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ABSTRACT

Short linear motifs are 3 to 11 amino acid long peptide patterns
that play important regulatory roles in modulating protein
activities. Although they are abundant in proteins, it is often
difficult to discover them by experiments, because of the low
affinity binding and transient interaction of short linear motifs
with their partners. Moreover, available computational methods
cannot effectively predict short linear motifs, due to their short
and degenerate nature. Here we developed a novel approach,
FlexSLiM, for reliable discovery of short linear motifs in protein
sequences. By testing on simulated data and benchmark
experimental data, we demonstrated that FlexSLiM more
effectively identifies short linear motifs than existing methods.
We provide a general tool that will advance the understanding of
short linear motifs, which will facilitate the research on protein
targeting signals, protein post-translational modifications, and
many others.
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1. INTRODUCTION

Short linear motifs (SLiMs) are peptide patterns that are typically
3 to 11 amino acid long. They are highly abundant in protein
sequences [1-3]. For instance, it is estimated that hundreds of
SLiMs and well over a million SLiM instances exist in human
proteins [2, 3]. These SLiMs mediate various protein activities
such as activation or deactivation of proteins, modifying proteins
through post-translational modifications, serving as target sites for
cleavage by proteases, and targeting proteins to specific
subcellular locations, etc. [1]. Systematic identification of SLiMs
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is thus essential to understand protein regulation and protein
behaviours. Despite their abundance and versatility, SLiMs are
largely unexplored. For example, only 267 SLiMs are annotated in
the Eukarytoic Linear Motif (ELM) database [1], the largest
database that store experimentally validated SLiMs.

Experimental and computational methods have been developed
for the discovery of SLiMs. Experimentally, the determination of
SLiMs and their instances has been greatly aided by the use of
antibodies [4, 5]. It is through these experiments that we start to
know certain nature of SLiMs. However, experimental approaches
are time-consuming and expensive. In addition, the interaction of
SLiM instances with their partners are often subtle and transient,
and thus are difficult to detect by experiments. Therefore,
computational methods are indispensable for the identification of
SLiMs. Based on SLiMs identified in experimental studies,
several computational methods are developed to predict new
instances of known SLiMs [1, 6-11]. These methods in general
represent SLiMs in different ways (such as regular expression or
position weight matrix) [9, 12, 13] and use different filters to
remove segments that unlikely contain SLiM instances (such as
globular domains) [14]. They have been shown successful in
identifying meaning instances of known SLiMs [9, 12]. However,
these methods are circumscribed by the limited number of known
SLiMs [1, 8]. To de novo identify SLiMs, a few computational
methods are developed [10, 11, 15-22]. Many of these methods
[15, 16, 19, 20] construct elementary patterns from input protein
sequences and then extend elementary patterns into SLiMs by
concatenating pairs of similar elementary patterns. Here
elementary patterns are short patterns that consist of only fixed
positions (positions with only one specified amino acid) and
wildcard positions (positions with any amino acid allowed), with
two fixed positions at the end of the patterns. Although these
methods are successful in identifying certain SLiMs, many of
them do not allow flexible gaps in SLiMs [18, 20, 21], or demand
additional information besides sequences [16, 17], which prevent
them from general applications. In addition, the few methods [15,
19] that can be applied for general SLiM discovery do not work
well with large datasets, according to a recent study [18]. Finally,
the significance assessment of peptide patterns is still problematic
in current methods [1, 23]. For instance, the occurrence number of
a SLiM in a sequence is often assumed to follow a binomial
distribution [15, 23]. However, due to the dependency of adjacent
overlapping segments in the sequence, this assumption is violated.
Without a reliable approach for significance evaluation, available
methods are not effective to identify SLiMs in noisy data.

Here we propose a novel approach, FlexSLiM, for de novo SLiM
discovery in a group of protein sequences. Starting from selected
dipeptide elementary patterns, FlexSLiM groups these dipeptides



such that each group of dipeptides is likely contained in one and
only one SLiM. FlexSLiM then combine the dipeptides in each
group into potential SLiMs that may contain flexible gaps and
degenerate positions and assess their significance. Our study
shows that FlexSLiM is capable of discovering SLiMs from both
small sets of protein sequences, and massive proteome-wide
observations. In addition, it requires no additional information
other than protein sequences, which enables its general
applications. Finally, FlexSLiM can accurately calculate statistical
significance of SLiMs. Given the fact that hundreds of SLiMs
have still to be discovered [1, 23], our study provides a powerful
tool that will significantly advance our understanding of SLiMs
and SLiM functions.

2. METHODS
2.1 Representation of SLiMs

SLiMs often contain a mixture of defined positions and undefined
positions [23]. A defined position can be called either a fixed
position when only one specific amino acid is allowed in this
position or a degenerate position when several specified amino
acids could be in this position. In contrast, undefined positions are
often wildcard positions where any of the 20 amino acids is
allowed. Because of the existence of wildcard positions, a SLiM
often contains flexible gaps that are stretches of a variable number
of consecutive wildcard positions. For instance, the SLiM
Fun_Delta [1], represented by the regular expression
[DE].{2,4}NN[IL], contains a flexible gap of 2 to 4 amino acids
long that starts at the second position. A regular expression is a
concise means to describe groups of strings and regular
expressions are commonly used to describe SLiMs [1]. This above
regular expression, [DE].{2,4}NN[IL], means that the first
position of the Fun_Delta SLiM is a degenerate position with D or
E, then followed by this flexible gap, two fixed positions with N,
and a degenerate position with either I or L.

2.2 Framework of FlexSLiM

Effective methods are urgently needed to identify SLiMs.
However, it is challenging to directly identify SLiMs, because a
SLiM may include a huge number of possible peptide patterns.
For instance, the Fun_Delta SLiM [DE].{2,4}NNJ[IL] mentioned
above contains 2 X (202 + 203 +20%) x 1 x 1 x 2 = 673,600
different peptide patterns with only fixed positions. We designate
the peptide patterns contained in a SLiM as SLiM induced
patterns, such as DRCNNI and D..NNI for the Fun_Delta SLiM.
Because of the large number of induced patterns contained in a
SLiM, many induced patterns are not statistically significant and it
is thus also difficult to identify all induced patterns directly. To
resolve the above issues, we propose to identify short elementary
patterns first and then combine elementary patterns into SLiMs.
However, the number of short elementary patterns could be still
large and we cannot afford to check whether each pair of
elementary patterns can be combined into longer peptides. An
efficient approach for combining elementary patterns is needed. In
addition, SLiMs are quite weak patterns due to the multiple
choices of amino acids at a position and the flexible gaps. It is
thus necessary to have an accurate way to assess the statistical
significance of SLiMs. We propose a computational framework
for SLiM identification by taking these factors into account. The
proposed approach is composed of four steps detailed below: (1)
select dipeptide elementary patterns; (2) generate SLiM induced
patterns; (3) Discover SLiMs; and (4) calculate significance of
patterns.
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2.3 Select Dipeptide Elementary Patterns

To select elementary patterns that are substrings of SLiMs to be
identified, previous methods often require the occurrence number
of elementary patterns be larger than a predefined cutoff [15, 20].
However, elementary patterns in a SLiM have different
occurrence probabilities and thus have different distributions of
occurrence numbers in input sequences. For example, for the
SLiM LIG_Rb_LxCxE_1, [LI].C.[DE], the occurrence number of
the dipeptide patterns it contains, L.C.E, L.C.D, I.C.E and 1.C.D,
is 28, 3, 1, and 0, respectively, in the 32 experimentally validated
instances in the ELM database [1]. Therefore, it is difficult to set a
predefined cutoff properly. If the cutoff is small, many unrelated
elementary patterns are selected, which increases the computation
time substantially and the difficulty in pinpointing true SLiMs. If
the cutoff is large, useful elementary patterns with low occurrence,
such as I.C.D and L.C.E, are removed.

To solve the problem, we distinguish two types of elementary
patterns: backbone elementary patterns and branch elementary
patterns. Backbone elementary patterns are those with the
occurrence number larger than a predefined occurrence cutoff, OC.
Branch patterns are those with the occurrence number smaller
than the occurrence cutoff OC while having its z-score larger than
a predefined z-score cutoff, ZC. In this paper, the z-score of a
pattern is defined as its occurrence number minus its expectation
divided by its standard deviation.

For a given group of sequences, first, we obtain all dipeptides in
these sequences. A dipeptide is a peptide segment like x.{n}y,
where (i) X and y are two amino acids; (ii) n represents the number
of wildcard positions between x and y. Second, we obtain the
occurrence number of all dipeptides and select backbone
dipeptides by using the occurrence cutoff OC. Third, we obtain
the frequency of 20 amino acids in input sequences, and calculate
z-scores of non-backbone dipeptides in input sequences. Finally,
we select branch dipeptides that have a z-score larger than the z-
score cutoff ZC.

2.4 Generate SLiM Induced Patterns

With elementary patterns, a common approach to obtain SLiM
induced patterns is to combine similar elementary patterns into
longer elementary patterns [15, 19]. For instance, starting from
dipeptide elementary patterns, this strategy will extend dipeptides
into 3-mers, and then further extend 3-mers into 4-mers. This
process is repeated until the number of fixed positions in the
patterns reaching a pre-defined maximum value. Every time when
a pattern will be extended, this strategy needs to compare this
pattern with other patterns, which is time-consuming. In addition,
after extension, this strategy needs to determine whether the
extended patterns occur in enough sequences, which takes a lot of
time as well.

To make this process more efficient, we group elementary
patterns first such that each group of elementary patterns is likely
from a SLiM. In this way, we only need to compare a much
smaller number of patterns within a group in order to extend a
pattern every time. In addition, we do not need to check whether
the extended patterns occur in enough sequences because our
grouping algorithms guarantee that a group of elementary patterns
occur in enough sequences. The details of how to obtain induced
patterns are as follows (Figure 1).



... SEEIVGF..SFQFPS...
... LFGFPV... YEEFVGL...
... NFEFPSI... DEKQVG...
... EEPKVG.. WFRFPA...
..LDESVGS...TFNFPT...
... RFKFPD...RDETVG...
...DEYAVL.. AFPFPIE...
...EEIRVW...LFDFPW...

[ Statistical significance|

=
Induced|

Input 1
patterns .:\

Dipeptide]
sequences =

seeds Motifs

groups [

Figure 1. The pipeline in FlexSLiM.

First, we apply the frequent pattern mining algorithms [24, 25] to
group backbone elementary patterns. The typical problem the
frequent pattern mining algorithms can address is: what products
(apple, orange, juice, onion, etc) do customers frequently buy
together, given a database that stores the products each customer
bought at a time? If we treat backbone dipeptides as a type of
products and each sequence as a customer, these algorithms could
identify groups of backbone dipeptides whose occurrence
numbers are greater than a pre-defined cutoff. We call this cutoff
the support cutoff, abbreviated as SC. Note that the elementary
patterns contained in a SLiM should occur within windows of no
longer than 11 amino acids long in many sequences [23] while the
frequent pattern mining algorithms do not take the relative
locations of dipeptides in input sequences into account. However,
since the average length of human proteins is about 428 amino
acid long based on all human proteins in the Ensembl database
[26], it is rare that multiple non-overlapping dipeptides co-occur
in multiple sequences, especially if we remove segments such as
globular domains that are unlikely to contain SLiM instances [27].

So the majority of extended patterns satisfy the support cutoff, SC.

Second, we insert similar branch dipeptides into every group of
backbone dipeptides. For a given group of backbone dipeptides,
we will calculate the similarity of each backbone dipeptide in this
group with every branch dipeptide. The similarity of two
dipeptides is defined as the sum of the substitution scores of the
two pairs of amino acids in the two dipeptides. For instance, the
similarity of two dipeptides, A..B and B.C, is defined as the sum
of the substitution scores of (A, B) and (B, C). The BLOSUM62
substitution matrix is used to calculate the substitution score of
each pair of amino acids. If the similarity of two dipeptides is

greater than or equal to -1, we claim this pair of dipeptides similar.

We select -1 as the cutoff to define similar patterns because we
checked all SLiMs in the ELM database and found that more than
90% of dipeptides from two defined positions of the same SLiM
in the ELM database have a similarity no small than -1.

Third, with groups of expanded dipeptides, we extend the
dipeptides in the same group into longer patterns (Figure 1). These
longer patterns are called SLiM induced patterns, which contain
only wildcard positions and fixed positions. We will first obtain
induced backbone patterns using only backbone dipeptides. If the
last n-1 fixed positions of an n-mer match the first n-1 fixed
positions of another n-mer, where an n-mer is a backbone
dipeptide or an induced backbone pattern, the first n-mer can be
extended with the last fixed position of the second n-mer. For
example, A.B and B.C can be combined into A..B.C. The
rationale behind this tail-head concatenation operation is that if
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A..B.C occurs more than the SC times, then the occurrence times
of A..B and B.C is larger than SC as well. Besides extending
backbone elementary patterns into induced backbone patterns, we
will also obtain induced branch patterns by using one branch
pattern and one backbone pattern. In detail, we will compare each
backbone dipeptide with each branch dipeptide in the same group
to see whether one matches the other except at one position. For
instance, except at the second fixed position, A..B matches A.C.
We will extend each pair of matched backbone and branch
dipeptides into 3-mers. These 3-mers with z-scores larger than ZC
are called branch 3-mers. Next, every branch 3-mer compared
with every backbone 3-mer generated from the same group of
dipeptides to obtain branch 4-mers. We will repeat this process
until no pattern can be extended or the length of the extended
pattern is larger than a length cutoff, L. In practice, this step of
obtaining longer patterns takes little time, because the number of
backbone dipeptides in the same group is small and the average
number of defined positions in a SLiM is 3.7 and the average
length of a SLiM is 6 based on the ELM database [23].

2.5 Discover SLiMs

We will implement the following procedure to construct SLiMs
from SLiM induced patterns. First, we will transform the regular
expression represented induced patterns into numbered patterns.
In other word, to represent induced patterns, we will use the
number of wildcard positions between two adjacent fixed
positions in induced patterns to replace the wildcard positions. For
instance, A..CD will be represented as A2COD. With the
numbered representation, the induced patterns for the same SLiM
will have the same length. Moreover, the two types of flexibility
in SLiMs, degenerate positions and flexible gaps, can be
considered similarly after the conversion. Second, we will group
numbered patterns with same length into the same group. Third,
for each group of induced patterns, we will discover SLiMs by
merging proper patterns, including backbone and branch patterns,
into SLiMs. In detail, all backbone patterns in this group are
arbitrarily ordered. Starting from i-th backbone pattern, we will
find similar patterns that have an order larger than i. Two patterns
are called similar only if they are exactly the same except one
mismatch. That is, two similar patterns have either different amino
acids or different gap sizes at one and only one position. Next, we
sort all similar patterns for the i-th backbone pattern. Compared
with the i-th backbone pattern, patterns with different amino acids
are sorted at the beginning while with different gap sizes are
sorted at the end. In addition, compared with the sequences
containing the i-th backbone pattern, patterns occurring in
different sequences will be sorted before patterns occurring in
similar sequences. Next, we will keep combining the backbone
pattern with the top similar patterns until the sequences containing
the combined pattern is not increased or all similar patterns have
been considered. The significance of a pattern is measured by a z-
score, which is calculated by the method detailed in the following
section. If the z-score of the combined pattern is smaller than a
predefined cutoff, this combined pattern will be output. Finally,
we will repeat this process for all i and all different lengths of
induced patterns.

2.6 Calculate Significance of Patterns

We will first calculate the probability that a pattern occurs in a
random sequence of length n. A pattern here can be a dipeptide,
an induced pattern, or a SLiM. Since a pattern here can be
represented by a regular expression and a regular expression can
be described by a deterministic finite automaton (DFA), We can
describe a pattern by a DFA [28]. With the DFA corresponding to



a pattern, any random sequence of length n can be thought as a
path in a graph representing this DFA [29, 30]. Similar to previous
studies in DNA sequences [30], we can calculate the probability
that this pattern occurs in a protein sequence of length n.

We will then calculate the significance of this pattern in multiple
protein sequences. Assume we have m sequences, the length of
which are nq, -+, ny,. Assume a pattern occurs in mg out of the m
sequences. How significant is this pattern? To address this
problem, we will first calculate p;, the probability that this pattern
occurs in the a random sequence of n; amino acid long, by the
above DFA based method [29, 30]. The z-score of this pattern is
defined as:

my— X2 Di
Xiipi(1—py)

3. RESULTS
3.1 FlexSLim, a Novel Approach for SLiM
Discovery

We developed a novel approach, FlexSLiM, for SLiM discovery
in protein sequences. In brief, given a group of input sequences,
first, we grouped protein sequences into different Unrelated
Protein Clusters (UPCs) by using bl2seq in BLAST software
package. Second, masked ordered regions and low complexity
regions by using IUPRED [31] and SEG [32]. Third, FlexSLiM
selects backbone 2-mers with large occurrence numbers and
backbone 2-mers with low occurrence numbers while high z-
scores. Fourth, FlexSLiM groups the backbone 2-mers such that a
group of backbone 2-mers is likely from the same SLiM. Fifth,
FlexSLiM inserts similar branch 2-mers into each group of
backbone 2-mers. Sixth, FlexSLiM constructs longer backbone
patterns from groups of backbone 2-mers and longer branch
patterns by combining backbone and branch elementary patterns
separately to obtain induced patterns. Finally, FlexSLiM combine
similar induced patterns into SLiMs, which may have degenerate
positions and flexible gaps.

Compared with available methods for SLiM discovery [15, 18-20],
FlexSLiM have several unique features. First, FlexSLiM uses
double cutoffs to select elementary patterns. This is superior to the
strategy of using a simple occurrence cutoff, because frequent
elementary patterns contained in SLiMs are found by the
occurrence cutoff efficiently, while infrequent elementary patterns
are detected as many as possible by the z-score cutoff. This
advantage of the double cutoffs is even more evident when there
are a large number of input sequences, as the occurrence cutoff
can significantly reduce the number of elementary patterns that
needs to be considered and the z-score cutoff can dramatically
improve the accuracy of including essential elementary patterns.
Second, FlexSLiM applies the frequent pattern mining algorithms
[24, 25] to group backbone elementary patterns and then inserts
similar branch elementary patterns into each group. In this way,
FlexSLiM only needs to compare a small number of patterns each
time when it extends patterns and does not need to verify whether
the extended patterns occur in enough sequences. This is different
from the common approach used by other methods [15, 19, 20], in
that other methods often have to compare a large number of
elementary patterns to determine which pairs of elementary
patterns to be combined to generate longer patterns and have to
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check whether the extended patterns occur in many sequences.
Third, FlexSLiM proposes an accurate way to calculate the
significance of SLiMs. Previous methods often assume a binomial
distribution [15] to calculate the probability that a pattern occurs
in one or multiple sequences, which neglects the complexity of the
induced patterns in SLiMs and the overlap of SLiM instances in
sequences. Because of these unique features, FlexSLiM performs
well on the following simulated data and experimental data.

3.2 Studies on Simulated Data

We tested FlexSLiM on simulated datasets. First, we chose all
SLiMs from the benchmark used by SLiMFinder [15]. Next, we
generated random sequences based on two different sets of amino
acid frequencies and length distributions. One set adopts length
range distribution [131, 331], whose mean is the average length of
unmasked regions in all benchmark motifs, and the amino acid
frequencies in unmasked regions for the inserted motif. The other
set adopts length range distribution [254, 454], whose mean is the
average length of all protein sequences, and the amino acids
frequencies in both masked and unmasked regions for the inserted
motif. In each experiment, 100 random sequences were generated
and 50 of them were inserted with SLiM instances of the
corresponding SLiM. 20 of 50 are the same instance, which is
taken as backbone, and 30 of 50 are randomly picked from all
possible instances. The backbone instances are generated by using
first letter at defined positions and shortest length of flexible gaps.
Finally, we applied FlexSLiM to these datasets and compared
with the SLiMFinder. We did not compare with DiLiMOT, since
it cannot handle the 100 sequences used in the experiments. The
parameters for FlexSLiM were L=8, G=4, N=5, M=4,
OC=1/5*(number of cluster), ZC=1, and SC=1/3*(number of
clusters), where L is the maximum length of SLiMs, G is the
maximum size of flexible gaps, N is the maximum number of
defined positions in a SLiM, and M is the maximum number of
amino acids in one defined position. The default parameters were
used for SLiMFinder. And the mask option is set to off for both
softwares.

Form Table 1, we can see that both SLiMFinder and FlexSLiM
did well in all 17 simulated datasets. FlexSLiM try to discovery
large support patterns firstly. Therefore small support but high
significant patterns are not considered as candidates. For example,
SLiMFinder finds out large significant patterns HDEL and QQEL,
both of which are instances of inserted motifs of
TRG_ER_KDEL_1. On the other hand, only KDEL is taken as
backbone by FlexSLiM. As a result, only KDEL is expanded into
two predictions. But just expanding backbones may cause losing
defined positions. For example FlexSLiM find less defined
positions than SLiMFinder for motif LIG_AP_GAE_1. And from
the table, we can see that both software find better results by using
unmasked regions. This implies masking is indispensible strategy
for slim discovery.

The effect of finding SLiMs without a predefined equivalency list
is evident in Table 1. SLiMFinder uses a predefined equivalency
list to determine the set of amino acids allowed at a degenerate
position, while FlexSLiM does not use such a list. Without the
equivalency list, FlexSLiM can obtain more flexible patterns. For
example, {K,S} is not in any equivalency lists. Therefore
SLiMFinder cannot discovery [KS][DEN]JEL for motif
TRG_ER_KDEL 1.



Table 1. Tests on random sequences with different lengths and amino acids frequencies

ELM Accession Regular Expression FlexSLiM SLiMFinder
231 354 231 354
TRG_ER_KDEL _1 [KRHQSAP][DENQTIEL | [KS][DEN]JEL [KQSI[DEQIEL HDEL QQEL
LIG_Dynein_DLC8_1 | [KR].TQT [KR].TQT [KR].TQT [KR].TQT [KR].TQT
LIG_PCNA Q..[ILM]..[DFHM][FMY] | Q. [IL]...F Q.I.D[FMY] Q.ILCHY Q.E.HMY
MOD_SUMO [VILMAFPIK.E [VLMAIK.E [VIFIK.E VKTE IKSE
LIG_SH3_2 P..P.[KR] P..P.[KRQ] P.P.K PRD.GK PEH.SR
LIG_CYCLIN_1 [RK].L.{0,1}[FYLIVMP] | [RK].L.F [RK].L.F KSLSM KSLL
[PG][LVIPME][DENS]L[
LIG_CtBP VASTRGE] PL[DEN]V P.DLV PLNLR GPELV
[DE][DES][DEGAS]F[SG
LIG_AP_GAE_1 AD][DEAP][LVIMFD] [DE]D..S.L D..F[GS][DE] [DE]DDF..L | D.F[GS][DE]L
[RHK][STALV].[ST].[PE
LIG_14-3-3_3 SRDIFTQ] R..[ST].P RS.[ST] RLQ.PQ RSE.MR
LIG_Rb_LxCxE_1 [LI].C.[DE] [LI].C.[DE] [LI].C.[DE] LNCND LLCLE
LIG_Clathr_ClatBox_ L[IM].[VML][D
1 L[IVLMF]L.[IVLMF][DE] | L[IV].V[DE] E] LVHVD LMQMD
LIG_14-3-3_1 R..[ST].P R..[ST].P R..S.P RGAT.P R.NSQP
LIG_RGD RGD RGD RGD RGD RGD
PIMVLIRWY]V[MVLIA P[LM]V[IM
LIG_HP1_1 S1[LM] P[LMY]V[MIS] PMV[MISIM 1[LM] PWVSM
LIG_NRBOX L.LL L.LL L.LL LKFLL LTTLL
MOD_N-GLC_2 N.C N.C N.C NFC NPC
TRG_LysEnd_APsAc
LL_1 [DERQ]...L[LVI] [DR]...L[LI] D..L[LV] EA.RLI RKYD.I

The top one predictions are shown in the table. The two numbers, 231 and 351, are the average length of the simulated sequences.

3.3 Studies on Benchmark Data

The motif benchmark datasets tested by SLiMFinder were used in
our experiment. Two other tools, SLiMFinder and DiLiMOT were
also used to compare with FlexSLiM. Because the ELM database
has been updated, we redo all the tests on both SLiMFinder and
DiLiMOT. The corresponding protein sequences that contain each
of the SLiMs were obtained from the ELM database [33]. The
parameters for the two tools were set to be the default parameters.

The parameters for FlexSLiM were the same with those in the
simulated experiment except OC=1/3 of clusters, SC=0.5 of
clusters. If OC is set to 3 if it is less than 3. The results were
shown in Table 2.

For the 17 SLiMs, FlexSLiM predicted similar SLiMs to each of
them. In some cases, FlexSLiM does not provide similar
prediction for the known motif. This is because the OC is too
large or the backbone patterns have too short support. Then
FlexSLiM cannot discover the proper backbones and therefore the
expansion is invalid. We can see the selection of OC is very

important for FlexSLiM. On the other hand, if there is not a large
support backbone pattern in the input sequences, FlexSLiM would
convert into similar mechanism as previous algorithms.

The advantage of using double cutoffs in FlexSLiM was
demonstrated here. For the 4-mers contained in the SLiM
TRG_ER_KDEL_1 in Table 2, HDEL, it only occurs once in the
input sequences. SLiMFinder needs to set the occurrence cutoff to
be one in order to select the dipeptide as elementary pattern.
However, all elementary patterns would be considered if the
occurrence cutoff is set so low, which would take a long time to
extend the selected elementary patterns into SLiMs. By using the
double cutoff strategy, the induced pattern can be detected
precisely. In addition, although the total number of elementary
patterns considered in by the three tools is the same, FlexSLiM
does not consider the extension of branch elementary patterns
themselves. In general, the percentage of branch elementary
patterns in all elementary patterns is over 80%. As a result, the
computation time of FlexSLiM is much shorter than that of
SLiMFinder.

Table 2. Tests on benchmark datasets

ELM Accession FlexSLiM SLiMFinder DiLiMOT

Result Sig Result sig Result Sig
TRG_ER_KDEL_1 3.69E-
[KRHQSAP][DENQT]EL [KH]DEL 1.66E-09 KDEL 0 KDEL 40
LIG_Dynein_DLC8_1 6.18E-
[KR].TQT S.K.TQT 1.32E-09 S.K.TQT 1.28E-05  K.TQT 26
LIG_PCNA
Q..[ILM]..[DFHM][FMY] Q...S[FHJF 1.44E-15 Q.[ST][IL].FF 4.43E-13 Q....FF 0
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MOD_SUMO 1.55E-
[VILMAFP]K.E S[AT].R 7.51E-03 [FIVIK.E 2.66E-06 VK.E(8) 21
LIG_SH3_2 6.22E-
[P..P].[KR] EIL.K 1.34E-08  EIL 7.80E-01 PP.PR(4) 21
LIG_CYCLIN_1 1.38E-
[RK].L.{0,1}[FYLIVMP] [KR]R.L 5.64E-05 [KR][KR]..F 1.50E-02  YISP 35
LIG_CtBP 1.13E-
[PG][LVIPME][DENS][VASTRGE] P.DL(2) 1.93E-03  P[ILM]DL 2.00E-03 P.DLS(5) 47
LIG_AP_GAE_1 4.30E-
[DE][DES][DEGAS]F[SGAD][DEAP][VLIMFD] D.FG.F(2) 1.14E-06 D.F.F.S.P 5.60E-01 DD.F..F 64
LIG_14-3-3_3 3.74E-
[RHK][STALV].[ST].[PESRDIFTQ] D.S.{2,4}S 2.27E-08 D..Y.D.PG 7.90E-02 R..S.D.S2) 29
LIG_Rb_LxCxE_1 4.30E-
[LI].C.[DE] G..T 2.35E-01 L.C.E 2.12E-04 L.CE 48
LIG_Clathr_ClatBox_1 3.46E-
L[IVLMF].[IVLMF][DE] LLDL(2) 3.81E-08 A.T.[FV] 1.00E-01 LL.LD(4) 24
LIG_14-3-3_1 4.27E-
R..[ST].P RS.S.P(5) 1.25E-04 T[FM].T 9.80E-01 RS.S.P 25
LIG_RGD 9.55E-
RGD EE. A 4.37E-01 RGD 4.70E-01 RGD 30
LIG_HPI_1 8.92E-
PIMVLIRWY]V[MVLIAS][LM] R..D.R.G 545E-06 1.S.I[IM] 5.50E-02 VP.V.L4) 28
LIG_NRBOX 1.20E-
L.LL TGP.PG 345E-06 IK.E.D 8.40E-02 P.LK 26
MOD_N-GLC_2 2.35E-
N.C RGDS 7.65E-06 G.WK 6.10E-01 EAP 12
TRG_LysEnd_APsAcLL_1 1.37E-
[DERQ)]...L[LVI] [KP]K 8.62E-01 QE.V.[IV] 3.10E-01 E.R.L.F 16

The top one predictions are shown in the table. If the top one prediction is not similar with the motif, the most similar top ranked prediction is shown in the table.

the corresponding rank is shown in the brackets.

4. DISCUSSION

We developed a novel approach, FlexSLiM, to discover general
SLiMs in protein sequences. As previous methods [15, 19, 20],
FlexSLiM starts from elementary patterns and then extends
elementary patterns to SLiMs with degenerate positions and
flexible gaps allowed. Different from previous methods,
FlexSLiM distinguishes two types of elementary patterns and
applies frequent pattern mining algorithms to extend elementary
patterns, which greatly speed up the process of SLiM discovery
and improve the accuracy of SLiM discovery. As shown in the
simulated data and experimental data, FlexSLiM shows superior
or comparable performance when compared with two state of the
art best methods [15, 19].

FlexSLiM uses DFA to calculate the exact occurrence probability
of a pattern in a random sequence. In some specific cases, the
number of states in a DFA is large. For example, in the SLiM
TRG_NLS_Bipartite_1 in ELM [1], there is a flexible gap .{7,
15}. As a result, the probability calculation based on DFA takes
time. This is because the number of states of the DFA
representing .*A.{m, n}B.* is O(k+2m-n+1) [34], where k is the
number of different lengths of the pattern. Fortunately, for the
majority of SLiMs, m-n+l is a small number. In our
implementation, if the number of DFA states exceeds 100, the
program automatically choose to use approximate methods to
compute the probability.

Like SLiMFinde, FlexSLiM masks domains and non-disordered
regions in input sequences before finding SLiMs. Although the
percent of SLiM instances existing in those regions is small, many
instances will be masked for certain SLiMs. To resolve this issue,
one could find SLiMs in masked sequences first and then try to
detect the masked instances by using regular expression and
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automata theory [30]. This is not implemented in FlexSLiM and
will be our future research subject. In addition, SLiMs with only
two defined positions could not be discovered by FlexSLiM, since
we use dipeptides as elementary patterns. To remedy this problem,
we can consider dimer elementary patterns similarly as dipeptide
elementary patterns and combine the results from dipeptide
elementary patterns with those from the dimer patterns.
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