100, i.e.,

ROI =

∑
i

∑
κ−(Fxκi + kκi V

κ + Aκi P
κyκi ) +

∑
ω

∑
i

∑
κ ηω(eκiω + sκiω)∑

i

∑
κ(Fx

κ
i + kκi V

κ + Aκi P
κyκi )

× 100. (14)

Sustainability index, SI. As discussed in Section 1, one of the major intangible, non-financial

benefits associated with using PV panels and GRs is reducing the reliance on fossil fuels.

This metric quantifies the percentage of the requisite energy that is saved or generated by

using GRs and/or PV panels under the optimal solution, i.e.,

SI =

∑
ω

∑
i

∑
κ ηω(eκiω + sκiω)∑
κR

κ
× 100. (15)

Although our objective is not to maximize SI, such metric can help policy makers to compare495

intangible benefits of the provided solutions.
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4.2. Case Study

In this section, we present the results for a case study for the City of Knoxville, Ten-

nessee. Specifically, we examine a set of 209,183 buildings, as candidate sites in one region,

given an initial investment budget of $20 million. As discussed in the introduction, we500

take the perspective of a regional governing body throughout this paper. Nonetheless, the

model is versatile and can be easily modified and calibrated to study the problem from other

perspectives (e.g., utility companies).

Note that an average residential building in the southern U.S. built by 2010 is of size

220 m2 (Census Bureau, 2018a) and has 1.5 floors (Census Bureau, 2018b). In this study, to505

capture the energy savings of GRs which typically only provide energy savings for the top

floor unit(s), we assume all buildings are single units.

In order to capture the effects of current prices and efficiency of the PV panels, we con-

sider three cases. In this section, we set δ = 0. We later conduct sensitivity analysis on the

impact of parameter δ on the solutions. In these cases, we use the values estimated form the510

literature and summarized in Table 2. Specifically, in all three cases, we set the percentage

energy saving in cooling and heating degree-hours by GRs, i.e., α and β, respectively, equal

to 10% and 0%. In Case 1, we consider the price and efficiency of current commercially avail-

able panels. That is, we set the PV panel output, Q, and the PV system variable cost in the

City of Knoxville, V κ, equal to 0.15 and 400, respectively. As discussed in Section 1 the cost515

of PV panels is on the decline while their efficiency is increasing. Hence, Case 2 considers

efficient PV panels with lower than average cost to capture a likely upcoming scenario. In

both Cases 1 and 2 we set the percentage efficiency increase in the output of PV panels due

to integration with GRs, θ, equal to 5%. Note that θ is directly related to the ability of GRs

to reduce their surrounding environment temperature. In Case 3, we use the range reported520

in Table 2 to approximate a linear relationship between hourly percentage efficiency increase

in the output of PV panels due to integration with GRs and hourly temperature. In this

case, unlike Cases 1 and 2 in which we consider a fixed value for θ regardless of the out-

side temperature, we incorporate the effect of the outside temperature in the GR-provided

efficiency increase of PV panels. Let θt denote hourly percentage efficiency increase in the525
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Case study
PV panel
output,
Q (kW)

PV system
variable cost,
V (USD)

Percentage energy
saving in cooling degree-

hours by GRs, α

Percentage energy
saving in heating degree-

hours by GRs, β

Percentage efficiency
increase in PV
panel output, θ

Case 1 0.15 400 10% 0.0% 5%
Case 2 0.2 200 10% 0.0% 5%
Case 3 0.2 200 10% 0.0% θt = 0.0013Tt + 0.091

Table 5: The parameter values in the three cases considered in the case study for the City of Knoxville.

output of PV panels due to integration with GRs and Tt denote the hourly temperature.

From the linear regression we obtain θt = 0.0013Tt + 0.091. Applying this function to the

climate projections results in θt values that range from 0.064 to 0.14, which are larger than θ

values considered in both Case 1 and Case 2. Table 5 summarizes the three cases considered.

We use Gurobi Optimizer version 7.5 (Gurobi, 2014) on an iMac Pro with an 8-core 3.2530

GHz Intel Xeon W processor and 32 GB of RAM to solve the model. The solution time

for the three cases ranges between 422.2 seconds and 463.6 seconds. Appendix C provides

further details on the solution time, number of variables, and number of constraints for the

three cases.

Table 6 provides the optimal solutions for the three cases presented in Table 5. In535

all three cases, the total energy generated/saved is not enough to fully compensate the

requisite energy needs of the City of Knoxville for space conditioning, either because of

non-profitability of PV panels/GRs or the limited available budget for investment. Hence,

in all these cases, the value of the objective function is negative. However, as seen in the

table, ROIs are positive, suggesting that the income from the total energy generated/saved540

is higher than the budget spent.

First, note that when T = 10 only a small proportion of the available budget is spent

under the optimal solution and only GRs are installed in all three cases. This is mainly

due to the fact that when T = 10, the amount of electricity generated by PV panels is not

nearly enough to cover their installation costs. In addition, because only GRs are installed545

in these three cases and the values for α and β are identical across the cases, the solutions

and the metrics are also the same.

Similarly, when T = 20 in Case 1 only GRs are installed under the optimal solution
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T = 10 T = 20
Stand-alone

PV (m2)
Stand-alone

GR (m2)
PV+GR

(m2)
Budget

spent ($)
SI ROI

Stand-alone
PV (m2)

Stand-alone
GR (m2)

PV+GR
(m2)

Budget
spent ($)

SI ROI

Case 1 0 999 0 11,988 0.0033% 75.82% 0 21,969 0 263,628 0.0283% 37.97%
Case 2 0 999 0 11,988 0.0033% 75.82% 99,612 2,295 0 20,000,000 2.8724% 84.60%
Case 3 0 999 0 11,988 0.0033% 75.82% 0 4,735 93,930 20,000,000 2.8893% 87.72%

Table 6: Optimal solution for an initial budget of $20 million available for investment over two planning
horizons of length T = 10 years and T = 20 years for the cases presented in Table 5.

and not all available budget is spent. However, in Cases 2 and 3, the optimal solution

also prescribes to install PV systems and all available budget is allocated. Specifically, in550

Case 1, 21,969 m2 of stand-alone GRs are installed under the optimal solution. Considering

the average residential building rooftop size of 145 m2 in the southern U.S. (Census Bureau,

2018a), this is enough to cover to approximately 152 average residential buildings. In Case 2,

more than 99% of the available budget is allocated to installing 99,612 m2 of stand-alone

PV panels, and the rest of the budget is allocated to installing 2,295 m2 of stand-alone GRs,555

in total covering an approximately 703 average residential buildings. Note that in this case

GRs are not integrated with PV panels; hence, they are mainly installed to provide energy

savings. In Case 3, approximately 94% of the budget is allocated to installing PV panels, all

of which GR integrated, and the rest is used for installing an additional 4,735 m2 of stand-

alone GRs. In total, under the optimal solution, these practices cover an approximately560

680 average residential buildings. Recall that estimated percentage efficiency increase in the

output of PV panels due to integration with GRs in Case 3 is overall higher than the two

other cases. Hence, in Case 3 more budget is allocated to GRs compared to Case 2 and

all panels are GR integrated to achieve a higher electricity output. Note that contrary to

Case 2, in Case 3 GRs are mainly used to help improve the output of PV panels.565

The model generally prescribes the stand-alone GRs to be installed on small rooftops.

Recall that Equation (10) presents the relationship between hourly energy consumption for

space conditioning and building size. From Equation (10), the magnitude of the intercept

is much larger than that of the slope. Therefore, for instance, two small buildings would

consume more energy than a large building that has a rooftop area equivalent to the total570

area of the two small rooftops. Note that the energy savings from GRs are a fraction of the
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total energy consumed by the buildings (based on α and β.) Therefore, because GRs do

not have a set up cost, when it is optimal to install stand-alone GRs, the model typically

prioritizes small rooftops to generate more profit through their energy savings.

In contrast, the model generally prescribes to install PV panels on large rooftops, par-575

tially due to the fact that installing PV systems has a fixed set-up cost. Additionally, as

discussed in Section 3.2, buildings with large rooftops often have the highest radiation po-

tential, ικi , as they are mostly flat and unlikely to be completely shaded by their surrounding

buildings. Hence, the model prioritizes large rooftops for PV installation to minimize the

cost while maximizing the electricity generation.580

As shown in Table 6, for T = 10 years, Cases 1-3 result in the same ROI values as the

corresponding solutions are identical. For T = 20 years, the solutions vary for the three

cases and the highest ROI value is achieved in Case 3 in which the benefit of GRs are

most accurately captured. The SI values in Table 6 are generally higher for T = 20 years

compared to T = 10 years, as PV panels are installed for T = 20 years.585

4.3. Sensitivity Analysis

In this section, we conduct extensive sensitivity analysis to evaluate the impact of model

parameters on the optimal solution. First, we conduct a sensitivity analysis on an array

of parameters related to PV panels, GRs, and their interaction. Second, we examine the

impact of possible changes in energy consumed for space conditioning over the planning590

horizon on optimal solutions. Next, we investigate the impact of incorporating maintenance

cost directly into the model as a responsibility of the entity in charge of planning, e.g., the

regional governing body. Lastly, we evaluate the impact of using the averages of the daily

projections over all grids spanning the City of Knoxville, instead of the true projections for

each grid, when calibrating the model, and provide recommendations.595

Table 7 presents the results from the sensitivity analysis for different levels of PV system

variable cost, V κ, PV panel output, Q, percentage efficiency increase in the output of PV

panels due to integration with GRs, θ, and percentage energy saving in cooling and heating

degree-hours due to GR installation, α and β, respectively, as presented in Table 2. In
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general, when PV systems are expensive but have relatively low output, i.e., high V κ values600

and low Q values, the optimal solution mainly depends on the energy savings from GRs. In

this case, if the percentage energy saving in heating degree-hours due to GR installation, β,

is low, no additional profit can be generated from installing GRs or PV panels. Hence, the

model chooses to not spend any budget at all. When β is high, the model chooses to spend

budget but only for stand-alone GRs, mainly to achieve energy savings, and hence maximize605

the profit. In this case, the total number of stand-alone GRs depends on and increases in

the percentage energy saving in cooling degree-hours due to GR installation, α.

For cost-efficient PV systems, i.e., low V κ values and high Q values, the optimal solution

mainly depends on the percentage efficiency increase in the output of PV panels due to

integration with GRs, θ. That is, when θ is low, the optimal solution is to install stand-610

alone PV panels. However, when θ is high, the model takes full advantage of the added

efficiency and prescribes to install a large quantity of GR integrated PV panels, with the

remaining budget spent on stand-alone GRs. In this case, the proportion of budget spent

on stand-alone GRs increases in both α and β.

In general, the length of the planning horizon can significantly impact the optimal solu-615

tion. For instance, as the highlighted row on Table 7 shows, for T = 10 years the optimal

solution is to not spend any budget, whereas for T = 20 years the optimal solution is to

allocate all of the budget to install stand-alone PV panels.

Additionally, ROI and SI values are generally higher for T = 20 years compared to T = 10

years. To eliminate the effect of different planning horizon lengths, we calculate the average620

annual ROI and SI values for T = 10 years and T = 20 years by dividing the values in the

table by their planning horizon lengths. The results show that for T = 20 years the average

annual ROI and SI values are at least as large as the average annual values for T = 10 years

for any combination of parameters. This is mainly due to the higher number of peak sunlight

hours and cooling degree-hours during the second decade of the 20-year planning horizon.625

Overall, the results from Table 7 show that while the optimal solution of the model relies

on the values of the key parameters, the length of the planning horizon, T , plays a significant

role in the allocation of the initial investment. Moreover, Table 7 shows that both the per-
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T = 10 T = 20

PV panel
output,
Q (kW)

PV system
variable
cost, V κ

(USD)

Percentage energy
saving in cooling degree-

hours by GRs,
α

Percentage energy
saving in heating degree-

hours by GRs,
β

Percentage efficiency
increase in PV
panel output,

θ

Stand-alone
PV (m2)

Stand-alone
GR (m2)

PV+GR
(m2)

SI ROI
Stand-alone

PV (m2)
Stand-alone

GR (m2)
PV+GR

(m2)
SI ROI

10%

100

10%
-10%

2.5% 0 0 0 0.000% 0.00% 199,400 0 0 1.283% 82.43%
10% 0 885 178,030 1.965% 63.13% 0 885 178,030 3.508% 225.45%

10%
2.5% 0 76,875 0 0.056% 38.76% 187,087 103,443 0 1.356% 87.12%
10% 0 14,344 176,410 2.031% 65.26% 0 14,344 176,410 3.574% 229.68%

20%
-10%

2.5% 0 0 0 0.000% 0.00% 199,396 31 0 1.283% 82.43%
10% 0 885 178,030 1.979% 63.59% 0 885 178,030 3.523% 226.39%

10%
2.5% 0 192,650 0 0.155% 43.22% 169,430 250,580 0 1.480% 95.14%
10% 0 34,058 174,386 2.074% 66.65% 0 34,074 174,385 3.618% 232.52%

200

10%
-10%

2.5% 0 0 0 0.000% 0.00% 0 0 0 0.000% 0.00%
10% 0 0 0 0.000% 0.00% 0 2,302 94,068 1.145% 73.62%

10%
2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
10% 0 76,875 0 0.056% 38.76% 0 104,608 88,277 1.251% 80.43%

20%
-10%

2.5% 0 0 0 0.000% 0.00% 0 137 0 0.000% 23.42%
10% 0 0 0 0.000% 0.00% 0 2,335 94,066 1.153% 74.12%

10%
2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
10% 0 192,650 0 0.155% 43.22% 0 251,691 79,999 1.394% 89.60%

400

10%
-10%

2.5% 0 0 0 0.000% 0.00% 0 0 0 0.000% 0.00%
10% 0 0 0 0.000% 0.00% 0 0 0 0.000% 0.00%

10%
2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
10% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%

20%
-10%

2.5% 0 0 0 0.000% 0.00% 0 137 0 0.000% 23.42%
10% 0 0 0 0.000% 0.00% 0 137 0 0.000% 23.42%

10%
2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
10% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%

600

10%
-10%

2.5% 0 0 0 0.000% 0.00% 0 0 0 0.000% 0.00%
10% 0 0 0 0.000% 0.00% 0 0 0 0.000% 0.00%

10%
2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
10% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%

20%
-10%

2.5% 0 0 0 0.000% 0.00% 0 137 0 0.000% 23.42%
10% 0 0 0 0.000% 0.00% 0 137 0 0.000% 23.42%

10%
2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
10% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%

20%

100

10%
-10%

2.5% 199,300 0 0 2.580% 82.91% 199,300 0 0 4.122% 264.89%
10% 0 885 178,030 7.054% 226.66% 0 885 178,030 8.584% 551.67%

10%
2.5% 198,435 8,039 0 2.593% 83.33% 198,435 8,039 0 4.135% 265.72%
10% 0 1,589 177,955 7.110% 228.47% 0 1,589 177,955 8.640% 555.27%

20%
-10%

2.5% 199,300 0 0 2.580% 82.91% 199,300 0 0 4.122% 264.89%
10% 0 885 178,030 7.068% 227.12% 0 885 178,030 8.598% 552.61%

10%
2.5% 196,007 28,274 0 2.615% 84.05% 196,007 28,274 0 4.158% 267.20%
10% 0 3,455 177,755 7.128% 229.05% 0 3,455 177,755 8.658% 556.45%

200

10%
-10%

2.5% 0 0 0 0.000% 0.00% 99,750 0 0 1.315% 84.49%
10% 0 2,302 94,068 2.311% 74.26% 0 2,302 94,068 3.853% 247.65%

10%
2.5% 0 76,875 0 0.056% 38.76% 93,643 103,443 0 1.386% 89.09%
10% 0 10,824 93,585 2.351% 75.56% 0 10,824 93,585 3.893% 250.22%

20%
-10%

2.5% 0 0 0 0.000% 0.00% 99,748 31 0 1.315% 84.49%
10% 0 2,302 94,068 2.319% 74.51% 0 2,302 94,068 3.861% 248.16%

10%
2.5% 0 192,650 0 0.155% 43.22% 84,815 250,580 0 1.508% 96.88%
10% 0 39,001 91,849 2.381% 76.52% 0 39,001 91,849 3.924% 252.21%

400

10%
-10%

2.5% 0 0 0 0.000% 0.00% 0 0 0 0.000% 0.00%
10% 0 0 0 0.000% 0.00% 0 192 48,490 1.256% 80.74%

10%
2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
10% 0 76,875 0 0.056% 38.76% 0 106,739 45,386 1.340% 86.09%

20%
-10%

2.5% 0 0 0 0.000% 0.00% 0 137 0 0.000% 23.42%
10% 0 0 0 0.000% 0.00% 0 224 48,489 1.260% 80.99%

10%
2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
10% 0 192,650 0 0.155% 43.22% 0 251,111 41,181 1.470% 94.49%

600

10%
-10%

2.5% 0 0 0 0.000% 0.00% 0 0 0 0.000% 0.00%
10% 0 0 0 0.000% 0.00% 0 774 32,648 0.350% 22.49%

10%
2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
10% 0 76,875 0 0.056% 38.76% 0 330,878 26,176 0.527% 33.89%

20%
-10%

2.5% 0 0 0 0.000% 0.00% 0 137 0 0.000% 23.42%
10% 0 0 0 0.000% 0.00% 0 804 32,648 0.353% 22.66%

10%
2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
10% 0 192,650 0 0.155% 43.22% 0 703,127 18,877 0.788% 50.67%

Table 7: Area covered by stand-alone GRs, stand-alone PV panels, and GR integrated PV panels under
different values for PV panel output, PV system variable cost, percentage energy saving in cooling and
heating degree-hours due to GR installation, and percentage efficiency increase in the output of PV panels
due to integration with GRs for an initial budget of $20 million available over two planning horizons of
length T = 10 years and T = 20 years.
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T = 10 T = 20

Case
study

The rate
of energy

consumption,
δ

Stand-alone
PV (m2)

Stand-alone
GR (m2)

PV+GR
(m2)

Budget
spent
($)

SI ROI
Stand-alone

PV (m2)
Stand-alone

GR (m2)
PV+GR

(m2)

Budget
spent
($)

SI ROI

Case1

-60% 0 137 0 1,644 0.0009% 40.87% 0 629 0 7,548 0.0025% 69.98%
-40% 0 389 0 4,668 0.0018% 49.60% 0 3,506 0 42,072 0.0077% 41.02%
-20% 0 629 0 7,548 0.0025% 67.97% 0 8,039 0 96,468 0.0138% 46.60%
20% 0 3,506 0 42,072 0.0076% 39.35% 0 45,121 0 541,452 0.0478% 36.14%
40% 0 5,474 0 65,688 0.0104% 41.99% 0 76,875 0 922,500 0.0705% 37.43%
60% 0 8,039 0 96,468 0.0136% 44.87% 0 116,127 0 1,393,524 0.0947% 39.74%

Case 2

-60% 0 137 0 1,644 0.0009% 40.87% 99,792 137 0 20,000,000 7.1776% 84.52%
-40% 0 389 0 4,668 0.0018% 49.60% 99,777 389 0 20,000,000 4.7856% 84.54%
-20% 0 629 0 7,548 0.0025% 67.97% 99,740 999 0 20,000,000 3.5899% 84.57%
20% 0 3,506 0 42,072 0.0076% 39.35% 99,422 5,474 0 20,000,000 2.3949% 84.70%
40% 0 5,474 0 65,688 0.0104% 41.99% 99,268 8,039 0 20,000,000 2.0544% 84.85%
60% 0 8,039 0 96,468 0.0136% 44.87% 99,051 11,649 0 20,000,000 1.7997% 85.06%

Case 3

-60% 0 137 0 1,644 0.0009% 40.88% 0 2,447 94,060 20,000,000 7.2069% 88.59%
-40% 0 389 0 4,668 0.0018% 49.60% 0 2,715 94,044 20,000,000 4.8064% 88.63%
-20% 0 629 0 7,548 0.0025% 67.97% 0 2,969 94,030 20,000,000 3.6064% 85.33%
20% 0 3,506 0 42,072 0.0076% 39.35% 0 6,019 93,857 20,000,000 2.4116% 87.87%
40% 0 5,474 0 65,688 0.0104% 41.99% 0 10,824 93,585 20,000,000 2.0694% 86.89%
60% 0 8,039 0 96,468 0.0136% 44.87% 0 14,650 93,369 20,000,000 1.8130% 87.18%

Table 8: Area covered by stand-alone GRs, stand-alone PV panels, and GR integrated PV panels under
different values of δ, for an initial budget of $20 million available over two planning horizons of length T = 10
years and T = 20 years for the cases presented in Table 5.

centage energy saving in cooling and heating degree-hours due to GR installation, α and β,

and percentage efficiency increase in the output of PV panels due to integration with GRs, θ,630

can significantly affect the optimal solution. The values of α and β rely on several different

factors, e.g., the type of green media or isolation layer installed, and vary significantly from

one climate type to another. Hence, region-specific studies are needed to accurately estimate

these parameters before large-scale implementation. In addition, to the best of our knowl-

edge and despite the overwhelming evidence on the benefits of PV-GR integration, these635

benefits are not completely characterized in the literature. Hence, there is a need to further

investigate and quantify this efficiency increase to better justify large-scale investments.

Table 8 presents the results of a sensitivity analysis with respect to percentage change

in energy consumed for space conditioning over the planning horizon, δ, using its estimated

values as presented in Table 2, for the three cases presented in Table 5. First, note that640

the optimal solutions presented in Table 8 are more or less consistent with those presented

in Table 6, where δ = 0. That is, when T = 10, under the optimal solution, only a small

proportion of the available budget is spent and only stand-alone GRs are installed. Also,

when T = 20, in Case 1 only a limited number of stand-alone GRs are installed, whereas in
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Cases 2 and 3, the majority of the available budget is spent to place stand-alone PV panels645

and GR integrated PV panels, respectively, and the remaining budget is used for stand-

alone GRs. In all three cases, the total area of installed GRs (i.e., stand-alone GRs and

GR integrated PV panels) increases in δ, whereas the total area of installed PV panels (i.e.,

stand-alone PV panels and GR integrated PV panels) decreases in δ. Note that a larger δ

means a higher amount of energy consumption over the planning horizon. Hence, when δ650

is large, GRs, which can save a fraction of the total energy consumed, provide additional

benefits compared to PV panels. Therefore, as δ increases, the model allocates a larger

portion of the budget to GRs.

It is interesting to note the extent to which the value of δ affects the decisions. For

instance, when T = 20, the increase in δ drastically increases the total area of installed655

stand-alone GRs in Case 1, whereas this increase is more modest in Case 2 and especially in

Case 3. This is mainly because in Case 1, not all of the budget is allocated. Also, only GRs

are economically profitable. Hence, as δ increases, additional GRs are installed to provide

further benefit. However, in Case 2, in which all of the budget is already allocated, for

stand-alone GRs to be further prioritized over stand-alone PV panels, the energy savings660

achieved through their installation must be higher than the energy generated by PV panels.

Therefore, the increase in δ only modestly increases the area of installed stand-alone GRs.

In Case 3, in which again all of the budget is already allocated, PV panels installed enjoy an

increase in the output as a result of integration with GRs. Therefore, compared to Case 2,

stand-alone GRs face more resistance in being prioritized over GR integrated PV panels,665

hence a slower growth in the total area of installed stand-alone GRs in this case.

Moreover, for the cases in which all of the budget is spent under the optimal solution,

i.e., in Cases 2 and 3 when T = 20, SI decreases, whereas ROI increases in δ. Recall that

higher levels of δ leads to higher levels of profit through the installation of GRs. Therefore,

given the same $20 million budget, the amount of savings increases in δ, resulting in higher670

profit and ROI. However, because the amount of increase in GR energy savings is smaller

than that of energy consumption, SI decreases in δ.

Lastly, for the cases in which only a small proportion of the budget is spent on installing
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T = 10 T = 20

Case study

Annual per m2

PV panel maintenance

cost,
Cκ

T
($)

Stand-alone
PV (m2)

Stand-alone
GR (m2)

PV+GR
(m2)

Budget
spent
($)

SI ROI
Stand-alone
PV (m2)

Stand-alone
GR (m2)

PV+GR
(m2)

Budget
spent
($)

SI ROI

Case 1
0.15 0 999 0 11,988 0.0033% 75.82% 0 21,969 0 263,628 0.0283% 37.97%
0.62 0 999 0 11,988 0.0033% 75.82% 0 21,969 0 263,628 0.0283% 37.97%
0.92 0 999 0 11,988 0.0033% 75.82% 0 21,969 0 263,628 0.0283% 37.97%

Case 2
0.15 0 999 0 11,988 0.0033% 75.82% 98,122 2,295 0 20,000,000 2.8307% 81.93%
0.62 0 999 0 11,988 0.0033% 75.82% 94,001 2,295 0 20,000,000 2.7118% 74.28%
0.92 0 999 0 11,988 0.0033% 75.82% 91,317 3,506 0 20,000,000 2.6372% 69.49%

Case 3
0.15 0 999 0 11,988 0.0033% 75.82% 0 6,140 92,525 20,000,000 2.8476% 84.96%
0.62 0 999 0 11,988 0.0033% 75.82% 0 4,018 88,876 20,000,000 2.7291% 77.13%
0.92 0 999 0 11,988 0.0033% 75.82% 0 4,362 86,470 20,000,000 2.6547% 72.41%

Table 9: Area covered by stand-alone GRs, stand-alone PV panels, and GR integrated PV panels under
different values of Cκ, for an initial budget of $20 million available over two planning horizons of length
T = 10 years and T = 20 years for the cases presented in Table 5.

stand-alone GRs under the optimal solution, i.e., Cases 1-3 when T = 10 and Case 1 when

T = 20, the amount of budget spent and SI both increase in δ. This is mainly because higher675

δ increases the achievable profit through the installation of GRs, making this practice a viable

option for a larger number of candidate sites. As a result, a larger proportion of the budget is

used to install a larger area of GRs across the candidate sites, leading to higher values of SI.

Table 9 presents the results when maintenance costs are directly incorporated into the

model, using the estimated values as presented in Table 2, for the three cases presented in680

Table 5. First, note that for in all cases when T = 10 and in Case 1 when T = 20, the

results in Table 9 remain the same as those obtained when maintenance costs are assumed

to be the property owners’ responsibility, presented in Table 6. This is because in these

cases, it is not optimal to install PV panels even without incorporating their maintenance

costs directly into the model and accounting for PV maintenance costs only makes them a685

more costly, and hence less favorable, option.

As seen in Table 9, for Cases 2 and 3 when T = 20, accounting for PV panel maintenance

costs impacts the optimal solutions and negatively affects the ROI and SI metrics. In general,

consistent with the intuition, the higher the PV maintenance cost, the more costly the PV

panels and hence, the lower the the total area of PV panels installed. In particular, in Case 2,690

when the annual per m2 PV maintenance cost increases from $0.15 to $0.62, stand-alone

PV panels become more expensive and the portion of spent budget that is allocated to PV

panels results in fewer square meters of PV panels. When the annual per m2 PV maintenance
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cost increases further from $0.62 to $0.92 , stand-alone PV panels become a less favorable

option compared to stand-alone GRs and hence, more of the budget is spent on the latter695

and the total area of stand-alone PVs drops further. A similar trend is observed for Case 3,

in which as the per m2 PV maintenance cost increases, GR integrated PV panels become

more expensive and consequently, the portion of spent budget that is allocated to PV panels

results in fewer square meters of PV panels. However, in this case, GR integrated PV panels

generally remain a favorable option despite the increase in their cost. Hence, as the annual700

per m2 PV maintenance cost increases, a larger portion of the budget is allocated to GR

integrated PV panels to mitigate the effect of their increased cost. Finally, the remaining

portion of the budget that is not spent on installing GR integrated PV panels is allocated

to install stand-alone GRs.

Finally, we investigate the impact of using the averages of the daily projections over all705

grids spanning the City of Knoxville, instead of the true projections for each grid, when

calibrating the model. As discussed, the daily temperature projections are generated for

grids of sizes 1 km2 and 4 km2. The daily maximum and minimum temperature projections of

the 10 CGCMs show a variation across grids in the City of Knoxville. For instance, Figures 6a

and 6b depict the heat map of average daily maximum and minimum temperatures over the710

year 2030 projected by the ACCESS CGCM across 4-kilometer wide grids for the City of

Knoxville. Other climate models show a similar pattern, indicating the variation in the

hourly temperatures over different grids.

Here, we examine the impact of accounting for the exact projections provided for each

grid through a grid-based calibration approach. Specifically, we calculate the total number715

of cooling and heating degree-hours for each 4 km2 grid separately, assign each candidate

site with the parameters of their corresponding grid, and then resolve the model. Table 10,

which is analogous to Table 6, presents the optimal solution for two planning horizons of

length T = 10 years and T = 20 years for the three cases presented in Table 5. As seen

in the table, more GRs are installed under the grid-based calibration approach. For in-720

stance, in Case 1 for T = 20 years, the optimal solution prescribes to increase the total

area of stand-alone GRs installed by 80%. This is due to the fact that most of the small
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Figure 6: Heat map for average daily maximum and minimum temperatures over the year 2030 projected
by the ACCESS CGCM across 4-kilometer wide grids for the City of Knoxville.

T = 10 T = 20
Stand-alone

PV (m2)
Stand-alone

GR (m2)
PV+GR

(m2)
Budget
spent

SI ROI
Stand-alone

PV (m2)
Stand-alone

GR (m2)
PV+GR

(m2)
Budget
spent

SI ROI

Case 1 0 2,813 0 33,756 0.0076% 43.98% 0 39,551 0 474,612 0.0505% 36.75%
Case 2 0 2,813 0 33,756 0.0076% 43.98% 99,521 3,818 0 20,000,000 2.8736% 84.68%
Case 3 0 2,813 0 33,756 0.0076% 43.98% 0 5,989 93,859 20,000,000 2.8941% 87.83%

Table 10: Optimal solution for an initial budget of $20 million available for investment over two planning
horizons of length T = 10 years and T = 20 years for the cases presented in Table 5 under the grid-based
calibration approach.

and medium buildings in the City of Knoxville are located in the warmer grids and they are

assigned a higher number of cooling degree-hours under the grid-based calibration approach.

Hence, by installing more GRs the model can achieve more energy savings and consequently725

a higher profit. The increase in energy savings is also reflected in the SI values. The highest

percentage of increase in SI values is equal to 2.22% for Case 1 when T = 20 years, which

translates into 276.5 GWh of energy saved and generated through sustainable resources.

In general, the grid-based calibration approach provides more accurate representation of

the problem at hand. However, the solution provided in Table 10 is relatively consistent730

with that of Table 6. Hence, considering that the data pre-processing for the grid-based cal-

ibration approach is much more computationally expensive, it may or may not be beneficial

to use the grid-based calibration approach depending on the specific characteristics of the
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region of interest.

4.4. Robustness Analysis735

As discussed earlier, limited data is available for estimating some of the important model

parameters. Hence, it is not unlikely that these parameters are wrongly estimated during

implementation. In this section, we conduct robustness analysis to investigate the impact of

parameter misspecification on the solution. Specifically, we evaluate the robustness of the

model with respect to parameters α, β, and θ, for T = 10 and T = 20 years, and provide740

the expected loss of profit due to parameter misspecification.

Let Z∗ denote the total profit generated in USD given the true parameter settings. Let Ẑ

denote the total profit generated in USD from executing the model under extreme parameter

misspecifications. Recall that Table 2 provides the estimated parameter ranges and levels

used in the study. Hence, Ẑ gives the total profit generated when a subset of parameters745

have been misspecified in the extreme, i.e., the parameters of interest assume their maxi-

mum (minimum) values as reported in Table 2, while the true parameter values are at their

minimum (maximum). We let x̂κi , ŷ
κ
i , and k̂κi denote the corresponding solution. Now let

Z̃ denote the total profit in USD when the solution x̂κi , ŷ
κ
i , and k̂κi is evaluated under the

true parameter values. Lastly, let Õ denote the cost of misspecifying the parameters, i.e.,750

Õ = Z∗ − Z̃.

Table 11 presents the robustness analysis results on the three parameters of percentage

energy saving in cooling degree-hours due to GR installation, α, percentage energy saving

in heating degree-hours due to GR installation, β, and percentage efficiency increase in the

output of PV panels due to integration with GRs, θ, for an initial budget of $20 million755

available over two planning horizons of length T = 10 years and T = 20 years. The

parameters α, β, and θ are particularly chosen as they are generally difficult to estimate and

are functions of many other factors themselves, such as the type of GR vegetation, the GR

isolation layer, and the climate. As seen in Table 11, the lost opportunity, Õ, ranges between

$275 thousand and $12.4 million. Note that for T = 10, the values of Õ are not impacted760

by the change in the value of θ as no PV panel is installed in these cases. Overall, despite
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Planning horizon,
T

Percentage energy
saving in cooling degree-

hours by GRs, α

Percentage energy
saving in heating degree-

hours by GRs, β

Percentage efficiency
increase in PV
panel output, θ

Z∗

(USD)
Z̃

(USD)
Õ

(USD)

10

10%
-10%

2.5% (642,680,064) (642,306,584) 373,480
7.5% (642,680,064) (642,306,584) 373,480

10%
2.5% (644,895,574) (642,680,064) 2,215,510
7.5% (644,895,574) (642,680,064) 2,215,510

20%
-10%

2.5% (642,680,064) (642,405,147) 274,917
7.5% (642,680,064) (642,405,147) 274,917

10%
2.5% (645,583,951) (642,680,064) 2,903,887
7.5% (645,583,951) (642,680,064) 2,903,887

20

10%
-10%

2.5% (2,441,792,744) (2,437,914,658) 3,878,086
7.5% (2,442,331,322) (2,438,457,551) 3,873,771

10%
2.5% (2,446,274,934) (2,441,402,503) 4,872,431
7.5% (2,446,791,546) (2,441,792,744) 4,998,802

20%
-10%

2.5% (2,441,792,744) (2,439,849,247) 1,943,497
7.5% (2,442,412,330) (2,440,445,560) 1,966,770

10%
2.5% (2,453,838,358) (2,441,483,511) 12,354,847
7.5% (2,454,220,178) (2,441,792,744) 12,427,434

Table 11: Robustness analysis for different parameter combinations for an initial budget of $20 million
available over two planning horizons of length T = 10 years and T = 20 years. Negative values are enclosed
in parentheses.

the significant difference among the values of Õ in the table, this difference is somewhat

small with respect to θ, when all other parameters are held constant. The values of Õ are

in general most sensitive with respect to the parameters α, and especially β, and hence,

care needs to be taken when calibrating these parameters for an investment in a particular765

climatic region.

4.5. Environmental Insights

Recall that the goal of the model is to maximize the overall profit from energy generated

and/or saved across a set of regions by investing in PV systems and/or GRs. In this section,

we discuss the environmental implications of such an investment and provide insights on the770

benefits achievable by the implementation of the proposed model.

T = 10 T = 20

Coal (kg) Natural gas (m3) Oil (m3) Coal (kg) Natural gas (m3) Oil (m3)

Case 1 101,275 44,104 61 1,747,690 761,092 1,044

Case 2 101,275 44,104 61 176,663,933 76,934,444 105,564

Case 3 101,275 44,104 61 179,670,700 78,243,845 107,361

Table 12: Total amount of requisite fossil fuels to produce the electricity saved and/or generated under the
optimal solution in Cases 1–3 for two planning horizons of length T = 10 years and T = 20 years.
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Table 12 presents the positive impact of implementing the optimal solutions provided for

the three cases introduced in Table 5, for T = 10 years and T = 20 years, from an environ-

mental perspective. Specifically, Table 12 presents the amount of fossil fuels needed (EIA,

2017a) to produce the amount of electricity that is generated and/or saved through the im-775

plementation of the solutions provided in Table 6, after accounting for the required energy

for manufacturing, distribution, and end-of-life processing of installed PV panels (Bankier

and Gale, 2006; Alsema and Nieuwlaar, 2000; EIA, 2018c; Frischknecht et al., 2015). Note

that the corresponding required energy for GRs are negligible (Bianchini and Hewage, 2012).

(Please see Appendix D for more detail.)780

For instance, consider Case 3 in Table 6. When T = 20 years, it is optimal to install

4,735 m2 stand-alone GRs and 93,930 m2 GR integrated PV panels. As shown in Table 12,

implementing this solution in the City of Knoxville achieves approximately 179.7 million kg

reduction in coal usage, or equivalently, 78.2 million m3 or 107.4 thousand m3 reduction in

natural gas or oil usage, respectively. According to EIA (2017b), these values translate into785

approximately 372 million kg, 152 million kg, and 309 million kg decrease in CO2 emissions,

respectively.

5. Conclusion and Remarks

In this study, we evaluate the overall profit from energy generated and saved through

installation of PV panels and GRs, while incorporating future climate uncertainties and the790

interaction between the practices. We study the model over two different planning horizon

lengths, T = 10 and T = 20 years. The results suggest that a 10-year planning horizon

is generally too short to allow for a profitable investment. However, a 20-year planning

horizon, which is also more consistent with the lifespans of PV panels and GRs, is a better

time frame for evaluating the outcomes of an investment on these green technologies. The795

results also show the importance of incorporating the PV-GR integration efficiency increase

as it can significantly change the optimal solutions. The sensitivity analysis demonstrates

that different cost and output of PV panels can significantly change the optimal solution.

The sensitivity and robustness analyses show that the model is sensitive with respect to GR-
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related parameters, suggesting the need for careful calibration of these parameters before800

large scale implementation in any climate region. Lastly, the results indicate that consid-

ering the long-term changes in the rate of energy consumption affects the distribution of

budget/rooftop areas between PV panels and GRs.

In this study, we only focus on the energy savings provided by GRs. Future studies

may also incorporate other beneficial aspects of utilizing GRs in an urban area (such as805

run-off reduction, scaling down CO2 emissions, and heat island mitigation) to more accu-

rately evaluate the overall benefits of installing GRs and their significant role in increasing

the urban resiliency. In addition, although the developed model is capable of considering

multiple regions, due to limited data availability, especially with regard to future climate

projections, in this study we only focus on one region, i.e., Knoxville, Tennessee. Future810

studies may include using this model to evaluate investment options across multiple regions

with different climates.
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