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Abstract—We propose a new algorithm to improve the
strong scalability of right-looking sparse LU factorization on
distributed memory systems. Our 3D sparse LU algorithm uses
a three-dimensional MPI process grid, aggressively exploits
elimination tree parallelism and trades off increased memory
for reduced per-process communication. We also analyze the
asymptotic improvements for planar graphs (e.g., from 2D grid
or mesh domains) and certain non-planar graphs (specifically
for 3D grids and meshes). For planar graphs with n vertices,
our algorithm reduces communication volume asymptotically
in n by a factor of & (\/ logn) and latency by a factor of & (logn).
For non-planar cases, our algorithm can reduce the per-process
communication volume by 3x and latency by @(nﬁ) times. In
all cases, the memory needed to achieve these gains is a constant
factor.

We implemented our algorithm by extending the 2D data
structure used in SUPERLU_DIST. Our new 3D code achieves
speedups up to 27x for planar graphs and up to 3.3x for non-
planar graphs over the baseline 2D SuperLU_DIST when run
on 24,000 cores of a Cray XC30.

I. INTRODUCTION

We wish to improve the strong scalability of sparse direct
solvers, which solve a system of linear equations Ax = b,
where coefficient matrix A is large and sparse, by Gaussian
elimination or sparse LU factorization. They are notorious
for their complex data dependencies, irregular memory access
patterns, and highly dynamic arithmetic intensity, which in
turn depends on the sparsity pattern of A. Compared to
its dense matrix counterpart, communication in a sparse
solver can quickly dominate at even relatively small core
counts. While techniques like overlapping computation and
communication can be effective, they only work well when
the computation and communication costs are comparable.
In the strong scaling regime, communication must eventually
become relatively more expensive.

Thus, we are motivated to redesign algorithms to re-
duce communication, as the recent flurry of research on
communication-avoiding algorithms suggests. There, one
critical strategy is to shrink the amount of data transferred
through redundant computation, data replication, or both.
There are several examples for dense linear algebra [10],
[11], [18], including some for dense LU [21], [34]. However,
precisely how to apply communication-avoiding methods to
sparse LU has been open.
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In this paper, we describe our design and implementation
of the first such method, which we refer to as a 3D sparse
LU factorization algorithm. It is so-named for two reasons,
both inspired by the 2.5D dense LU algorithm [34]. First, it
uses a 3D logical process grid, instead of the 2D process grid
that is the state-of-the-art in sparse LU. Second, it replicates
data to reduce both the number of messages and the volume
of communication. In addition, all sparse LU methods have
an elimination tree structure, which our method uses to
efficiently map the problem to the 3D process grid. As a
result, our algorithm not only reduces communication but
also reduces the critical path of the factorization—a feature
that does not apply to the 2.5D dense LU case. For matrices
with planar graph structure (e.g., planar grids and meshes),
our 3D sparse LU algorithm’s critical path is @ (n/logn)
whereas a state-of-the-art 2D algorithm’s is @ (n).

Briefly, here is how 3D sparse LU works. First, consider
the 3D process grid as a collection of 2D grids. We divide
the elimination tree into independent subtrees and a common
ancestor tree of all the subtrees. Factoring each subtree is
independent, but each factorization updates the common
ancestor tree. We map the factorization of each subtree to a
2D grid and replicate the common ancestor on all process
grids. Each 2D grid factorizes its subtree and uses its copy of
the common ancestors to perform Schur-complement updates.
We then reduce these copies onto a single grid, where it is
factored in a 2D fashion.

We implement this scheme on top of SuperLU_DIST,
using a hybrid MPI+OpenMP programming model. We
measure performance on a wide range of matrices in both
2D and 3D process grid configurations. (The baseline is
2D SuperLU_DIST.) In the best case, we observe speedups
of 27x over the best 2D process grid configuration using
1.7x the memory. We observe that our new algorithm can
use up to 16x more processors for the same problem size
with continued time reduction, which confirms its potential
to strongly scale. We also derive performance models to
help understand how the performance of the new algorithm
depends on the sparsity structure of the matrix and process
grid configuration.

II. BACKGROUND

This section provides some of the relevant background on
sparse direct solver and existing algorithm needed to under-
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Table I: List of symbols used

Symbol type  Symbol Description
P #MPI processes
Process Py, Py, P,  Process grid dlmen51?ns
Pyy Py x Py # processes in xy plane
P, (k) (k mod Py)-th process row
E Elimination tree of A
Ef Elimination tree-forest (section III-C)
Graphs S Top level separator of E
Cq, Cq Children etrees of E
n Dimension of the matrix A
nlevel Height of E @ (logn)
l logg P,
Misc. M Per-process memory
w Per-process communication
L Latency of factorization
T(v) Cost of factoring nodev
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(a) A 5x5 sparse matrix (b) The associated graph and separa-

tor
Figure 1: A sparse matrix (Fig. 1a), its associated graph (Fig. 1b), and
a separator (highlighted in green).
stand the new 3D algorithm. The most important concepts
include the elimination tree, which guides parallelism, as
well as the baseline algorithm, which is SuperLU_DIST.

A. Introduction to sparse direct solvers

A sparse direct solver solves a system of linear equation
Ax = b in two steps. First, it factors the matrix A into
the product A = LU, where L is a unit lower triangular
matrix and U is an upper triangular matrix. It then solves
two triangular systems, Ly = b and Ux = y, by forward
and backward substitution. Calculating the L and U factors
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(a) A 3x3 block sparse (b) The L and U factors
matrix

Figure 2: In Fig. 2a, we show the block sparse matrix A obtained
from nested dissection of the adjacency graph of A. The L and U factors
overwrite A after the factorization, as shown in Fig. 2b. The elimination
tree (Fig. 2c¢) captures the dependencies between the factorization of A1y,
Agg, and Ags.

909

usually takes much more time than substitution. When A is
sparse, the factor matrices L and U tend to fill-in, meaning
they have many more non-zeros than A. Usually, before
factorization, the A matrix is permuted to reduce the amount
of fill-in in L and U.

B. A sparse matrix, its associated graph, and separators

Any sparse matrix A of dimension »n has a corresponding
graph G with n vertices. For any non-zero element a;; in
A, there is a directed edge in G from i to j with weight a;;.
In Fig. 1a, we show a pentadiagonal matrix, which might
arise from a finite difference discretization of a PDE on a
2D square grid, as shown in Fig. 1b.

A separator S of the graph G is a subgraph which
partitions G into three disjoint subgraphs (C1, S, Cg) so
that C; and Cg are disconnected. A good separator is small
and the partitions C; and Cg are balanced. In Fig. 1b,
we highlight a separator in green. Using this partition, we
order the sparse matrix A so that vertices in C; and Cg
come first, followed by the vertices in S. For instance, the
block sparse matrix in Fig. 2a shows one such ordering,
where Aj11, Agg, and Agz correspond to Ci, Cg, and S
respectively, with remaining submatrices representing the
edges that connect these partitions. Then, C; and Cg can be
recursively partitioned to get more disjoint subgraphs of A, a
process known as nested dissection (ND). Graph partitioning
tools like METIS can compute ND partitions [25].

C. Sequential Sparse LU factorization

Consider the LU factorization of the 3 x 3 block sparse
matrix shown in Fig. 2a. The L and U factors are computed
iteratively. There are three main steps involved in the
factorization:

1) Diagonal factorization: A;; — L;;U;;

2) Panel update: U;j = Li_ilAij and Lj; :AjiUi_il

3) Schur-complement update: Ajp = Ajp—L;;Ujp,

D. Dependency tree in sparse LU factorization

Factoring the diagonal blocks proceeds sequentially in the
dense LU factorization, but not so in sparse LU. In the 3 x 3
block sparse matrix example, block 1 (A1;) and block 2
(A29) may be factored independently and so in any order.
But the factorization of block 1 and 2 updates the block
3 (Ass). Thus, block 3’s factorization must follow that of
1 and 2. This dependency is represented by a tree called
elimination tree or etree for short, as shown in Fig. 2c. An
etree will have multiple levels since blocks 1 and 2 are also
recursively partitioned. In Fig. 3a and Fig. 3b, we show a
larger sparse matrix and its etree.

E. A distributed algorithm: SuperLU_DIST

We build our new algorithm on top of SuperLU_DIST’s
data structure. SuperRLU_DIST is a widely used sparse
direct solver library which uses a right-looking scheme
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Figure 3: A distributed sparse matrix and its elimination tree. Suppose
the block sparse matrix of Fig. 3a is distributed in a 2 x 2 process grid.
Each circle represents a non-zero block and number denotes the process-id
that owns the block. Fig. 3b shows the etree.

and static pivoting. It uses the supernodal approach to
find and exploit dense substructures in the sparse LU
factorization. SUPERLU_DIST uses MPI for inter-process
parallelism and OpenMP for intra-process parallelism. We
also recently demonstrated GPU and Xeon-Phi acceleration
for SuperLU_DIST [32], [33]. In this paper, we focus
on reducing inter-node communication and therefore only
consider SupERLU_DIST for non-accelerated systems.

1) Data structure: SuperLU_DIST arranges MPI pro-
cesses in a 2D logical grid. In this grid, the sparse matrix is
distributed in a block-cyclic fashion. In Fig. 3a, we show a
sparse matrix distributed in 2x2 process grid.

2) Factorization algorithm: SuperLU_DIST factorizes
supernodes following a bottom-up order of the etree. We
divide the factorization of a supernode into two steps: panel-
factorization and Schur-complement update.

The panel-factorization step computes L and U panels of
the current supernode and broadcasts it to all the processes to
perform the Schur-complement update. It involves following
kernels:

1) Diagonal factorization: The process Ppp, which owns
block Ay, factors it into Ly Upp.

Diagonal braodcast: The process Ppp broadcasts Ly,
across its process row P,(k) and Uy, across its process
column P, (k).

Panel Solve: Each process in the P,(k), which owns
any block of Ap., performs triangular solves to get the
corresponding block of Uy.. Similarly, each process
in Py(k), which owns any block of A.., performs
triangular solves to get the corresponding block of
L k

Panel broadcast: Each process in P,(k) broadcasts
blocks of Uy. to its process column, and each process
in the P, (k) broadcasts blocks of L, to its process
row.

2)

3)

4)

Qualitatively, the panel-factorization step is the communica-
tion phase of the factorization. Panel-factorization involves
data transfers, synchronizations, and only a tiny fraction of
total floating-point operations.
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Figure 4: Fig. 4a shows the kernels and data involved in factoring
supernode 1. Fig. 4b shows how SuperLU_DIST uses the etree for pipelining
panel-factorization and Schur-complement update.

Following panel-factorization, each process updates its part
of the trailing matrix, also known as Schur-complement. If
a process owns A;; in the trailing matrix, then it updates it
using the received L and U panels by
The L;;, and Uy; are sparse blocks. To perform the above
update, we first pack L;; and Uy into dense BLAS compliant
format. Then, we use dense BLAS level 3 routines to compute
the product V = —L;,Uy;. Finally we compute the mapping
from V back to A;; and update A;; element-wise.

The Schur-complement update is the main computational
step in the factorization. It accounts for most of the floating
point operations in the factorization. It also involves a lot of
local indirect memory accesses.

In Fig. 4a, we show the regions of the matrix that
participate in the different steps when we factor the first
supernode. Interested readers can find detailed pseudocode
and descriptions of the inner workings of the algorithm
elsewhere [32], [36].

F. Task scheduling and the elimination tree

SuperLU_DIST uses the etree’s parallelism to overlap
computation and communication. It concurrently performs
the Schur-complement update of a supernode and panel
factorization of nodes in a so-called lookahead window [36].
In the bottom-up ordering of factorization of the etree, leaf
nodes are factored first. So panel-factorization of the next
several nodes do not depend on the panel-factorization or
Schur-complement update of the current node. As such,
SuperLU_DIST performs panel factorization of the supern-
odes ahead of their Schur-complement update. But the
Schur-complement update of the nodes in the lookahead
window cannot be performed in parallel, because the Schur-
complements of the leaf nodes may share common blocks
of the matrix A. Therefore, SupERLU_DIST sequentially
performs the Schur-complement update of each supernode.

Usually a large lookahead window creates too many in-
flight messages and requires too much buffer space for the
incoming messages. So the lookahead window typically has
a fixed size in the range 8-20 steps.
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Figure 5: How 3D sparse LU works for a block sparse matrix A (Fig. 2a)
using 2 process grids. The sparse blocks 1 and 2, and their panels, reside
on grid 1 and grid 2, respectively. Block 3 is replicated in both the grids
and is initialized with Agg and 0 on grid 0 and grid 1, respectively (the
initial state). The two grids factor their respective blocks and Schur-update
their copies of the block 3. Then, we reduce the 3rd block from both grids
onto grid 0, which is then factored on grid 1. Lastly, the L and U factors
are distributed among the two process grids (final state).

G. Limitations of 2D Sparse LU

The 2D algorithm scales well up to a certain point, beyond
which the cost of data transfer starts to dominate the cost
of computation. Moreover, at a large number of processes,
the effect of load-imbalance becomes more prominent. So
after a certain number of processes, we see that adding more
processes can cause a slowdown in the factorization time.
Fundamentally, the 2D algorithm suffers from the following
two major limitations.

Sequential Schur-complement update: For a given block,
only one process can perform the Schur-complement update
in the 2D algorithm. So despite abundant tree-level paral-
lelism, the 2D algorithm must perform all Schur-complement
updates sequentially.

Fixed latency cost: Almost all processes participate
in the factorization of all the supernodes. So the latency
of various communication kernels does not decrease with
increasing number of processors.

III. A 3D SpARSE LU FACTORIZATION ALGORITHM

How can we perform the updates on a given block A;; in
parallel by two different processes? The 2D algorithm uses an
owner-only update policy. So, the Schur-complement update
on a given block is sequential. This motivates our approach
of replicating some blocks of A on different processes. Doing
so allows the Schur-complement updates on those blocks to
proceed in parallel. But how do we choose such blocks and
processes to replicate?

A. The 3 x 3 block sparse case

We can use the etree to decide how to replicate data.

Consider the 3 x 3 block sparse matrix shown in Fig. 2a and
its etree. After factoring blocks 1 and 2, the block A3ss needs
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Figure 6: A two-level partition of the elimination tree and its mapping into
4 process grids. Here A; ={A;; UA; ;11 :nUA 41 :n, i}, represents the set
of three sub-matrices a) the diagonal block matrix A;;; b) horizontal off
diagonal panel A; ;1 .5; and c) the vertical off diagonal panel A; 1.y, ;.
updates from both blocks 1 and 2, according to
Az =A"33-L31U1s — Lz Ass.

We can replicate and keep two copies of the block Ags. The
first copy accumulates A%35 — L31U;3 from the factorization
of the block 1; the second copy accumulates —L32U23 from
block 2. We then sum the two copies to get final form of
Agss before factoring it. Thus, the replication of Agg allows
parallel Schur-complement update of block Ass. Fig. 5 shows
the timeline of this process.

Formally, we carry out this process as follows. Let E be the
etree of the matrix A. We partition E into two independent
subtrees, C; and Cg, and a common parent S (Fig. 7a). We
partition A into A% = A(C1)UUA(S) and A = A(C2)UA(S)
(Fig. 7c and Fig. 7e). We factor A and A? in two 2D process
grids, grid-0 and grid-1. In grid-1, we initialize the blocks
of A(S) with zeros. Grid-0 and grid-1 factor C; and Cq in
parallel and update their copy of A(S). After the factorization,
they synchronize, and grid-1 sends its copy of A(S) to grid-0:

A%9)=A"S)+A%S)
Then the grid-0 factors the updated copy of A(S).

The two process grids only need to communicate once. In
section 1V, we show that this is a small fraction of the total
communication. Furthermore, now each process factors a
smaller number of supernodes, which reduces latency.

B. General Case

Suppose we want to use four 2D grids, instead of two. We
can divide the etree in one more level. For instance, in Fig. 6,
we have a two-level etree that we divide into four partial
etrees. The root (node-0) of the etree is replicated in all the
grids. In the first level, we replicate node 1 on grids 0 and
1, and node 2 on grids 3 and 4. In the second level, all the
nodes lie on only one grid.

Process grids 0 and 1 synchronize after they have factored
nodes 3 and 4, respectively. Then process grids O and 1,
reduce all the common ancestor nodes, namely nodes 1 and
0 on grid-0. Similarly, process grids 2 and 3 synchronize
after they have factored nodes 5 and 6 respectively. Then
process grids 2 and 3 reduce all the common ancestor nodes,
namely nodes 2 and O on grid-2.

In the second step, only grid-0 and grid-2 are active. They
factor nodes 1 and 2, and they reduce the updates on node 0
to grid-0. And in the last step, grid-O factors node 1. We can
generalize this process for any P, = 2!, which is Algorithm 1.
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Figure 7: Data dlstrlbutlon in 3D sparse LU algorithm. The elimination tree of the block sparse matrix in Fig. 3a is divided into common ancestor C and
subtrees S1 and Sg as shown in Fig. 7a. The C; and Cg subtree reside and are factored in process grid-0 and grid-1 respectively, whereas S is replicated
in both the 2D grids. Fig. 7b and Fig. 7c show the local elimination tree and the data distributed in grid-0, respectively; and Fig. 7d and Fig. 7e show the

same for grid-1.
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Figure 8: Inter-grid load balancing: an unbalanced elimination tree with
2 ways of mapping nested dissection and a greedy heuristic, and the cost of
factorization in the critical path (T(E) = T(S) + max{T(Cy1), T(C2)}). The
cost of factorization of each node is shown in red.
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C. Inter-grid Load Balancing

When the sub-trees at the top level are unbalanced, we
may further divide the subtrees to another level to get better
balance. For instance, in Fig. 8, we show an elimination
tree with the cost of factorization of each node. This tree is
unbalanced at the top level. The ND ordering (shown Fig. 8
in left) to partition the etree is sub-optimal. We show a
better partition of the etree, obtained by dividing the subtrees
another level, in the right of Fig. 8. This partition has a
smaller critical path of cost 75 units versus the ND partition
that gives a critical path of length 95 units. In some cases,
we may need to divide one of the subtrees even further to
obtain the desired balance. We use a greedy heuristic to find
a partition so that 7'(S) + max{T'(Cy), T(Csg)} is minimized,
where T'(C) is the cost of factoring nodes in the subtree C.
However, we do not know the cost of factoring each node.
We use the number of floating-point operations in factoring
of a node as a heuristic cost function T'(C).

Elimination tree-forest E¢: Our greedy heuristic gives a
partition of the etree E that can have multiple disjoint subtrees
as a node. For instance, in the right partition of Fig. 8, the
second child Cy consists of two unconnected components.
So the final partition of the etree is a tree of forests, which
we call Elimination tree-forest E¢. The E; obeys the same
dependency rules as E. The previous discussions of etree
partitioning and mapping to grids remains the same for Ef
as well.

The elimination tree-forest has [ =logyP, levels. Each
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grid only stores the local elimination tree-forest. The local
elimination tree-forest stores the forests for each level of E.
For example, for the partition shown in the right on fig. 8,
local Ef for grid-0 and 1 is [S,C1] and [S, C2], respectively.
Each forest is stored as a list of nodes in bottom-up order.
So S =[0], C; =[4] and C2=13,5,6,2].

D. The Pseudocode of the 3D Sparse LU Factorization
Algorithm

Algorithm 1 3D Sparse LU factorization algorithm

1 function dSparseLU3D(A, Ey):

2 # All process grids execute this function in
parallel. P, 1is the number of 2D grids
P2<—21. Each process—-grid has a unique
pz€{0,... P,—1}. Ef is the local elimination
tree-forest (section III-C).

3 for vl in [:0 :

if pzszZ’lvl for some integer k:

—
(.
—

[

4

s #At lvl-th level the only grids that participate
— are those numbered as a multiple of gl-lvl
— The following call factors all supernodes of
— this level Ef[lvl] in the 2D grid, and
— performs the Schur-complement update on
— their copy of ancestor blocks.

6 dSparseLU2D(A,Ef[lvl])

7 if lvl>0:

8 if k(mod 2)=0 # Note pZ:k2l’lvl

9 dest=p,

10 src=p, +2l7tv

1 else:

12 src=p;

13 dest=p, —gl-lvl

14 for lg in lvl-1: O:

15 # Any supernode s in Ef[la] consists of blocks

= As={AssUAs, s+1:nUAs+l:n, st. If any process
with co-ordinate (px,py,src) owns any block of
Ag, then it will send that block to the
process with coordinate (px,py,dest), which
then reduce the two copies.
for seEf[la]:
if py=src:
Send A§™¢ to dest
else :
Receive A§¢ from src

Adest Adest +Asrc

[N




The pseudocode of the 3D sparse LU factorization appears
in Algorithm 1. The parameter P, = 2! is the number
of 2D process grids, i.e., P, is the number of processes
in the “z-dimension” of the 3D process grid. And Ey is
the elimination tree-forest, the output of our load-balance
heuristic. Each process grid only stores forests that resides
the grid, and the each forest is stored as list of nodes.
The factorization progresses from leaves [vl =1 to the root
lvl =0. We use another variable ilvl =1 —1[vl to simplify
lengthy index expressions in Algorithm 1. The two main
subroutines invoked at any level are dSparseLU2D and
Ancestor-Reduction.

1) dSparseLU2D(A, nList): My process grid performs
the 2D factorization of nodes in the nList on my copy
of the matrix A. The forest Ef[tr] is passed on to
dSparseLU2D as a list of supernodes. Since we use
SuperLU_DIST as the baseline data structure, in our
implementation dSparseLU2D is a call to modified
factorization routine of SuperLU_DIST.

2) Ancestor-Reduction: After the factorization of level-
i, we reduce the nodes of the ancestor matrix before
factoring the next level. In the i-th level’s reduction,
the receiver is £2!~*1-th process grid and the sender
is (2k +1)2! 7 -th process grid, for some integer . The
process in the 2D grid which owns a block A; ; has
the same (x,y) coordinate in both sender and receiver
grids. So communication in the ancestor-reduction step
is point-to-point and takes places along the z-axis in
the 3D process grid.

Aside from these two steps in Algorithm 1, the rest are index
calculations.

IV. ANALYSIS OF MEMORY AND COMMUNICATION COSTS

How well Algorithm 1 performs relative to the baseline
depends on the sparsity pattern of the matrix. However, we
can derive analytical expressions of performance on certain
model problems, and thereby gain some insight into the
algorithm’s behavior. Our analysis considers two types of
input matrices. The first are associated with planar graphs,
such as those that arise when discretizing partial differential
equations (PDEs) on 2D domains. The second type are
those that arise with 3D PDEs, which have a “well-shaped”
geometry but are non-planar.

Below, we derive expressions specifically for memory use,
communication volume, and message latency (number of
messages) for the baseline SuperLU_DIST algorithm when
using a 2D process grid, given a general input matrix. Then,
we give expressions for both the 2D and 3D algorithms,
specifically for the planar (2D geometry) and non-planar (3D
geometry) model problems.

To help distinguish the 2D and 3D algorithms, which
use 2D and 3D process grids, from the 2D and 3D model
problems, which have 2D or 3D geometries, we will use
“planar” and “non-planar” to refer to the model problems.
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A. 2D Sparse LU with a generic sparse matrix

Consider the factorization of a sparse matrix A of dimen-
sion n and its elimination tree E. For simplicity, assume that
E is balanced at each level. Also assume that the levels in
E are indexed from top to bottom. Thus, the root of the tree
has level or index 0, and the later levels are indexed from
1 to nlevel, where nlevel +1 is the number of levels in E.
Let the supernode size in level-i has dimension n;. The i-th
level has 2¢ nodes.

1) Per-process memory: In sparse LU factorization, typi-
cally the LU factors of separator nodes, which are usually
dense, account for most of the storage. Thus, each node
in level-i requires a memory of n? Further suppose that
SuperLU_DIST, which uses a 2D block cyclic scheme for
distributing the LU factors, distributes the factors evenly
across P processors. So, the per-process memory, M, required

to store all the LU factors is
1 nlevel

M~z ). 2'n?. 4))
1=0

2) Per-process communication volume: The per-process
communication volume in the factorization for a dense matrix
of size n in a 2D process grid, without any data replication,

is given by O (nz/\/ﬁ) [34]".
To estimate the communication involved in the sparse
factorization, we only consider the factorization of the
separator nodes. Then the per-process communication of

sparse LU on a 2D process grid is
nlevel  p2

= 2! —L = PM)]. 2
We ), 2os=0 (vPM) @)

3) Latency: In the 2D sparse LU algorithm, each process
participates in the factorization of every supernode of the
sparse matrix. Thus, the number of steps for factorization is
O(n), and the latency L (number of messages in the critical
path) must also scale that way, i.e.,

L=0(n). 3

B. Planar input graphs

For a planar graph with n vertices, we can find a separator
of size 0 (v/n) in @ (n) time [30]. This result also holds for
other classes of graphs, like graphs with bounded genus and
graphs with excluded minors [4], [13].

The separator divides the graph into two almost equal
halves with n/2 vertices each. These subgraphs can further
be divided into two almost equal halves with a separator of
size Vn/2. So the separator in the first level is of size vVn/2
and subsequently, the size of separator in i-th level is Vn/2'.
This approximation is good when n/2! > 1. The number of
levels in the elimination tree is ~ logn.

1) Per-process memory :

IThe network topology and the underlying MPI implementation may
increase the asymptotic complexity



Table II: Asymptotic memory, communication and latency costs for 2D and 3D Sparse LU algorithm

2D PDE 3D PDE
Parameter dSparseLU2D dSparseLU3D dSparseLU3D P, =@ (logn) dSparseLU2D dSparseLU3D
Per-process n n " n n % 4 /3
Memory (M) 0 (%logn) 0 (B og(Z)+P.) 0(%1ogn) ol 0|2 |xP=+ 515
Pre-process n ( n logn an) n i) 43 (n4/ ( ))
Communication(W)* o ( VP logn) \F(z Pzt \/7)+ o ( VP logn) @( VP ) o VP Pz 3 P, 4/3
Latency 0 (n) (Pi+f) @’(%) O (n) @(PELB +1<0n2/3)
 when P > logn
nlogn

¥ on the critical path of factorization. Average per-process communication is ﬁ(P

0( 25 viogn).

2D algorithm: We calculate per-process memory us-
ing Equation (1). For a planar graph, n; = Vn/2!, so the
per-process memory required is

1 logn 1 logn T\ n
M==) 2in?2== 2’( —.) =—1 4
Pi;) i P;‘) o) “plgn @

3D algorithm: We assume P = Pxy x P,, where P, is
the number of 2D grids of size Pxy = Px x P, and P, = 2!
for some integer [; thus, [ =logP,.

The root node is replicated in all the process layers. Thus
it requires n-2! memory. Similarly, if i <, level-i will be
replicated on 2! grids and will require (Vn/2i)? .2t .9l =
n-2!7% words. If instead i > I, there will be no replication as
each subtree resides in only a single 2D grid. Therefore, for
i >1, the LU factors will require » memory in each level.
Altogether, per-process memory required can be written as:

1(1 . logn
ﬁ(;)n2l_‘+ Y n)
1=

i=l+1
1
~ 3 (ZnPZ +nlog§).

z

Msp(n, P, P)

(%)
2) Per-process communication:
2D algorithm: From Equations (2) and (4), the per-
process communication volume of the 2D algorithm on planar
graphs is

(©)

3D algorithm: We separately calculate the communica-
tion in SuperLU_DIST2D step, denoted as ng, and the
communication in Ancestor-Reduction step, denoted as W3D
in Algorithm 1.2
Per-process communication in factorization ( ny 7): For
the factorization of supernodes in the etree level i >l each
process grid works on a 1/2! fraction of the matrix at level-i.
Thus, the per-process communication at level-i is —=*

‘ 2l \/Pxy
However, in level i <[, only 2 process grids participate.
Thus, the per-process communication at level-i is c

2t\/Pxy

2All communications in SuperLU_DIST2D occur in the XY plane.
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):

)i For P, = O(logn), both are asymptotically same and equal to ﬁ( 13
XY

for the processes participating in this level.> Thus, the total

communication across the critical path is given by:
= €1 n

+ —_—
i=0 2l PXY lzl 2l \/
We can substitute 2 = P, and Pxy = P Then assuming
that logn > [ =logP,, this expression 51mp11ﬁes to

n logn
Wi(n, P, Pz)z\/—ﬁ(zx/Pz+ d )

. 7
VP, @

Equation (7) is per-process communication for any general
3D process grid. W7 has a minimum at

I (n, P, P,)= i

1
P, = 3 logn. ¥
Thus, the minimum amount of communication is
S (n, P)= 22— \/@ ©

Per-process communication in Ancestor Reduction ( W:,fD ):
We calculate W5, for grid-O as it is the only grid that
participates in all the levels. Grid-0 receives the root node,
distributed among all Pxy processes, in each iteration of
Algorithm 1. The combined per-process data it receives
just for the root is — . This expression for the i-th level
is %. We sum this expression over all i to get per-
process communication in the ancestor-reduction step along
the critical path of 3D sparse LU, which is

z (n, P, Py= 2L =, P08l (10)
Pxy P
Total per-process communication on the critical path: The

total per-process communication is Wsp = Wz, +W§%’. From
Equation (7) and Equation (10),
logn) P,logP,
+n .

n
—|2V/P, +
VP ( /P, P
When we choose P, by Equation (8), this becomes
ny/logn lognloglogn
+n . 3D
VP P

For any practical n, P > logn even for modest values of P.

Wsp(n, P, P;)=

Wsp(n, P, Pz)=@(

3Note that average per-process communication across all the processes

will still be ﬁ, but we are more interested in total communication
XY

in the critical path of the factorization.



Thus, for fixed n the first term of Equation (11) dominates.

3) Latency: Latency for the 2D algorithm is €' (n). The
latency for 3D algorithm is the dimension of sparse matrix
described by the local elimination tree of grid-0. We can
show that the latency in the 3D algorithm is:

Lupa, P, P)=0 5+l (12)
When P, =0 (logn), Lgp is a logn fgctor smaller than Lop.

C. Non-planar input graphs

For the non-planar sparse matrices with a strongly 3D
geometry, the 3D factorization algorithm does not reduce
the asymptotic communication costs, yet it can reduce
the communication and latency by a constant factor. For
such matrices, the dimension of the top separator is n?3.
Asymptotically, the size of LU factors of the matrix is @ (n*?)
and almost 20% of it is concentrated in the top separator. So
the 3D algorithm cannot reduce the asymptotic complexity of
the algorithm. A large separator also means that replicating
the top-level root among many 2D grids will rapidly increase
the additional per-process memory. However, it can still
reduce the communication and latency of the factorization.
We summarize the expressions for memory, communication,
and latency in Table II. If we choose a P, that minimizes per
process communication, then we can reduce the per-process
communication by a factor of 2.89 in the best case. If we
choose a P, that minimizes the latency, then we can reduce
the latency by @ (n'/3) compared to the 2D algorithm, but
this P, will significantly increase per-process memory and
the per-process communication.

V. EXPERIMENTAL RESULTS

We evaluate 3D sparse LU against the baseline 2D
algorithm. The main results show performance gains from
the 3D algorithm at both small and large core counts on a
variety of sparse matrices taken from real applications. In
addition, we estimate the scaling limits of the 3D algorithm.
Beyond measured performance, we quantify the effects of the
3D algorithm on the communication volume and memory
usage.

A. Setup

We use SuperLU_DIST’s default parameters in our exper-
iments. We ran our experiments on Edison cluster at NERSC.
Each node of the Edison contains dual-socket 12-core Intel
Ivy Bridge processors. We chose 4 OpenMP threads per MPI
process after trying various MPIxOpenMP configurations for
different test matrices on 16 nodes. The code was compiled
with the Intel C compiler version 18.0.0 and linked with Intel
MKL version 2017.2.174 for BLAS operations. We use the
same parameters for 3D that we obtained by tuning the 2D
code.
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Table III: Test sparse matrices used in experiments

Name Application n anz #FlopT Tlfac '
audikw_1 Structural 9.4e+5 82.0 1.17e+13 5.70
CoupCons3D Structural 42e+5 53.6  9.09e+11 1.10
dielFilterV3real ~FEM/EM I.le+6  81.0  2.00e+12 3.80
1door Structural 9.5e+5 44.6  1.6%e+11 1.97
nlpkkt80 KKT matrices l.le+6 26,5 3.14e+13 10.48
G3_circuit Circuit Sim. 1.6e+6 48 1.2le+l1l 3.33
Ecologyl Ecology/Circuit ~ 1.0e+6 5.0  4.49e+10 1.36
K2D5pt4096 PDE 1.6e+7 5.0 3.26e+12  59.81
S2D9pt3072 PDE 9.4e+6 9.0 247e+12  26.02
Serena Structural l4e+6  46.1 5.97e+13 19.49

f #Floating point operations in the baseline SupeRLU_DIST (dSparseLU2D)
¥ Factorization time in seconds for baseline algorithm on 16 nodes.

1) Test matrices: We used four planar and six non-planar
matrices, summarized in Table III. The planar matrices
come from the discretization of two-dimensional PDEs
(K2D5pt4096, S2D9pt3072) and circuit analysis (g3_circuit,
ecologyl). Five of the six non-planar matrices are from the
discretization of 3D PDEs and one, matrix nlpkkt80, comes
from non-linear optimization. The factorization time of the
test matrices ranges from 10-55 seconds on 16 nodes when
using the baseline 2D SuperLU_DIST.

B. Performance of the 3D algorithm on 16 nodes

The 3D sparse LU configurations achieve 2-11.6x and 0.33-
4.9x speedup with respect to 2D SuperLU_DIST for planar
and non-planar matrices, respectively. The results appear
in Fig. 9, which shows the factorization time normalized
by the baseline 2D SuperLU_DIST for each matrix and
process configuration. Columns correspond to different 3D
process configurations. The leftmost column, P, =1, is
the 2D algorithm; subsequent columns correspond to P,
values of 2, 4, 8, and 16. The factorization time is divided
into two components, Ts., and Teomm. The Tgey is the
time spent in Schur-complement update on the critical path
of the 3D factorization, and T¢omm is the non-overlapped
communication and synchronization time.

Planar graphs achieve better performance when P, is
large and the 2D grid size is small. Planar matrices have
already very high communication cost at 16 nodes. We
can see that T.,mm decreases as we increase P,. The
profiling of K2d5pt4096 for the 2D algorithm shows severe
load imbalance, which also has a cascading effect on the
synchronization time. The 3D algorithm at P, = 2 shows less
time spent at synchronization points as it has roughly half
synchronization point as the 2D algorithm. Some 3D matrices
also achieve better performance when P, is large and 2D grid
size is small. For instance, ldoor comes from finite element
discretization of a large door using a tetrahedral mesh. A
“large door” is a very thin, or nearly planar, 3D object, and
thus partitions like a 2D object.

We also see a slowdown by up to 4x at P, = 16 for
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Figure 10: Per-process communication volume (in bytes) for different
process grid configurations on 16 and 64 nodes (or 96 and 384 MPI processes,
respectively). Each column in a group represents a Pxy x P, process grid
configuration, where P, € 1, 2, 4, 8, 16 from left to right (leftmost being
a purely 2D configuration). Here, Wy is number of words sent during
the local factorization along the 2D grid, whereas W,.,g4 is number of words
sent in the ancestor-reduction step along the z-axis.

extremely non-planar matrices Serena and nlpkkt80. For these
matrices, computation is still a large fraction of factorization
time for the baseline 2D algorithm at 384 cores. Most of
those computations are concentrated in the top few levels
of the etree. So reducing the 2D process grid size increases
Tscu, which masks any gains from reduced communication.

C. Results on 64 Nodes

On 64 nodes, the 3D sparse LU configurations achieve
2-16.6x and 1.0-3.6x speedup with respect to 2D Su-
pERLU_DIST for planar and non-planar matrices, respectively.
On 64 nodes the factorization time is qualitatively similar
to the 16 nodes. Except now for all the matrices Tcomm
dominates the factorization time for the baseline 2D algorithm.
Therefore, even for extremely non-planar matrices Serena
and nlpkkt80, 3D configurations achieve speed-up of 1.7 and
1.9x, respectively.
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D. Effects on per-process communication

For the planar graphs, 3D algorithm reduces per-process
communication by 3-4.6x on 16 nodes and by 4-4.7x on
64 nodes. For non-planar graphs, 3D algorithm reduces
per-process communication by 2.5-3.2x on 16 nodes and
by 2.9-3.7x on 64 nodes. Fig. 10 shows the per-process
communication volume along the critical path of the 3D
algorithm, for 16 and 64 nodes, and a planar and a non-
planar matrix. We distinguish the number of words sent
during the 2D factorization step (W/®°%) and that of ancestor
reduction (W"¢?) of Algorithm 1.

The W7ect decreases with increasing P,. Yet at large
P,, Wtoel can increase. For instance, W@ increases for
nlpkkt80 at 16 nodes when going from P, =8 to 16. It is
so as W increases almost linearly with P,. Yet for planar
graphs, this increase isn’t much as they have very small
separators at the top level. We estimate that for K2d5pt4096,
Wtetal will increase with P, after P, > 64 at 96 processes.

Nevertheless, We? decreases as 1/Pxy and W1t does
decrease as 1/y/Pxy with increasing Pxy . So for larger Pxy,
the cross-over P, will be even larger.

E. Memory overhead

The 3D algorithm needs 30% more memory for the planar
graph K2D5pt4096 and 200% more for the non-planar graph
nlpkkt80, at P, =16 (see Fig. 11). Memory overhead comes
from replicating the dense separator blocks on all the process
grids. Since the planar graphs have small separators, the
memory overhead grows slowly with increasing P,. Our
model suggests that P, = @ (logn) before memory overhead
becomes comparable to memory of the LU factors. But non-
planar graphs, like nlpkkt80, do not have good separators.
Therefore, the memory overhead increases quickly. At P, =
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is the 2D algorithm. The performance is calculated using number of floating
point operations in baseline 2D factorization (table III).

16, nlpkktS80 already needs 200% more memory. Overall at
P, =16, memory overhead ranged between 18% to 245%
for all matrices we tried.

F. Performance at Large Number of Cores

The best case speed-up: for a matrix, is the speed-up of
the best Pxy x P, configuration relative to the best possible
2D process configuration. The best case speed-up is 5-27.4x
for the planar graphs and 2.1-3.3x for non-planar graphs. We
show a heatmap plot of performance for K2D5pt4096 and

nlpkkt80 in Fig. 12 for different combinations of Pxy x P,.

The performance is shown in Tera-floating point operations
per second (TFLOP/s).

Depending on their geometry and size, different matrix
achieves the best performance on different Pxy x P,. For a
given P = Pxy x P,, planar graph K2D5pt4096 achieves best
performance along the line Pxy = 24. Strongly non-planar
graph nlpkkt80 achieves best performance along the line
P, =Pxy/24() for a constant P = Pxy x P,. For all the
other matrices achieved the best performance between the
two lines*. In the best case, we achieved 27.4x speed-up for
graph K2D5pt4096. And on average the best 3D configuration
was 6.5x faster than the best 2D configuration among all the
matrices.

VI. RELATED WORK

The idea of using data replication to reduce communication
in LU factorization goes back to Ashcraft, who described

4If we had a completely dense matrix the best performance would have
occurred along the line P, =1.
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the first dense LU factorization based on a three-dimensional
logical partitioning of the grid [5]. Ashcraft later presented
the fan-both family of Cholesky factorization algorithm [6],
which is a generalization of his 3D LU factorization algorithm.
Later, Irony and Toledo [21] and Solomonik and Demmel [34]
also described LU factorization algorithms using logical 3D
partitionings of MPI processes. The central idea of all work
above and ours is same, i.e., using multiple copies of the
matrix to perform multiple Schur-complement updates in
parallel. The total communication volume of all the above
algorithms is @ (n2 \3/13) an asymptotic improvement over

(4} (n2 \/PT] for 2D algorithms. However, these algorithms also
increase the latency costs. Solomonik and Demmel showed
that for such algorithms, communication costs are inversely
proportional to the latency costs. Thus, despite the lower
asymptotic communication complexity, the performance gains
of these algorithms are limited even on communication
bound problems. In contrast, our 3D algorithm reduces
both bandwidth and latency by using the elimination tree
parallelism. It is possible to use these algorithms for factoring
dense nodes at the top levels of the etree. But we would
like to avoid using them at the lower levels because of the
increased latency.

Hulbert and Zmijewski [20] presented a column-oriented
distributed sparse Cholesky. It can be considered as a special
case of our 3D algorithm with Pxy = 1. For planar graphs,
the per process communication volume in their case is
ny/logn

VP
their approach can only use & (logn) processes for planar
problems as opposed to @ (nlogn) processes in the our 3D
sparse LU algorithm. For sparse matrices with non-planar
associated graph, Pxy =1 will be extremely inefficient.

Multifrontal methods also use additional data to improve
the locality and communication. A notable such example
is from Gupta et al. [16]. The per-process communication
volume in their multifrontal sparse Cholesky algorithm for
planar graphs is asymptotically & (LP , which is lower than

o of our 3D algorithm by a factor of /P, = /logn

(see tagll;: 1D). Yet, their algorithm can use only @ (n) processes
in comparison to @ (nlogn) processes for our 3D algorithm.
Consequently, for achieving same parallel efficiency, the per-
process memory requirement for their algorithm increases
with increasing n, whereas it remains constant for the 3D
sparse LU algorithm. It’s worth noting that, for achieving
similar parallel efficiency among their and our algorithm,
their algorithm will use € (logn) more memory M than
our algorithm and reduce communication W by a factor of
(5} (\/logn) to our algorithm. Thus, for such a scenrio, the

O (nlogP), as oppose to O ( ) in our case.” However,

n

3/2
two algorithms have the same WMY2 = @(",&). For

SWe get the same expression if we substitute P = P, in eq. (10).



matrix multiplication-like dense linear algebra algorithms, it
is known that [9], [22], [24], [34] .
W=0 # Arithmetic Operatlons). (13)
vM

The number of arithmetic operations for sparse LU
factorization for the planar graph is @ (n%2/P). Thus, if
eq. (13) holds also for sparse matrices then our 3D algorithm
and Gupta’s multifrontal method are not optimal by a factor
of @ (logn). However, its likely that eq. (13) is not the same
for sparse LU factorization algorithm. That’s because dense
computations perform @ (n3) operations on n? data, whereas
sparse LU factorization of planar graphs performs & (n3/2)
operations on nlogn data. Establishing similar lower bounds
for sparse LU factorization as eq. (13) warrants further
investigation. In addition, the dynamic memory requirement
of the multifrontal method can be prohibitive and does not
scale well with increasing number of processors, i.e., per-
process memory requirement may increase with increasing
number of processors. Therefore, significant effort has been
on improving the memory scalability [1], [12]. So, such
methods trade-off parallelism and performance to reduce
memory requirements.

Similar to the multifrontal method, our 3D algorithm also
uses elimination tree parallelism to reduce communication.
Our mapping of subtrees to process layers is very similar to
tree-based mapping algorithm for multifrontal methods. Also,
our 3D LU factorization remains predominantly right-looking,
which algorithmically is very different from the multifrontal
methods. A comprehensive discussion on differences in right-
looking and multifrontal methods can be found elsewhere
[17], [31].

The use of the elimination tree parallelism to improve
the scalability of the right-looking direct solver has also
been explored previously, albeit, with a focus on hiding
communication by pipelining and overlapping with the
computation, and as such, did not reduce communication
volume [36].

Researchers have also proposed communication-avoiding
pivoting strategies to make LU factorization more scalable [7],
[15], [26]. Since SuperLU_DIST uses static pivoting with
iterative refinement, these techniques are not needed.

Among sparse direct solvers, prior work has studied
efficient scheduling [2], [3], [14], [23], [27], [29], [36]. To
improve the overlap of communication and computation,
efficient lookahead techniques are part of state-of-practice
for both dense and sparse direct solvers [8], [35], [36].
Lacoste [28] and Hugo [19] have also addressed memory and
compute resource management for scaling multifrontal sparse
direct solvers. The baseline SupErRLU_DIST incorporates
similar techniques.

VII. CoNcLusiONS AND FUTURE WORK

Our new 3D algorithm shows
communication-avoiding techniques,

precisely how
namely the use
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of data replication, can be extended from the dense to the
sparse case. Our discussion was limited to right-looking
LU factorization and static pivoting. However, we believe
these principles could be applied to other variants of sparse
factorization, such as Cholesky or QR decomposition.

In previous work, we proposed techniques for Su-
pERLU_DIST that can exploit manycore co-processors (e.g.,
GPU [33] and Xeon Phi [32]). Our “HALO” algorithm
for accelerator offload can be seen as an instance of the
3D sparse LU algorithm presented in this paper where
accelerators form another parallel 2D grid in addition to
the host multicore CPUs. Despite that, HALO works much
better for matrices that have large dense blocks; while 3D
sparse LU factorization performs better for sparser matrices
with small dense separators. We plan to add HALO to the 3D
algorithm for hybrid clusters. We believe that by combining
the two, we can potentially improve performance across a
wider spectrum of matrices and platforms.

To improve the performance of the 3D algorithm for
matrices with large dense blocks, we can in principle use a
dense 2.5D LU algorithm to factor the supernodes on levels
where we only use a subset of 2D grids. Alternatively, for
those levels, we can merge two 2D grids to make a larger 2D
grid to factor denser blocks. However, doing so would require
significant changes to the data structure. Consequently, we
plan to pursue this idea as part of our future work.
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