
Towards Interactive Curation & Automatic Tuning of ML Pipelines

Carsten Binnig
1,2

Benedetto Buratti
1
Yeounoh Chung

1
Cyrus Cousins

1
Tim Kraska

1,3

Zeyuan Shang
1
Eli Upfal

1
Robert Zeleznik

1
Emanuel Zgraggen

1

1
Brown University, USA

2
TU Darmstadt, Germany

3
Massachusetts Institute of Technology, USA

ABSTRACT
Democratizing Data Science requires a fundamental rethinking

of the way data analytics and model discovery is done. Available

tools for analyzing massive data sets and curating machine learning

models are limited in a number of fundamental ways. First, existing

tools require well-trained data scientists to select the appropriate

techniques to build models and to evaluate their outcomes. Second,

existing tools require heavy data preparation steps and are often too

slow to give interactive feedback to domain experts in the model

building process, severely limiting the possible interactions. Third,

current tools do not provide adequate analysis of statistical risk

factors in the model development. In this work, we present the first

iteration of QuIC-M (pronounced quick-m), an interactive human-

in-the-loop data exploration and model building suite. The goal is

to enable domain experts to build the machine learning pipelines

an order of magnitude faster than machine learning experts while

having model qualities comparable to expert solutions.

ACM Reference Format:
Carsten Binnig

1,2
Benedetto Buratti

1
Yeounoh Chung

1
Cyrus Cousins

1

Tim Kraska
1,3

Zeyuan Shang
1
Eli Upfal

1
Robert Zeleznik

1
Emanuel Zgraggen

1

. 2018. Towards Interactive Curation & Automatic Tuning of ML Pipelines.

In DEEM’18: International Workshop on Data Management for End-to-End
Machine Learning, June 15, 2018, Houston, TX, USA. ACM, New York, NY,

USA, 4 pages. https://doi.org/10.1145/3209889.3209891

1 INTRODUCTION
Companies store customer and sales information, researchers col-

lect data by running experiments, and application or website de-

velopers store interaction logs. But all this data is useless without

the means to analyze it. Extracting actionable insights from data

has been left to highly trained individuals who have strong math-

ematics and computer science skills. They have the background

to query databases to create insightful reports and visualizations,

develop statistical models and implement scalable infrastructures

to process large and complex data. For example, it is common prac-

tice for corporations to employ teams of data scientists that assist

stakeholders in finding qualitative, data-driven insights to inform

possible business decisions. Having such a high-entry bar to data

analysis however presents several challenges. First, it presents a

major bottleneck. While research is trying to understand and pro-

mote visualization and data literacy and educational institutions

are ramping up their data science curricula there is still a shortage

of skilled data scientists. Second, and more importantly, restricting

data analysis to those with a computational background creates an

inequality. Small business owners without programming skills or

research domains where computational background might not be

as prevalent are at a disadvantage as they can not capitalize on the

power of data.

We believe that there is an opportunity for tool builders to create

systems for people who are domain experts but neither mathemati-

cians, statisticians nor programmers. We introduce the first version

of a system for Quality-aware Interactive Curation of Models,

called QuIC-M (pronounced quick-m). Making sense of data is

exploratory by nature, and demands rapid iterations and all but the

simplest analysis tasks, require humans-in-the-loop to effectively

steer the process. QuIC-M exposes the data exploration and model

building workflow through a novel pen-and-touch interface allow-

ing domain experts to seamlessly interleave data exploration steps

with curation of machine learning pipelines. At the core of QuIC-M
is an engine for automatic model discovery that takes a high-level

problem specification and constraints from the user as input and

automatically compiles a machine learning pipeline including the

relevant pre-processing as well as model building steps. Through

QuIC-M domain experts can thus build complex machine learning

models at a fast pace without the need to involve a data scientist

and without sacrificing quality.

Empowering novice users to automatically analyze data also

comes with drawbacks since it exposes them to “the pitfalls that

scientists are trained to avoid” [2]. We discussed these “pitfalls” and

how to avoid them in recent related work [1, 4]. In this paper, we

focus on QuIC-M’s architecture for automatic machine learning

pipeline discovery.

2 OVERVIEW
To enable automatic model discovery, we propose a system which

takes “problems” provided by domain experts as inputs and gen-

erates machine learning pipelines as outputs. Over time, the sys-

tem adopts and improves its performance by learning from past

problems. This section contains definitions and an overview of

our architecture and the following sections provide details about

individual parts of our approach.

A problem consists of a dataset and a target attribute for predic-

tion. Domain experts can specify problems, and potential additional

input such as constraints on which features to use or new user-

defined features, through simple gestures in our pen-and-touch

UI. Figure 1 shows the basic UI and the overall architecture of our

system. A user can specify a problem through simple drag and drop

gestures. In the example our user instructs the system to build a

pipeline that predicts “hall of fame” using the features “home runs”

and “batting average”.

Based on the problem specification, our system will then auto-

matically attempt to find and present a machine learning pipeline.

While the goal of the system is to use signals in the data and enu-

merate over the different possible models to find the best pipeline,

the human can focus on providing domain knowledge. To this end,

the pipeline enumeration process is done progressively, where the

system gradually optimizes over the space of possible pipelines, in

order to display results early to users and allow them to provide

1

https://doi.org/10.1145/3209889.3209891

predictor

targethall of
fame

features home
runs

batting-
average

Rule-based
Search Space

Cost-based
Pipeline Selection Optimization

drop
nulls

min max
scaler

label
encoder SVM

impute
mean

min max
scaler

label
encoder

random
forest

...

Figure 1: QuIC-M’s UI and architecture overview of auto-
matic pipeline search.

feedback; e.g., by providing additional model constraints or visually

changing decision planes based on domain knowledge.

During the design of our system we particularly focused on

the following aspects. (1) Progressiveness: data analysis is an ex-

ploratory and iterative process, meaning that high-latencies are

counterproductive and limit the rate at which domain experts can

produce insights. Instead of waiting minutes or hours on results,

we want users to see early results as soon as possible. We con-

sciously trade-off some performance for interactivity by making all

of our components output results in a progressive-fashion through

incremental computation; (2) User-steered: we provide different op-
portunities for better user engagement, e.g., users may fix some

parts of the pipeline and let the system fill others, and users could

change the cost model to favor specific pipelines; (3) Modularity:
usually there exist numerous implementations for each component

in our system, by explicitly specifying the interfaces of each com-

ponent, each implementation is interchangeable, thus making our

system modular and highly configurable; (4) Quality-awareness:
even with quality control techniques such as hold-outs and cross-

validation, automatic tuning and incrementally refining a model

increases the risk of finding a model which just works by chance.

While not the focus of this paper, we are therefore investigating

new safe learning to learn techniques.

For learning models based on more traditional ML techniques

such as decision trees or SVMs, our system performs its automatic

pipeline search based on three steps: Rule-based Search Space, Cost-
based Pipeline Selection and Optimization and progressively and

iteratively presents the currently best pipeline it has found back

to the user. For deep learning based techniques, we are developing

automatic tuning techniques along the lines of [5]. In this paper,

we focus on the model composition using the more traditional ML

techniques. The following sections explain these steps in detail.

3 RULE-BASED SEARCH SPACE
We use rules to create a search space of possible solutions. Rules

create easy-to-explain solutions and allow us to extend the system

by incorporating best practises from data scientists.

We denote a pipeline as an end-to-end solution to produce the

predicted targets for a given problem. A pipeline consists ofmachine

learning primitives (e.g., feature selection, pre-processing, model)

and corresponding hyper-parameters. Given a specific problem,

machine learning experts create pipelines based on their experi-

ences, for example, for a classification problem, they tend to use

classical models like SVMs. Based on this observation, we gener-

ate candidate pipelines through rules collected from best practices,

which are gathered by analyzing hand-crafted solutions for exist-

ing problems from various sources such as Kaggle competitions [3]

or the OpenML website
1
. To efficiently organize these candidate

pipelines, we define the search space as the space for all possible
candidate pipelines. Note that these best practice rules are usu-

ally parametric, which means that they can be further fine-tuned

with feedback from interactions. Therefore the search space can be

evolved through time, from a general range of possible answers to

more problem-specific.

Based on the definition of pipeline, we know that a pipeline con-

sists of two parts: (1) the structure of a pipeline, i.e., what primitives

are in the pipeline (e.g., label encoding, min-max scaling, SVM, Ran-

dom Forest) and how they are connected to form the pipeline; (2)

the hyper-parameters of these primitives. We define a pipeline arm
as a cluster of pipelines that share the same primitives but have

different hyper-parameters. Then the search space consists of lots

of pipeline arms.

Based on the definitions above, we propose three types of rules:

(1) structure rule, which generates the primitives in the pipeline; (2)

parameter rule, which specifies how to generate hyper-parameters

for each primitive; (3) enforcement rule, which checks that the gen-

erated pipeline fulfills any requirements (e.g., categorical features

have to be encoded to numerical values). For each rule, there is a

corresponding condition specifying what kinds of requirements

should be fulfilled to apply this rule (e.g., you can only use the

Random Forest classifier for classification problem), and the system

would only apply applicable rules to build the search space. Users

are also able to provide some hints to prioritize between rules, for

example, users may specify that they would like to use SVM first.

Structure Rules propose the possibly useful primitives for a spe-

cific problem (e.g., classification, regression, collaborative filtering)

or dataset schema (e.g. apply one hot encoding for categorical fea-

tures). For now, we have integrated more than 20 structure rules,

including how to encode categorical features, how to scale numeri-

cal values, how to choose model for classification, regression and

collaborative filtering problems, how to extract features from raw

text and images, how to construct the graph for graph dataset. Our

system supports classical classification, regression, collaborative fil-

tering and community detection problems, and supports processing

raw data like text, images and graphs.

Parameter Rules generate reasonable distributions for hyper-

parameters. We support uniform and log uniform distributions

for integer and float values, and uniform distribution for categor-

ical values for hyper-parameters. For example, the system may

choose linear, poly, sigmoid or rbf for kernel of SVM, and choose

a log uniform distribution for the regularization factor λ. We also

support conditions between hyper-parameters, for example, the

hinge loss and l1 norm for the penalization of the linear SVM can

not be used together.

1
https://www.openml.org/

2

Enforcement Rules check the pipeline to make sure it is valid.

For example, all the categorical features should be encoded into

numerical values; raw data should be featurized.

In the future, we are going to add more rules into the system

to make it support more problems and data types (e.g., time series,

sounds), whereas our design makes it flexible to add new rules; we

also plan to make rules learned over time, for example, adjusting the

ranges of hyper-parameters based on previous iterations. Besides,

wewill investigate how to generate rule automatically and prioritize

rules by analyzing best pipelines for some seed problems.

4 COST-BASED PIPELINE SELECTION
Considering the complexity of machine learning problems and

pipelines, the search space will be huge. To this end, we devise

a cost model to measure the "promisingness" of a pipeline. By

filtering out pipelines with high cost, we could prune the search

space, saving resources and reducing the overall search latency. For

now, we consider four factors of a pipeline in the cost model: (1) time
for training and testing the pipeline; (2) quality of a pipeline, for

example, the accuracy of classification; (3) quality gain of a pipeline,
that is, how much quality this pipeline could potentially increased

based on the last best; (4) risk of a pipeline, that is, the variance

of quality. These factors will be combined together by different

weights. For example, at first, the time is important because the

user would like to see a workable pipeline as fast as possible, then

the quality may matter much more in later iterations.

To build the cost model, we use two methods: (1) prior knowledge,
for example, a Stochastic Gradient Descent (SGD) based linear

classifier will be much faster in general than a SVM, with a little

worse quality; (2) history, we could use the results of validated

pipelines in previous iterations to estimate new pipelines. With

more iterations and more pipelines validated, the history will be

more useful and the cost model will become more accurate. In other

words, the cost models can be learned as well.

5 OPTIMIZATION ALGORITHMS
The pruned search space X obtained by the rule-based model con-

tains all the possible candidate pipelines that are significant for the

task given by the user. This search space is received as an input by

the optimizer. Then consider a fitness function f which evaluates

a pipeline on a sample S returning a real value fS : X →R. The
returned value can be an arbitrary metric that we want to use to

evaluate the pipelines. Finally let’s define x∗ as the best pipeline,
that is x∗ = arдmaxx ∈X fS (x) and y∗ = fS (x

∗) as the score that

pipeline x∗ obtains on this task S . In other terms y∗ is the best

possible obtainable performance for task S .
X is a highly heterogeneous space, with real, discrete and cate-

gorical features with conditional dependencies among them (e.g.,

SVM’s γ and c have no meaningful interpretation under Random

Forest). Additionally, we do not have any information about the

analytical form of fS so we want to use it as an oracle by evaluating

the pipelines performance and perform black-box optimization.

Here are several ways to perform this optimization:

• Model-Free: the optimizer probes the oracle function fS
with some sampling and evaluation strategy that do not

rely on a specific model. Examples in this category are: Grid

Search, Random Search, Multi-armed Bandits.

Figure 2: Optimization loop: (1) surrogatemodel, (2) sampled
pipelines, (3) multi-armed bandits early termination strat-
egy, (4) evaluation results, (5) surrogate model update

• Model-Based: the optimizer uses a surrogate modelMfS of

fS built and updated out of the evaluation of the oracle itself.

The surrogate model is designed to be treatable replacement

of the original function, which is used to adaptively explore

the search space. Examples in this category are: Cost-Based

Pipeline Selection, Bayesian Optimization, Simulated An-

nealing.

The first two strategies are not in conflict with each other. As

shown in figure 2 we can use model-based techniques to achieve the

global optimum x∗ sampling n most promising pipelines fromMfS
and use bandits to optimally allocate the budget by enforcing early

termination during the evaluation stage. In order to accommodate

the needs of the end user, the optimizer needs to provide both

strong anytime results as well as very good final accuracy. This

allows QuIC-M to be interactive while eventually delivering the

best possible pipeline.

We designed Adaptive Pipeline Selection (APS), a “multi-armed

bandits”-like early termination strategy to sub-optimally allocate an

evaluation budget tom pipelines (arms). We split the data into inde-

pendent train and validation sets and randomly samplem pipelines

from X. Additionally, we split the train set into smaller samples of

increasing size. The APS algorithm gets an input training set St ,
a validation set Sv , number of sub-epochs n and number of meta-

epochs N . Adaptive Selection Algorithm works over two time-scale

phases: n sub-epochs and N meta-epochs .

• A sub-epochs is a training phase in which the sampledm
pipelines train on a subset of the whole dataset. At the i-th
sub-epoch we have survivalmi

pipelines that are going to

train on
|S | ·i
n samples.

• A meta-epoch is composed by a sequence of n sub-epochs.

After a whole meta-epoch the survival pipelines have used

the whole training set at least once.

At the end of each sub-epoch we are apply to themi
pipelines

the following halting criteria:

Halting Criteria 1. At sub-epoch i , ∀mi
j ∈ mi pipelines train

them on a sub-sample of S of size |S | ·i
n and compute their train error.

If the pipelinemj training error is above the best validation error seen
so far, terminate it.

Our assumption here is that the training accuracy can be safely

considered as a reasonable upper bound to the best validation accu-

racy achievable with the pipeline; thus, we halt pipelines of which

3

Algorithm 1: Adaptive Pipeline Selection
input : meta_num, sub_num, arms_num, X_train,
y_train

1 interval_size = int(ceil(X_train.shape[0]/sub_num))

2 pips = []

3 kills = 0

foreach meta_epoch ∈ range(meta_num) do
4 X_valid, y_valid = get_fresh_validation_data()

5 pips = sample_pipelines_adaptively(pips, arms_num)

foreach
start ∈ ranдe(0,X_train.shape[0], interval_size): do

6 if start + interval_size < X_train.shape[0] then
7 end = start + interval_size

else
8 end = X_train.shape[0]

9 X_train_sub = X_train[0: end]

10 y_train_sub = y_train[0: end]

foreach pip ∈ pips do
11 pip.fit(X_train_sub, y_train_sub)

12 train_score, valid_score = pip.score(X_train_sub,

y_train_sub, X_valid, y_valid)

if valid_score > best_valid_score then
best_valid_score = valid_score

13 if train_score < best_valid_score then
14 pips.remove(pip)

15 kills += 1

16 return best_pipeline(pips)

training accuracy drops below the best validation accuracy seen

thus far. A meta-epoch ends in two cases: when its sub-epochs rou-

tines use the whole training set or no pipeline have survived to the

previous halting criteria. In the latter case, we apply the following

stopping rule:

Halting Criteria 2. At sub-epoch i , if no pipeline survived from
the previous sub-epoch i − 1, abort the whole meta-epoch.

It is important to notice that during the last n sub-epoch the

survivalm pipelines are trained on the whole dataset. At the end of

each meta-epoch, we compute the validation score for each pipeline

and update the surrogate model with those results. At this point,

we start a new meta-epoch by adaptively sampling new n pipelines

from X based on the updated surrogate model a new additional

independent validation dataset. The validation data independence

is crucial, because otherwise our surrogate model would overfit to

a specific validation set. In this way APS can directly influence the

evaluations running time by controlling the amount of data that is

given to the pipelines. This is crucial in a distributed setting, where

intra-cluster communication is usually the main bottleneck. By

reducing the amount of distributed we can mitigate this problem.

6 PRELIMINARY RESULTS
To demonstrate the advantages of our system, we implemented a

prototype with above mentioned techniques, the source code is at

https://gitlab.com/BrownBigData/IDEA. We collected 85 datasets

Figure 3: Comparison of F1 macro scores between hand-
crafted (Baseline Score) and automatically found classifica-
tion pipelines using QuIC-M over 85 datasets.

from OpenML
2
, allocated 300 seconds running time for each

dataset, and compared best pipelines found by our system with

hand-crafted solutions. As shown in Figure 3 the current implemen-

tation of our system is able to generate solutions for classification

tasks which are on par with hand-crafted solutions.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose QuIC-M , an interactive data exploration

system for automatic searching and tuning of machine learning

pipelines. QuIC-M used best practice rules to generate the search

space of pipelines, and employed cost models to select promising

pipelines. Further, we devised an adaptive pipeline selection algo-

rithm to traverse this search space. Preliminary results showed that

QuIC-M can find solutions comparable to hand-crafted ones.

We plan to extend our prototype to support more problems, in-

clude recent reinforcement learning techniques for automatically

finding neural net architectures and to provide better quality guar-

antees for the pipelines that it finds. Moreover, we are going to

extensively benchmark our system to understand more about the

differences between our system and hand-crafted solutions and to

run user studies to evaluate the user interface aspect of our system.

REFERENCES
[1] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig, and Tim

Kraska. 2015. Vizdom: interactive analytics through pen and touch. Proceedings
of the VLDB Endowment 8, 12 (2015), 2024–2027.

[2] Danyel Fisher, Rob DeLine, Mary Czerwinski, and Steven Drucker. 2012. Interac-

tions with big data analytics. interactions 19, 3 (2012), 50–59.
[3] Mark Senn. 2017 (accessed December 29, 2017). Kaggle Competitions. https:

//www.kaggle.com/competitions

[4] Zheguang Zhao, Lorenzo De Stefani, Emanuel Zgraggen, Carsten Binnig, Eli

Upfal, and Tim Kraska. 2017. Controlling false discoveries during interactive

data exploration. In Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 527–540.

[5] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement

learning. arXiv preprint arXiv:1611.01578 (2016).

2
https://www.openml.org/

4

https://gitlab.com/BrownBigData/IDEA
https://www.kaggle.com/competitions
https://www.kaggle.com/competitions

	Abstract
	1 Introduction
	2 Overview
	3 Rule-based Search Space
	4 Cost-based Pipeline Selection
	5 Optimization Algorithms
	6 Preliminary Results
	7 Conclusion and Future Work
	References

