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ABSTRACT 

Short linear motifs are 3 to 11 amino acid long peptide patterns 

that play important regulatory roles in modulating protein 

activities. Although they are abundant in proteins, it is often 

difficult to discover them by experiments, because of the low 

affinity binding and transient interaction of short linear motifs 

with their partners. Moreover, available computational methods 

cannot effectively predict short linear motifs, due to their short 

and degenerate nature. Here we developed a novel approach, 

FlexSLiM, for reliable discovery of short linear motifs in protein 

sequences. By testing on simulated data and benchmark 

experimental data, we demonstrated that FlexSLiM more 

effectively identifies short linear motifs than existing methods. 

We provide a general tool that will advance the understanding of 

short linear motifs, which will facilitate the research on protein 

targeting signals, protein post-translational modifications, and 

many others.   

CCS Concepts 

• Information systems ➝ Desktop search • Theory of 

computation ➝ Pattern matching 
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1. INTRODUCTION 
Short linear motifs (SLiMs) are peptide patterns that are typically 

3 to 11 amino acid long. They are highly abundant in protein 

sequences [1-3]. For instance, it is estimated that hundreds of 

SLiMs and well over a million SLiM instances exist in human 

proteins [2, 3]. These SLiMs mediate various protein activities 

such as activation or deactivation of proteins, modifying proteins 

through post-translational modifications, serving as target sites for 

cleavage by proteases, and targeting proteins to specific 

subcellular locations, etc. [1]. Systematic identification of SLiMs 

is thus essential to understand protein regulation and protein 

behaviours. Despite their abundance and versatility, SLiMs are 

largely unexplored. For example, only 267 SLiMs are annotated in 

the Eukarytoic Linear Motif (ELM) database [1], the largest 

database that store experimentally validated SLiMs.  

Experimental and computational methods have been developed 

for the discovery of SLiMs. Experimentally, the determination of 

SLiMs and their instances has been greatly aided by the use of 

antibodies [4, 5]. It is through these experiments that we start to 

know certain nature of SLiMs. However, experimental approaches 

are time-consuming and expensive. In addition, the interaction of 

SLiM instances with their partners are often subtle and transient, 

and thus are difficult to detect by experiments. Therefore, 

computational methods are indispensable for the identification of 

SLiMs. Based on SLiMs identified in experimental studies, 

several computational methods are developed to predict new 

instances of known SLiMs [1, 6-11]. These methods in general 

represent SLiMs in different ways (such as regular expression or 

position weight matrix) [9, 12, 13] and use different filters to 

remove segments that unlikely contain SLiM instances (such as 

globular domains) [14]. They have been shown successful in 

identifying meaning instances of known SLiMs [9, 12]. However, 

these methods are circumscribed by the limited number of known 

SLiMs [1, 8]. To de novo identify SLiMs, a few computational 

methods are developed [10, 11, 15-22]. Many of these methods 

[15, 16, 19, 20] construct elementary patterns from input protein 

sequences and then extend elementary patterns into SLiMs by 

concatenating pairs of similar elementary patterns. Here 

elementary patterns are short patterns that consist of only fixed 

positions (positions with only one specified amino acid) and 

wildcard positions (positions with any amino acid allowed), with 

two fixed positions at the end of the patterns. Although these 

methods are successful in identifying certain SLiMs, many of 

them do not allow flexible gaps in SLiMs [18, 20, 21], or demand 

additional information besides sequences [16, 17], which prevent 

them from general applications. In addition, the few methods [15, 

19] that can be applied for general SLiM discovery do not work 

well with large datasets, according to a recent study [18]. Finally, 

the significance assessment of peptide patterns is still problematic 

in current methods [1, 23]. For instance, the occurrence number of 

a SLiM in a sequence is often assumed to follow a binomial 

distribution [15, 23]. However, due to the dependency of adjacent 

overlapping segments in the sequence, this assumption is violated. 

Without a reliable approach for significance evaluation, available 

methods are not effective to identify SLiMs in noisy data.  

Here we propose a novel approach, FlexSLiM, for de novo SLiM 

discovery in a group of protein sequences. Starting from selected 

dipeptide elementary patterns, FlexSLiM groups these dipeptides 
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such that each group of dipeptides is likely contained in one and 

only one SLiM. FlexSLiM then combine the dipeptides in each 

group into potential SLiMs that may contain flexible gaps and 

degenerate positions and assess their significance. Our study 

shows that FlexSLiM is capable of discovering SLiMs from both 

small sets of protein sequences, and massive proteome-wide 

observations. In addition, it requires no additional information 

other than protein sequences, which enables its general 

applications. Finally, FlexSLiM can accurately calculate statistical 

significance of SLiMs. Given the fact that hundreds of SLiMs 

have still to be discovered [1, 23], our study provides a powerful 

tool that will significantly advance our understanding of SLiMs 

and SLiM functions. 

2. METHODS 

2.1 Representation of SLiMs 
SLiMs often contain a mixture of defined positions and undefined 

positions [23]. A defined position can be called either a fixed 

position when only one specific amino acid is allowed in this 

position or a degenerate position when several specified amino 

acids could be in this position. In contrast, undefined positions are 

often wildcard positions where any of the 20 amino acids is 

allowed. Because of the existence of wildcard positions, a SLiM 

often contains flexible gaps that are stretches of a variable number 

of consecutive wildcard positions. For instance, the SLiM 

Fun_Delta [1], represented by the regular expression 

[DE].{2,4}NN[IL], contains a flexible gap of 2 to 4 amino acids 

long that starts at the second position. A regular expression is a 

concise means to describe groups of strings and regular 

expressions are commonly used to describe SLiMs [1]. This above 

regular expression, [DE].{2,4}NN[IL], means that the first 

position of the Fun_Delta SLiM is a degenerate position with D or 

E, then followed by this flexible gap, two fixed positions with N, 

and a degenerate position with either I or L.  

2.2 Framework of FlexSLiM 
Effective methods are urgently needed to identify SLiMs. 

However, it is challenging to directly identify SLiMs, because a 

SLiM may include a huge number of possible peptide patterns. 

For instance, the Fun_Delta SLiM [DE].{2,4}NN[IL] mentioned 

above contains 2 × (202 + 203 + 204) × 1 × 1 × 2 = 673,600 

different peptide patterns with only fixed positions. We designate 

the peptide patterns contained in a SLiM as SLiM induced 

patterns, such as DRCNNI and D..NNI for the Fun_Delta SLiM. 

Because of the large number of induced patterns contained in a 

SLiM, many induced patterns are not statistically significant and it 

is thus also difficult to identify all induced patterns directly. To 

resolve the above issues, we propose to identify short elementary 

patterns first and then combine elementary patterns into SLiMs. 

However, the number of short elementary patterns could be still 

large and we cannot afford to check whether each pair of 

elementary patterns can be combined into longer peptides. An 

efficient approach for combining elementary patterns is needed. In 

addition, SLiMs are quite weak patterns due to the multiple 

choices of amino acids at a position and the flexible gaps. It is 

thus necessary to have an accurate way to assess the statistical 

significance of SLiMs. We propose a computational framework 

for SLiM identification by taking these factors into account. The 

proposed approach is composed of four steps detailed below: (1) 

select dipeptide elementary patterns; (2) generate SLiM induced 

patterns; (3) Discover SLiMs; and (4) calculate significance of 

patterns. 

2.3 Select Dipeptide Elementary Patterns 
To select elementary patterns that are substrings of SLiMs to be 

identified, previous methods often require the occurrence number 

of elementary patterns be larger than a predefined cutoff [15, 20]. 

However, elementary patterns in a SLiM have different 

occurrence probabilities and thus have different distributions of 

occurrence numbers in input sequences. For example, for the 

SLiM LIG_Rb_LxCxE_1, [LI].C.[DE], the occurrence number of 

the dipeptide patterns it contains, L.C.E, L.C.D, I.C.E and I.C.D, 

is 28, 3, 1, and 0, respectively, in the 32 experimentally validated 

instances in the ELM database [1]. Therefore, it is difficult to set a 

predefined cutoff properly. If the cutoff is small, many unrelated 

elementary patterns are selected, which increases the computation 

time substantially and the difficulty in pinpointing true SLiMs. If 

the cutoff is large, useful elementary patterns with low occurrence, 

such as I.C.D and L.C.E, are removed.  

To solve the problem, we distinguish two types of elementary 

patterns: backbone elementary patterns and branch elementary 

patterns. Backbone elementary patterns are those with the 

occurrence number larger than a predefined occurrence cutoff, OC. 

Branch patterns are those with the occurrence number smaller 

than the occurrence cutoff OC while having its z-score larger than 

a predefined z-score cutoff, ZC. In this paper, the z-score of a 

pattern is defined as its occurrence number minus its expectation 

divided by its standard deviation.  

For a given group of sequences, first, we obtain all dipeptides in 

these sequences. A dipeptide is a peptide segment like x.{n}y, 

where (i) x and y are two amino acids; (ii) n represents the number 

of wildcard positions between x and y. Second, we obtain the 

occurrence number of all dipeptides and select backbone 

dipeptides by using the occurrence cutoff OC. Third, we obtain 

the frequency of 20 amino acids in input sequences, and calculate 

z-scores of non-backbone dipeptides in input sequences. Finally, 

we select branch dipeptides that have a z-score larger than the z-

score cutoff ZC. 

2.4 Generate SLiM Induced Patterns  
With elementary patterns, a common approach to obtain SLiM 

induced patterns is to combine similar elementary patterns into 

longer elementary patterns [15, 19]. For instance, starting from 

dipeptide elementary patterns, this strategy will extend dipeptides 

into 3-mers, and then further extend 3-mers into 4-mers. This 

process is repeated until the number of fixed positions in the 

patterns reaching a pre-defined maximum value. Every time when 

a pattern will be extended, this strategy needs to compare this 

pattern with other patterns, which is time-consuming. In addition, 

after extension, this strategy needs to determine whether the 

extended patterns occur in enough sequences, which takes a lot of 

time as well. 

To make this process more efficient, we group elementary 

patterns first such that each group of elementary patterns is likely 

from a SLiM. In this way, we only need to compare a much 

smaller number of patterns within a group in order to extend a 

pattern every time. In addition, we do not need to check whether 

the extended patterns occur in enough sequences because our 

grouping algorithms guarantee that a group of elementary patterns 

occur in enough sequences. The details of how to obtain induced 

patterns are as follows (Figure 1). 
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Figure 1. The pipeline in FlexSLiM. 

First, we apply the frequent pattern mining algorithms [24, 25] to 

group backbone elementary patterns. The typical problem the 

frequent pattern mining algorithms can address is: what products 

(apple, orange, juice, onion, etc) do customers frequently buy 

together, given a database that stores the products each customer 

bought at a time? If we treat backbone dipeptides as a type of 

products and each sequence as a customer, these algorithms could 

identify groups of backbone dipeptides whose occurrence 

numbers are greater than a pre-defined cutoff. We call this cutoff 

the support cutoff, abbreviated as SC. Note that the elementary 

patterns contained in a SLiM should occur within windows of no 

longer than 11 amino acids long in many sequences [23] while the 

frequent pattern mining algorithms do not take the relative 

locations of dipeptides in input sequences into account. However, 

since the average length of human proteins is about 428 amino 

acid long based on all human proteins in the Ensembl database 

[26], it is rare that multiple non-overlapping dipeptides co-occur 

in multiple sequences, especially if we remove segments such as 

globular domains that are unlikely to contain SLiM instances [27]. 

So the majority of extended patterns satisfy the support cutoff, SC. 

Second, we insert similar branch dipeptides into every group of 

backbone dipeptides. For a given group of backbone dipeptides, 

we will calculate the similarity of each backbone dipeptide in this 

group with every branch dipeptide. The similarity of two 

dipeptides is defined as the sum of the substitution scores of the 

two pairs of amino acids in the two dipeptides. For instance, the 

similarity of two dipeptides, A..B and B.C, is defined as the sum 

of the substitution scores of (A, B) and (B, C). The BLOSUM62 

substitution matrix is used to calculate the substitution score of 

each pair of amino acids. If the similarity of two dipeptides is 

greater than or equal to -1, we claim this pair of dipeptides similar. 

We select -1 as the cutoff to define similar patterns because we 

checked all SLiMs in the ELM database and found that more than 

90% of dipeptides from two defined positions of the same SLiM 

in the ELM database have a similarity no small than -1. 

Third, with groups of expanded dipeptides, we extend the 

dipeptides in the same group into longer patterns (Figure 1). These 

longer patterns are called SLiM induced patterns, which contain 

only wildcard positions and fixed positions. We will first obtain 

induced backbone patterns using only backbone dipeptides. If the 

last n-1 fixed positions of an n-mer match the first n-1 fixed 

positions of another n-mer, where an n-mer is a backbone 

dipeptide or an induced backbone pattern, the first n-mer can be 

extended with the last fixed position of the second n-mer. For 

example, A..B and B.C can be combined into A..B.C. The 

rationale behind this tail-head concatenation operation is that if 

A..B.C occurs more than the SC times, then the occurrence times 

of A..B and B.C is larger than SC as well. Besides extending 

backbone elementary patterns into induced backbone patterns, we 

will also obtain induced branch patterns by using one branch 

pattern and one backbone pattern. In detail, we will compare each 

backbone dipeptide with each branch dipeptide in the same group 

to see whether one matches the other except at one position. For 

instance, except at the second fixed position, A..B matches A.C. 

We will extend each pair of matched backbone and branch 

dipeptides into 3-mers. These 3-mers with z-scores larger than ZC 

are called branch 3-mers. Next, every branch 3-mer compared 

with every backbone 3-mer generated from the same group of 

dipeptides to obtain branch 4-mers. We will repeat this process 

until no pattern can be extended or the length of the extended 

pattern is larger than a length cutoff, L. In practice, this step of 

obtaining longer patterns takes little time, because the number of 

backbone dipeptides in the same group is small and the average 

number of defined positions in a SLiM is 3.7 and the average 

length of a SLiM is 6 based on the ELM database [23]. 

2.5 Discover SLiMs  
We will implement the following procedure to construct SLiMs 

from SLiM induced patterns. First, we will transform the regular 

expression represented induced patterns into numbered patterns. 

In other word, to represent induced patterns, we will use the 

number of wildcard positions between two adjacent fixed 

positions in induced patterns to replace the wildcard positions. For 

instance, A..CD will be represented as A2C0D. With the 

numbered representation, the induced patterns for the same SLiM 

will have the same length. Moreover, the two types of flexibility 

in SLiMs, degenerate positions and flexible gaps, can be 

considered similarly after the conversion. Second, we will group 

numbered patterns with same length into the same group. Third, 

for each group of induced patterns, we will discover SLiMs by 

merging proper patterns, including backbone and branch patterns, 

into SLiMs. In detail, all backbone patterns in this group are 

arbitrarily ordered. Starting from i-th backbone pattern, we will 

find similar patterns that have an order larger than i. Two patterns 

are called similar only if they are exactly the same except one 

mismatch. That is, two similar patterns have either different amino 

acids or different gap sizes at one and only one position. Next, we 

sort all similar patterns for the i-th backbone pattern. Compared 

with the i-th backbone pattern, patterns with different amino acids 

are sorted at the beginning while with different gap sizes are 

sorted at the end. In addition, compared with the sequences 

containing the i-th backbone pattern, patterns occurring in 

different sequences will be sorted before patterns occurring in 

similar sequences. Next, we will keep combining the backbone 

pattern with the top similar patterns until the sequences containing 

the combined pattern is not increased or all similar patterns have 

been considered. The significance of a pattern is measured by a z-

score, which is calculated by the method detailed in the following 

section. If the z-score of the combined pattern is smaller than a 

predefined cutoff, this combined pattern will be output. Finally, 

we will repeat this process for all i and all different lengths of 

induced patterns. 

2.6 Calculate Significance of Patterns  
We will first calculate the probability that a pattern occurs in a 

random sequence of length n. A pattern here can be a dipeptide, 

an induced pattern, or a SLiM. Since a pattern here can be 

represented by a regular expression and a regular expression can 

be described by a deterministic finite automaton (DFA), We can 

describe a pattern by a DFA [28]. With the DFA corresponding to 

34



a pattern, any random sequence of length n can be thought as a 

path in a graph representing this DFA [29, 30]. Similar to previous 

studies in DNA sequences [30], we can calculate the probability 

that this pattern occurs in a protein sequence of length n. 

We will then calculate the significance of this pattern in multiple 

protein sequences. Assume we have m sequences, the length of 

which are 𝑛1, ⋯ , 𝑛𝑚. Assume a pattern occurs in 𝑚0 out of the m 

sequences. How significant is this pattern? To address this 

problem, we will first calculate 𝑝𝑖, the probability that this pattern 

occurs in the a random sequence of 𝑛𝑖  amino acid long, by the 

above DFA based method [29, 30]. The z-score of this pattern is 

defined as: 

 
 
 
 

3. RESULTS 

3.1 FlexSLim, a Novel Approach for SLiM 

Discovery 
We developed a novel approach, FlexSLiM, for SLiM discovery 

in protein sequences. In brief, given a group of input sequences, 

first, we grouped protein sequences into different Unrelated 

Protein Clusters (UPCs) by using bl2seq in BLAST software 

package. Second, masked ordered regions and low complexity 

regions by using IUPRED [31] and SEG [32]. Third, FlexSLiM 

selects backbone 2-mers with large occurrence numbers and 

backbone 2-mers with low occurrence numbers while high z-

scores. Fourth, FlexSLiM groups the backbone 2-mers such that a 

group of backbone 2-mers is likely from the same SLiM. Fifth, 

FlexSLiM inserts similar branch 2-mers into each group of 

backbone 2-mers. Sixth, FlexSLiM constructs longer backbone 

patterns from groups of backbone 2-mers and longer branch 

patterns by combining backbone and branch elementary patterns 

separately to obtain induced patterns. Finally, FlexSLiM combine 

similar induced patterns into SLiMs, which may have degenerate 

positions and flexible gaps.  

Compared with available methods for SLiM discovery [15, 18-20], 

FlexSLiM have several unique features. First, FlexSLiM uses 

double cutoffs to select elementary patterns. This is superior to the 

strategy of using a simple occurrence cutoff, because frequent 

elementary patterns contained in SLiMs are found by the 

occurrence cutoff efficiently, while infrequent elementary patterns 

are detected as many as possible by the z-score cutoff. This 

advantage of the double cutoffs is even more evident when there 

are a large number of input sequences, as the occurrence cutoff 

can significantly reduce the number of elementary patterns that 

needs to be considered and the z-score cutoff can dramatically 

improve the accuracy of including essential elementary patterns. 

Second, FlexSLiM applies the frequent pattern mining algorithms 

[24, 25] to group backbone elementary patterns and then inserts 

similar branch elementary patterns into each group. In this way, 

FlexSLiM only needs to compare a small number of patterns each 

time when it extends patterns and does not need to verify whether 

the extended patterns occur in enough sequences. This is different 

from the common approach used by other methods [15, 19, 20], in 

that other methods often have to compare a large number of 

elementary patterns to determine which pairs of elementary 

patterns to be combined to generate longer patterns and have to 

check whether the extended patterns occur in many sequences. 

Third, FlexSLiM proposes an accurate way to calculate the 

significance of SLiMs. Previous methods often assume a binomial 

distribution [15] to calculate the probability that a pattern occurs 

in one or multiple sequences, which neglects the complexity of the 

induced patterns in SLiMs and the overlap of SLiM instances in 

sequences. Because of these unique features, FlexSLiM performs 

well on the following simulated data and experimental data. 

3.2 Studies on Simulated Data 
We tested FlexSLiM on simulated datasets. First, we chose all 

SLiMs from the benchmark used by SLiMFinder [15]. Next, we 

generated random sequences based on two different sets of amino 

acid frequencies and length distributions. One set adopts length 

range distribution [131, 331], whose mean is the average length of 

unmasked regions in all benchmark motifs, and the amino acid 

frequencies in unmasked regions for the inserted motif. The other 

set adopts length range distribution [254, 454], whose mean is the 

average length of all protein sequences, and the amino acids 

frequencies in both masked and unmasked regions for the inserted 

motif. In each experiment, 100 random sequences were generated 

and 50 of them were inserted with SLiM instances of the 

corresponding SLiM. 20 of 50 are the same instance, which is 

taken as backbone, and 30 of 50 are randomly picked from all 

possible instances. The backbone instances are generated by using 

first letter at defined positions and shortest length of flexible gaps. 

Finally, we applied FlexSLiM to these datasets and compared 

with the SLiMFinder. We did not compare with DiLiMOT, since 

it cannot handle the 100 sequences used in the experiments. The 

parameters for FlexSLiM were L=8, G=4, N=5, M=4, 

OC=1/5*(number of cluster), ZC=1, and SC=1/3*(number of 

clusters), where L is the maximum length of SLiMs, G is the 

maximum size of flexible gaps, N is the maximum number of 

defined positions in a SLiM, and M is the maximum number of 

amino acids in one defined position. The default parameters were 

used for SLiMFinder. And the mask option is set to off for both 

softwares.  

Form Table 1, we can see that both SLiMFinder and FlexSLiM 

did well in all 17 simulated datasets. FlexSLiM try to discovery 

large support patterns firstly. Therefore small support but high 

significant patterns are not considered as candidates. For example, 

SLiMFinder finds out large significant patterns HDEL and QQEL, 

both of which are instances of inserted motifs of 

TRG_ER_KDEL_1. On the other hand, only KDEL is taken as 

backbone by FlexSLiM. As a result, only KDEL is expanded into 

two predictions. But just expanding backbones may cause losing 

defined positions. For example FlexSLiM find less defined 

positions than SLiMFinder for motif LIG_AP_GAE_1. And from 

the table, we can see that both software find better results by using 

unmasked regions. This implies masking is indispensible strategy 

for slim discovery.  

The effect of finding SLiMs without a predefined equivalency list 

is evident in Table 1. SLiMFinder uses a predefined equivalency 

list to determine the set of amino acids allowed at a degenerate 

position, while FlexSLiM does not use such a list. Without the 

equivalency list, FlexSLiM can obtain more flexible patterns. For 

example, {K,S} is not in any equivalency lists. Therefore 

SLiMFinder cannot discovery [KS][DEN]EL for motif 

TRG_ER_KDEL_1. 

 

 

𝒎𝟎 −∑ 𝒑𝒊𝒎𝒊=𝟏∑ 𝒑𝒊(𝟏 − 𝒑𝒊)𝒎𝒊=𝟏  
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Table 1. Tests on random sequences with different lengths and amino acids frequencies 

ELM Accession Regular Expression FlexSLiM SLiMFinder 

231 354 231 354 

TRG_ER_KDEL_1 [KRHQSAP][DENQT]EL [KS][DEN]EL [KQS][DEQ]EL HDEL QQEL 

LIG_Dynein_DLC8_1 [KR].TQT [KR].TQT [KR].TQT [KR].TQT [KR].TQT 

LIG_PCNA Q..[ILM]..[DFHM][FMY] Q..[IL]…F Q..I..D[FMY] Q..I.CHY Q.E.H.MY 

MOD_SUMO [VILMAFP]K.E [VLMA]K.E [VIF]K.E VKTE IKSE 

LIG_SH3_2 P..P.[KR] P..P.[KRQ] P..P.K PRD.GK PEH.SR 

LIG_CYCLIN_1 [RK].L.{0,1}[FYLIVMP] [RK].L.F [RK].L.F KSLSM KSLL 

LIG_CtBP 

[PG][LVIPME][DENS]L[

VASTRGE] PL[DEN]V P.DLV PLNLR GPELV 

LIG_AP_GAE_1 

[DE][DES][DEGAS]F[SG

AD][DEAP][LVIMFD] [DE]D..S.L D..F[GS][DE] [DE]DDF..L D..F[GS][DE]L 

LIG_14-3-3_3 

[RHK][STALV].[ST].[PE

SRDIFTQ] R..[ST].P RS.[ST] RLQ.PQ RSE.MR 

LIG_Rb_LxCxE_1 [LI].C.[DE] [LI].C.[DE] [LI].C.[DE] LNCND LLCLE 

LIG_Clathr_ClatBox_

1 L[IVLMF].[IVLMF][DE] L[IV].V[DE] 

L[IM].[VML][D

E] LVHVD LMQMD 

LIG_14-3-3_1 R..[ST].P R..[ST].P R..S.P RGAT.P R.NSQP 

LIG_RGD RGD RGD RGD RGD RGD 

LIG_HP1_1 

P[MVLIRWY]V[MVLIA

S][LM] P[LMY]V[MIS] PMV[MIS]M 

P[LM]V[IM

][LM] PWVSM 

LIG_NRBOX L..LL L..LL L..LL LKFLL LTTLL 

MOD_N-GLC_2 N.C N.C N.C NFC NPC 

TRG_LysEnd_APsAc

LL_1 [DERQ]…L[LVI]  [DR]…L[LI]  D...L[LV] EA.RLI RKYD.I 

The top one predictions are shown in the table. The two numbers, 231 and 351, are the average length of the simulated sequences. 

 

3.3 Studies on Benchmark Data 
The motif benchmark datasets tested by SLiMFinder were used in 

our experiment. Two other tools, SLiMFinder and DiLiMOT were 

also used to compare with FlexSLiM. Because the ELM database 

has been updated, we redo all the tests on both SLiMFinder and 

DiLiMOT. The corresponding protein sequences that contain each 

of the SLiMs were obtained from the ELM database [33]. The 

parameters for the two tools were set to be the default parameters.  

The parameters for FlexSLiM were the same with those in the 

simulated experiment except OC=1/3 of clusters, SC=0.5 of 

clusters. If OC is set to 3 if it is less than 3. The results were 

shown in Table 2. 

For the 17 SLiMs, FlexSLiM predicted similar SLiMs to each of 

them. In some cases, FlexSLiM does not provide similar 

prediction for the known motif. This is because the OC is too 

large or the backbone patterns have too short support. Then 

FlexSLiM cannot discover the proper backbones and therefore the 

expansion is invalid. We can see the selection of OC is very 

important for FlexSLiM. On the other hand, if there is not a large 

support backbone pattern in the input sequences, FlexSLiM would 

convert into similar mechanism as previous algorithms. 

The advantage of using double cutoffs in FlexSLiM was 

demonstrated here. For the 4-mers contained in the SLiM 

TRG_ER_KDEL_1 in Table 2, HDEL, it only occurs once in the 

input sequences. SLiMFinder needs to set the occurrence cutoff to 

be one in order to select the dipeptide as elementary pattern. 

However, all elementary patterns would be considered if the 

occurrence cutoff is set so low, which would take a long time to 

extend the selected elementary patterns into SLiMs. By using the 

double cutoff strategy, the induced pattern can be detected 

precisely. In addition, although the total number of elementary 

patterns considered in by the three tools is the same, FlexSLiM 

does not consider the extension of branch elementary patterns 

themselves. In general, the percentage of branch elementary 

patterns in all elementary patterns is over 80%. As a result, the 

computation time of FlexSLiM is much shorter than that of 

SLiMFinder. 

 

Table 2. Tests on benchmark datasets 

ELM Accession 
FlexSLiM SLiMFinder DiLiMOT 

Result Sig Result sig Result Sig 

TRG_ER_KDEL_1 

[KRHQSAP][DENQT]EL [KH]DEL 1.66E-09 KDEL 0 KDEL 

3.69E-

40 

LIG_Dynein_DLC8_1 

[KR].TQT S..K.TQT 1.32E-09 S..K.TQT 1.28E-05 K.TQT 

6.18E-

26 

LIG_PCNA 

Q..[ILM]..[DFHM][FMY] Q….S[FH]F 1.44E-15 Q.[ST][IL]..FF 4.43E-13 Q…..FF 0 
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MOD_SUMO 

[VILMAFP]K.E S[AT].R 7.51E-03 [FIV]K.E 2.66E-06 VK.E(8) 

1.55E-

21 

LIG_SH3_2 

[P..P].[KR] EIL.K 1.34E-08 EIL 7.80E-01 PP..P.R(4) 

6.22E-

21 

LIG_CYCLIN_1 

[RK].L.{0,1}[FYLIVMP] [KR]R.L 5.64E-05 [KR][KR]..F 1.50E-02 YISP 

1.38E-

35 

LIG_CtBP 

[PG][LVIPME][DENS][VASTRGE] P.DL(2) 1.93E-03 P[ILM]DL 2.00E-03 P.DLS(5) 

1.13E-

47 

LIG_AP_GAE_1 

[DE][DES][DEGAS]F[SGAD][DEAP][VLIMFD] D.FG.F(2) 1.14E-06 D.F..F.S..P 5.60E-01 DD.F..F 

4.30E-

64 

LIG_14-3-3_3 

[RHK][STALV].[ST].[PESRDIFTQ] D.S.{2,4}S 2.27E-08 D..Y.D..PG 7.90E-02 R..S.D.S(2) 

3.74E-

29 

LIG_Rb_LxCxE_1 

[LI].C.[DE] G..T 2.35E-01 L.C.E 2.12E-04 L.C.E 

4.30E-

48 

LIG_Clathr_ClatBox_1 

L[IVLMF].[IVLMF][DE] LLDL(2) 3.81E-08 A..T..[FV] 1.00E-01 LL.LD(4) 

3.46E-

24 

LIG_14-3-3_1 

R..[ST].P RS.S.P(5) 1.25E-04 T[FM].T 9.80E-01 RS.S.P 

4.27E-

25 

LIG_RGD 

RGD EE..A 4.37E-01 RGD 4.70E-01 RGD 

9.55E-

30 

LIG_HP1_1 

P[MVLIRWY]V[MVLIAS][LM] R…D..R.G 5.45E-06 I..S..I[IM] 5.50E-02 VP.V.L(4) 

8.92E-

28 

LIG_NRBOX 

L..LL TGP.PG 3.45E-06 IK.E..D 8.40E-02 P.L.K 

1.20E-

26 

MOD_N-GLC_2 

N.C RGDS 7.65E-06 G..WK 6.10E-01 EAP 

2.35E-

12 

TRG_LysEnd_APsAcLL_1 

[DERQ]…L[LVI] [KP]K 8.62E-01 QE.V..[IV] 3.10E-01 E..R.L.F 

1.37E-

16 
The top one predictions are shown in the table. If the top one prediction is not similar with the motif, the most similar top ranked prediction is shown in the table. And 

the corresponding rank is shown in the brackets. 

4. DISCUSSION 
We developed a novel approach, FlexSLiM, to discover general 

SLiMs in protein sequences. As previous methods [15, 19, 20], 

FlexSLiM starts from elementary patterns and then extends 

elementary patterns to SLiMs with degenerate positions and 

flexible gaps allowed. Different from previous methods, 

FlexSLiM distinguishes two types of elementary patterns and 

applies frequent pattern mining algorithms to extend elementary 

patterns, which greatly speed up the process of SLiM discovery 

and improve the accuracy of SLiM discovery. As shown in the 

simulated data and experimental data, FlexSLiM shows superior 

or comparable performance when compared with two state of the 

art best methods [15, 19]. 

FlexSLiM uses DFA to calculate the exact occurrence probability 

of a pattern in a random sequence. In some specific cases, the 

number of states in a DFA is large. For example, in the SLiM 

TRG_NLS_Bipartite_1 in ELM [1], there is a flexible gap .{7, 

15}. As a result, the probability calculation based on DFA takes 

time. This is because the number of states of the DFA 

representing .*A.{m, n}B.* is O(k+2m-n+1) [34], where k is the 

number of different lengths of the pattern. Fortunately, for the 

majority of SLiMs, m-n+1 is a small number. In our 

implementation, if the number of DFA states exceeds 100, the 

program automatically choose to use approximate methods to 

compute the probability. 

Like SLiMFinde, FlexSLiM masks domains and non-disordered 

regions in input sequences before finding SLiMs. Although the 

percent of SLiM instances existing in those regions is small, many 

instances will be masked for certain SLiMs. To resolve this issue, 

one could find SLiMs in masked sequences first and then try to 

detect the masked instances by using regular expression and 

automata theory [30]. This is not implemented in FlexSLiM and 

will be our future research subject. In addition, SLiMs with only 

two defined positions could not be discovered by FlexSLiM, since 

we use dipeptides as elementary patterns. To remedy this problem, 

we can consider dimer elementary patterns similarly as dipeptide 

elementary patterns and combine the results from dipeptide 

elementary patterns with those from the dimer patterns. 
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