2018 IEEE International Symposium on Performance Analysis of Systems and Software

Performance Implications of NoCs on 3D-Stacked
Memories: Insights from the Hybrid Memory Cube

Ramyad Hadidi, Bahar Asgari, Jeffrey Young, Burhan Ahmad Mudassar, Kartikay Garg,
Tushar Krishna, and Hyesoon Kim
Georgia Institute of Technology
{rhadidi, bahar.asgari, jyoung9, burhan.mudassar, kgargd0} @ gatech.edu

tushar @ece.gatech.edu

Abstract—Three-dimensional (3D)-stacked memories, such as
the Hybrid Memory Cube (HMC), provide a promising solution
for overcoming the bandwidth wall between processors and
memory by integrating memory and logic dies in a single stack.
Such memories also utilize a network-on-chip (NoC) to connect
their internal structural elements and to enable scalability. This
novel usage of NoCs enables numerous benefits such as high
bandwidth and memory-level parallelism and creates future pos-
sibilities for efficient processing-in-memory techniques. However,
the implications of such NoC integration on the performance
characteristics of 3D-stacked memories in terms of memory
access latency and bandwidth have not been fully explored.
This paper addresses this knowledge gap (i) by characterizing
an HMC prototype using Micron’s AC-510 accelerator board
and by revealing its access latency and bandwidth behaviors;
and (ii) by investigating the implications of such behaviors
on system- and software-level designs. Compared to traditional
DDR-based memories, our examinations reveal the performance
impacts of NoCs for current and future 3D-stacked memories
and demonstrate how the packet-based protocol, internal queuing
characteristics, traffic conditions, and other unique features of
the HMC affects the performance of applications.

I. INTRODUCTION

In the past decade, the demand of data-intensive applications
for high-performance memories has pushed academia and in-
dustry to develop novel memories with larger capacity, higher
access bandwidth, and lower latency. To this end, JEDEC-
based memories (i.e., DDRX) have evolved to include three-
dimensional (3D)-stacked DRAMs, such as High Bandwidth
Memory (HBM) [1]. While such memories are compatible
with traditional architectures and JEDEC standards, they are
limited in terms of scalability and bandwidth, which is due to
their wide buses and the use of the standard DDRx protocol.
Therefore, a generation of 3D-stacked memories with packet-
based communication has been introduced and is currently
implemented in the Hybrid Memory Cube, or HMC [2].
Thanks in part to an internal packet-switched network and
high-speed serial links between the processor and memory
stack, this type of novel 3D-stacked memory exploits both
internal and external networks to extend its capacity and
scalability [3], [4]. The HMC consists of vertical memory
partitions called vaults and a logic layer that consists of
memory controllers (i.e., vault controllers), connected via an
internal network-on-chip (NoC) [5]. As our analysis shows,

0-7695-6375-9/18/$31.00 ©2018 IEEE
DOI 10.1109/ISPASS.2018.00018

99

hyesoon@cc.gatech.edu

the characteristics and contention of the internal NoC play an
integral role in the overall performance of the HMC.

Logic and memory integration within 3D stacks has mo-
tivated researchers to explore novel processing-in-memory
(PIM) concepts within the architecture of 3D-stacked mem-
ories using simulation [4], [6]-[15]. However, few researchers
have studied actual prototypes of memories similar to the
HMC [16]-[19]. In particular, to the best of our knowledge, no
experimental work has sought to characterize the bandwidth
and latency' impacts of the internal NoC on the performance
of the HMC. In addition to understanding the performance
impacts of the NoC on applications, such characterizations
are also important for the design of PIM units built around
or inside the HMC. To gain further insights into the impacts
of the internal NoC on 3D-stacked memories, we evaluate
the performance characteristics of an HMC 1.1 [5] prototype.
We utilize a Xilinx FPGA and an HMC 1.1 on the Micron’s
AC-510 [20] accelerator board, which is mounted on an
EX-700 [21] PCle backplane. Figure 1 presents the full-
stack overview of our FPGA-based evaluation system, which
includes user configurations, memory trace files, software,
driver, an FPGA, and an HMC.

Our analyses characterize access properties for both low-
and high-contention traffic conditions, for which we use two
combinations of software and digital designs (i.e., Verilog
implementations on the FPGA). Our results reveal (i) latency
and bandwidth relationships across various access patterns,
targeted to structural organizations of the HMC (i.e., vaults and
banks), (ii) latency distributions across the vaults of the HMC,

Host EX700 PCle Board
. AC-510
Driver b
© HMC
;_ | Vault
g ° NoC ¥ Vault
S o ! s
& a } H
8 Logic Layer i Vault
=2 O
Configs/ (FPGA) o 4
Mem. Trace lIIIlIIlIIJ

Fig. 1: An overview of our system, and the NoC of the HMC.

! Latency and round-trip time are interchangeably used in this paper.

@colr%%uter
soclety

(iii) quality of service (QoS) within a particular access pattern,
and (iv) bottlenecks to occur within the HMC, associated
infrastructure, or within each access pattern. The contributions
of this paper are as follows:

« This is the first study, to the best of our knowledge, that
explores the impacts of the internal NoC of the HMC,
a prototype of packet-switched 3D-stacked memories, on
bandwidth and latency.

« It examines how the internal NoC behaves under low- and
high-contention traffic conditions, presents the concept of
QoS for 3D-stacked memories, and describes how future
systems and applications should incorporate the HMC to
achieve desirable performance.

o It presents a detailed analysis of the latency distribution
that is caused by the internal NoC of the HMC for
a specific access pattern and related consequences and
opportunities.

o It studies request and response bandwidth relationships
for various access patterns, determines the source of
bottlenecks, and presents solutions for avoiding them.

In the rest of this paper, we first review the HMC 1.1 speci-
fications in Section II and then introduce our infrastructure and
methodology in Section III. After that, Section IV presents and
analyzes the details of latency and bandwidth of the HMC with
various traffic conditions and the contribution of the NoC in
each scenario. Subsequently, Sections V and VI review related
work and present conclusions based on our analyses.

II. BACKGROUND

In this paper, we focus on the HMC 1.1 specification
(Gen2) [5], currently available for purchase. This section
presents background on the structure of the HMC and relevant
information on packet-based memories for our analyses.

A. HMC Structure

The HMC 1.1 consists of eight DRAM dies stacked on top
of a logic die, vertically connected by 512 Through-Silicon-
Vias (TSVs) [2]. As Figure 2 illustrates, the layers of the HMC
are divided into 16 partitions, each of which is called a vault
with a corresponding memory controller in the logic layer,
the so-called vault controller [22]. Each vault employs a 32-
byte DRAM data bus [5], enabled by 32 TSVs. A group of

-~ Quadrant

Vault

[DRAM Layers [Logic Layer

Fig. 2: 4GB HMC 1.1 internal structure.

100

} 4K OS Page |

33 32

K

[] Block Address [Vault ID in a Quadrant
I Bank ID B QuadrantID =] Ignored

9 7 4

Fig. 3: Address mapping of 4 GB HMC 1.1 with block size of 128 B.

four vaults is called a quadrant, connected to an external full-
duplex serialized link, an eight- (half-width) or a 16-lane (full-
width) connection clocking at speeds of 10, 12.5, or 15 Gbps.
Thus, the maximum bandwidth of a two-link half-width HMC
device with a 15 Gbps link is:

BWpeak = 2link x 8lnes/link x 15 Gb/s x 2 duplex = 60 GB/s. (1)

The size of a DRAM layer in Gen2 (HMC 1.1) devices is 4 Gb.
Since HMC 1.1 has eight layers, the total size of it is 4 GB.
Moreover, each of the 16 vaults is 256 MB. As the size of
a bank is 16 MB [5], the number of banks in a vault and an
HMC 1.1 is 16 and 256, respectively. (A detailed comparison
between versions of the HMC is done in [19].)

The header of an HMC 1.1 request packet (see Section 1I-B
for more details) contains a 34-bit address field, but two
high-order bits are ignored in a 4 GB HMC. Figure 3 shows
the internal address mapping of HMC 1.1 for 128 B block
size configuration [5], as well as the low-order-interleaving
mapping of sequential blocks to vaults and then to banks
within a vault. For a block size of 128 B, an OS page, usually
4 KB, would be mapped to two banks over all 16 vaults, so that
accesses to a page utilize high bank-level parallelism (BLP).
The vault controllers, each controlling a vault that contains
a part of a page, are connected using an internal NoC (i.e.,
each external link can carry packets destined to any vault),
the characteristics of which impacts the overall bandwidth and
latency of a system.

B. Packet-Based Memories

Unlike memories with JEDEC-based bus interfaces (e.g.,
GDDR or HBM), HMC uses a packet-based interface to
transfer packets over data links. Packet-based memories ex-
ploit internal and external NoCs for scalability; vaults in an
HMC are connected internally and up to eight HMCs can
be connected via external links. As the HMC interface uses
high-speed serialization/deserialization (SerDes) circuits, these
networked implementations achieve higher raw link band-
widths than traditional, synchronous, bus-based interfaces.
Unlike traditional memories, the access latency of a packet-
based memory includes additional time for packet processing,

TABLE I: HMC request/response read/write sizes [5].

Request Response
Type ‘ Read Write ‘ Read Write
Data Size | Empty 1~8Flits | 1~8Flits Empty
Overhead 1 Flit 1 Flit 1 Flit 1 Flit
Total Size | 1Flit 2~9Flits | 2~9Flits 1Flit

BitBit Bit
6463 0
Data[63:0] | Header |

Bit
Flith 157

Bit Bit Bit 1
64 63 0 >
Tail |

Bit
127

Data[191:64] |

Header

[Datal255:192] |
(a) (b)

Fig. 4: (a) A flow packet (no data), and (b) a request/response packet
with 32 B of data.

3| Tail

such as packet creation, port arbitration, flow control and
serialization/deserialization [5]. These overheads are amortized
by using large numbers of queues and ports (up to nine in our
infrastructure) for sending/receiving packets, high BLP, and
high-speed transmission to and from the HMC.

Similar to IP-based networks, the communication of the
HMC is layered, which includes physical, link, and transaction
layers. The physical layer is responsible for serialization,
deserialization, and transmission while the link layer handles
low-level communication and flow control for packets over
high-speed physical connections. The transaction layer defines
request and response packets, their fields, and controls high-
level flow and retry. The HMC controller uses three types
of packets: flow, request, and response packets. Flow packets
do not contain a data payload (Figure 4a) while request and
response packets are used for performing data reads and
writes from and to the HMC (Figure 4b). 16-byte elements
that construct packets are called flirs, and the size of the
data payload of each packet varies from one to eight flits.
The least-significant flit of packets is transmitted first across
the link. Flow control and integrity check of packets are
performed using dedicated fields in the one-flit head and
tail [5]. Accordingly, Table I shows each HMC transaction
size in flits.

III. METHODOLOGY

This section introduces our infrastructure for evaluating the
HMC 1.1 and includes details on its hardware, firmware (i.e.,
the digital design on the FPGA), and software.

A. Infrastructure

We utilize a Pico SC-6 Mini [23] machine that incorporates
an EX-700 [21] backplane, a PCle 3.0 x16 board with 32 GB/s
bandwidth to the host. The EX-700 backplane can accommo-
date up to six AC-510 [20] accelerator modules, each of which
contains a Kintex Xilinx FPGA? and a 4 GB HMC 1.1 (similar
to Figure 2). We utilize one AC-510 in our evaluations. The
HMC and the FPGA on an AC-510 module are connected with
two half-width (8 lanes) links operating at 15 Gbps, so the bi-
directional peak bandwidth is 60 GB/s, using Equation 1.

B. Firmware and Software

We use two combinations of firmware and software to
perform experiments, GUPS and multi-port stream implemen-
tations, shown in Figure 5. Each combination integrates a
custom logic on the FPGA and a software counterpart. First,
we describe the common components in the firmware on the

2 Part#: xcku060-ffval156-2-¢

101

FPGA. The FPGA uses Micron’s HMC controller [24] to
generate packets for the multi-port AXI-4 interface between
the FPGA and the HMC. On the software side, the Pico
API [25] and device driver are used for initializing the logic
on the FPGA and provide an environment, in which an
OS communicates with the FPGA. The Pico API provides
software methods to access the HMC through the FPGA with
a direct path for sending/receiving packets. However, because
the software runs at a lower rate on the host than on the
FPGA, this solution cannot fully utilize the bandwidth of
the HMC. Furthermore, since the maximum frequency of the
FPGA is low (187.5MHz), to generate more requests, the
FPGA uses nine copies of the same module, called ports.
For measuring various statistics such as the total number of
read and write requests and the total, minimum, and maximum
of read latencies, each port contains monitoring logic that is
not in the critical path of accesses. Note that this monitoring
logic measures aggregate latencies of the HMC controller,
transceiver, data transmission on links, internal NoC, TSV
transmission, and DRAM timings. Detailed studies of these
latencies are performed by Hadidi et al. [19], upon which we
build our new measurements.

To observe the behavior of the NoC within the HMC with
various traffic patterns and contention levels, we utilize two
implementations as follows: (i) GUPS (Figure 5a), a vendor-
provided firmware that measures how frequently we can gen-
erate requests to random memory locations; and (ii) multi-port
stream implementation (Figure 5b), a custom firmware which
generates requests from memory trace files using Xilinx’s
AXI-Stream interface.

The GUPS implementation is best suited to investigate the
behavior of NoC under high contention while the multi-port
stream implementation performs the same task from a trace file
per port. For both implementations, the number of active ports
and their access patterns are configured independently. With
GUPS, each port has a configurable address generation unit
that is able to send read-only, write-only, or read-modify-write
requests for random or linear mode of addressing. By forcing
some bits of the generated addresses to zero/one by using
an address mask/anti-mask, a group of randomly generated
requests, each corresponding to a single response packet from
one bank, are mapped to a specific part of the HMC to create
all possible access patterns (i.e., from accessing a single bank
within a vault, to accessing all banks of all the vaults). To
perform experiments, for each port, we first set the type of
requests and their sizes, their mask and anti-mask, and next, we
activate the port. While the port is active, it generates as many
requests as possible for 10 seconds, and then it reports the
total number of accesses (read and write), maximum/minimum
of read latencies, and aggregate read latency back to the
host. In this paper, the type of requests is read only, unless
stated otherwise. Our current firmware implementations do not
support ACKs after writes, so accurate measurements of write
latency would only be possible with added monitoring logic
specifically for writes. We plan to address this limitation in
future work. However, since we are studying the internal NoC

Host

Host EX700

EX700
Pico

- R

FPGA (GUPS Firmware)
PCle Driver Ox

Vault
Vault

iver ﬂ

Transcei

(6]
o
=z

=
S
H
&
@
o
&
|
o)
O 2

See Fig.2

Arbitration
Data Gen.

Add. Gen.
HMC Controller

Software

(a)

of the HMC, any type of requests that consume resources will
reveal the behaviors, bottlenecks, and impacts of the NoC by
limiting the flow of packets to the HMC.

The multi-port stream implementation employs a multi-
threaded software that reads a memory trace file for each port
and populates buffers on the host. Then, by using Xilinx’s
AXI-Stream interface to each port (wrapped in a PicoStream
API call [25]), we efficiently transmit commands such as
access types, sizes, and data through their dedicated commu-
nication channel. After issuing requests and waiting for re-
sponses, each port transmits read data and their addresses back
to the host. In fact, the FPGA reads data continuously, such
that each port reads data from its dedicated channel in every
cycle. In both GUPS and multi-port stream implementations,
we calculate the average access latency of reads by dividing
the aggregate read latency by the total number of reads. We
calculate bandwidth by multiplying the number of accesses by
the cumulative size of request and response packets including
header, tail and data payloads (shown in Table I), and by
dividing it by the elapsed time.

IV. RESULTS

This section presents various detailed latency and bandwidth
analyses by utilizing various traffic conditions and access
patterns with GUPS and multi-port stream implementations.

A. High-Contention Latency Analysis

To achieve a broad perspective of the HMC properties, we
perform experiments that access various structural organiza-
tions in the HMC, such as vaults and banks. Figure 6 illustrates
the latency and bandwidth relationship for read-only accesses.
The lowest bandwidth for undistributed accesses (i.e., accesses
targeted to a bank) is 2 GB/s for 32 B requests, and the highest
bandwidth for the most distributed accesses (i.e., accessing

=O=Size 16B =¢-Size 32B -A—Size 64B =O=Size 128B

[z

4 banks
8 banks
1vault

2 vaults
4 vaults
8vaults
16 vaults

Latency (ps)

10 12 14
Bandwidth (GB/s)

Fig. 6: The relationship between latency and bi-directional bandwidth
for various access patterns and request sizes for read-only requests.

102

Pico
PCle Driver

FPGA (Multi-Port Stream Firmware)

Command
. FIFO -
I. Rd. Data. FIFOI
Rd. Addr. FIFO)

PCle 3.0 x16

Vault
Vault

ver ﬂ

2x 15Gbps
8x links

Q
<]
=

3|2d| PCle Switch

See Fig.2)

Transcei

HMC Controller

Stream Traces

Software

(b)

Fig. 5: Firmware and software overview: (a) GUPS and (b) multi-port stream implementations.

more than or equal to two vaults) is 23 GB/s for 128 B requests.
Note that, as Table I shows, read-only requests mostly utilize
response bandwidth, which has a cap of 30 GB/s. Accesses
to more than two vaults have a similar bandwidth, caused
by the limitation of the external link bandwidth between the
HMC and the FPGA. Moreover, accesses distributed over
eight banks, but within one vault, have the same 10GB/s
bandwidth, limited by the maximum internal bandwidth of a
vault [26]. Figure 6 also shows that as the accesses become
less distributed, the latency of accesses increases. As the
figure depicts, access latency varies from 24,233 ns for 128 B
requests targeting a single bank, to 1,966 ns for 16 B requests
spread across more than two vaults. Less distributed access
patterns (e.g., one bank) have higher latency because they
benefit less from BLP. Furthermore, the latency of small
requests is always lower than that of large requests because (i)
the granularity of the DRAM bus within each vault is 32 B [5],
so data payloads larger than 32 B is split; and (ii) larger request
packets constitute more flits, so buffering and reordering of
packets cause higher latencies.

Figure 6 illustrates that large requests (e.g., 128 B) always
have higher bandwidth utilization than small requests (e.g.,
32B) do. This is because (i) large packets utilize bandwidth
more effectively (i.e., less overhead), and (ii) small requests
quickly consume the maximum number of tags of outstanding
requests to the HMC. As Table I presents, each packet,
regardless of its data size, always has an overhead of one flit
(i.e., 16 B). For this reason, the bandwidth efficiency of read
responses with 16 B and 128 B data sizes are 16/16+16 = 50%
and 128/128+16 = 89%, respectively. Moreover, for retransmis-
sion of a packet (because of transmission failure, flow control,
or CRC failure), each port must track outstanding requests, so,
at a time, each port can handle a limited number of outstanding
requests. Small requests, compared to large requests, underuti-
lize this limited number of slots for transmitting smaller data,
which results in low bandwidth utilization. In summary, large
packet sizes utilize available bandwidth more effectively at the
cost of added latency. In addition, for reducing access latency,
accesses should be carefully distributed to exploit BLP and
avoid bottlenecks.

B. Low-Contention Latency Analysis

To examine low-contention latencies, we measure the access
latency of the HMC while limiting the number of random read
requests to be mapped within the 16 banks of a vault. Then,
for each number of read requests, we report average latency

<~16B

-A-32B =0-64B -0O-128B

Latency (ps)

25 30 35
Number of Read Requests

Fig. 7: The average latency of low-load accesses for various request
sizes for the number of requests in the range of one to 55.

across all vaults. To tune the number of accesses and the size of
request packets, we use the multi-port stream implementation.
Figure 7 depicts that as the number of requests in a stream
(stream in this context means a limited number of requests)
increases from one to 55, the average latency increases from
0.7 to 1.1 ps for the request size of 16 B, and from 0.7 to 2.2 us
for the request size of 128 B. In other words, we observe two
behaviors: (i) When the number of request packets is small, the
size of request packet does not affect the latency; and (ii) when
the size of request packets is larger, the requests experiences
more variations in the latency. Since the flow control unit in
the infrastructure is only activated with a large number of
outstanding requests, we are certain that, as reported in [19],
approximately 547 ns of all latencies for the small number of
requests are spent on the FPGA and data transmission. Hence,
the contributing latency of the HMC under low load (i.e., no
load) is 100 to 180ns, which includes the latency of DRAM
timings (trcp + tcr + trp is around 41ns for HMC [4],
[26]), TSV transmission, vault controller, and internal NoC.
However, as the number of requests increases, with the similar
BLP, queuing delay in both the HMC (i.e., internal NoC and
vault controllers) and the FPGA increases, which results in an
order of magnitude higher delays. Note that since the HMC
utilizes a packet-switched interface to vault controllers in its
logic layer, the observed average latency of the HMC is higher
than that of traditional DDRx memories.

Figure 8 illustrates a wider range for the number of read
requests in a stream than what Figure 7 shows. In Figure 8,
we observe that when the number of requests increases up
to 100, average access latency increases linearly. After that,
the latency stays approximately constant when the number of
requests grows. By assuming a hypothetical queue for requests,
we infer that until the time that the queue is not full, the
latency of each request equals to its serving time plus its

20 -~16B -0-32B -o-64B -+~128B

Linear Increment

Latency (ps)

1.0 o7

B

1 50 100 150 200 250 300
Number of Read Requests

Fig. 8: The average latency of low-load accesses for various request
sizes for the number of requests in the range of one to 350.

103

waiting time, which is the sum of the serving time of all
previous requests that are already in the queue. We can write
the average latency of n requests as 27=o(¢5)/n, in which S
is the serving time of a request. Therefore, the latency seen
by each request is correlated to the number of requests in
the queue. In the region where latency remains constant, the
queue is always full, so the latency of a request equals to
it serving time plus the waiting time for all requests in the
queue (i.e., n = Queueg;,.). Thus, the linear region represents
a partially utilized system, and the constant region represents
a fully utilized system. Section IV-F provides further details
on bandwidth and bottlenecks. From the system perspective,
the linear region achieves a lower latency while providing
less bandwidth than that of the saturated region. Thus, based
on the sensitivity of an application to the latency, a system
may exploit these two regions to gain performance. To recap,
even for low-contention traffics, NoC and queuing delay
contribute significantly to the access latency of the HMC, and
subsequently, to the performance of applications.

C. Quality of Service Analysis

Similar to other networks, QoS of a packet-switched-
based memory refers to guaranteeing the required latency
or bandwidth for an application. In this section, we inspect
techniques to manage the resources in a packet-switched
memory to achieve required QoS. In particular, our goal is
to ascertain how latency varies within an access pattern (e.g,
accesses distributed in four vaults) as a result of the packet-
switched interface of the HMC, and subsequently, how this
will affect the QoS of applications. The effects of latency
variations on QoS are important because they impact latency-
sensitive applications [27], QoS guarantees [28], denial of
service [29], and multi-threaded and parallel architectures that
stall for the slowest thread (i.e., work imbalance). A packet-
switched memory, despite its high bandwidth (thanks in part to

-=--16B =0=32B -4—64B —0-128B

Maximum Latency (ps)
N WA oo N

Vault Number

(a)

---16B =0=32B -»—64B —0—128B

w s o

N}

Maximum Latency (ps)

0 1 2 3 4 5 6 7 8 9
Vault Number

(b)
Fig. 9: Maximum observed latency in accessing four vaults, three
of which are the same. Accessing vault numbers (a) one (3x) and
all vaults; and (b) five (3x) and all vaults. X-axis shows the vault
number for the vault that is different.

15 15 []
14 14]
13 02 13 I S
12 12
11 11 02
» 10 0.15 » 10
3 3 —
£° g9 ||
28 38 [
57 57
F] 0.1 3 ||
=6 =6
1] 401
5 5
4 4
40.05 -
3 3 +40.05
2 2 |
1 1
L LI Lo
A o 2 N PO N A P DD D D
X O
RO \Q;b\% £ Q)\Q;\ P 090 ‘L&L@%% s q::a
Latency (ns) Latency (ns)
(a) 16B (b) 32B

] 0.4
15] | 15 03
14 14
13| 035 13
12| | 12 025
- 0.3
11 11
5 107 0.25 5 10 0.2
£oL :
z8| | Jo2 Z8 o5
57 57
3 - 3
> 5 {015 = 6
5 5 —40.1
4 [—40.1 4
3 3 10.05
2 [-0.05 2
1] 1
SN SAANECK S FOP IS 10,2
fi”‘b"fi\'ﬂfibm% ST P TN E S
Latency (ns) Latency (ns)
(c) 64B (d) 128B

Fig. 10: The latency histograms of each vault in heatmaps for various request sizes of (a) 16, (b) 32, (c) 64, and (d) 128 B.

serialization, and high BLP in a small area), adds uncertainty
to access latencies. Therefore, as we will see, only optimizing
accessing patterns to the HMC in an application would not be
sufficient to guarantee a precise QoS.

In our experiments, as a case study, we use four ports
with the multi-port stream implementation to generate read
accesses to four vaults (targeting 1 GB in total). During the
experiments, three ports always access the same vaults, and
the fourth port iterates over all possible vaults. Figure 9a
and b illustrate the maximum observed latency for two series
of experiments, in which the three ports always access vault
number one and five, respectively. The figures depict when
the accesses of the fourth port are to the same vault as the
other ports (i.e., vault numbers one and five in Figures 9a
and b, respectively), the maximum observed latency increases
up to 40% relative to other accesses. Furthermore, when the
fourth port is not accessing the same vault, maximum observed
latency varies notably. For instance, the maximum variations
are around 200, 330, 400, 600ns for 16, 32, 64, and 128 B
requests, respectively. Since DDR-memory accesses are under
80 ns, even variations of this order will disturb the performance
of a system and our assumptions.

In summary, even within the same access pattern, the NoC
causes considerable latency variations, which will have a
noticeable impact on QoS of an application, even when its
access patterns are optimized. Note that Figure 9 illustrates
results for only four ports, and if the number of ports (i.e.,
threads or applications) accessing one vault increases, the
latency variations would increase even more. This general
trend in latency helps to provide an approximate QoS for
various traffic conditions with diverse latency requirement.
For instance, in a case that we have five traffic streams, four
of which can be served in long latency, and one has high
priority and requires a fast service; the system can assign a
limited number of vaults to all four low-priority traffic streams,

104

and remaining vaults to the high-priority traffic. Therefore, the
QoS of all traffic streams would be satisfied. Such techniques
for managing QoS can be provided in the host-side memory
controller by real-time remapping, or by reserving resources.

D. High-Contention Latency Histograms Per Vault

To understand the impact of accessing various combinations
of vaults on performance, we extend the experiments of the
previous section, which accessed four vaults using the multi-
port stream implementation. For instance, accesses to four
consecutive vaults (e.g., 0, 1, 2, and 3) that share network
resources may have higher latency than accesses spread among
non-consecutive vaults (e.g., 0, 4, 8, and 12) do. To test this
hypothesis, we access all possible combinations of four dif-
ferent vaults (i.e., equal to 1820 combinations, or ®!/k!x (n—k)!
for n 16 and & 4) with various request sizes and
calculate the average access latency among four vaults. Then,
we associate the derived average latency with every vault in
that combination.

Figure 10 illustrates our results for various sizes in heatmaps
in which a row represents the latency histogram of a vault.
In other words, in a row, the color of a rectangle represents
the normalized value of the number of accesses in that
latency interval against the total number of accesses to the
corresponding vault (i.e., 18204, or 455). As the figure shows,
each vault has a different latency behavior. For instance, in

<s=Average EZStandard Deviation

oORrNWMWUV

Average Latency (us)
Latency Standard
Deviation (@) (ns)

64B
Request Size

Fig. 11: The average and standard deviation of latency across all
vaults for various sizes in the four-vault access pattern.

1675
__1668
0 1661
(=
= 1653 0.1
© 1646
$ 1639
® 1631
=1 1624
1617]
i 2 3 4 5 6 7 8 9 10 11
Vault Number
(a) 16B

3114
3046 :
22979
;2911 0.1

© 2844
$ 2776
s 2708
=1 2641
2573

1 2 3 4 5 6 7 8 9 10 11

Vault Number
(c) 64B

0.15

0.05

12 13 14 15

0.05

12 13 14 15

2135
__2109
@ 2084 0.1
= 2058
32033
$ 2008
s 1982
= 1957

1931

0.05

1 2 3 4 5 6 7 8 9 10 11
Vault Number
(b) 32B

12 13 14 15

0.1

0.05

1 2 3 4 5 6 7 8 9 10 11
Vault Number
(d) 128B

12 13 14 15

Fig. 12: The vault histograms of each latency interval in heatmaps for various request sizes of (a) 16, (b) 32, (c) 64, and (d) 128 B.

Figure 10c, we observe that the histogram of vaults differs
substantially (e.g., vault numbers 5, 6, and 7). Although we
can investigate these figures in more detail, a quick takeaway
is that purely optimizing the general access patterns (in our
example, four-vault access pattern) of an application would
not guarantee a particular latency. In other words, Figure 10
presents a case study with a four-vault access pattern, in which
the only factor of variation is the number of the vault that
determines the physical location of a vault within the 3D stack.
Therefore, since other factors, such as access pattern, are the
same, we conclude that the NoC design of the HMC has a
significant impact on the observed latency variations.

As Figure 10 shows, for each request size, although all
the vaults have a similar average latency, the distribution of
latencies are different among vaults. For a better illustration,
Figure 11 depicts the average latency of all vaults and the
standard deviation for various packet sizes. We observe that the
standard deviation of latencies is 20, 40, 100, and 106 ns for
request sizes of 16, 32, 64, and 128 B, respectively. Note that
68% of a population is within (12 + o, ;1 — o), in which g and
o are average and the standard deviation of that population,
respectively. For a particular request size, while the average
latency per vault is similar, the distribution of it per vaults
covers a broad range. Compared to smaller request sizes, larger
request sizes have more variations in latency, because large
request sizes occupy larger buffer spaces than small request
sizes do. Also, large requests incur extra delays because of
reordering and packetizing. Therefore, small request sizes
are good candidates for guaranteeing a high QoS. However,
as discussed in Section IV-A, small request sizes have low
bandwidth efficiency and generally provide lower bandwidth
utilization than large request sizes.

In detail, we infer the following insights from Figure 10:
(i) Comparing the four subfigures, which indicate the latency
for various packet sizes, shows that when the size of requests
increases, the latency increases. For instance, the latency of

105

128 B accesses is in the range of 4 us, which is 2.5x higher
than for 16 B accesses. A recent paper [19] observes a similar
behavior in a limited experiment in accessing to a random vault
and conclude such variations is caused by the granularity of
32B DRAM bus within a vault. (ii) The range of the latency
variations for 16, 32, 64, and 128 B accesses are 29, 76, 136,
and 203 ns, which indicates that the smallest requests have
more consistent latency, and the largest requests have more
variable latency. (iii) By comparing the latency of each vault
from the rows of each subfigure, we see that each vault has
a random behavior, and we cannot allocate a specific latency
to a vault based on its location (i.e., number). In other words,
the latency of each vault is impacted by many factors such
as access patterns and traffic pressure that the contribution of
the location of a vault is negligible. According to these three
insights, we deduce that important NoC parameters such as
the request size and routing protocol have more contributions
to the latency within an access pattern rather than physical
parameters such as the location of a vault do.

E. High-Contention Vault Histograms Per Latency Interval

To explore the contribution of vaults to high and low
latencies, each row of Figure 12 depicts contributing vaults for
each latency interval and illustrates the histogram of them. The
intensity of the color of a rectangle shows the normalized value
of the number of that particular appearance of the vault in that
latency interval against the maximum number of accesses in
that row. Figures 12a, b, ¢, and d, show colormaps for request
sizes of 16, 32, 64, and 128 B, respectively. In Figure 12a, we
observe that for gaining the lowest latency (i.e., lowest row),
we should avoid accessing vault numbers 9 to 12. In fact,
Figure 12 provides a guide for avoiding certain vaults that
incur high latencies, but it will not guarantee particular access
latencies for a specific vault (similar to the last subsection). For
instance, based on Figure 12¢, vault number 2 has the highest
contribution to the lowest latency interval, and it similarly

='=16 vaults
~0-8 banks

=& -8 vaults
<O -4 banks

=& -4 vaults
=0=2 banks

=5=2 vaults
=0O-1 bank

=A=1vault

z
)
e
=
=]
2
3
°
c
©
o
) o
T 1 T !
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
#Active Ports (< Request Bandwidth) #Active Ports (< Request Bandwidth)
(a) 16B (b) 32B
24
22
- 20
= 18
)
o 16
= 14
5 12
S 10
|
a , —
2 Q
0 - T T T T T T T 1 T
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
#Active Ports (o< Request Bandwidth) #Active Ports (< Request Bandwidth)
(c) 64B (d) 1288

Fig. 13: Relationships between the number of active ports, request
bandwidth, and bandwidth for various request sizes.

has a high contribution for the highest latency. Therefore, the
conclusion that accessing only vault number 2 will guarantee
the lowest latency is not correct. However, in the same figure,
the chance of incurring lower latency increases by avoiding
vaults numbers 9 to 12. Even though we cannot reach a
unanimous conclusion about the latency of each vault and
the hierarchy of NoC in the HMC, which we discussed its
reasoning in the last subsection, we can conclude that the
effects of NoC and vault interactions are not trivial.

Based on the observations mentioned in the last paragraph,
we interpret that vaults almost equally contribute to high and
low latencies. Such behavior suggests two notions to the user
or designer of such packet-switched memories: (i) Since lowest
latency is obtainable from any vaults, a user may map the
memory footprint of an application to optimize other important
aspects of accessing these memories, such as access pattern,
or request size. In other words, the independence of latency to
the physical layout eases the memory mapping constraints;
and (ii) a desirable level of performance to an application
can be guaranteed by only understanding and following the
lowest and highest resulting latency in any access pattern. Note
that the uniformity of vault contributions in latency will be
sustainable even in a hierarchical connection of many stacks
in another interconnection network for creating a large-scale
memory. This is because each stack in this new network would
have similar characteristics.

FE. Requested and Response Bandwidth Analysis

To further investigate potential networking bottlenecks and
bandwidth of the HMC, we use the GUPS implementation
to tune request rate by changing the number of active ports
from one to nine ports. The number of active ports is a

106

W 2 banks

§4 banks

Requests

Number of Outstanding

16 32 64

Request size (Byte)

128 Average

Fig. 14: The number of estimated outstanding requests in two- and
four-bank access patterns.

proxy for the requested bandwidth because it has a direct
relationship with the number of issued requests with the GUPS
implementation. Figure 13 presents the relationship between
the number of active ports and the response bandwidth for
various request sizes. In this figure, sloped lines determine
access patterns in which no bottleneck occurs. In contrast,
flat lines depict access patterns in which a bottleneck (e.g.,
vault bandwidth limitation) exists. As a recent work about
HMC characterization also mentioned [19], the factor that
limits the bandwidth utilization can be related to the packet-
switched network, such as the limited size of queues in the
vault controller or DRAM layers. We analyze the reasons of
saturation points by taking a deeper look at a vault controller,
which is basically a stationary system, receiving requests with
an arrival rate. Based on Little’s law, in such systems, the
average number of outstanding requests equals to the arrival
rate multiplied by the average time a request spends in the
system. To calculate the number of outstanding requests based
on the numbers represented in Figure 13, we measure the
latency at saturated points and multiply them by input rates,
and then divide the result by request size. The result of this
calculation illustrated in Figure 14 indicates that regardless of
request size, the maximum number of requests is 288 for two
banks and 535 for four banks, on average. Moreover, the linear
relationship between the number of outstanding requests and
number of banks suggests that a vault controller dedicates one
queue for each bank or for each DRAM layer.

As discussed in Section IV-A, we observe that accessing
eight banks within a vault saturates the internal 10GB/s
bandwidth of a vault for request sizes of 16 and 32B. In
addition, for 64 and 128 B request sizes, accessing four banks
saturates the internal bandwidth of a vault. Thus, within a
vault, depending on the size of requests, increasing BLP
to more than eight or four banks will not provide higher
bandwidth. In fact, as Figure 3 presents, for accessing a 4 KB
OS page in the HMC, requests are first spread over vaults
and then banks. Therefore, accessing a single page in this
configuration naturally avoids this bottleneck. We can extend
this insight to more than one OS pages that are sequentially
allocated in the address space. For instance, accessing more
than four sequentially allocated OS pages would invoke the
bottleneck of the internal bandwidth of vault. To effectively
utilize the limited bandwidth of vaults within the HMC,
application access patterns must be matched to increasing
vault-level and then bank-level parallelism.

Compared to traditional DRAM memories, the HMC sup-
plies a higher amount of bandwidth and concurrency due to
the high number of vaults and independent vault controllers.
Figure 13d exhibits this point by showing that for 128 B
requests, distributed access patterns to more than two vaults
quickly reach the bottleneck of the external bandwidth of two
links. This is a limitation of our particular HMC infrastructure
(two half links from the FPGA to the HMC), as the number
and width of the HMC links can be increased as can the speed
and efficiency of the FPGA infrastructure (i.e., HMC controller
and associated firmware). Since HMC uses bi-directional links,
issuing only read requests results in an asymmetric usage of
the available bandwidth. In other words, read requests only
fully utilize response bandwidth, and write requests only fully
utilize request bandwidth. Previous studies [17], [30] have
investigated this asymmetry, and proposed issuing a mix of
read and write requests to address it. In addition to optimizing
access patterns, applications should also balance the ratio of
read and write requests for effectively utilizing bi-directional
bandwidth of stacked-memory networks.

V. RELATED WORK

Previous works have characterized the HMC [16]-[18], [30],
from which Schmidt et al. [17] agreed with our measured
bandwidth and latency. Another work, [19], using the AC-
510 accelerator board, they characterized bandwidth of the
HMC and its relationship with temperature, power, and cooling
power. They deconstructed the contributing factors to the
latency, but they focused more on power and temperature. Al-
though these studies have explored emulated HMC and earlier
HMC prototype chips, they have not studied the performance
impacts of the internal NoC on the performance and QoS of the
HMC, and in general the impact of packet-switched networks
on the performance of 3D-stacked memories.

Other recent studies have focused on designing an efficient
NoC for the HMC. Zhan et al. [31] proposed solving issues
that show up in a NoC coupled with HMC, such as traffic
congestion, uncoordinated internal and external networks, and
high power consumption by co-optimizing networks that are
both inside each HMC and between cubes. Their proposed uni-
fied memory network architecture reuses the internal network
as a router for the external network, which allows bypassing of
remote accesses while also providing high bandwidth for local
accesses. The authors also proposed reducing communication
loads and using power gating to further decrease power
consumption for an overall 75.1% reduction in memory access
latency and a 22.1% reduction in energy consumption.

Azarkhish et al. [32] proposed a low latency AXI-
compatible interconnect, which provides the required band-
width for an HMC infrastructure so that it supports near
memory computation. Their simulation results show that the
main bottleneck for delivered bandwidth is the timing of
DRAM layers and TSVs. Also, their analysis on PIM traffic
with increased requesting bandwidth on the main links showed
that when the host demands less than 120 GB/s no saturation
occurs. In another work, Fujiki et al. [33] proposed a scalable

107

low-latency network by using a random topology based on the
length of communication path, using deadlock-free routing,
and memory-mapping in granularity of a page size. Their
full-system simulation models show that this method reduces
cycles by 6.6%, and that random networks with universal
memory access out-perform non-random localized networks.

VI. CONCLUSION

In this paper, we evaluate the internal NoC of the HMC,
a real-world prototype of a NoC-based, 3D-stacked memory.
From our experiments, we can provide the following insights
into the effects of the internal NoC of the HMC on the
performance of systems and applications.

o Large and small request sizes for packets provide a trade-
off between effective bandwidth and latency as a result
of buffering, packetization, and reordering overheads.
In contrast with traditional DDRx systems, this trade-
off enables tuning memory accesses to optimize either
bandwidth or latency. (Section IV-A, IV-D, and IV-F)

o As future memories become denser with more links and
vaults, queuing delays will become a serious concern
for packet-based memories, such as the HMC. Effective
solutions should focus on (i) optimizing queuing on
the host controller side and at vault controllers or (ii)
distributing accesses to improve parallelism, such as BLP.
(Section IV-B and IV-C)

o The internal NoC complicates QoS for memory accesses
because of meaningful variations in latency even within
an access pattern. On the other hand, it creates oppor-
tunities such as (i) smaller packets are ensured to have
improved QoS at a cost of reduced bandwidth or (ii)
high-priority traffics can be mapped to access their private
vaults. (Section IV-C, IV-D, and IV-E)

o Limited bandwidth within a vault means that mapping
accesses across vaults then banks is key to achieve better
bandwidth utilization and lower latency. (Section IV-A
and IV-F)

o The packet-based protocol creates an asymmetric bi-
directional bandwidth environment that applications
should be aware of and optimize for the proper mix
of reads and writes for effectively utilizing external
bandwidth. (Section IV-A, IV-F, and [17])

« Finally, the exact latency of a vault is impacted by many
factors such as access patterns and traffic conditions that
the latency contribution of the physical location of a vault
is negligible within an access pattern. This insight reduces
complexity and constraints of optimization and mapping
techniques. (Section IV-D and IV-E)

ACKNOWLEDGMENTS

We thank anonymous reviewers for their valuable comments
and feedbacks for improving the paper. Our experimental
hardware is partially supported by Micron. This study was
supported in part by National Science Foundation under grant
number CCF-1533767.

[1]

2

—

[3]
[4]

[51
[6]

[71

[8]

9

—

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park,
J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin et al., “25.2 A 1.2V 8Gb
8-channel 128GB/s High-Bandwidth Memory (HBM) Stacked DRAM
with Effective Microbump I/O Test Methods Using 29nm Process and
TSV.” in International Solid-State Circuits Conference (ISSCC). 1EEE,
2014.

J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Ar-
chitecture Increases Density and Performance,” in Symposium on VLSI
Technology (VLSIT). 1EEE, 2012.

T. Pawlowski, “Hybrid Memory Cube (HMC),” in Hot Chips Symposium
(HCS). IEEE, 2011.

G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric System
Interconnect Design with Hybrid Memory Cubes,” in International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).
IEEE, 2013.

HMC Consortium, “Hybrid Memory Cube Specification 1.1,” Retrieved
from hybridmemorycube.org, 2013, [Online; accessed 2017-10-10].

B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H.
Loh, D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed,
J. Rupley, S. Shankar, J. Shen, and C. Webb, “Die Stacking (3D)
Microarchitecture,” in International Symposium on Microarchitecture
(MICRO). IEEE/ACM, 2006.

J. Zhao, G. Sun, G. H. Loh, and Y. Xie, “Optimizing GPU Energy
Efficiency with 3D Die-Stacking Graphics Memory and Reconfigurable
Memory Interface,” in ACM Transactions on Architecture and Code
Optimization (TACO), vol. 10, no. 4. ACM, 2013.

S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact
of 3D-Stacked Memory+Logic Devices on MapReduce Workloads,”
in International Symposium on Performance Analysis of Systems and
Software (ISPASS). 1EEE, 2014.

D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “TOP-PIM: Throughput-oriented Programmable Pro-
cessing in Memory,” in International Symposium on High-Performance
Parallel and Distributed Computing (HPDC). ACM, 2014.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-
in-memory Accelerator for Parallel Graph Processing,” in International
Symposium on Computer Architecture (ISCA). ACM, 2015.

K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. O’Connor, N. Vijayku-
mar, O. Mutlu, and S. W. Keckler, “Transparent Offloading and Mapping
(TOM): Enabling Programmer-Transparent Near-Data Processing in
GPU Systems,” in International Symposium on Computer Architecture
(ISCA). IEEE, 2016.

L. Nai and H. Kim, “Instruction Offloading with HMC 2.0 Standard:
A Case Study for Graph Traversals,” in International Symposium on
Memory Systems (MEMSYS). ACM, 2015.

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “GraphPIM:
Enabling Instruction-Level PIM Offloading in Graph Computing Frame-
works,” in International Symposium on High-Performance Computer
Architecture (HPCA). 1EEE, 2017.

R. Hadidi, L. Nai, H. Kim, and H. Kim, “CAIRO: A Compiler-Assisted
Technique for Enabling Instruction-Level Offloading of Processing-In-
Memory,” ACM Trans. Archit. Code Optim., vol. 14, Dec. 2017.

L. Nai, R. Hadidi, H. Xiao, H. Kim, J. Sim, and H. Kim, “CoolPIM:
Thermal-Aware Source Throttling for Efficient PIM Instruction Offload-

108

[16]

(17]

(18]

[19]

[20]
[21]
(22]
(23]

[24]

[25]
[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

ing,” in International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, 2018.

M. Gokhale, S. Lloyd, and C. Macaraeg, “Hybrid Memory Cube
Performance Characterization on Data-centric Workloads,” in Workshop
on Irregular Applications: Architectures and Algorithms (IA%). ACM,
2015.

J. Schmidt, H. Froning, and U. Briining, “Exploring Time and Energy
for Complex Accesses to a Hybrid Memory Cube,” in International
Symposium on Memory Systems (MEMSYS). ACM, Oct. 2016.

K. Z. Ibrahim, F. Fatollahi-Fard, D. Donofrio, and J. Shalf, “Charac-
terizing the Performance of Hybrid Memory Cube Using ApexMAP
Application Probes,” in International Symposium on Memory Systems
(MEMSYS). ACM, 2016.

R. Hadidi, B. Asgari, B. Ahmad Mudassar, S. Mukhopadhyay, S. Yala-
manchili, and H. Kim, “Demystifying the Characteristics of 3D-Stacked
Memories: A Case Study for Hybrid Memory Cube,” in International
Symposium on Workload Characterization (IISWC). 1EEE, 2017.
PicoComputing, “AC-510 HPC Module,” http://picocomputing.com/
ac-510-superprocessor-module/, 2017, [Online; accessed 2017-10-10].
PicoComputing, “EX700 Backplane,” http://picocomputing.com/
products/backplanes/ex-700/, 2017, [Online; accessed 2017-10-10].
HMC Consortium, “Hybrid Memory Cube Specification 1.0,” Retrieved
from hybridmemorycube.org, 2013, [Online; accessed 2017-10-10].
PicoComputing, “SC6-Mini,” http://picocomputing.com/products/
picocube/picomini/, 2017, [Online; accessed 2017-10-10].
PicoComputing, “HMC Controller IP,” http://picocomputing.com/
productshybrid-memory-cube-hmc-controller-ip-2/, 2017, [Online; ac-
cessed 2017-10-10].

PicoComputing, “Pico Framework,” http://picocomputing.zendesk.com/
hc/en-us, 2017, [Online; accessed 2017-10-10].

Rosenfeld, Paul, “Performance Exploration of the Hybrid Memory
Cube,” Ph.D. dissertation, University of Maryland, College Park, 2014.
R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Soli-
hin, L. Hsu, and S. Reinhardt, “QoS Policies and Architecture for
Cache/Memory in CMP Platforms,” in ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems,
vol. 35, no. 1. ACM, 2007.

J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of the
ACM, vol. 56, 2013.

T. Moscibroda and O. Mutlu, “Memory Performance Attacks: Denial of
Memory Service in Multi-Core Systems,” in USENIX Security Sympo-
sium on USENIX Security Symposium. USENIX Association, 2007.
P. Rosenfeld, E. Cooper-Balis, T. Farrell, D. Resnick, and B. Jacob,
“Peering over the Memory Wall: Design Space and Performance Anal-
ysis of the Hybrid Memory Cube,” Technical Report UMD-SCA-2012-
10-01, University of Maryland, Tech. Rep., 2012.

J. Zhan, I. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang, and Y. Xie,
“A Unified Memory Network Architecture for In-Memory Computing in
Commodity Servers,” in International Symposium on Microarchitecture
(MICRO). 1EEE/ACM, 2016.

E. Azarkhish, C. Pfister, D. Rossi, I. Loi, and L. Benini, “Logic-Base
Interconnect Design for Near Memory Computing in the Smart Memory
Cube,” IEEE Transactions on VLSI Systems (VLSI), vol. 25, 2017.

D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano, “Randomizing
Packet Memory Networks for Low-latency Processor-Memory Com-
munication,” in International Conference on Parallel, Distributed, and
Network-Based Processing (PDP). 1EEE, 2016.

