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Highlights

e We propose an approach to investigate the joint placement of Photovoltaic (PV) panels,
the fastest growing renewable technology, and green roofs, a sustainable solution for

energy saving, to improve the output efficiency of PV panels.

e We develop a two-stage stochastic programming model to incorporate PV panel/green
roof placement decisions under different, at times conflicting, climate models to max-

imize the overall profit from energy generated and saved.

e We calibrate the models using historical data, industry reports, future projections of
temperature and precipitation, as well as expert opinion.tesexamine a real-world case

study and provide insights.

e Due to the large solution space of the case study; we used a Benders’ decomposition

(L-shaped method) to obtain the solution within a tractable time frame.

e The results show that the joint placementiof PV panels and green roofs contributes to

a higher profit through additional energy generated.

e The results suggest that the PV-GR integration efficiency increase is an important
contributing factor in the placement decisions, hence highlighting the need for further

investigation in characterizing this factor in future studies.

e The results'suggest that the model is sensitive with respect to green roof-related pa-
rameters, suggesting the need for careful calibration of these parameters before large

scale implementation in any climate region.

e [heyresults indicate that considering the long-term changes in the rate of energy
consumption affects the distribution of budget/rooftop areas between PV panels and

green roofs.
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Abstract

Photovoltaic (PV) panels directly convert sunlight into electricity; but, sunlight also heats
the panels, negatively impacting their efficiency. Green roofs are yegetative layers grown on
rooftops, mainly to provide added insulation on the4oof,to save energy. Green roofs also
cool near-surface air temperature. Hence, the joint mstallation of PV panels and green roofs
may potentially lead to higher efficiency of PV panel§iin certain climates. We develop a two-
stage stochastic programming model to.optimally place PV panels and green roofs under
climate change uncertainty to maximize the-overall profit from energy generated and saved.
We calibrate the model using the literature, industry reports, and the data from different,
at times conflicting, climaté-projections. We then conduct a case study for a mid-size city

in the U.S., perform extensive,sensitivity and robustness analyses and provide insights.

Keywords: Stochastic optimization, renewable energy generation, energy savings,

climate change

1. Introduection

Greenhouse gases are the most important contributing factor to the increase of average

global temperatures over time (Bose, 2010); at the current pace, it is estimated that the
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global temperature will rise by up to 5.8 degrees Celsius over the next century (Rehman et al.,
2007). Greenhouse gas emissions are primarily caused by burning fossil fuels (Schneising
et al., 2014) and without a significant change in energy production policies, specifically to
reduce the reliance on fossil fuels, the current concentrations of greenhouse gases in the
atmosphere is only expected to grow (Hoffert et al., 1998).

Solar power is a clean, free, and promising renewable energy source that;helps reduce
greenhouse gas emissions and hence, mitigate global warming and climate change. Photo-
voltaic (PV) panels, which can directly convert sunlight into electricity, are one of the most
efficient methods of harnessing solar power. PV panels are the/fastestygrowing renewable
technology in the recent years at an annual average rate of 6:8% (EIA, 2015). The number
of panels installed within the U.S. increased by 63% between 2007 and 2008 (Scherba et al.,
2011), with an estimated increase of approximately 30% per_year from 2013 through 2016 in
the residential sector (EIA, 2015). This rate of growth can be attributed to the decreasing
costs of PV panels (Feldman et al., 2014) as well"as the incentives provided by state and
federal governments. The falling prices of PVipanels, coupled with the overall increases in
power costs from conventional sources, suggest that PV panels are on track to become a
strategically advantageous solutién to sustainable energy production (Yang, 2010). Tt is,
however, important to note that*despite the increase in demand and the popularity of PV
panels, efficiency of PV panels is still limited and depend mainly on the panels’ cell ma-
terial and their operating temperature. The open circuit voltage shows a drop of 2.3 mV
per 1 degree Celsius’rise/in temperature, which translates to a 0.5% drop in efficiency per
degree Celsius rise in'temperature (Witmer, 2010). While there is ongoing research into en-
gineering/solutions to increase the efficiency of PV panels, this paper explores an immediate
operationakselution through improved, systemic placement decisions.

Acgording to the U.S. Energy Information Administration (EIA), 47.7% of the energy
consumed by residential households and 34% of the energy used by the commercial sector
is due to space conditioning (i.e., heating and cooling) (EIA, 2015). Given an expected
average growth rate of 0.4%-1.2% and 0.9%-1.1% in the residential and commercial sectors,

respectively, it is estimated that by 2040 the number of residential households grows to 150
3
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Figure 1: GR integrated PV panel installed over a rooftop in/Haileypldaho (SVS, 2017).

million and the commercial space increases to 110 billion'square feet (EIA, 2015). Hence, any
reduction in the energy required for space conditioning.can result in substantial cost/energy
savings. Green roofs (GRs), which are vegetative layers grown on rooftops, can provide
added insulation on the roof and cool nearssurface air temperature through decreasing the
absorption rate of solar radiation by the building structure (Dunec, 2012). This cooling ef-
fect can contribute to an approximately 30% drop in the surface temperature (Dunec, 2012).
Several long-term studies are currently underway to quantify the thermal performance of
GRs (Niachou et al., 2001;/Sonne, 2006) as well as the relationship between GRs and energy
savings (Coma et al., 2016; Refahi and Talkhabi, 2015) under different climatic conditions.
So far, it is estimated that widespread installation of GRs throughout the U.S. can result
in $7—%10 billién mysavings (Dunec, 2012).

In addition. to direct savings in space conditioning costs, GRs can contribute to energy
production of PV panels if they are jointly installed. Specifically, GRs create a cool micro-
climate inghot weather and reduce the temperature of their surrounding area. Hence, their
joint installation with PV panels (Figure 1) can help cool down the panels, allowing them
to function at a higher efficiency. The increase in panel efficiency is consistently reported
in the literature; however, the degree of this increase varies from one study to another,

ranging between 0.08% and 8.3% across studies of various lengths, conducted in different

4
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Figure 2: The daily maximum and minimum temperaturessfor the City of Knoxville, Tennessee from ten
different climate projections for the year 2030. The dashed lineég-present the maximum and minimum tem-
peratures across the ten projections over the year. (For details’on the climate projections refer to Table 3.)

climates (Chemisana and Lamnatou, 2014; Hui and Chan, 2011; K&hler et al., 2007; Witmer
and Brownson, 2011).

The degree of benefit from PV, panels and GRs highly depends on the weather and climate
conditions of the locationdn which'they are installed (Refahi and Talkhabi, 2015; Witmer,
2010). However, the-information on how the weather and/or climate conditions evolve
over time in specific regions/locations are limited and often unreliable. Indeed, although the
global trend ofclimate.¢hange is consistently reported, in general there is no consensus among
current climate prejections and their evolution over time in specific regions/locations (Jun
et al., 2008). For instance, Figure 2 presents the daily maximum and minimum temperatures
for the City of Knoxville, Tennessee from ten different climate projections for the year 2030,
provided by Oak Ridge National Laboratory’s Urban Dynamics Institute (UDI) (UDI, 2017)
and Oak Ridge National Laboratory’s Climate Change Science Institute (CCSI) (CCSI,
2017). As seen in the figure, the projections can differ by up to approximately 25.4 and

37.1 degrees Celsius for daily maximum and minimum temperatures, respectively, in a given
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day. Hence, using each of these forecasts to guide future benefits of installing PV panels
and GRs, either separately or jointly, may result in a different set of recommendations.

PV panels and GRs are relatively expensive and have long lifespans, and hence, they are
both considered long-term investments. PV panels can generally retain a high efficiency of
80%-85% up to 20 years after installment (Energy Informative, 2017). Similarly; GRs are
reported to last on the order of 40 years (Porsche and Kohler, 2013; Minneseta Stormwa-
ter Manual, 2018), almost twice as long as traditional roofs. Thereforegit isiimportant to
carefully plan such investments to maximize their expected return.

In this paper, we present an approach to consolidate a set of'futureielimate projections
when making long-term investment decisions on the installation of PV"panels and GRs, from
the perspective of a regional governing body. Specifically, we develop a two-stage stochastic
programming model to determine the optimal placement of PV panels and GRs, either sep-
arately or jointly, among a set of candidate rooftopss Our objective is to maximize the profit
from the energy generated and saved using these practices, considering the uncertainties in
the future evolution of the climate and the, pesitive interaction of PV panels and GRs in
increasing PV panels’ efficiency. We develop a profit-maximizing model to allow governing
bodies and policy makers to carefully evaluate their options before making an investment.

Optimal placement probleins are studied in a wide array of domains and applications (e.g.,
for the placement of distributed generation source (Wang and Nehrir, 2004), phasor mea-
surement units (Goug 2008), multiple allocation hubs (Correia et al., 2018), and wind tur-
bines (Marmidis«<et al., 2008), or in facility location problems (Albareda-Sambola et al.,
2011)). In this paper, we formulate an optimal placement problem for joint installation
of PV panels and GRs. In the literature, studies involving PV panels mostly focus on
underlyingsPV material or cell technology (Tyagi et al., 2013; Chow, 2010; Kasper et al.,
2014).\Alternatively, there is a body of work that aims to determine the best placement
option for individual PV panels. For instance, there are a number of studies that evaluate
rooftop characteristics to calculate individual rooftop solar access using geographic informa-
tion system (GIS) (Levinson et al., 2009; Wiese et al., 2010; Van Hoesen and Letendre, 2010;

Ordénez et al., 2010), or aim to develop GIS-based models to optimize electricity generation
6
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estimation of PV panels installed on rooftops (Hong et al., 2014).

Additionally, there exist studies whose objectives are to find the optimal installation
criteria for PV panels, e.g., size, tilt angle, converter properties. An integrated multi-
objective optimization model is developed in (Koo et al., 2016) to determine rooftop-specific
installation criteria for PV panels to maximize their energy production effectiveness and
efficiency. Similarly, a particle swarm optimization algorithm is developed in: (Kornelakis,
2010) to find the optimal installation details (i.e., number of PV modales, their optimal
tilt angle and distribution among the DC-AC converters) for a grid-connected PV system to
maximize the total net profit and environmental benefits of the system. Imanother study (Liu
et al., 2012), a simulation model is developed to find the optimal size.arid slope of PV systems
under certain climate conditions subject to equipment costs as_well as electricity and sale-
back tariffs. In a similar vein, in (Chen, 2013), a Bayesian.approach is used to optimally
size stand-alone PV systems under climate change uncertainty.

There exist only a few large scale studies that attempt to optimize the implementation of
PV panels. In (Arnette, 2013), the output of large scale renewable energy farms (both wind
and solar) is evaluated and compared with'that of rooftop PV panels, after minimizing energy
generation costs and greenhousedgas emissions. In another study (Park et al., 2016), the
optimal strategy to implement PV, systems to achieve national carbon emission reduction
targets is proposed. None, of thése large scale studies, however, consider future climate
scenarios to capture the uncertainty in output of PV panels, nor do they take into account
GRs, their energy sawing properties, or their interactions with PV panels.

The literature related to GRs mainly focuses on their many potential environmental ben-
efits, e.g4 management of runoff water quality and quantity (Berndtsson, 2010), reduction
of heat island-and improvement of urban comfort (Santamouris, 2014), contribution to plant
and ecglogical diversity (Cook-Patton and Bauerle, 2012), and reduction of urban air pollu-
tion (Yang et al., 2008), to name a few. Also, a major group of studies explore GRs’ physical
properties, e.g., types of substrate (Ampim et al., 2010), hydrologic performance (Li and
Babcock, 2014), thermal behavior (Niachou et al., 2001), and vegetation types (Snodgrass
and Snodgrass, 2006).
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There exits a few studies in the literature that attempt to optimize energy savings/cost
reductions achieved using GRs. For instance, Gargari et al. (2016) simulate the thermal
behavior of a building covered with GRs in order to optimize the energy savings achieved by
installing green media on the rooftop of a building. The results show that the installation
of GRs for buildings that meet the most recent insulation regulations leads te"moderate
levels of energy savings. In another study, Kim et al. (2012) investigate the<econémic and
environmental benefits of GRs through an optimal-scenario selection médel, The authors
preform life-cycle cost analysis for fifteen different types of GRs and<concludé that the cost
reductions and environmental benefits achieved by GRs are noteworthy. €hang et al. (2010)
conduct a cost-benefit optimization on GR sizes. Their results show-that the amount of en-
ergy savings increases in the size of GR. Despite their contributions, none of these studies,
however, examine the optimal placement of GRs in a‘large seale study.

Stochastic programming has been extensively used in the literature for modeling long-
term planning problems under uncertainty (Birge and Louveaux, 2011). Specifically, two-
stage stochastic programming has been widelynapplied in a variety of studies including but
not limited to portfolio selection (Abdelaziz et al., 2007), transportation planning (Bar-
barosolu and Arda, 2004), disastér management (Noyan, 2012), waste management (Mag-
sood and Huang, 2003), scheduling (Parisio and Jones, 2015), and distributed energy systems
(Zhou et al., 2013). Similar,to other works in the literature, here we aim to incorporate un-
certainty about the fature through a set of possible scenarios. However, to the best of our
knowledge, this is the first study that uses such approach for incorporating climate change
into urban planning over a long planning horizon.

Varions cities*or states in the U.S. have invested in, or are currently leading, projects
to place green’infrastructure and/or energy-efficient practices and technologies EPA (2009);
The City of Knoxville (2018); EPA (2017). Most of these projects, however, are focused on
investing in a single geographic region or a small community, and involve a single type of
practice alone (e.g., solar panels, LED lights, green infrastructure). In this study, we take a
forward-looking view and provide a general model that can account for joint placement of

GRs and PV panels across various geographical regions simultaneously. To the best of our
8
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knowledge, this is the first model that accounts for multi-region, multi-practice placement,
hence allowing policy makers to plan large-scale implementations, while accounting for the
potential interactions between the practices.

The remainder of this paper is organized as follows. First we clearly define the scope
of the problem and present the model formulation in Section 2. Next, in Seetion 3, we
calibrate the model using the literature, industry reports and a few datasets=In Section 4,
we first discuss the solution approach. Next we conduct a case study fér a“mid-sized city
in the U.S., namely, Knoxville, Tennessee, perform sensitivity and rebustness analyses, and

provide environmental insights. Lastly, we conclude in Section 5¢

2. Model Formulation

In this section, we present a two-stage stochastie, programming model with complete
recourse to determine the placement of PV panels and GRs to maximize the overall profit.
The first stage decisions are to choose a set of candidate sites to install PV panels and GRs,
either separately or jointly. After all uncertainties are realized, second stage decisions, i.e.,
the amount of electricity sold to or purchased from the grid, are made. Note that consistent
with the current practice, we assume that excess energy generated by PV panels can be sold
to the grid (Banos et al., 2041),"In the remainder of the paper, the word energy refers to
electrical energy unless otherwise stated.

Let T denote theplanning horizon and K denote the set of regions, where I denotes the
set of candidate sites’within region x € K. Let the discrete random variable W with proba-
bility mass function py, denote the sample path of the future climate evolution for the regions
of interest over the planning horizon. Let 7, denote the the realization probability of scenario
w € Q, where () is a finite discrete set of projected climate scenarios, i.e., 1, = pw(w).

Letthe first stage binary variables x and y* denote whether or not PV panels and GR
are installed at candidate site ¢ € [, respectively, where each assumes the value 1 if the
corresponding practice is installed at site ¢ € I" and equals to 0, otherwise. Let kf denote
the total area of PV panel installed at site i € I*. Let ¢ and ¢ denote the cost of installing

PV system and GR at site ¢ € I”, respectively.
9
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Set of climate scenarios, where w € )
Set of regions, where k € K
Set of candidate sites in region x € K, where i € I*

Equals 1 if PV panels are installed at site ¢ in region x and 0, otherwise
Equals 1 if GR is installed at site i in region x and 0, otherwise
Installation cost of PV system at site ¢ in region x (USD)

Installation cost of GR at site ¢ in region k£ (USD)

Area of PV panel installed at site 4 in region x (m?)

Energy generated by PV panels at site 7 in regions under s¢enario w (kWh)
Energy saved by GR at site ¢ in region x under scenario wr(kWh)

Energy sold to the grid in region s under scehario w (kWh)

Energy purchased from the grid in region £ under seenario w (kWh)

PV system fixed cost (USD)

PV panel output (W)

Initial budget available for investment (USD)

Cost per kWh purchased from the grid (USD)

Price per kWh sold to the grid (USD)

Percentage energy saving i €ooling degree-hours due to GR. installation

Percentage energy saving in heating degree-hours due to GR installation

Percentage efficieney inerease in the output of PV panels due to integration with GRs
Percentage change in energy consumed for space conditioning over the planning horizon
PV system variable'eost/in region x (USD)

Total mainfenanee cost per m? PV panel installed in region & (USD)

Cost per'm? for ingtalling GR in region x (USD)

Total/energy requirement for space conditioning in region & over the planning horizon (kWh)
Thesrealization probability of scenario w, where >° n, =1

Rooftop surface available at site i in region & (m?)

Average hourly electricity consumption for space conditioning at site ¢ in region x (kWh)
Rooftop radiation potential of site ¢ in region

Total number of peak sunlight hours available in region s under scenario w over
the planning horizon
Total number of cooling degree-hours in region x under scenario w over the planning horizon

Total number of heating degree-hours in region x under scenario w over the planning horizon

Table 1: Notation used in the model.

10
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Let the second stage variables e, and s, denote the amount of energy generated and
saved in kWh at candidate site ¢ € I" under scenario w € (2, respectively. Additionally,
let HF denote the average hourly electricity consumption at each candidate site ¢ € I" to
maintain the building temperature via air conditioning, and R" denote the total required
electricity for space conditioning in region x € K over the planning horizon. Let-d denote
the percentage change in energy consumed for space conditioning over the planningthorizon,
due to an array of technological, sociological, climatic, and economic faetors:, Lastly, let B
denote the initial budget available for investment.

PV panels rely on solar irradiation to generate electricity and their outputs significantly
differ depending on the number of hours they are exposed to sunlight=A ‘peak sunlight hour’
is typically used to describe the intensity of sunlight in a specific area, where 1 peak sunlight
hour is equivalent to 1 kWh/m? (Aurora Energy, 20184 Solar Power Authority, 2018). Hence,
the number of peak sunlight hours for a day represents the accumulative solar irradiation
over the course of the day. Additionally, the level ofjsolar radiation received by any rooftop
depends on a variety of factors, e.g., aspect of the building, rooftop slope, and the shadowing
effect or solar access to buildings. Let ¢ denote the rooftop solar radiation potential at
site 7 € I, which quantifies the pércentage of daily available sunlight that an average rooftop
at site ¢ € I" receives. Let the stochastic parameter L7 denote the total number of peak
sunlight hours available ever the planning horizon in region x € K under scenario w € ).

Cooling and heating degree-hours are measures of how many degrees and for how long
the outside tempérafure is above or below certain base temperatures, respectively (Degree
Days Weather Data,2017). These metrics are typically used to determine whether or not
space heating and cooling are required for buildings. Let A\ and 7/ denote the total number
of cooling and heating degree-hours over the planning horizon, during which space cooling
and heating are required, respectively, for buildings in region x € K under scenario w € 2.
Additionally, let o and 3 denote the percentage of energy saving due to GR installation in
cooling and heating degree-hours, respectively. Lastly, recall that the joint installation of PV
panels and GRs positively affect the PV panels output. Let 6 denote the percentage increase

in the output of PV panels as a result of their integration with GRs. Table 1 summarizes
11



all the notation used in model formulation.

Recall that our objective is to maximize the profit from energy generated and saved, i.e.,

Z=maxy > —(Faf + KV + APy + 33 (i — o). (1)

The first term inside the maximization corresponds to the installation cost of PV panels and
GRs in a subset of candidate sites across all regions. The second term inside the maximiza-
tion corresponds to energy generated and saved under all scenarios across all regions. The

following equations, i.e., Equations (2) - (9), present the constraints of the model,

g9i = A7 Py Y,k (2)

= Fa + k5 (VF +CH. Vi, r, (3)

> DM < B, (4)

k¥ < Afzxf Vi, K, (5)

en, = QLEKI (1 +yf0)  Vi,w,k, (6)

s = Hiyi (@Aj + 675)  Viw,k, (7)
DL HsL) i — = (LHOR Yk, (8)
rh < Z er VK, w 9)
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Consistent with the literature (Coma et al., 2016; Refahi and Talkhabi, 2015; Dunec, 2012),
we assume that if the decision is to install GR at site ¢+ € I*, it must be large enough to
completely cover the rooftop; hence, Equation (2) calculates the GR installation cost at site
in region k. Equation (3) links the PV system cost, ¢f, to its two different components,
namely, PV system fixed cost, denoted by F', and PV system variable and m@intenance
costs in region k, denoted by V* and C*, respectively. Note that PV panels require very
little maintenance (Boston Solar, 2018; Whaley, 2016), while extensive GRs"are essentially
cost-saving compared with conventional roofs when it comes to maintenance (GSA, 2011;
Green Infrastructure Foundation, 2017; Wong et al., 2011). In/this study, we assume the
property owner is responsible for maintenance costs, whether orsnet their properties are
selected by the model as candidates for placement of the green _practices, i.e., C* = 0. We
revisit this assumption in our computational study in.Section 4.3 to investigate the impact
of incorporating maintenance costs directly into the.model.

Equation (4) limits the total cost of PV systemsrand GRs to a given budget B. Equa-
tion (5) guarantees that the area covered with PV panels cannot exceed the available rooftop
surface. Note that simultaneous installation of PV panels and GRs on a rooftop is possible
as PV panels are generally installed slightly elevated above the roof surface.

Recall that the integration of PV panels and GRs can help cool down the panels, thereby
resulting in a higher elegtricity output. Therefore, Equation (6) calculates the energy gen-
erated by PV panelsat site ¢ ‘€ 1" under scenario w € ).

The amount of energysavings from GR at each candidate site is given by Equation (7).
The amount 6f electricity sold to or purchased from the grid, = and ¢, respectively, serve
as second stagewdecisions in the model. We assume that each region has certain energy
requirements-for space conditioning over the planning horizon. Hence, Equation (8) guar-

K

., and saved, s ., and the total

w?

anteesythat for each region the total energy generated, e
electricity sold to the grid, r”, or purchased from the grid, ¢7, is at least equal to the en-
ergy requirement for space conditioning of the region. Lastly, Equation (9) assures that the
electricity sold to the grid cannot exceed the electricity generated by systems.

Note that the placement problem (1)-(9) has complete recourse. That is, for all the first-
13
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stage decisions, regardless of the uncertainties, there exists at least one feasible second-stage

decision (Birge and Louveaux, 2011).

3. Model Calibration

In this section, we use the literature and a series of datasets to calibratel the model

formulated in Section 2 to further conduct a case study for the City of Knoxville, Tennessee.

3.1. Parameters Estimated From the Literature

In the following, we use the literature and industry reports to estimate.model parameters.

Planning horizon, T. In this paper, we use two planning horizonsiwef 10 years and 20 years.
These two horizons are chosen based on the availability of future ¢limate projections as well
as the lifespan of current commercially available PV.panels and GRs.
PV system fized cost, F', and PV system variable cost in region k, V*. The cost of installing
PV system includes the workforce cost, plus the costs of the system components, i.e., solar
modules (which is referred to the PV cell cireuits sealed in an environmentally protective
laminate (Florida Solar Energy Center, 2018)), mounting device, DC-AC power inverter, and
wiring. Note that both workforcé and component costs consist of fixed costs and variable
costs, i.e., some of these costs are fixed for any installation, regardless of the size of the
PV system, whereas the/others are functions of the size of the system. For instance, the
workforce cost consists of a fixed cost for engineering design, permit, and contract fees, plus
a variable labor cost to install the system. Similarly, the PV system cost consists of a fixed
cost for DC-AC powerinverter and wiring, plus a variable cost for PV modules and mounting
device that is asfunction of the PV system size. In the following, we first calculate the fixed
and variable eosts of the workforce. Next, we estimate the fixed and variable costs of the
PV system components. We then use these values to estimate PV system fixed cost, F', and
PV system variable cost in our region of interest, V*.

According to a 2015 report by the National Renewable Energy Laboratory (NREL) (Chung
et al., 2015), installing a 5 kW PV system with a size of 37.5 m? (400 ft?) on a residential

rooftop costs $7,950, which includes the one-time engineering design, permit, and contract

14
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fees, plus the labor costs. In contrast, the cost of installing a commercial system of size 743.2
m? (8000 ft?) equals $92,132; including the one-time fees and labor costs. We assume the
labor costs for installing the PV system increase linearly in the system size, and the one-time
fees are equivalent. Let W denote the total workforce cost needed to install PV system and
recall that kf denotes the area of PV panel installed at site 7 € I”. Hence, using linear regres-
sion, we obtain W = 35004 120k. Consequently, we use the intercept of $3,500:and the slope
of $120 per m? as the fixed and variable costs of workforce required for instdlling.a PV system.

Connecting the PV system to the grid requires inverters to convert the direct cur-
rent (DC) from PV panels into alternating current (AC). TheSe inverters generally cost
between $1,000 and $5,000 based on their capacity and quality (Selar”Quotes, 2017; Whole-
sale Solar, 2018), with relatively limited additional cost for wiring/ In this study, we consider
the average cost of $3,500 for the fixed cost of PV system‘components, which depending on
the brand, is sufficient enough for purchasing inverters with a size of 3,000 W to 12,000 W
(Wholesale Solar, 2018). Hence, the PV system, fiXed cost, F', equals to $7,000, which con-
sists of the fixed part of total workforce cost, ., $3,500, plus the inverter and wiring costs,
i.e., $3,500.

As of 2017, PV modules cost¢between $0.85 and $1.5 per W. That is, for a panel with

the size of 1 m?

and 150 W-250~W output on top efficiency, the module cost ranges from
$128 to $375, while the nfounting’device (frame) costs an additional $60 per m?. Therefore,
the PV system variable cost,”V*, for the City of Knoxville, including the variable part of
workforce cost, i€., $120"per m?, plus module and mounting device cost, ranges between
$310 and $560 per m?.

PV panel output; (). Commonly available PV panels have an efficiency ranging from 13.5%
to 20% (Churg et al., 2015). Therefore, the real output of 1 m? panel during an hour of
peak sunlight ranges from 135-200 W.

Total maintenance cost per m*> PV panel installed in region x, C*. PV panels are made of
tempered glass, making them able to withstand harsh weather conditions. Moreover, PV

panels have no moving parts, except for panels with tracking mounts, making them very re-

liable and able to continue operation with minimal maintenance (Boston Solar, 2018). Most
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PV panel manufacturers guarantee their products for 20 to 25 years (Whaley, 2016). There-
fore, if PV panels cease working, the PV panel companies will fix the issue at no cost. How-
ever, in order to utilize PV panels on their full potential, the surface of PV panels should be
cleaned throughout their lifespan, which imposes an annual cleaning cost of $0.25 to $1.5 per
panel (Whaley, 2016), or equivalently $0.15 to $0.92 per m? of panel (Energy Sa¥ing Trust,
2015). Note that these costs do not consider the positive impact of GRs on reducing air
borne pollutants and dust in GR integrated PV panels (Green Roof Technology, 2018).
Recall that in this study we use two planning horizon lengths, i.6., 7" =10 and 7" = 20
years. Hence, assuming that the current estimated maintenance costs of $0.15 to $0.92
per m? of panel increase with inflation, we consider the total mainteriance C*, incurring in
the beginning of the planning horizon, to range between $1.5 and $9.2 when 7" = 10 years
and between $3 and $18.4 when T = 20 years.
Average hourly electricity consumption for space eonditioning at site i in region k, Hf.
Generally speaking, electricity consumption increases in building size (EIA, 2017c). We
use the data available from a 2009 survey\by the EIA (EIA, 2017c) to characterize the
relationship between the average hourly“energy consumption for space conditioning and
building size. Note that we consider a residential level of energy consumption for all the
candidate sites in this studyd The data suggests a strong linear relationship between the
energy consumption and’the building size, where it ranges between 25 m? and 400 m?.
Recall that A denotes the available rooftop surface at candidate site i. We assume that the
total size of eachébuilding is equal to its available rooftop surface, and each candidate site

corresponds to a single unit. Hence, the relationship can be best approximated as

HE = 0.508 + 0.004A%. (10)

(For further details about the data and model, please refer to Appendix A.)
Cost per m? for installing GR in region k, P*. GRs are typically classified into three main
types, namely, extensive, semi-intensive, and intensive, mainly based on their types of veg-

etation and properties, such as weight, use, and maintenance (IGRA, 2017). In this study,
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consistent with the existing literature that focuses on energy saving aspect of GRs, we only
consider extensive GR, which is the least expensive and most resilient type of GR (Coma
et al., 2016; Refahi and Talkhabi, 2015; Dunec, 2012). According to the U.S. General Ser-
vices Administration (GSA), the cost per m? of extensive GR is approximately $12 (GSA,
2011) which includes the drainage layer cost as well as labor cost. Consistent withpublished
reports, we do not consider setup costs for GRs (GSA, 2011).

Price per kWh sold to the grid, and cost per kWh purchased from thegridyiy and p, re-
spectively. Selling excess electricity generated to the grid and being paid in réturn (Feed-in
Tariffs, 2018), known as feed-in tariffs, or more specifically export tariffs (Feed-in Tariffs,
2018), is not generally offered in the U.S.; except in a limited number of states (Energy In-
formative, 2014). However, net metering, which allows fer sending the extra electricity
generated to the grid at normal retail value and receiving eredit for it, is supported by most
utility providers (SEIA, 2018). Therefore, consistent with these methods, we consider the
same value for the electricity sold to and purchasedyfrom the grid as we assume the excess
electricity that is sent to the grid can be credited and hence, used by any of the candidate
sites. According to EIA (2017), as of 2017, each kWh of electricity purchased from the grid
costs approximately 10.3 cents. Hence, we set u and v equal to 10.3 cents.

Percentage energy saving in€ooling degree-hours due to GR installation, o, and percentage
energy saving in heating/degree-hours due to GR installation, 3. The percentage of energy
saving in cooling degree-hours achieved due to the installation of GRs differs across various
studies, ranging ftom~10% to 16.7% (Coma et al., 2016; Dunec, 2012; Ascione et al., 2013;
Zhao and Srebric, 2012; Feng and Hewage, 2014; Spala et al., 2008; Raji et al., 2015). While
almost all' studiesragree on the fact that using GRs results in savings in cooling degree-hours,
there is a‘laek of consensus on the impact of GRs in heating degree-hours. Indeed, a few
empirical studies report that using GRs contribute to energy loss in heating degree-hours
while others suggest that it results in energy savings. For instance, a recent, long-term
study reports that GRs increase the required amount of energy to heat the space to a
comfortable level (i.e., 22 degrees Celsius in this study) in heating degree-hours by 6.2%

(Coma et al., 2016). Consistently, another study performed in different climates throughout
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Europe reports up to 1% GR-related energy loss in cold seasons in certain climates (Ascione
et al., 2013). In contrast, two empirical studies suggest that the energy savings from GR
in heating degree-hours is negligible and can be ignored (Feng and Hewage, 2014; Spala
et al., 2008). However, there exists another group of studies that report reductions of 4%
to 10% in energy savings as a result of GRs in heating degree-hours (Dunec, 2042; Ascione
et al., 2013; Raji et al., 2015; Zhao and Srebric, 2012). Therefore, in this study, we let «
and 8 assume a wide range of values to capture the different, and sometimes‘contradicting,
estimates reported in the literature. Specifically, we let a range frem 10%, to 20% and
range from -10% to 10%.

Percentage efficiency increase in the output of PV panels dué tovimtegration with GRs, 6.
As the results from the previous studies show, integrating"PV._panels with GRs results in
a higher panel efficiency, mainly due to the coolingeffect, of’ GRs. However, these studies
report a relatively wide range of values for the percentage éfficiency increase, i.e., from 3.33%
to 8% (Chemisana and Lamnatou, 2014; Hui and Chan, 2011).

Percentage change in energy consumed for space ‘conditioning over the planning horizon, .
In general, changes in human behavior with respect to energy consumption is not always
easily quantifiable and can be impacted by various technological, sociological, climatic, and
economic factors (Hostick et.al., /20147 Hand, 2012). Over the past few decades, the level of
energy consumption for space conditioning in the U.S. residential sector has experienced a
steady decline, decredsing from 58% of overall energy consumption per household in 1993,
to 48% in 2009 (EIA»2018a). The projections for the energy consumption for space condi-
tioning, on thle other’hand, are mixed (EIA, 2018b; Hostick et al., 2014). Published studies
report various degrees of increase/decrease in the level of energy consumption for space
heating and.eooling (Rosenthal et al., 1995; Amato et al., 2005; Mansur et al., 2005; Belzer,
2009; Huang, 2006; Loveland and Brown, 1996; Scott et al., 2005; Ruth and Lin, 2006; Sailor,
2001; Sailor and Pavlova, 2003). For instance, Scott et al. (2005) project the decrease of
24% in the level of energy consumption for space heating and the increase of 39% in the
level of energy consumption for space cooling by year 2020. In other studies, Huang (2006)

and Amato et al. (2005) project the decrease of as much as 33% and 13% in the level of
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Parameter Ranges Levels Sources

PV system variable cost, V* (USD) [210, 435] 100, 200, 400, 600 Chung et al. (2015)
Annual maintenance cost per m? PV [0.15,0.92] 0.15, 0.62, 0.92 (Boston Solar, 2018; Whaley, 2016)

(CK,
panel installed in region x, e (USD)
PV panel output, @ (W) [135,200] 100, 200 Chung et al. (2015); Solar Quotes (2017)
Percentage energy saving in cooling [10%,16.7%] 10%,20% Ascione et al. (2013); Coma et al. (2016);
degree-hours due to GR installation, « Dunec (2012); Feng and Hewage (2014);

Raji et al. (2015); Spala et al. (2008); Zhao
and Srebric (2012)
Percentage energy saving in heating [—6.1%,10%] —10%,10% Ascione et al. (2013); Coma et alv’(2016);
degree-hours due to GR installation, 3 Dunec (2012); Feng“and,/Hewage (2014);
Raji et al. (2015)ySpala etal. (2008); Zhao
and Srebric (2012)

Percentage efficiency increase in the [3.33%,8%] 2.5%,10% Chemisana and Lamnatou (2014); Hui and
output of PV panels due to integration Chan (2011)

with GRs, 0

Percentage change in energy consumed [—60%,60%] —60%,—40%,—20%, Amato et al. (2005); Belzer (2009); EIA
for space conditioning over the planning 0%, 20%, 40%, 60% (2018b,a);,Hdang (2006); Loveland and
horizon, § Brown(1996); Mansur et al. (2005); Rosen-

thal et_al. (1995); Ruth and Lin (2006);
Sailor (2001); Sailor and Pavlova (2003);
Scott et al. (2005)

Table 2: Parameter values estimated from theliterature and industry reports.

energy consumption for space heating, andithe increase of as much as 158% and 40% for
space cooling by years 2080 and 2030; téspectively. Note that according to EIA (2017c¢),
only a quarter of the total energy-¢onsumed for space conditioning in the U.S. residential
sector is used for space coolingswhile the remaining three quarters is used for space heating.
Hence, in this study to capture a/wide array of variability, we use a weighted average of
the reported values forsspacetheating and cooling, and consequently, account for up to 60%
change in total enefgy €onsumption for space conditioning.

Initial budget .available’ for investment, B. The net budget for 2017-2018 for the City of
Knoxville is.equal to $378.8 million. The City dedicates a fraction of the budget to various
long-term urban development projects. For instance, in the 2017-2018 budget, $17.8 million
is dedicated to the conversion of approximately 300,000 street lights across the City to the
LED technology, for which the payback period is anticipated to be less than a decade (The
City of Knoxville, 2018). Consistent with the budget allocated to this project and other
investments in green technologies, in our case study, we set the initial budget available for

investment, B, equal to $20 million.
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Table 2 summarizes the parameters that are calibrated from the literature and considered
in our numerical studies. The table presents the ranges of values obtained from the litera-
ture. In our numerical studies, however, we capture a range slightly larger than the reported
values to account for additional uncertainty and possible parameter estimation errors. We

conduct our numerical studies at the discrete levels provided in the table.

3.2. Parameters Estimated From Data

To estimate the remaining parameters, we use a few datasets includingiclimate projec-

tions and solar insolation provided by UDI (UDI, 2017) and CCSI{CECSI, 2017).

K
w?

Total number of cooling degree-hours, A, and heating degree-hours, 75, /in region k under sce-
nario w over the planning horizon. The climate system evelves as a result of slow changes in
boundary conditions, physical parameters, ocean and séa‘ice, etc. (IPCC, 2017). General cir-
culation models (GCMs) are climate models whichaexploit.the general circulation mathemat-
ical model of a planetary atmosphere (atmospheric GGMs) or ocean (oceanic GCMs) to nu-
merically simulate and project changes in Earth’s\climate system. Coupled GCMs (CGCMs)
consist of models that combine atmospherie:GCM (AGCM) with oceanic GCM (OGCM)
into interactive ocean-atmosphere”models (Yonggiang et al., 2004). In this study, we use
the climate projections from ten CGCMs as listed in Table 3. The available projections
consist of daily precipitation as,well as minimum and maximum temperatures for 1 km?
and 4 km? grids for the'Cityjef Knoxville from January 2011 through December 2050. In
this study, we use’the data for two planning horizons of length 7" = 10 years and 7" = 20
years, startingfromJanuary 2011. In order to reduce the computational effort, we use each
climate proéjectionsas a scenario in our model, after averaging the daily projections for all
grids spanning/the City of Knoxville. We examine the impact of using the exact projections
for each’ grid on the results in Section 4.3.

Note that the ten CGCMs are based on similar empirical or theoretical assumptions,
hence they are somewhat correlated (Jun et al., 2008). However, as discussed in Section 1,
the projected daily temperatures and precipitation values vary across the ten CGCMs. Ta-

ble 4 presents the maximum, average and the range of standard deviation for daily pairwise
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Model

Institute of development

Japanese Meteorological Research Institute Coupled Global
Climate Model (MRI-CGCM3)

Max-Planck-Institute Earth System Model Mixed Resolu-
tion (MPI-ESM-MR)

Geophysical Fluid Dynamics Laboratory Earth System
Model (GFDL-ESM2M)

The Australian Community Climate and Earth System
Simulator (ACCESS)

The NCAR’s Community Climate System Model (CCSM4)

The Institute Pierre Simon Laplace Climate Model (IPSL-
CM5A)

The Beijing Climate Center Climate System Model (BCC-
CSM)

Norwegian Earth System Model (NorESM1-M)

Meteorological Research Institute of the Japan Meteorological
Agency (JMA, 2017)
Max Planck Institute for Meteorology (MPI, 2017)

Geophysical Fluid Dynamics Laboratory (Princeton University,
2017)

Commonwealth Scientific and Industrial Research Organiza-
tion (CSIRO, 2017)

Climate and Global Dynamics Laboratory at the National Center
for Atmospheric Research (NCAR, 2017)

Institute Pierre Simon Laplace (IPSL, 2017)

Beijing Climate Center, China Meteorological Administra-
tion (BCC, 2017)

Multi-institutional, Coordinated{, Climate Research in Nor-

way (EarthClim, 2017)
The Centro Euro-Mediterraneo sui Cambiamenti Climatici Euro-Mediterranean Center ¢gn Climate Change (CMCC, 2017)
Climate Model (CMCC-CM)
Flexible  Global ~ Ocean

tem (FGOALS)

Land Institute of Atmospheri€ Physies;€hinese Academy of Sciences,
State Key Laboratory efrNumerical Modeling for Atmospheric

Sciences and Geophysical Fluid Dynamics (LASG, 2017)

Atmosphere Sys-

Table 3: Ten coupled general circulation models (CGCMs) generated at Oak Ridge National Laboratory’s
Climate Change Science Institute (CCSI, 2017) using high-performance computing resources, including
Titan, America’s fastest supercomputer (CCSI, 2017).

comparisons across the ten projections over the given planning horizon. As seen in Table 4,
the average value of the pairwise differenees*for daily maximum and minimum temperatures
for both T' = 10 years and 1" = 20 years,are on the order of 5 degrees Celsius, which highlight
the existing variations in the projected values. (For detailed plots on daily/monthly /yearly
average temperatures for the City 0f Knoxville, Tennessee for the ten different climate pro-

jections, please see Appendix B.)

T=10 T=20
Parameter Maximum Average Standard deviation Maximum Average Standard deviation
range range
Daily maximum temperature (°C)  30.63 4.71 [0.89,7.95] 31.41 4.72 [0.79,7.95]
Daily minimum temperature (°C)  41.58 4.82 [0.47,11.13] 41.58 4.79 [0.47,11.22]
Daily precipitation (mm) 105.26 5.40 [0.02,38.88] 105.26 5.45 [0.02,38.88]

Table 4:/ Maximum, average and the standard deviation range for daily pairwise comparisons across the
projections from ten CGCMs, presented in Table 3, over two planning horizons of length 7" = 10 years and
T = 20 years, starting from January 2011.

As discussed, the data generated by CGCMs are on a daily basis. However, to ac-

curately calibrate the model formulated in Section 2, we require hourly data. Hence, we
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use the widely accepted cosine function to disaggregate the temperature data into hourly
predictions (Green and Kozek, 2003), i.e.,

t+b
Y, = acos (%) +c+e (11)

Using this function requires daily minimum and maximum temperatures,<and, the time
of the day during which these extreme temperatures occur. Hence, to estimate these data
points, we use the hourly historical data from 2010 to 2012 provided, by "McGhee Tyson
Airport weather station in Knoxville (CRONOS, 2017), to obtain the time at which the daily
minimum and maximum temperatures were previously obsenved. As shown in Figure 3a,
the daily minimum and maximum temperatures occur at different times during the day
dependent on the month of the year. For instance, in the;month of May, the daily minimum
and maximum temperatures on average occur at 7Z=AzM: and 4 P.M., respectively, while in
January, the daily minimum and the maximumstemperatures on average occur at 9 A.M.
and 5 P.M., respectively. Figure 3b shows the hourly temperatures for ACCESS CGCM
obtained from Equation (11) and calibrated=with the data presented in Figure 3a. The same
approach is used to obtain the houtlytemperatures from the remaining nine CGCMs.

In order to estimate the total number of cooling and heating degree-hours during a given
day, we need cut-off valueg to guide when cooling and heating are required. Recommended
comfort human temperatures are often reported as 20-23.3 degrees Celsius in winter and 22.8
to 25.6 degrees Celsius in,summer (Burroughs and Hansen, 2013). A 2009 survey conducted
by the EIA (ETA, 2018b) shows that in the U.S., residential households usually use space
conditioning for heating and cooling when the outdoor temperature ranges between 14.4 and
17.8 degrees Celsius, and 17.8 and 19.4 degrees Celsius, respectively. In this study, consistent
with therecent published works, we set the cut-off values for heating and cooling degree-
hours to 22 and 18 degrees Celsius, respectively (Coma et al., 2016; Degree Days Weather
Data, 2017).

Total number of peak sunlight hours available in region k under scenario w over the planning

horizon, L. Our datasets report projected temperature and precipitation, but do not
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(a) The hourly temperatures in a day, averaged across (b) The ACCESS CGCM projectéd hourly temper-
month of the year from 2010 to 2012 based on the atures in a day, averaged across menth of the year
historical data (CRONOS, 2017). from 2011 to 2021, obtained using Equation (11).

Figure 3: Example hourly temperature values for the City of Knoxwville:

include the daily peak sunlight hours. Also note that the number ofidaily peak sunlight hours
is different from the readily available number of daily sunlight_hours (Solar Direct, 2017).
Hence, we use the amount of daily precipitation to estimate,the total number of peak sunlight
hours available, L. Specifically, we assume that any day with a precipitation greater than
10 mm is a cloudy day, and hence no peak sunlight-hour is considered for such days. We
obtain the estimate of 10 mm by comparing'the résults for the years 2011 and 2012 with the
annual average peak sunlight hours (Current Results Weather and Science Facts, 2017).
Rooftop radiation potential, [, réoftop surface available, A, at site i in region k, and total
energy requirement for spaceonditioning in region K over the planning horizon, R". To ob-
tain rooftop radiation potemtial, we use the solar insolation dataset provided by UDI (UDI,
2017) and CCSI (CESI, 2017). This dataset includes the information about the rooftop
size and solar insolation for 209,183 buildings in the City of Knoxville for the year 2003.
The model that produtces the data uses GIS and high-resolution Light Detection And Rang-
ing (LIDAR) data to generate solar radiation intensity values for each building (Kodysh
et al,, 2013).This high spatial and temporal resolution dataset is depicted in Figure 4. As
seen in’ Figure 4, large rooftops generally have high solar insolation values mainly due to
their flat surface and unobstructed access to the sunlight.

To estimate the values of 1, we first obtain the per m? solar insolation values by dividing
the solar insolation value of each rooftop by the size of the rooftop (in m?). We then rescale

them to range between 0 and 1.
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Figure 4: Visual-SOLAR radiation map for the Ci@ville, Tennessee (Kodysh et al., 2013).

NREL (Gagnon et al., 2016) defin tegories for building sizes, i.e., small (with
rooftop sizes less than 185 m?), medium (with rooftop sizes between 185 m? and 2,500 m?),

and large (with rooftop sizes n 2,500 m?). Figures 5a and 5b respectively show

w5 the distribution of rooftop and solar insolation values for the 209,183 buildings in the

City of Knoxville. As igure 5Hb, in general, the larger the building, the larger the
solar insolation value.
Recall that i ction 3.1, we assume that the total size of each building is equal to its
available rooftop surface, and each candidate site corresponds to a single unit. Accordingly,
w0 Equation (10) approximates the relationship between the available rooftop surface at a given
cand e and the corresponding average hourly electricity consumption for space condi-
tioniﬁha’c site. Hence, based on the data provided by Kodysh et al. (2013), we estimate
the total energy requirement for space conditioning in the City of Knoxville to be approxi-

mately equal to 6.4 million GWh and 12.8 million GWh for 7' = 10 and T' = 20, respectively.

as  The realization probability of scenario w, n,. In this study we use the climate projections
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Figure 5: Rooftop size and solar insolation for the 209,183 buildings in the City of Knoxville, stratified
across rooftop size category.

discussed earlier in this section as our scenarios. Theyparameter 7, gives the likelihood
that a scenario is realized. As discussed, climate prejections can be correlated (Jun et al.,
2008). However, due to the lack of informationtabout the exact development process of the

CGCMs, here we assume that all scenarios‘are equally probable, i.e., n, = 0.1 Vw € €.

4. Computational Study

In this section, we provide extensive numerical results. First, we discuss the solution
approach and introduce additional metrics in Section 4.1. Next, in Section 4.2 we provide
a case study and diseuss the results. Next, in Sections 4.3 and 4.4, we conduct extensive
sensitivity and robustness-analyses on model parameters, respectively, and provide insights.
Finally, in Section 4:5" we discuss the environmental implications of the optimal solutions

obtained inh thescase study.

4.1. Solution Approach and Additional Metrics

Weluse the L-shaped decomposition algorithm (Van Slyke and Wets, 1969) to efficiently
solve the problem. In order to implement this method, we linearize Equation (6). To remove

the non-linearity caused by kfyf, we employ the big M method (Griva et al., 2009). We add
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two new continuous variables (!* and (?* to the model such that
GUHGT=kL GRS My;, o GRS MQ-yy) Vi, (12)

where M is a sufficiently large number. We add the set of constraints in Equation (12) to
the model and replace Equation (6) with the following set of constraints:
ef = QLEEFS + QLSO Vi, w, k. (13)
In the following we introduce two new metrics. These metrics are used to facilitate the
comparison of the results.
Return on investment, ROI. Recall that our objective is to maximize the overall profit from
energy generated and saved. However, to more easily compare the efficiency of the prescribed

investment options, we introduce this new metric.\ Specifically, return on investment is

calculated by dividing the net profit by theicost\of investment multiplied by 100, i.e.,

D A2 T+ kFVE 4+ AT PRyr)

x 100. (14)

Sustainability index, SI. As discussed in Section 1, one of the major intangible, non-financial
benefits associated with msing PV panels and GRs is reducing the reliance on fossil fuels.
This metric quantifies’the percentage of the requisite energy that is saved or generated by

using GR§ and/fer'PV panels under the optimal solution, i.e.,

SI — Zw Zz Zn nw(e,?w + S?w)

W x 100. (15)

Although our objective is not to maximize SI, such metric can help policy makers to compare

intangible benefits of the provided solutions.
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4.2. Case Study

In this section, we present the results for a case study for the City of Knoxville, Ten-
nessee. Specifically, we examine a set of 209,183 buildings, as candidate sites in one region,
given an initial investment budget of $20 million. As discussed in the introduction, we
take the perspective of a regional governing body throughout this paper. Nonetheless, the
model is versatile and can be easily modified and calibrated to study the problem from other
perspectives (e.g., utility companies).

Note that an average residential building in the southern U.S. built by 2010 is of size
220 m? (Census Bureau, 2018a) and has 1.5 floors (Census Bureaft, 2018b). In this study, to
capture the energy savings of GRs which typically only provide energy savings for the top
floor unit(s), we assume all buildings are single units.

In order to capture the effects of current prices and efficiency of the PV panels, we con-
sider three cases. In this section, we set 6 = 0. We later conduct sensitivity analysis on the
impact of parameter 0 on the solutions. In these cases, we use the values estimated form the
literature and summarized in Table 2. Specifically, in all three cases, we set the percentage
energy saving in cooling and heating degree-hours by GRs, i.e., a and [, respectively, equal
to 10% and 0%. In Case 1, we comsider the price and efficiency of current commercially avail-
able panels. That is, we set the PV panel output, (), and the PV system variable cost in the
City of Knoxville, V", equal to 0.15 and 400, respectively. As discussed in Section 1 the cost
of PV panels is on the decline while their efficiency is increasing. Hence, Case 2 considers
efficient PV panels with lower than average cost to capture a likely upcoming scenario. In
both Cases 1/and 2 we set the percentage efficiency increase in the output of PV panels due
to integration with GRs, 6, equal to 5%. Note that 6 is directly related to the ability of GRs
to reduce their surrounding environment temperature. In Case 3, we use the range reported
in Table 2'to approximate a linear relationship between hourly percentage efficiency increase
in the output of PV panels due to integration with GRs and hourly temperature. In this
case, unlike Cases 1 and 2 in which we consider a fixed value for 6 regardless of the out-
side temperature, we incorporate the effect of the outside temperature in the GR-provided

efficiency increase of PV panels. Let 6, denote hourly percentage efficiency increase in the
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PV panel PV system Percentage energy Percentage energy Percentage efficiency

Case study output, variable cost, saving in cooling degree- saving in heating degree- increase in PV
Q (kW) V (USD) hours by GRs, « hours by GRs, panel output, 6
Case 1 0.15 400 10% 0.0% 5%
Case 2 0.2 200 10% 0.0% 5%
Case 3 0.2 200 10% 0.0% 0; = 0.0013T; + 0.091

Table 5: The parameter values in the three cases considered in the case study for the City ofdKnoxville.

output of PV panels due to integration with GRs and T, denote the houtly temperature.
From the linear regression we obtain 6; = 0.0013T; + 0.091. Applying this function to the
climate projections results in #; values that range from 0.064 to 0.14; which=are larger than 6
values considered in both Case 1 and Case 2. Table 5 summarizes the three cases considered.

We use Gurobi Optimizer version 7.5 (Gurobi, 2014) on ‘ansiMac Pro with an 8-core 3.2
GHz Intel Xeon W processor and 32 GB of RAM to.solve the model. The solution time
for the three cases ranges between 422.2 seconds and 463.6 seconds. Appendix C provides
further details on the solution time, number of variables, and number of constraints for the
three cases.

Table 6 provides the optimal solutiens for the three cases presented in Table 5. In
all three cases, the total energy gemerated/saved is not enough to fully compensate the
requisite energy needs of the €itynof Knoxville for space conditioning, either because of
non-profitability of PV panels/GRg or the limited available budget for investment. Hence,
in all these cases, the value'of the objective function is negative. However, as seen in the
table, ROIs are positive; suggesting that the income from the total energy generated/saved
is higher than the budget spent.

First, note that/ when T" = 10 only a small proportion of the available budget is spent
under the optimal solution and only GRs are installed in all three cases. This is mainly
due to'the fact that when T = 10, the amount of electricity generated by PV panels is not
nearly enough to cover their installation costs. In addition, because only GRs are installed
in these three cases and the values for a and 8 are identical across the cases, the solutions
and the metrics are also the same.

Similarly, when 7" = 20 in Case 1 only GRs are installed under the optimal solution
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T=10 T =20
Stand-alone Stand-alone PV+GR  Budget SI ROI Stand-alone Stand-alone PV+GR  Budget

SI ROI

PV (m?) GR (m?) (m?)  spent ($) PV (m?) GR (m?) (m?)  spent ($)
Case 1 0 999 0 11,988  0.0033% 75.82% 0 21,969 0 263,628  0.0283% 37.97%
Case 2 0 999 0 11,988  0.0033% 75.82% 99,612 2,295 0 20,000,000 2.8724% 84.60%
Case 3 0 999 0 11,988  0.0033% 75.82% 0 4,735 93,930 20,000,000 2.8893% 87.72%

Table 6: Optimal solution for an initial budget of $20 million available for investment over two planning
horizons of length 7" = 10 years and T = 20 years for the cases presented in Table 5.

and not all available budget is spent. However, in Cases 2 and 3, the.optimal ‘solution
also prescribes to install PV systems and all available budget is allocateds, Specifically, in
Case 1, 21,969 m? of stand-alone GRs are installed under the optimalsélution. Considering
the average residential building rooftop size of 145 m? in the southern U.S. (Census Bureau,
2018a), this is enough to cover to approximately 152 average residential buildings. In Case 2,
more than 99% of the available budget is allocated tofinstalling 99,612 m? of stand-alone
PV panels, and the rest of the budget is allocated to installing 2,295 m? of stand-alone GRs,
in total covering an approximately 703 average,residential buildings. Note that in this case
GRs are not integrated with PV panels; hence, they are mainly installed to provide energy
savings. In Case 3, approximately 94%-6fthe budget is allocated to installing PV panels, all
of which GR integrated, and the restsis used for installing an additional 4,735 m? of stand-
alone GRs. In total, under the optimal solution, these practices cover an approximately
680 average residential buildings. Recall that estimated percentage efficiency increase in the
output of PV panels due tointegration with GRs in Case 3 is overall higher than the two
other cases. Hencey inwCase 3 more budget is allocated to GRs compared to Case 2 and
all panels are GRinitegrated to achieve a higher electricity output. Note that contrary to
Case 2, in Case 3 GRs are mainly used to help improve the output of PV panels.

The model jgenerally prescribes the stand-alone GRs to be installed on small rooftops.
Recall'that Equation (10) presents the relationship between hourly energy consumption for
space conditioning and building size. From Equation (10), the magnitude of the intercept
is much larger than that of the slope. Therefore, for instance, two small buildings would
consume more energy than a large building that has a rooftop area equivalent to the total

area of the two small rooftops. Note that the energy savings from GRs are a fraction of the
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total energy consumed by the buildings (based on a and (.) Therefore, because GRs do
not have a set up cost, when it is optimal to install stand-alone GRs, the model typically
prioritizes small rooftops to generate more profit through their energy savings.

In contrast, the model generally prescribes to install PV panels on large rooftops, par-
tially due to the fact that installing PV systems has a fixed set-up cost. Additionally, as
discussed in Section 3.2, buildings with large rooftops often have the highestsradiation po-
tential, ¢, as they are mostly flat and unlikely to be completely shaded by their surrounding
buildings. Hence, the model prioritizes large rooftops for PV installation to minimize the
cost while maximizing the electricity generation.

As shown in Table 6, for T' = 10 years, Cases 1-3 result/in thessame ROI values as the
corresponding solutions are identical. For T = 20 years, the.solutions vary for the three
cases and the highest ROI value is achieved in Case 3“in_which the benefit of GRs are
most accurately captured. The SI values in Table 6_are generally higher for 7' = 20 years
compared to T' = 10 years, as PV panels are installed for 7" = 20 years.

4.3. Sensitivity Analysis

In this section, we conduct extensive sensitivity analysis to evaluate the impact of model
parameters on the optimal solutiony First, we conduct a sensitivity analysis on an array
of parameters related to PV pamels, GRs, and their interaction. Second, we examine the
impact of possible changes in-energy consumed for space conditioning over the planning
horizon on optimal solutions. Next, we investigate the impact of incorporating maintenance
cost directly into the model as a responsibility of the entity in charge of planning, e.g., the
regional geverning/body. Lastly, we evaluate the impact of using the averages of the daily
projections over all grids spanning the City of Knoxville, instead of the true projections for
each grid;)when calibrating the model, and provide recommendations.

Table 7 presents the results from the sensitivity analysis for different levels of PV system
variable cost, V", PV panel output, (), percentage efficiency increase in the output of PV
panels due to integration with GRs, 6, and percentage energy saving in cooling and heating

degree-hours due to GR installation, a and [, respectively, as presented in Table 2. In
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general, when PV systems are expensive but have relatively low output, i.e., high V* values
and low () values, the optimal solution mainly depends on the energy savings from GRs. In
this case, if the percentage energy saving in heating degree-hours due to GR installation, 3,
is low, no additional profit can be generated from installing GRs or PV panels. Hence, the
model chooses to not spend any budget at all. When £ is high, the model chooses to spend
budget but only for stand-alone GRs, mainly to achieve energy savings, and hence maximize
the profit. In this case, the total number of stand-alone GRs depends en and increases in
the percentage energy saving in cooling degree-hours due to GR installation, «.

For cost-efficient PV systems, i.e., low V* values and high () yalues, the optimal solution
mainly depends on the percentage efficiency increase in the output’of PV panels due to
integration with GRs, 6. That is, when @ is low, the optimal_selution is to install stand-
alone PV panels. However, when 6 is high, the model takes full advantage of the added
efficiency and prescribes to install a large quantity~of GR integrated PV panels, with the
remaining budget spent on stand-alone GRgs. In this case, the proportion of budget spent
on stand-alone GRs increases in both a and, /5

In general, the length of the planning horizon can significantly impact the optimal solu-
tion. For instance, as the highlighted row on Table 7 shows, for 7" = 10 years the optimal
solution is to not spend any<budget, whereas for 7" = 20 years the optimal solution is to
allocate all of the budgetto install stand-alone PV panels.

Additionally, ROJand SI values are generally higher for T" = 20 years compared to T" = 10
years. To eliminate the effect of different planning horizon lengths, we calculate the average
annual ROI and SI values for T' = 10 years and T' = 20 years by dividing the values in the
table by their planning horizon lengths. The results show that for 7" = 20 years the average
annual ROLand SI values are at least as large as the average annual values for 7" = 10 years
for any’combination of parameters. This is mainly due to the higher number of peak sunlight
hours and cooling degree-hours during the second decade of the 20-year planning horizon.

Overall, the results from Table 7 show that while the optimal solution of the model relies
on the values of the key parameters, the length of the planning horizon, T', plays a significant

role in the allocation of the initial investment. Moreover, Table 7 shows that both the per-
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T=10

T =20

PV panel PV system Percentage energy Percentage energy Percentage efficiency
outl at " variable saving in cooling degree- saving in heating degree- increase in PV Stand-alone Stand-alone PV+GR SI ROL Stand-alone Stand-alone PV+GR S1 ROI
PUb - cost, V* hours by GRs, hours by GRs, panel output, PV (m?)  GR (m? (m?) § PV (m?)  GR (m?) (m?) §
QW) ysp) a 3 0
0% 2.5% 0 0 0 0.000%  0.00% 199,400 0 0 1.283%  82.43%
10% ' 10% 0 885 178,030 1.965% 63.13% 0 885 178,030  3.508% 225.45%
v 10% 2.5% 0 76,875 0 0.056%  38.76% 187,087 103,443 0 1.356% 87.12%
100 ! 10% 0 14,344 176,410 2.031%  65.26% 0 14,344 176,410  3.574% 229.68%
10% 2.5% 0 0 0 0.000%  0.00% 199,396 31 0 1.283% 82.43%
207 ’ 10% 0 885 178,030 1.979% 63.59% 0 885 178,030° 8.523% 226.39%
v 10% 2.5% 0 192,650 0 0.155% 43.22% 169,430 250,580 0 1.480% 95.14%
Y 10% 0 34,058 174,386 2.074%  66.65% 0 34,074 174,385 3.618% 232.52%
10% 2.5% 0 0 0 0.000%  0.00% 0 0 0 0.000%  0.00%
10% ! 10% 0 0 0 0.000%  0.00% 0 2,302 94,068  1.145% 73.62%
v 10% 2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
200 ! 10% 0 76,875 0 0.056%  38.76% 0 104,608 88,277 1.251% 80.43%
_10% 2.5% 0 0 0 0.000%  0.00% 0 137 0 0.000% 23.42%
20% ’ 10% 0 0 0 0.000%  0.00% 0 2335 94,066  1.153% 74.12%
v 109 2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641%  58.85%
10% § 10% 0 192,650 0 0.155%  43.22% 0 251,691 79,999  1.394% 89.60%
? -10% 2.5% 0 0 0 0.000%  0.00% 0 0 0 0.000%  0.00%
10% ! 10% 0 0 0 0.000%,,0.00%. 0 0 0 0.000%  0.00%
v 10% 2.5% 0 76.875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
100 ! 10% 0 76,875 0 0.056%__38:76% 0 589,660 0 0.270%  49.03%
10% 2.5% 0 0 0 0.000%  0.00% 0 137 0 0.000% 23.42%
20% ’ 10% 0 0 0 0.000% _ 0.00% 0 137 0 0.000%  23.42%
v 10% 2.5% 0 192,650 0 0.155% 13.22% 0 1,166,725 0 0.641% 58.85%
¢ 10% 0 192,650 0 0.155%, 43.22% 0 1,166,725 0 0.641% 58.85%
2.5% 0 0 0 0.000% 0.00% 0 0 0 0.000%  0.00%
109
10% 10% 10% 0 0 0 0:000%  0.00% 0 0 0 0.000%  0.00%
¢ 10% 2.5% 0 76.875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
600 ! 10% 0 76,875 0 0.056%  38.76% 0 589,660 0 0.270%  49.03%
10% 2.5% 0 0 0 0.000%  0.00% 0 137 0 0.000% 23.42%
20% ’ 10% 0 0 0 0.000%  0.00% 0 137 0 0.000%  23.42%
v 10% 2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
¢ 10% 0 192,650 0 0.155%  43.22% 0 1,166,725 0 0.641% 58.85%
10% 2.5% 199,300 0 0 2.580% 82.91% 199,300 0 0 4.122% 264.89%
10% ! 10% 0 885 178,030 7.054% 226.66% 0 885 178,030 8.584% 551.67%
! 10% 2.5% 198435 8,039 0 2.593% 83.33% 198,435 8,039 0 4135% 265.72%
100 ! 10% 0 1,589 177,955 7.110% 228.47% 0 1,589 177,955 8.640% 555.27%
10% 2.5% 199,300 0 0 2.580% 82.91% 199,300 0 0 4122% 264.89%
200% ' 10% 0 885 178,030 7.068% 227.12% 0 885 178,030  8.598% 552.61%
v 10% 2.5% 196,007 28,274 0 2.615% 84.05% 196,007 0 4.158% 267.20%
! 10% 0 3,455 177,755  7.128% 229.05% 0 177,755 8.658% 556.45%
10% 2.5% 0 0 0 0.000% 0.00% 99,750 0 1.315% 84.49%
10% ° 10% 0 2,302 94,068 2.311% 74.26% 0 2,302 94,068 3.853% 247.65%
© 10% 2.5% 0 76,875 0 0.056% 38.76% 93,643 103,443 0 1.386% 89.09%
200 Y 10% 0 10,824 93,585  2.351% 75.56% 0 10,824 93,585  3.893% 250.22%
10% 2.5% 0 0 0 0.000%  0.00% 99,748 31 0 1.315% 84.49%
20% ! 10% 0 2,302 94,068  2.319%  74.51% 0 2,302 94,068  3.861% 248.16%
v 0% 2.5% 0 192,650 0 0.155% 43.22% 84,815 250,580 0 1.508%  96.88%
20% ! 10% 0 39,001 91,849  2.381%  76.52% 0 39,001 91,849  3.924% 252.21%
© 10% 2.5% 0 0 0 0.000%  0.00% 0 0 0 0.000%  0.00%
10% b 10% 0 0 0 0.000%  0.00% 0 192 48490 1.256% 80.74%
v 10% 2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
400 ? 10% 0 76,875 0 0.056% 38.76% 0 106,739 45,386  1.340% 86.09%
-10% 2.5% 0 0 0 0.000%  0.00% 0 137 0 0.000%  23.42%
20% ! 10% 0 0 0 0.000%  0.00% 0 224 48,489 1.260%  80.99%
- 10% 2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
’ 10% 0 192,650 0 0.155%  43.22% 0 251,111 41181 1.470%  94.49%
10% 2.5% 0 0 0 0.000%  0.00% 0 0 0 0.000%  0.00%
10% ’ 10% 0 0 0 0.000%  0.00% 0 74 32,648  0.350% 22.49%
Y 10% 2.5% 0 76,875 0 0.056% 38.76% 0 589,660 0 0.270% 49.03%
600 § 10% 0 76.875 0 0.056%  38.76% 0 330,878 26,176 0.527% 33.89%
-10% 2.5% 0 0 0 0.000%  0.00% 0 137 0 0.000% 23.42%
20% ! 10% 0 0 0 0.000%  0.00% 0 804 32,648 0.353% 22.66%
| 10% 2.5% 0 192,650 0 0.155% 43.22% 0 1,166,725 0 0.641% 58.85%
¢ 10% 0 192,650 0 0.155%  43.22% 0 703,127 18,877 0.788% 50.67%

Table 7:/Areéa covered by stand-alone GRs, stand-alone PV panels, and GR integrated PV panels under
different, values for PV panel output, PV system variable cost, percentage energy saving in cooling and
heating degree-hours due to GR installation, and percentage efficiency increase in the output of PV panels
due to integration with GRs for an initial budget of $20 million available over two planning horizons of

length 7' = 10 years and 7" = 20 years.
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T=10 T=20

The rate Budget Budget
Case of energy  Stand-alone Stand-alone PV+GR ;t g1 ROI Stand-alone Stand-alone PV+GR spent S ROI
study consumption, PV (m?) GR (m?) (m?) SIZ;) PV (m?) GR (m?) (m?) I()$)
0
-60% 0 137 0 1,644 0.0009% 40.87% 0 629 0 7,548 0.0025% 69.98%
-40% 0 389 0 4,668 0.0018% 49.60% 0 3,506 0 42,072 0.0077% 41.02%
Casel -20% 0 629 0 7,548 0.0025% 67.97% 0 8,039 0 96,468  0.0138% 46.60%
20% 0 3,506 0 42,072 0.0076% 39.35% 0 45,121 0 541,452 0.0478% 36.14%
40% 0 5,474 0 65,688 0.0104% 41.99% 0 76,875 0 922,500 0.0705% 37.43%
60% 0 8,039 0 96,468 0.0136% 44.87% 0 116,127 0 1,393,524 #0:0947% 39.74%
-60% 0 137 0 1,644 0.0009% 40.87% 99,792 137 0 20,000,000,7.1776% 84.52%
-40% 0 389 0 4,668 0.0018% 49.60% 99,777 389 0 20,0005000 4.7856% 84.54%
Case 2 -20% 0 629 0 7,548 0.0025% 67.97% 99,740 999 0 20,000,000 3.5899% 84.57%
20% 0 3,506 0 42,072 0.0076% 39.35% 99,422 5,474 0 20,000,000 2.3949% 84.70%
40% 0 5,474 0 65,688 0.0104% 41.99% 99,268 8,039 0 20,000,000 2.0544% 84.85%
60% 0 8,039 0 96,468 0.0136% 44.87% 99,051 11,649 0 20,000,000 1.7997% 85.06%
-60% 0 137 0 1,644 0.0009% 40.88% 0 2,447 94,060 20,000,000 7.2069% 88.59%
-40% 0 389 0 4,668 0.0018% 49.60% 0 2,715 94,044 20,000,000 4.8064% 88.63%
Case 3 -20% 0 629 0 7,548 0.0025% 67.97% 0 2,969 94,0307:20;000,000 3.6064% 85.33%
20% 0 3,506 0 42,072 0.0076% 39.35% 0 6,019 93,857 20,000,000 2.4116% 87.87%
40% 0 5,474 0 65,688 0.0104% 41.99% 0 10,824 93,585 20,000,000 2.0694% 86.89%
60% 0 8,039 0 96,468 0.0136% 44.87% 0 14,650 93,369 20,000,000 1.8130% 87.18%

Table 8: Area covered by stand-alone GRs, stand-alone PV panels{ and GR integrated PV panels under
different values of §, for an initial budget of $20 million available oyer two plafining horizons of length T' = 10
years and T = 20 years for the cases presented in Table 5.

centage energy saving in cooling and heating degree-hours due to GR installation, a and S,
and percentage efficiency increase in the output of PV panels due to integration with GRs, 6,
can significantly affect the optimal solution. \The values of o and 3 rely on several different
factors, e.g., the type of green media.or isolation layer installed, and vary significantly from
one climate type to another. Hence; region-specific studies are needed to accurately estimate
these parameters before large-sealelimplementation. In addition, to the best of our knowl-
edge and despite the overwhelming evidence on the benefits of PV-GR integration, these
benefits are not completély characterized in the literature. Hence, there is a need to further
investigate and quantify this efficiency increase to better justify large-scale investments.
Table 8 presents the results of a sensitivity analysis with respect to percentage change
in energy consumed for space conditioning over the planning horizon, ¢, using its estimated
valuéswas presented in Table 2, for the three cases presented in Table 5. First, note that
the optimal solutions presented in Table 8 are more or less consistent with those presented
in Table 6, where 6 = 0. That is, when 7" = 10, under the optimal solution, only a small
proportion of the available budget is spent and only stand-alone GRs are installed. Also,

when 7' = 20, in Case 1 only a limited number of stand-alone GRs are installed, whereas in
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Cases 2 and 3, the majority of the available budget is spent to place stand-alone PV panels
and GR integrated PV panels, respectively, and the remaining budget is used for stand-
alone GRs. In all three cases, the total area of installed GRs (i.e., stand-alone GRs and
GR integrated PV panels) increases in ¢, whereas the total area of installed PV panels (i.e.,
stand-alone PV panels and GR integrated PV panels) decreases in §. Note that™a larger §
means a higher amount of energy consumption over the planning horizon. -Henceywhen
is large, GRs, which can save a fraction of the total energy consumed,<provide additional
benefits compared to PV panels. Therefore, as ¢ increases, the model allocates a larger
portion of the budget to GRs.

It is interesting to note the extent to which the value of ¢ ‘affects the decisions. For
instance, when 7" = 20, the increase in 0 drastically increases.the total area of installed
stand-alone GRs in Case 1, whereas this increase is more modest in Case 2 and especially in
Case 3. This is mainly because in Case 1, not all of'\the budget is allocated. Also, only GRs
are economically profitable. Hence, as d increases,“additional GRs are installed to provide
further benefit. However, in Case 2, in whieh all of the budget is already allocated, for
stand-alone GRs to be further prioritizedwover stand-alone PV panels, the energy savings
achieved through their installation must be higher than the energy generated by PV panels.
Therefore, the increase in ¢ enly*modestly increases the area of installed stand-alone GRs.
In Case 3, in which again‘all of the budget is already allocated, PV panels installed enjoy an
increase in the output, as a result of integration with GRs. Therefore, compared to Case 2,
stand-alone GRsdface - more resistance in being prioritized over GR integrated PV panels,
hence a slower growth in the total area of installed stand-alone GRs in this case.

Moregver, forthe cases in which all of the budget is spent under the optimal solution,
i.e., in Cases-2 and 3 when T = 20, SI decreases, whereas ROI increases in §. Recall that
higherdevels of ¢ leads to higher levels of profit through the installation of GRs. Therefore,
given the same $20 million budget, the amount of savings increases in ¢, resulting in higher
profit and ROI. However, because the amount of increase in GR energy savings is smaller
than that of energy consumption, SI decreases in 9.

Lastly, for the cases in which only a small proportion of the budget is spent on installing
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T =10 T =20

Annual per m?

Budget Budget
PV panel maintenance Stand-alone Stand-alone PV+GR ° Stand-alone Stand-alone PV+GR ©
Case study p o PV (m?) GR (m?) (m2) spent SI ROI PV (m?) GR (m?) (m2) spent ST ROIL
cost, T (%) (%) ()
0.15 0 999 0 11,988 0.0033% 75.82% 0 21,969 0 263,628  0.0283% 37.97%
Case 1 0.62 0 999 0 11,988 0.0033% 75.82% 0 21,969 0 263,628 0.0283% 37.97%
0.92 0 999 0 11,988 0.0033% 75.82% 0 21,969 0 263,628 0.0283% 37.97%
0.15 0 999 0 11,988 0.0033% 75.82% 98,122 2,295 0 20,000,000 2.8307% 81.93%
Case 2 0.62 0 999 0 11,988 0.0033% 75.82% 94,001 2,295 0 20,000,000 2.7118% 74.28%
0.92 0 999 0 11,988 0.0033% 75.82% 91,317 3,506 0 20,000,000 2.6372% 69.49%
0.15 0 999 0 11,988 0.0033% 75.82% 0 6,140 92,525 20,000,0001.2.8476% 84.96%
Case 3 0.62 0 999 0 11,988 0.0033% 75.82% 0 4,018 88,876 20,000,000 2.7291% 77.13%
0.92 0 999 0 11,988 0.0033% 75.82% 0 4,362 86,470  20,000,0001,2.6547% 72.41%

Table 9: Area covered by stand-alone GRs, stand-alone PV panels, and GR integrated, PV panels under
different values of C*, for an initial budget of $20 million available over two planning horizons of length
T = 10 years and T = 20 years for the cases presented in Table 5.

stand-alone GRs under the optimal solution, i.e., Cases 1-3 when 7' =, 10 and Case 1 when
T = 20, the amount of budget spent and SI both increase in 4. This is mainly because higher
0 increases the achievable profit through the installation of GRs, making this practice a viable
option for a larger number of candidate sites. As a result, a larger proportion of the budget is
used to install a larger area of GRs across the candidate sites, leading to higher values of SI.

Table 9 presents the results when maintenanee costs are directly incorporated into the
model, using the estimated values as presentedyin Table 2, for the three cases presented in
Table 5. First, note that for in all cases when 7' = 10 and in Case 1 when T = 20, the
results in Table 9 remain the same, as those obtained when maintenance costs are assumed
to be the property owners’. Tesponsibility, presented in Table 6. This is because in these
cases, it is not optimal to imstall PV panels even without incorporating their maintenance
costs directly into thewmodel and accounting for PV maintenance costs only makes them a
more costly, and hence less favorable, option.

As seen in Table 9, for Cases 2 and 3 when T' = 20, accounting for PV panel maintenance
costs impacts the optimal solutions and negatively affects the ROI and SI metrics. In general,
consistent with the intuition, the higher the PV maintenance cost, the more costly the PV
panels'and hence, the lower the the total area of PV panels installed. In particular, in Case 2,
when the annual per m? PV maintenance cost increases from $0.15 to $0.62, stand-alone
PV panels become more expensive and the portion of spent budget that is allocated to PV

panels results in fewer square meters of PV panels. When the annual per m? PV maintenance
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cost increases further from $0.62 to $0.92 , stand-alone PV panels become a less favorable
option compared to stand-alone GRs and hence, more of the budget is spent on the latter
and the total area of stand-alone PVs drops further. A similar trend is observed for Case 3,
in which as the per m? PV maintenance cost increases, GR integrated PV panels become
more expensive and consequently, the portion of spent budget that is allocated to'PV panels
results in fewer square meters of PV panels. However, in this case, GR integrated PV panels
generally remain a favorable option despite the increase in their cost. Hence ‘as the annual
per m? PV maintenance cost increases, a larger portion of the budget is allocated to GR
integrated PV panels to mitigate the effect of their increased cgst. Finally, the remaining
portion of the budget that is not spent on installing GR intégrated-PV panels is allocated
to install stand-alone GRs.

Finally, we investigate the impact of using the averages of the daily projections over all
grids spanning the City of Knoxville, instead of the true projections for each grid, when
calibrating the model. As discussed, the daily, temperature projections are generated for
grids of sizes 1 km? and 4 km?2. The daily maximum and minimum temperature projections of
the 10 CGCMs show a variation across grids in the City of Knoxville. For instance, Figures 6a
and 6b depict the heat map of avérage daily maximum and minimum temperatures over the
year 2030 projected by the ACCESS'CGCM across 4-kilometer wide grids for the City of
Knoxville. Other climaté models show a similar pattern, indicating the variation in the
hourly temperatures-over different grids.

Here, we examing-the"impact of accounting for the exact projections provided for each
grid through /@ grid-based calibration approach. Specifically, we calculate the total number
of cooling” and heating degree-hours for each 4 km? grid separately, assign each candidate
site with the-parameters of their corresponding grid, and then resolve the model. Table 10,
which'\is analogous to Table 6, presents the optimal solution for two planning horizons of
length T" = 10 years and T" = 20 years for the three cases presented in Table 5. As seen
in the table, more GRs are installed under the grid-based calibration approach. For in-
stance, in Case 1 for T" = 20 years, the optimal solution prescribes to increase the total

area of stand-alone GRs installed by 80%. This is due to the fact that most of the small
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(a) Average daily maximum temperature. (b) Average daily minimum temperature.

Figure 6: Heat map for average daily maximum and minimum temperatures over the year 2030 projected
by the ACCESS CGCM across 4-kilometer wide grids for the City 6f. Knoxville.

T=10 T =20
Stand-alone Stand-alone PV+GR Budget g1 ROI Stand-alone, Stand-alone PV+GR  Budget S ROI
PV (m?)  GR (m?) (m?)  spent PV, (m?%) “GR (m?) (m?) spent
Case 1 0 2,813 0 33,756 0.0076% 43.98% 0 39,5651 0 474,612 0.0505% 36.75%
Case 2 0 2,813 0 33,756 0.0076% 43.98% 99,521 3,818 0 20,000,000 2.8736% 84.68%
Case 3 0 2,813 0 33,756 0.0076% 43198% 0 5,989 93,859 20,000,000 2.8941% 87.83%

Table 10: Optimal solution for an initial budgeétyof $20 million available for investment over two planning
horizons of length T' = 10 years and 1" = 20 years for the cases presented in Table 5 under the grid-based
calibration approach.

and medium buildings in the/City of Knoxville are located in the warmer grids and they are
assigned a higher number of.cooling degree-hours under the grid-based calibration approach.
Hence, by installing mere GRs the model can achieve more energy savings and consequently
a higher profit. The increase in energy savings is also reflected in the SI values. The highest
percentage of increase in SI values is equal to 2.22% for Case 1 when T' = 20 years, which
translates into 276.5 GWh of energy saved and generated through sustainable resources.
In.general; the grid-based calibration approach provides more accurate representation of
the problem at hand. However, the solution provided in Table 10 is relatively consistent
with that of Table 6. Hence, considering that the data pre-processing for the grid-based cal-
ibration approach is much more computationally expensive, it may or may not be beneficial

to use the grid-based calibration approach depending on the specific characteristics of the
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region of interest.

4.4. Robustness Analysis

As discussed earlier, limited data is available for estimating some of the important model
parameters. Hence, it is not unlikely that these parameters are wrongly estimated during
implementation. In this section, we conduct robustness analysis to investigatetheimpact of
parameter misspecification on the solution. Specifically, we evaluate the Tobustness of the
model with respect to parameters «, 5, and #, for T' = 10 and T =20 years, and provide
the expected loss of profit due to parameter misspecification.

Let Z* denote the total profit generated in USD given the true parameter settings. Let Z
denote the total profit generated in USD from executing theé model under extreme parameter
misspecifications. Recall that Table 2 provides the estimated parameter ranges and levels
used in the study. Hence, Z gives the total profitrgenerated when a subset of parameters
have been misspecified in the extreme, i.e., thesparameters of interest assume their maxi-
mum (minimum) values as reported in Tables2, while the true parameter values are at their
minimum (maximum). We let 2%, ¢, “and"kf denote the corresponding solution. Now let
7 denote the total profit in USDvhen the solution ¥, ¥, and /{;Af is evaluated under the

true parameter values. Lastly/ let O.denote the cost of misspecifying the parameters, i.c.,

O=7—7Z7.

Table 11 presents the robustness analysis results on the three parameters of percentage
energy saving in coolingydegree-hours due to GR installation, «, percentage energy saving
in heating degree-hours due to GR installation, 8, and percentage efficiency increase in the
output of PVipanels due to integration with GRs, #, for an initial budget of $20 million
availabletover /two planning horizons of length T = 10 years and 7" = 20 years. The
parameters «, 3, and 6 are particularly chosen as they are generally difficult to estimate and
are functions of many other factors themselves, such as the type of GR vegetation, the GR
isolation layer, and the climate. As seen in Table 11, the lost opportunity, 0, ranges between
$275 thousand and $12.4 million. Note that for 7' = 10, the values of O are not impacted

by the change in the value of  as no PV panel is installed in these cases. Overall, despite
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Percentage energy Percentage energy

Percentage efficiency

Planning horizon, Lo . L . . . z* Z (0]
T saving in cooling degree- saving in heating degree- increase in PV (USD) USD USD
hours by GRs, « hours by GRs, 3 panel output, 6 ( ) ( )
-10% 2.5% (642,680,064)  (642,306,584) 373,480
10% ’ 7.5% (642,680,064)  (642,306,584) 373,480
0 10% 2.5% (644,895,574)  (642,680,064) 2,215,510
10 ’ 7.5% (644,895,574)  (642,680,064) 2,215,510
-10% 2.5% (642,680,064)  (642,405,147) 274,917
20% ¢ 7.5% (642,680,064)  (642,405,147) 274,917
0 10% 2.5% (645,583,951)  (642,680,064)- 2,903,887
‘ 7.5% (645,583,951)  (642,6804064) 2,903,887
0% 2.5% (2,441,792,744) (2,437,914,658), 3,878,086
10% ’ 7.5% (2,442,331,322) (2,438,457,551) |3,873,771
0 10% 2.5% (2,446,274,934) (2,441,402,503) 4,872,431
2 ‘ 7.5% (2,446,791,546)4(2,441,792,744) 4,998,802
10% 2.5% (2,441,792,744) (2,439,849,247) 1,943,497
20% e 7.5% (2,442,4124330) (2,440,445,560) 1,966,770
0 0% 2.5% (2,453,338,358)(2:441,483 511) 12,354,847
0 7.5% (2,4547220,178), (2,441,792,744) 12,427,434

765

770

Table 11: Robustness analysis for different parameter combinations for. amyinitial budget of $20 million
available over two planning horizons of length T = 10 years and T =,20,years. Negative values are enclosed
in parentheses.

the significant difference among the values of O in.the.table, this difference is somewhat
small with respect to 6, when all other parameters are held constant. The values of O are
in general most sensitive with respect to the parameters «, and especially 3, and hence,
care needs to be taken when calibrating these parameters for an investment in a particular

climatic region.

4.5. Environmental Insights

Recall that the goal af the model is to maximize the overall profit from energy generated
and/or saved across a'set of regions by investing in PV systems and/or GRs. In this section,
we discuss the envirenmental implications of such an investment and provide insights on the

benefits achievable by the implementation of the proposed model.

T=10 T=20
Coal (kg) Natural gas (m®) Oil (m®)  Coal (kg) Natural gas (m3) Oil (m?)
Case 1 101,275 44,104 61 1,747,690 761,092 1,044
Case 2 101,275 44,104 61 176,663,933 76,934,444 105,564
Case 3 101,275 44,104 61 179,670,700 78,243,845 107,361

Table 12: Total amount of requisite fossil fuels to produce the electricity saved and/or generated under the
optimal solution in Cases 1-3 for two planning horizons of length T" = 10 years and T' = 20 years.
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Table 12 presents the positive impact of implementing the optimal solutions provided for
the three cases introduced in Table 5, for T" = 10 years and T = 20 years, from an environ-
mental perspective. Specifically, Table 12 presents the amount of fossil fuels needed (EIA,
2017a) to produce the amount of electricity that is generated and/or saved through the im-
plementation of the solutions provided in Table 6, after accounting for the requited energy
for manufacturing, distribution, and end-of-life processing of installed PV panels (Bankier
and Gale, 2006; Alsema and Nieuwlaar, 2000; EIA, 2018c; Frischknecht€t ali, 2015). Note
that the corresponding required energy for GRs are negligible (Bianchiniiand Hewage, 2012).
(Please see Appendix D for more detail.)

For instance, consider Case 3 in Table 6. When T = 20 yearsy-it is optimal to install
4,735 m? stand-alone GRs and 93,930 m? GR integrated PV panéls. As shown in Table 12,
implementing this solution in the City of Knoxville achieves approximately 179.7 million kg
reduction in coal usage, or equivalently, 78.2 million, m? or 107.4 thousand m? reduction in
natural gas or oil usage, respectively. According to"BIA (2017b), these values translate into
approximately 372 million kg, 152 million kg, and 309 million kg decrease in CO5 emissions,

respectively.

5. Conclusion and Remarks

In this study, we evaluate the overall profit from energy generated and saved through
installation of PV panels and ‘GRs, while incorporating future climate uncertainties and the
interaction between the practices. We study the model over two different planning horizon
lengths, 7" =10 and™I" = 20 years. The results suggest that a 10-year planning horizon
is generally too"short to allow for a profitable investment. However, a 20-year planning
horizon, whieh is also more consistent with the lifespans of PV panels and GRs, is a better
time frame for evaluating the outcomes of an investment on these green technologies. The
results also show the importance of incorporating the PV-GR integration efficiency increase
as it can significantly change the optimal solutions. The sensitivity analysis demonstrates
that different cost and output of PV panels can significantly change the optimal solution.

The sensitivity and robustness analyses show that the model is sensitive with respect to GR-
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related parameters, suggesting the need for careful calibration of these parameters before
large scale implementation in any climate region. Lastly, the results indicate that consid-
ering the long-term changes in the rate of energy consumption affects the distribution of
budget /rooftop areas between PV panels and GRs.

In this study, we only focus on the energy savings provided by GRs. Futire studies
may also incorporate other beneficial aspects of utilizing GRs in an urban=area(such as
run-off reduction, scaling down CO, emissions, and heat island mitigation)$o more accu-
rately evaluate the overall benefits of installing GRs and their significant rolé in increasing
the urban resiliency. In addition, although the developed model is capable of considering
multiple regions, due to limited data availability, especially”withwegard to future climate
projections, in this study we only focus on one region, i.es, Knexville, Tennessee. Future
studies may include using this model to evaluate investment options across multiple regions

with different climates.
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