Evaluating Hybrid Memory Cube Infrastructure To Support
High-performance Sparse Algorithms

Kartikay Garg
Georgia Institute of Technology
Atlanta, Georgia
garg.kartikay@gatech.edu

CCS Concepts -Hardware — Dynamic memory; High-level and
register-transfer level synthesis; «Computing methodologies —
Linear algebra algorithms;

Keywords PIM, Stacked DRAM, Hybrid Memory Cube (HMC),
HPC, SuperLU, FPGA, Heterogeneous Systems

ACM Reference format:

Kartikay Garg and Jeffrey Young. 2017. Evaluating Hybrid Memory Cube
Infrastructure To Support High-performance Sparse Algorithms. In Pro-
ceedings of MEMSYS 2017, Alexandria, VA, USA, October 2-5, 2017, 3 pages.
DOI: 10.1145/3132402.3132435

1 Introduction

This work is focused on analyzing potential performance im-
provements of HPC applications using stacked memories like the
Hybrid Memory Cube, or HMC. We target a HPC sparse direct
solver library, SUPERLU [4], that performs LU decomposition and is
a core piece of simulation codes like NIMROD [1]. To accelerate this
library, we are interested in mapping both the computationally in-
tense Spare Matrix-Vector (SpMV) kernels that can be implemented
using matrix-matrix multiply (GEMM) calls and memory-intensive
primitives like SCATTER and GATHER to a reconfigurable fabric
tightly integrated with a 3D stacked memory. Here we provide
initial results on mapping GEMM to OpenCL-based devices as well
as a trace-driven evaluation of SuperLU’s memory accesses with a
combined FPGA and HMC platform.

1.1 Application Background - SuperLU

State of the art implementations for sparse direct solvers, like
Piyush et al. [7] split the computations into logically independent
and isolated phases. The algorithm schedules elementary BLAS
operations such as matrix multiply (GEMM) on dense sub-blocks
of a sparse matrix. These dense blocks are organized in a tree
data structure known as an elimination tree, which can be used to
identify independent blocks which may be issued for execution in
parallel by both the host and the accelerator. Scheduling a chunk
of computations from an independent iteration’s phase helps in
hiding the memory access latency for requests issued by the host.
Lower access latency and increased memory bandwidth helps to
alleviate the computation workload on the host, and allows for the
transfer of more computation to the accelerator. The high internal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.

MEMSYS 2017, Alexandria, VA, USA

© 2017 ACM. 978-1-4503-5335-9/17/10...$15.00

DOI: 10.1145/3132402.3132435

Jeffrey Young
Georgia Institute of Technology
Atlanta, Georgia
jyoung9@gatech.edu

bandwidth in a 3D-stacked memory, such as HMC, can be used to
improve access times especially for random accesses employed by
the ScATTER and GATHER phases in each iteration.

2 Development Approach

Our work thus far has focused on two key pieces to support Su-
PERLU execution and optimization on an FPGA and HMC platform:
1) Migration of core kernels to OpenCL and 2) trace-driven analysis
of a multi-threaded, representative memory workload with the test
FPGA and HMC platform.

2.1 Migration to OpenCL

For our target application, we have developed an OpenCL “proxy”
kernel that implements the HaLo optimization for SuperLU [7],
which provides an optimized overlapping of computation and data
movement for SUPERLU’s core LU decomposition kernel, the Schur
Complement. OpenCL gives usversatility across platforms and it
can be compiled with newer compilers High-Level Synthesis (HLS)
that support FPGA hardware. We employ the cIBLAS library for
efficient DGEMM calls to offload computations to the accelerator.
By using a dense matrix as the input for the proxy, we maximize
the number of memory access requests issued by the host, as com-
pared to the data index manipulation overheads in case of a sparse
matrix. This worst case scenario model for testing memory accesses
provides a counterpoint to the competing baseline model of a GPU
accelerator, which can usually hide latency with data parallelism.
An analysis of this worst case scenario also helps us to make the
best argument for further exploring memory architecture models
like near-memory processing with FPGAs or processing in memory
(PIM).

2.2 Generating Memory Trace

Since our FPGA+HMC platform currently has limited support for
compiling and running BLAS operations that are critical to our
proxy application, we generate memory traces to estimate the re-
sponse of the HMC memory system. The span of memory requests
which are of interest to us are spread out within the execution time
because DGEMM calls are distributed across multiple iterations of
the LU factorization algorithm. Likewise, a simulation framework
modeling the host and the accelerator pipelines through memory
stages would simply take too long to simulate the entire program.
Thus we dynamically instrument the executable binary with the
PIN tool and run our proxy kernel on an Intel CPU which supports
multi-threaded implementation for OpenCL runtime calls. An Intel
Core(TM) 17-4790K CPU processor clocked at 4.00GHz is used for
our experiments.

In order to accurately capture the memory access stream of
the DGEMM BLAS calls offloaded to the accelerator, we generate
custom PIN tool filters that only trace memory accesses within

MEMSYS 2017, October 2-5, 2017, Alexandria, VA, USA

BLAS regions. We then trigger instruction level instrumentation
for only the period of execution of the proxy OpenCL kernel.

3 Evaluation Platform
3.1 Hardware

For the baseline performance numbers of our HALo implementa-
tion, we use an Intel CPU and NVIDIA K40c platform. For the
FPGA+HMC platform we use the AC-510 evaluation board by Mi-
cron/PicoComputing. The AC-510 [5] features aHMC Consortium
Specification 1.1 cube connected to a Xilinx KU060 FPGA. This
combined module is connected to the host via PCIe. The vendor
firmware on the FPGA exposes 9 stream interfaces to the host
software API stack. We use this PicoStream framework (provided
by the vendor) [6] to issue requests from the host software to the
AXI stream buffers of a port on board the FPGA. The 9 ports drain
the requests from their command streams to theHMC controller
IP on board the FPGA, which createsHMC command packets and
forwards the requests in a batch to theHMC.

3.2 Software for Trace-driven Execution

We use the vendor provided application "GUPS” (Giga Updates Per
Second) as a starting point for our trace-driven evaluation on the
AC-510 platfom. GUPS is modified to support a multi-threaded trace
driven execution where addresses and data are enqueued from the
host and then sent over PCle to the FPGA and HMC module. The
application uses hardware registers (local to each stream) imple-
mented on the FPGA, which probe different performance metrics
of the HMC that are measured using counters at the FPGA to HMC
serialization interface. These include Giga Operations per Second
(GOPS), read/write request count, and total time to service memory
trace.

FPGA on-board AC-510

Host (CPU)

GUPS port #1

Proxy application
Memory Trace Two x8 PCle links

(15Gbps each)

GUPS ports
#{2:10]

HMC Controller

Quad3 Quad4

Figure 1. Updated GUPS design to measure multi-port performance
of the HMC. Each software thread controls access to the command
and data streams of respective GUPS user ports and issues batches
of commands as flits are available.

On the host, nine independent threads are spawned. Each thread
monitors attributes of a distinct GUPS port and the local command
and data streams. A ring buffer local to each thread stores the list
of commands allocated to the respective port to be issued to the
HMC. Each thread reads from the ring buffer, starting at the read
pointer, and issues a batch of commands to the HMC controller
IP. This continues till the read pointer catches up with the write
pointer, and then the thread is idle, unless the memory trace has
been exhausted. In that case, the thread exits.

Another producer thread on the host parses the memory trace
file and creates HMC command and data packets, and allocates
them to each port ring buffers in a round robin order. This thread
has the responsibility of remapping the host address space to the
HMC address space.

K. Garg et al.

- HALO
A noHALO

SuperLU

implementations with —e-a0

HALO outperform the *-60

ones without HALO .0

200
4-10_nof

HALO (block: 40)

non-HALO (block: 80)

Matrix Dimension

(a) Performance comparison of SuperLU kernel with HALO vs. SuperLU
without HALO on NVIDIA Tesla K40c GPU.

- GPU
A cpu

cpu_10
cPu_20
+-cPU_S0
cPu_150
4 cPu_200
--GPU_40 of.
- GPU_60 /
--GPU_80 a A
GPu_150 /
GPU_200

(b) Performance comparison of HALO kernel on CPU (Intel 4790K) and
GPU (Tesla K40c) platforms.

Figure 2. Profiling of different phases of HaLo

4 Results
4.1 Havro Measurements for CPU and GPU

We first investigate the effects of block size, matrix dimension, and
the HALO optimization versus a baseline (ie non-HALO) implemen-
tation, as shown in Figure 2. We sweep a wide range of values for
matrix dimension size (N), where N varies from 500 up to 10, 000 in
steps of 1,000. We sweep the block size (M) from 50 to 200, in steps
of 20. A careful analysis confirms our understanding wherein data
transfer overheads dominate lower matrix dimension and smaller
block size test cases; this situation matches when GPU occupancy
is low. As matrix dimensions are increased the GPU becomes better
utilized and overall runtime is decreased. These results mostly con-
firm that dense, accelerated GEMM operations are limited by data
transfer and that using too small a block size can result in worse
performance for a high-end GPU than a mid-grade CPU, as is the
case for GPU, block size 40 versus CPU, block size 150 in Figure 2b.

4.2 Memory Trace Experiments

We next study the effect of FPGA firmware design decisions on
the performance of our target kernel on the 3D-stacked memory
system. A detailed report on the results from runs of the “proxy”
kernel on different platforms and measurements from the mem-
ory trace simulation on the FPGA+HMC evaluation board have

Evaluating HMC Infrastructure for Sparse Algorithms

been presented in related work [2]. By varying the batch size of
read/write commands, we are able to understand the optimum
queue size for the host thread that is contending for access to the
common HMC link. If we reduce the batch size to 1, we can study
the implications of issuing requests in-order one by one to the
memory system. These variations in dispatching memory requests
to the HMC platform help us to evaluate expected performance for
a CPU-style processing core that makes blocking memory access
calls. Alternatively, by issuing commands serially on a single user
port, we can simulate memory contention between threads. Note
that while nine ports are available to interact with the FPGA and
HMC, our trace-driven simulation uses a maximum of seven ports.

Batch size for issuing requests to HMC

Figure 3. Aggregate GOPS for Serial Issue

Figure 3 shows the measured performance of our proxy kernel
using the serial issue implementation with one port. In general,
increasing batch sizes correlate with aggregate port throughput
increases and reduced service times, with an improvement of almost
8x Giga-Operations per Second (GOPS) when scaling from batch
size of 16 to 250.

Increasing Peak aggregate GOPS

= gatch4

= gatch 16
Batch 128
Batch 256

Batch 350

0002

1 2 4 6

Port Count for HMC interafce

Figure 4. Aggregate GOPS for Parallel Ports

However, for multiple ports contending for the HMC link in
parallel (Figure 4), the observed performance is optimal for a batch
size of 256. When the software issue batch size is 256, it also matches
the length of the command queue FIFO depth in hardware, which
reduces overheads to poll for read responses. Taking these two
preliminary results together indicates that the HMC interface works
best with larger batch sizes but that larger batches must be matched
with longer queues in hardware to reduce overheads.

MEMSYS 2017, October 2-5, 2017, Alexandria, VA, USA
5 Future Work

While these results presented so far are preliminary, we plan to
further investigate memory access patterns for SUPERLU with the
HMC platform. Some challenges we have observed thus far include
the following:

1. Currently, HLS firmware packages have limited support
for interacting with unusual memory types like HMC. We
envision a future OpenCL-based evaluation that can utilize
either a wider interface to the HMC or multiple ports as
with the GUPS module.

2. Tunable BLAS calls are still not well-supported with FPGA
implementations. For this reason, we are currently test-
ing with custom GEMM calls that replicate functionality
available in libraries like cIBLAS.

3. GPU-based memory traces would reveal better dependency
and consistency information and allow for testing out BSP-
based accelerators that can be more easily compared to
previous GPU and Xeon Phi implementations. Currently
PIN does not fully support iGPU trace generation

By focusing on solutions to each of these issues, we hope to
further develop and evaluate our SUPERLU implementation for
FPGA and HMC-based platforms.

6 Conclusion

This work provides a detailed testing of an OpenCL implemen-
tation of a core SUPERLU proxy kernel with Haro on CPU, GPU,
and HMC and FPGA. While we find that the dense GEMM proxy
kernel scales as batch size is increased with HaLo, the trace-driven
simulation shows that a higher batch size of memory accesses to the
HMC may not guarantee peak performance since FPGA user ports
have to contend for the shared HMC link resource. We conclude
that memory accesses for SUPERLU will likely need more careful
optimizations like those presented in related work [3] as well as
further hardware support to match bursty read/write accesses with
available HMC link resources.

References

[1] David Abramson, Colin Enticott, and Ilkay Altinas. 2008. Nimrod/K: Towards
Massively Parallel Dynamic Grid Workflows. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing (SC *08). Article 24, 11 pages.

[2] Kartikay Garg. 2017. Near-memory Primitive Support and Infrastructure for Sparse
Algorithms. Master’s thesis. Georgia Institute of Technology, Atlanta, GA, USA.
https://smartech.gatech.edu/handle/1853/58343

[3] Maya Gokhale, Scott Lloyd, and Chris Hajas. 2015. Near Memory Data Structure
Rearrangement. In Proceedings of the 2015 International Symposium on Memory
Systems (MEMSYS ’15). ACM, New York, NY, USA, 283-290. https://doi.org/10.
1145/2818950.2818986

[4] Xiaoye S.Liand James W. Demmel. 2003. SuPERLU_DIST: A Scalable Distributed-
Memory Sparse Direct Solver for Unsymmetric Linear Systems. ACM Trans.
Mathematical Software 29, 2 (June 2003), 110-140.

[5] Micron. 2014. AC-510 HMC accelerator board product brief. http:/
picocomputing.com/ac-510-superprocessor-module/. (November 2014). Re-
trieved 2016-11-05.

[6] Micron. 2014. Pico-Computing software stack and driver framework. http:
//picocomputing.com/products/framework/. (November 2014). Retrieved 2016-
11-05.

[7] Piyush Sao, Xing Liu, Richard Vuduc, and Xiaoye Li. 2015. A sparse direct solver
for distributed memory xeon phi-accelerated systems. In Parallel and Distributed
Processing Symposium (IPDPS), 2015 IEEE International. IEEE, 71-81.

