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ABSTRACT: Challenging photochemistry demands
high-potential visible-light-absorbing photo-oxidants.
We report (i) a highly electron-deficient Ru(IT) complex
(eDef-Rutpy) bearing an £ ; Pl potential more than 300
mV more positive than that of any established Ru(Il)
bis(terpyridyl) derivative, and (ii) an ethyne-bridged
eDef-Rutpy-(porphinato)Zn(Il) (eDef-RuPZn) super-
molecule that affords both panchromatic UV-vis spectral
domain absorptivity and a high £ P potential, compa-
rable to that of Ce(NH 4),(NO3)s [E12(Ce’ ™) =161V
vs. NHE], a strong and versatile ground-state oxidant
commonly used in organic functional group transfor-
mations. eDef-RuPZn exhibits ~eight-fold greater ab-
sorptive oscillator strength over the 380-700 nm range
relative to conventional Ru(II) polypyridyl complexes,
and impressive excited-state reduction potentials ( 'E 7
=1.59 V; *E % =126 V). eDef-RuPZn manifests elec-
tronically excited singlet and triplet charge-transfer state
lifetimes more than two orders of magnitude longer than
those typical of conventional Ru(Il) bis(terpyridyl)
chromophores, suggesting new opportunities in light-
driven oxidation reactions for energy conversion and
photocatalysis.

High-potential photo-oxidants that feature comprehen-
sive absorptivity in the visible (vis) spectral domain and
long-lived excited states are needed to resolve vexing
photochemical challenges, such as light-driven water
oxidation in dye-sensitized photoelectrosynthesis cells
(DSPECS),I'3 photoredox catalysis of organic transfor-
mations,*” and photo-decomposition of heavily halogen-
ated hydrocarbon wastes. 57 The literature is replete with
studies utilizing (polypyridyl)metal complexes like
Ru(tpy)g2+ and Ru(bpy) 5" for these applications, yet
relatively little progress has been made regarding the
development of corresponding electron-deficient (eDef)
high-potential chromophores capable of powering a
broader range of light-driven oxidation reactions: " as
eDef chromophores typically suffer from a combination
of short excited-state lifetimes, limited vis-spectral do-

Scheme 1. Synthetic Route to eDef-Rutpy and eDef-
RuPZn, Along with Structures of Corresponding
Established Electron-Rich Analogues.
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(i) n-BuLi, THF, -100 °C, ethyl formate, EtOH, O3, L; (ii)
NaH, acetone, DME, 90 °C; (iii) NHOAc, EtOH, reflux; (iv)
PBrs, POBr;, 100 °C; (v) n-BuLi, THF, -100 °C, ZnCly; (vi)
Pd(PPh;),, THF, 70 °C; (vii) ethanol, reflux; eDef-TpyBr, eth-
ylene glycol, 150 °C; (viii) ethylene glycol, reflux; 4,4’,4°’-
pyrrolidinyl-2,2”;6°,2’-terpyridine, =~ MeOH,  reflux;  (ix)
Pd,(dba);, AsPh;, THF:MeCN:DIPA (5:5:1), 60 °C. All charged
complexes feature PF¢ as counter ions.

main absorptivity, or photochemical instability.”'14

Here, we report the synthesis, electrochemistry, and pho-

tophysics of eDef-Rutpy, a chromophore having the

highest E”" value of any known Ru(Il) bis(tridentate)
complex, along with a corresponding ethyne-bridged
eDef-Rutpy—(porphinato)Zn(Il) (eDef-RuPZn) super-
molecule, endowed with intense panchromatic absorp-
tivity, a large magnitude excited-state reduction poten-



tial, and long-lived, highly oxidizing singlet and triplet
charge-transfer (CT) excited states.
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Figure 1. (A) Electronic absorption spectra of eDef-Rutpy
and eDef-RuPZn in acetonitrile solvent; (B) Total integrat-
ed absorptive oscillator strengths calculated over the 26316
cm”' (380 nm) to 14286 cm ' (700 nm) spectral range. '

Given challenges commonly associated with cross-
coupling reactions involving 2-pyridyl derivatives, 16
syntheses of eDef-Tpy and eDef-TpyBr precursor lig-
ands defined key obstacles to the target eDef-Rutpy and
eDef-RuPZn chromophores (Scheme 1); details de-
scribing these syntheses are contained in the Supporting
Information (SI). eDef-RuPZn was constructed via So-
nogashira cross-coupling of [5-ethynyl-10, 15, 20-
tris(perfluoropropyl)porphinato]Zn(II) and eDef-
RutpyBr fragments (SI), using a synthetic approach
analogous to that developed for the RuPZn supermolec-
ular chromophore. '7"1% Note that in contrast to perfluoro-
alkylated tris(bipyridyl)Ru(Il) complexes, & eDef-Rutpy
species enable panchromatic chromophore design strate-
gies that can take advantage of the RuPZn design motif
that optimally mixes porphyrin ligand =n-n* and
(polypyridyl)metal charge transfer states. '

The electronic absorption spectrum (EAS) of eDef-
Rutpy in acetonitrile solvent bears a close resemblance
to that of Ru(tpy) 2 (Figure 1). eDef-Rutpy evinces
ligand-localized n-m* transitions over the 260-350 nm
range (A max = 275 nm, € = 53100 M -l cm_l; Amax = 315
nm, € = 66500 M _lcm_l), and a weaker MLCT manifold
spanning the 400-600 nm spectral window (kax = 482
nm; € = 17600 M 'cm "), akin to those characteristic of
Ru(tpy)s”" [m-7* (A max =271 nm, € =46800 M ' cm
Amax =307 nm, €= 68700 M 'em '); MLCT (A max= 476
nm, €= 17700 M ~'em ")].* The similarities between the
steady-state EAS of eDef-Rutpy and Ru(tpy) 5 suggest
that the six CF; groups of the former implement the
electron-withdrawing effect through the ligand o-bond
network, without substantially perturbing the character
of the m-electron system. In effect, the nature of the elec-
tronic transitions of eDef-Rutpy is unperturbed relative
to Ru(tpy),, while eDef-Rutpy becomes uniformly more

oxidizing (see below). However, the lack of significant
oscillator strength in the visible remains a limitation of
both Ru(tpy), and eDef-Rutpy for light-driven reac-
tions.

Directly addressing the issue of visible absorptivity,
the EAS of eDef-RuPZn features almost eight times the
oscillator strength as that of eDef-Rutpy in the 380-700
nm visible spectrum range, and displays spectral features
similar to those evinced by RuPZn (Figure 1; see SI for
EAS of chromophoric building blocks and RuPZn). 1719
The porphyrin B-state derived transition centered at 441
nm manifests an absorption maximum that exceeds
1.2x10° M 'em ™. The transition centered at 504 nm (¢ =
75400 M 'em') derives from the Ru(Il) complex
MLCT band and oscillator-strength mixing involving the
porphyrin moiety. 19 Note that the weakest eDef-
RuPZn absorption bands at 582 nm (¢ = 26100
M 'em™") and 614 nm (¢ = 18600 M'cm ') are more
intense than the Ru(tpy),”" MLCT band.® These two
low-energy bands derive from mixing of porphyrin Q-
state transitions with the Ru(tpy),”” MLCT transition,
enabled by head-to-tail transition dipole alignment of the
(porphinato)metal and (terpyridyl)metal chromophoric
components. 1720

Ultrafast transient absorption experiments demonstrate
excited-state dynamics for eDef-Rutpy and eDef-
RuPZn in acetonitrile solvent similar to those of their
electron-rich counterparts (Figure 2). 18192124 By citation
of eDef-Rutpy at 480 nm generates the broad featureless
transient absorption characteristic of the *MLCT state
within the 200 fs time resolution of our instrument (Fig-
ure 2A). The 1 ns *MLCT state lifetime of eDef-Rutpy
(Figure S7) is 4 times lon%er than the 250 ps lifetime of
Ru(tpy)22+, likely due to “MC state destabilization rela-
tive to the MLCT state, resulting from -CF; substitu-
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Figure 2. Representative ultra-fast transient absorption
spectra recorded at several time delays for (A) eDef-Rutpy
and (B) eDef-RuPZn. Experimental conditions: solvent =
acetonitrile; temperature = 21 ° C; magic angle polarization;
eDef-Rupy: A ox =480 nm, P o, =1 oJ/Pulse; eDef-RuPZn:
Aex = 620 nm, P, = 870 nJ/pulse.
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Figure 3. Left Panel: ground-state Ru(tpy) 5 eDef-Rutpy, RuPZn and eDef-RuPZn potentiometric data. Right Panel:
corresponding S;- and T;-state redox properties for these chromophores (see SI). Experimental conditions: 0.1 M

TBAPF ¢/acetonitrile electrolyte/solvent system; ambient temperature; potential vs. NHE; SnO

shadow, onset = 0 V) at neutral pH.

tion. Excitation of eDef-RuPZn at 620 nm generates an
intense NIR transient absorption manifold that becomes
more intense upon S ;—T intersystem crossing (ISC) to
the long-lived T | charge-transfer state (Figure 2B). For
eDef-RuPZn, the 13.5 ps S ;—T; ISC time constant and
the 93 us T | excited-state lifetime (Figures S8-S11) are
extended by at least two orders of magnitude relative to
the sub-100 fs ISC time constants and ns-timescale T
lifetimes  characteristic =~ of Ru(tpy)22+ and its
derivatives. ”>>°

Long excited-state lifetimes of photo-oxidants are cru-
cial for achieving high yields of desired photoreactions.
For instance, sub-ps timescale electron injection from
the short-lived 'MLCT states of Ru(Il) polypyridyl
complexes into TiO, semiconductor interfaces cannot
typically proceed with unit quantum yield; hence, a sub-
stantial degree of electron injection occurs from the en-
ergetically lower *MLCT states over the 10-100 ps time
domain.>” Given the magnitudes of the respective eDef-
RuPZn S - (13.5 ps) and T ;-state (93 us) lifetimes, it is
clear that this chromophore design offers not only new
opportunities to achieve high-yield charge injection at
semiconductor interfaces, but the possibility to engineer
energy conversion systems that realize substantial elec-
tron transfer quenching of the 'eDef-RuPZn* state, be-
fore energy-wasting '"MLCT — *MLCT ISC can occur.

Potentiometric data acquired for eDef-Rutpy and
eDef-RuPZn reveal that perfluoroalkyl substitution
raises the E”* values of these chromophore motifs by
~0.5 V relative to their respective chromophoric bench-
marks (Figure 3). Note that the measured Ez(RuHm)
value for eDef-Rutpy (2.05 V) is ~300 mV higher than
the Ru?"" potentials realized for -electron-poor
Ru(tpy)z2+ derivatives that feature extensive -CN/-NO
substitution, >"** and ~200 mV higher than that reported
for Ru(dgxp) 7, a chromophore having the highest
E /Z(Ru2+/3+) potential yet established for tridentate
Ru(II) complexes,26 Similarly, the Ej,(eDef-RuPZn) o
potential (1.63 V) is more than 0.5 V larger than that

» conduction band (cyan

determined for RuPZn (Figure 3). '"19 Note that the

eDef-RuPZn E”" value is remarkably high for a large -
conjugated system. While m-conjugation expansion is a
common approach by which panchromatic absorptivity
may be realized, it comes at the expense of a destabi-
lized HOMO level that diminishes F 1/20”: here broad
high-oscillator strength vis domain spectral absorptivity
derives from the multi-directional CT nature of low-
lying eDef-RuPZn excited states, 1720 preserving a sub-
stantial £ /20/+.

Excited-state redox potentials (E % and E* /+) of eDef-
Rutpy and eDef-RuPZn determine thermodynamic
driving forces (AG) for photo-reduction and photo-
oxidation reactions (Figure 3 and SI). The $-state re-
duction potential ('E”"* = 1.59 V) of eDef-RuPZn is
impressive, even slightly higher than that of Ru(CN-
tpy)22+, which has the highest excited-state reduction
potential among established tridentate Ru(I) complexes
but much poorer absorptivity and an excited state life-
time two orders of magnitude shorter. ** In the context of
DSPEC architectures, comparison of the chromophore
E** values with the conduction band onsets of semicon-
ductor electrodes evaluates the feasibility of photoin-
duced electron injection to generate (chromophore)”
species that may perform desired oxidative chemistry.
The S, state E*"" value of eDef-RuPZn is —0.35 V, indi-
cating an exergonic AG for electron injection into SnO ,,
a popular semiconductor electrode material with a low
conduction band onset of 0 V (vs. NHE) at neutral pH. ¥
The 13.5 ps S-state lifetime of eDef-RuPZn, two orders
of magnitude longer than those of conventional Ru(II)
terpyridyl derivatives, suggests opportunities to realize
high quantum yield S ; state electron injection; it is also
important to underscore that in circumstances where
eDef-RuPZn ISC dynamics prevail over electron injec-
tion from the S state, electron injection remains ther-
modynamically viable from the long-lived (93 ps) T,
state (Figure 3). The potential of the (eDef-RuPZnf
hole (1.63 V vs. NHE) is comparable with the reduction



potential of the  strong chemical  oxidant
Ce(NH4)2(N03)6,30 suggesting the breadth of chemistry
that could be driven by DSPECs incorporating this high-
potential panchromatic chromophore.

Established photo-oxidants such as porphyrin deriva-
tives, perylene diimides, and metal comflexes all exhibit
limited visible spectral coverage. 81219 Enhancement of
long-wavelength oscillator strength by extending -
conjugation typically comes at the expense of a lower
E”" value (HOMO destabilization), thus diminishing the
AG for oxidative chemistry. This work realizes a high-
potential (terpyridyl)metal-based chromophore having
panchromatic UV-vis spectral domain absorptivity, with
an integrated visible oscillator strength ~eight fold
greater than those of typical Ru(Il) terpyridyl complex-
es. eDef-RuPZn is a panchromatic chromophore with a
E1/20/+ potential comparable to that of Ce(NH),(NOs3)s,
[E1x(Ce*™) = 1.61 V vs. NHE{® which affords eDef-
RuPZn with an uncommonly large excited-state reduc-
tion potential ('E”* = 1.59 V; "E7* = 1.26 V). The
combination of a vis-light triggered photoexcited state
having high electrochemical potential, with long Si-
(13.5 ps) and Tj-state (93 ps) lifetimes, suggests new
opportunities to drive challenging photo-oxidation reac-
tions for applications such as energy conversion and
photocatalysis.
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