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Abstract—This work develops a novel design of joint detection
and decoding receiver for multiple-input multiple output (MIMO)
wireless transmissions that utilizes polar codes in forward error
correction (FEC). To optimize the overall receiver performance,
we integrate the polar code constraints during signal detection
by relaxing and transforming FEC code constraints from the
original Galois field to the real field. We propose a novel joint
linear programming (LP) optimization formulation that takes
into consideration the transformed polar code constraints when
designing a novel receiver robust against practical obstacles
including channel state information (CSI) errors, additive noises,
co-channel interferences, and pilot contamination. Our newly
proposed joint LP formulation can also be integrated with
reduced complexity polar decoders such as successive cancellation
(SC) and successive cancellation list (SCL) decoders to deliver
superior receiver performance at low cost.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) transceivers have
been widely adopted in modern wireless communication net-
works owing to their ability to achieve high spectral efficiency.
As a result, designing robust and efficient receivers for MIMO
communication systems has also been extensively investigated
in the literature. At the same time, forward error correction
(FEC) codes play a critical role to combat against possible
detection errors caused by noise, interferences, and chan-
nel distortions in MIMO wireless systems. Well-known FEC
channel codes that have been studied and utilized effectively
in advanced communication systems include convolutional
codes, turbo codes and low-density parity-check (LDPC)
codes. Ideally, optimum receiver that minimizes the probability
of error in detection of transmitted symbols can be obtained
by the maximum likelihood detector (MLD) under the FEC
codeword constraints. However, such ideal joint maximum
likelihood detection and decoder is computationally expensive
and can be costly to implement for many practical FEC codes
of sufficient code length.

In practice, many MIMO receivers apply symbol detection
in independently from the FEC decoders. The common re-
ceiver architecture of disjoint MIMO detection followed by
FEC decoding is attributable to the NP-hard high complexity
of incorporating Galois field FEC constraints in the ML
detection that operates strictly in real (or complex) field. To
overcome the difficulty posed by the conflicting fields of
operation for detection and decoding, existing joint MIMO
detection and FEC decoding receivers typically utilize the

concept of soft information exchange between soft decoder
and detector to form a turbo receiver [1], [2].

One recent development that may change this traditional
turbo processing receiver is the work by Feldman et al. [3] that
successfully transformed FEC code constraints from Galois
field to a set of linear inequalities called fundamental polytope
in the real field. Integrating the linear FEC constraints with the
symbol detection formulation, the authors of [4] developed an
l;-norm based joint detector for flat-fading MIMO channels
whereas Flangan [5] also proposed a unified framework for
linear programming (LP) receivers. In [6]-[10], Wang and
coworkers proposed various joint detection-decoding schemes
for LDPC-based systems and demonstrated substantial perfor-
mance improvement over traditional disjoint receivers when
channel state information (CSI) is not accurately known.
In addition to strengthening performance in point-to-point
communication links, code constraints can also be used in
multi-user scenarios to suppress co-channel interferences [8],
[11]. It is important to note that the number of transformed
linear constraints grow exponentially with the weight of the
FEC code’s binary parity check matrix. Thus, the sparse parity
check matrix of LDPC codes make such codes particularly
attractive for joint detection and decoding based on the afore-
mentioned transformation of FEC constraints.

In recent years, another class of interesting FEC codes
known as polar codes, discovered by Arikan [12] [13] in 2008,
has also shown strong potential in wireless communications.
In particular, polar codes have been adopted as FEC codes for
physical downlink control channels (PDCCH) in 5G cellular
standard. Polar codes have been shown to approach channel
capacity over binary discrete memoryless channels (B-DMCs)
without high encoding and decoding complexity. Practical
use of polar codes has been investigated in AWGN channels
[13]-[15] and fading channels [16]. Popular decoder schemes
include successive cancellation (SC) decoding introduced by
Arikan [12] and successive cancellation list decoding intro-
duced in [17].

In order to develop an optimized joint detection-decoding
receiver that incorporates polar code constraints, we must
overcome a new challenge that the number of linear constraints
in fundamental polytope [3] is often large since the polar code
parity check matrix is far from sparse. In fact for polar codes,
not only the number of constraints makes the LP receivers
impractical, but a decoder based on such polytope will also fail



in polar coded systems, as illustrated in [18]. Instead, another
relaxed polytope has been proposed in [18] according to the
factor graph representation of polar codes that obtains the ML-
certificate property. This new polytope is in a space dimension
of O(Nlog N) where N is the block length.

In this work, we first present a generic MLD formulation
for a FEC coded MIMO detector in Section II before relaxing
into LP receiver formulation. In Section III, we incorporate
polar code constraints by incorporating the approach of [18]
to develop a novel joint LP receiver that effectively exploits
the rich and important diversity of FEC code constraints. This
new receiver is robust against practical non-idealities including
CSI errors, channel noises, co-channel interferences, and pilot
contamination. We present simulation results in Section IV to
illustrate the efficacy of the proposed receiver design before
concluding the paper in Section V.

II. SYSTEM MODEL

Consider a polar-coded MIMO transmission system in
which information bits are first encoded with polar encoder as
FEC codewords before being mapped into QAM data symbols
of constellation Q At the receiver side, the objective is to re-
cover the source bits despite channel distortions, interferences,
and channel noises. Our goal is to design a joint detector
that incorporates the polar code information for improved
performance.

A polar code of rate R = K/N is specified by (N, K,Z¢),
where N = 2" is the codeword length, K is the number of
information bits in a codeword. Let Z C {1,..., N} denote
the set of indices that are the information bits and Z¢ be
its compliment which is known as frozen (non-information
bearing) bits. Let u = [uj,us, -+ ,uy] denote the binary
information vector and b = [by, ba, - - - , by] denote the binary
codeword vector. There is an invertible mapping of b = uGy
between u and b where Gy is the generator matrix of the
polar code. G is defined through Gy = BNF®", where
By is a bit reversal operator defined in [12], and F®" denotes
n-fold Kronecker power of polarization kernel

Using the concept of channel polarization, /N identical real-
ization of the channel can be transformed into NN virtual bit-
channels, which become polarized as either extremely noisy or
completely error-free as N grows asymptotically to approach
infinity. Consequently, the crucial step in construction of polar
codes is to sort the virtual bit-channels based on their capacity
and to select the K most reliable ones out of IV bit-channels to
carry information bits. The remaining N — K bit channels will
carry the frozen bits (set to 0). As shown in [12], the ratio of
reliable virtual channels to the whole set of virtual channels
K/N converges to the channel capacity for asymptotically
large N. As a result, polar codes can achieve channel capacity
as the codeword size becomes asymptotically large in B-
DMCs.

A. Channel Model

For length N polar codeword and @Q-ary QAM constellation,
the symbol length is M = N/Q. We consider a spatial
multiplexing MIMO system with n transmit antennas and
m receive antennas. In such a system, we can transmit

one codeword in 7" = M/n time instants. For each time
instant ¢ we can define complex QAM symbol Z;, € @
and QAM vector X[t] = [Z14--+ ,Zn.)? as the transmission

signal vector. Let each received symbol be ¢;+ € C and the
received signal vector be §[t] = [J1.4,+ , Jm.t). . By defining
H = [hi;] € C™*™ as the linear MIMO channel matrix for a
flat fading wireless channel, we can write the received signal
vector as

y1t) = FIR[f] + Al (1)

in which D[t] = [ ,7me)’ € C™ is the additive
white Gaussian noise (AWGN) vector whose elements are i.i.d.
complex random variables and 7;; ~ CAN(0,02). Note that
the elements of H are typically unknown and are estimated
by utilizing the pilot symbols.

B. Maximum Likelihood Receiver

If the channel is known or estimated at the receiver, the
optimal maximum likelihood detector (MLD) that minimizes
the probability of error for each transmission at time instant ¢
would aim to solve the problem

min || §{t] - HX |3 2)

xeQ
It should be noted that this MLD receiver does not yet take
into consideration the fact that a data symbol vector X must be
output bits of an FEC codeword. In other words, only valid
FEC codewords should be considered in the MLD receiver.
Eliminating invalid codewords in MLD would have taken
into consideration of the Galois field code constraints within
the detection stage to minimize the probability of producing
wrong symbol sequence by the detector to achieve better
performance. Codeword constraints are_even more critical
when our estimate of the channel matrix H is itself inaccurate.
We let each FEC codeword of length N, b = [by by - --by]
span 7' data vectors possibly with the help of padding bits, i.e.,

M(b) = {x[1], x[2], ---, X[T]}

where M(-) is the mapping of FEC bits to data symbols
for transmission. Consequently, the optimum receiver can be
written as

min ) | §[k] - Hx[K] | (3a)
k=1

M(b) = {x[1], x[2], -~ , X[T]} (3b)

beF (30)

where F denotes the set of all valid FEC codewords of
length N. The optimization problem above is a non-convex
integer optimization problem and is extremely difficult to
solve because it requires exhaustive search over all valid set



of symbols M(b) = {X[1], %X[2], ---, X[T]} that satisfy
the coding constraints. This leads to an NP-hard problem
whose complexity grows exponentially with N. Furthermore,
the constraint that requires b € F, is defined in Galois field
and obviously is a non-convex constraint when considering the
real-field optimization in Egs. (3). In the next section we show
how we can modify the cost function and the constraints in
(3) into an LP optimization problem that serves as a unified
joint receiver.

III. LP RECEIVER WITH POLAR CODING CONSTRAINTS

A. Reformulation of Objective Function

To formulate the LP receiver, our first step is to modify
the objective function by changing the Il norm in (2) to I3
norm metric. The use of /; norm as an optimization metric has
been used in data analysis and parameter estimation because
it is robust to the impulsive noises and other man-made
radio interferences [4]. To simplify the /; notation, we shall
reformulate the problem into real field only. Consequently, we
can transform our system from complex to real by defining

[Re(FIY] oy [Re(®IY] . [Refalt])
vl = [Im{ym}}’ )= Lm{f«m}]’ ] [Im{ﬁm}ln
and

_ [Re{H} —Im{H}
Lm{ﬁ} Re{ﬁ}] )

Given the new notations in the real field, we can write our
system equation that characterizes the relationship between
the channel input x[¢] and the channel output y/[t] into

ylt] = Hx[t] + n[t]. (6)

To transform (3b) also from complex to real, we define
M(-) to be the mapping from bit vector b of length N to
x = {x[1],x[2],...,x[T]} where x[t],1 <t < T is the set of
real transmission symbols defined in (4).

We can classically reformulate our problem into a linear
programming problem with two sets of generalized vector
inequalities by introducing a set of slack variables e;;, >
0,1 < i < m,1 <t < T. We also define e[t] to be
a vector of these slack variables at each time instant ¢, i.e.
eft] = [et1, - ,€m]. Consequently we can reformulate the
optimization problem of (3) into

T m
min ; Zl €t
s.t.  Hx[t] —e[t] < y[t]

(7
— Hx[t] - et] < —ylt]
M(b) = {x[1],x[2], ---, x[TT}
beF

Note that x < y denotes x; < y; for every coordinate i.

51,6

51,7
: 50,7 = b7

U3 = 83,6

52,0 51,0 )
Uy = $3,0 @ * . 050,0 = bo
/-5271 /91/
Uy =531 o ° 0501 = b1
_ 82/ S1,2
Uy =532 o P ‘s 050,2 = b2
82;% 8173/-
U = 533 o s * 0503 = b3
/ 52,4 51,4
Uy = 834 :/ —e —50,4 = by
525 51,5 2
Us = 835 :/ n - —e505 = bs

Uy =837 —e

Fig. 1. factor graph representation of a polar code with block length N = 23

B. Receiver Integration of Polar Coding Constraints

Now we describe how to integrate information from the
b € F codeword constraint into the linear programming
optimization of (7) when polar codes are adopted as FEC. The
authors of [3] described how to transform coding constraints
in Galois field into certain linear constraints in real field that
are known as the fundamental polytope Q based on the parity
check matrix originally defined in Galois field. This polytope
conversion scales well for LDPC codes because of the sparsity
of the parity check matrix. However, the dense parity check
matrix of polar codes not only leads to overwhelming large
number of constraints, but also leads to frequent failure of a
decoder based on such polytope Q [18].

Recursive structure of polar codes leads to a sparse graph
representation with O(NV log N) auxiliary variables which is
shown for block length N = 22 in Figure 1. Taking advantage
of the sparse factor graph representation, a new polytope can
be defined in a space of dimension O(N log N) [18]. For this
reason, we shall exploit this polytope to generate linear coding
constraints that can be incorporated into the LP receiver of (7).
We name the corresponding polytope P. The graph of Figure 1
shows how a polar codeword b can be constructed from binary
vector u by a one to one mapping through the generator matrix
Gn, b = uGy. The circle nodes on the graph represent a
total of N (1 + log V) binary variables whereas the squares
represent the check nodes. If all the check nodes are satisfied,
then b is a valid codeword.

An example of a check node constraint in Figure 1 is ug @
uy; @ s2,0 = 0, where @ denotes modulo-2 summation. To
define the relaxed polytope P, we let the variables in the graph
be real variables instead of binary. Note that each constraint
involves only either 3 or 2 variables. Therefore, for each check
node j € J with 3 neighbors N(j) = {a1, a2, a3}, the local
minimal convex polytope of check node j is P; and can be
very simply defined by below linear inequalities

0<a; <az+as,
0 <az <az+ai,
0<a3z <ai+as,
a1+ as+az <2

For each check node j € J with only two neighbors
N (j) = {a1,az}, the local polytope P; is defined by

®)



0<ar=a2 <1 )

Moreover, let the cutting plane 7" defined by setting all frozen
variables whose indices belong to Z¢ to zero. Therefore, the
polytope P is the intersection of all local minimal polytopes,
and the cutting planes 7

P=|(\P|nT (10)
J

Therefore, we can write down the linear coding constraints
by enforcing all the variables of the factor graph to be inside
the polytope P, i.e. s € P where s denotes all the variables
of the factor graph. These constraints can be added to (7) as
relaxed version of (3c). Therefore, the final formulation for the

LP-based joint detection and decoding receiver can be simply
written as

T m
min ;;em
s.t.  Hx[t] —e[t] X y[t]
— Hx[t] — e[t] < —y]t]
M(b) = {X[lLX[Q]’ Ty X[T]}
scPC [0’ 1]N(1+logN)

(1)

Note that all N(1 + log N) variables of s are optimization
variables of (11). As a result, the detector generates an
estimate for each of these variables including b. We denote
the estimated bit vector as b = [51 by l;N] Each element
0< 131 < 1 can be used to calculate the likelihood of b; to
be 0 or 1. Once the log-likelihood ratio was generated by our
joint LP receiver, a soft-input decoder such as SC or SCL can
further decode b to produce a final output i which denotes
an estimation of uncoded source bits.

IV. SIMULATION RESULTS

We now present a set of simulation tests and results to
demonstrate the performance of the proposed joint LP receiver
in terms of bit error rate (BER) and block error rate (BLER).
In particular, we will compare the joint LP receiver with a
conventional decoupled MMSE detector in which detection
and decoding are performed sequentially.

In our simulation test, we adopt a 4 x 4 MIMO wireless
communication system model with QPSK modulation over a
flat Rayleigh fading channel. For FEC, we adopt a polar code
of rate = 1/2 with length N = 128. At the receiver, the flat
fading MIMO channel matrix is estimated and is subjected
to estimation errors. More specifically, our estimate of the
channel matrix H is assumed to be H = H + E, where
H = [h;;] € R?™>X2" s the real transformation of the complex
channel matrix H, based on (5). Therefore, H = [hij] €
R?m*2n consists of i.i.d. elements such that h; ; ~ N(0,1).
The estimation error matrix E = [e;;] € R*™*2" also consists
of i.i.d. random elements such that e; ; ~ N(0, aUQ’ZL ), where
ai is the noise variance and «« > 1 depends on whether there
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Fig. 2. Performance comparison of joint LP detector using code constraints
versus decoupled MMSE, a =1

are enough pilot symbols to estimate the channel accurately
or not. In our simulations, we investigate two cases of o = 1
(enough pilot symbols) and o« = 2 (short pilot length leading
to estimation error variance to be twice the noise variance).
After the detection stage, SCL decoder with list size L = 1
and L = 4 has been used. BER and BLER has been calculated
for both the decoder output and the detection output by hard
slicing the soft information that it generated.

Figure 2 shows the BER and BLER of the proposed joint
linear programming receiver (JLP) with the benchmark MMSE
receiver. Three different parameter settings are considered,
respectively. The first set of results compares the JLP detector
without SCL decoding with the MMSE detector without SCL
decoding. It can be clearly seen from Figure 2 that our
proposed JLP receiver substantially outperforms the MMSE
detector by integrating the FEC codeword constraint informa-
tion during detection. The more consistent detector output can
improve the BER by as much as 12dB in terms of signal-to-
noise ratio (SNR) at BER rate of 10~3. We further compare
the effect of SCL decoding after detection output based on
JLP or MMSE. It is clear from Figure 2 that both BLER and
BER are substantially reduced when ensuing polar decoding is
adopted. In terms of BLER, the performance improvement by
the JLP over MMSE is as high as 10dB for both SCL based
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Fig. 3. Performance comparison of joint LP detector using code constraints
versus decoupled MMSE, o = 2

on L=1and L =4.

Next, Figure 3 illustrates the performance comparison when
channel estimation error variance is quite large, at twice the
channel white noise variance, i.e. « = 2. In this case the
performance gain of JLP over MMSE is even more evident.
JLP together with SCL decoder outperforms MMSE with
SCL decoder by nearly 16 dB at BER rate of 1.5 x 107°.
The performance improvement in JLP is well expected since
MMSE only relies the received signals without integrating
the code constraints. As a result, MMSE signal detection is
significantly more vulnerable to channel estimation error. On
the other hand, JLP takes advantage of FEC coding constraints
and can be more robust against channel estimation error.

V. CONCLUSION

We proposed a robust receiver design for MIMO systems
by adopting the capacity-approaching polar codes for forward
error correction (FEC). We incorporate relaxed polar code con-
straints to formulate a novel joint linear programming (JLP)
optimization problem. The proposed receiver is more robust
against channel estimation error and other non-idealities at the
wireless receivers. Our results demonstrate superior receiver
performance particularly when the knowledge of the wireless
channel is inaccurate due to practical obstacles such as short

pilot length or pilot contamination. Our proposed JLP detector
can also directly interface with well-known low complexity
polar decoders such as SC and SCL decoders for effective error
correction. Future works may consider theoretical analysis of
the proposed receiver as well as further complexity reduction
of the joint linear programming receivers.
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