

www.acsnano.org

High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction

- 3 Kewei Liu,^{†,⊥} Changlin Zhang,^{‡,§,⊥} Yuandong Sun,[†] Guanghui Zhang,^{||} Xiaochen Shen,[‡] Feng Zou,[†]
 4 Haichang Zhang,[†] Zhenwei Wu,^{||} Evan C. Wegener,^{||} Clinton J. Taubert,[†] Jeffrey T. Miller,^{*,||}
 5 Zhenmeng Peng,^{*,‡} and Yu Zhu^{*,†}

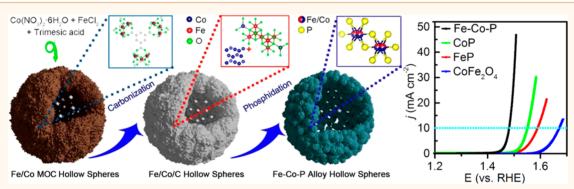
- 6 †Department of Polymer Science and *Department of Chemical and Biomolecular Engineering, University of Akron, 170 University
- 7 Circle, Akron, Ohio 44325, United States
- 8 [‡]Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- 9 School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
 - Supporting Information

11

13

14

15


16

17

18

19 20

21

ABSTRACT: Oxygen evolution reaction (OER) is a pivotal process in many energy conversion and storage techniques, such as water splitting, regenerative fuel cells, and rechargeable metal-air batteries. The synthesis of stable, efficient, nonnoble metal-based electrocatalysts for OER has been a long-standing challenge. In this work, a facile and scalable method to synthesize hollow and conductive iron-cobalt phosphide (Fe-Co-P) alloy nanostructures using an Fe-Co metal organic complex as a precursor is described. The Fe-Co-P alloy exhibits excellent OER activity with a specific current density of 10 mA/cm² being achieved at an overpotential as low as 252 mV. The current density at 1.5 V (vs reversible hydrogen electrode) of the Fe-Co-P catalyst is 30.7 mA/cm², which is more than 3 orders of magnitude greater than that obtained with state-of-the-art Fe-Co oxide catalysts. Our mechanistic experiments and theoretical analysis suggest that the electrochemical-induced high-valent iron stabilizes the cobalt in a low-valent state, leading to the simultaneous enhancement of activity and stability of the OER catalyst.

KEYWORDS: Fe-Co-P alloy, self-assembly, hollow sphere, XANES, EXAFS, oxygen evolution reaction

xygen evolution reaction (OER) has received great 22 research interest in recent years toward the implementation of energy conversion and storage 25 techniques, such as photoelectrolytic/electrolytic water split-26 ting, regenerative fuel cells, and rechargeable metal-air 27 batteries. 1-7 Due to the sluggish reaction kinetics of OER, 28 large amounts of noble metal oxides (e.g., IrO2 and RuO2) are 29 required to overcome the activation energy barriers of O-H 30 bond breaking and O-O bond formation. 8,9 It has been one of 31 the more longstanding challenges to reduce or even eliminate 32 the use of noble metals in OER, especially when the activity, 33 stability, cost-effectiveness, and environmental benignity are 34 considered in evaluating the proposed alternative catalyst. 10-17 35 Hence, the development of a low-cost, stable OER catalyst 36 without sacrificing catalytic performance is crucial. Great

progress has been achieved in the past decade in exploring 37 new OER catalysts as alternatives to IrO₂ and RuO₂. ^{18,19} ₃₈ Various metal oxides, including cobalt oxides, ^{20–23} manganese ₃₉ oxides, ^{24–26} Ni–Fe oxides, ²⁷ Ni–Co oxides, ^{28,29} Ni–Fe–Co ₄₀ oxides, ³⁰ and others, ³¹ were synthesized and investigated as ₄₁ catalysts to OERs. Metal hydroxides/oxyhydroxides, such as 42 nickel hydride, 32 nickel-cobalt double hydroxide, 33 cobalt- 43 chromium double hydroxide, 34 nickel-vanadium double 44 hydroxide,³⁵ and cobalt oxyhydroxide,³⁶ have been intensively 45 studied for their attractive OER performance. Koper and 46

Received: July 3, 2017 Accepted: December 6, 2017 Published: December 6, 2017

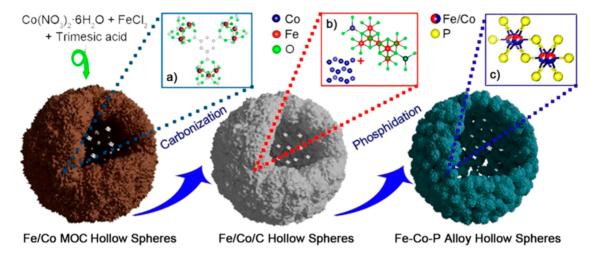


Figure 1. Schematic illustration of hollow Fe–Co–P alloy material synthesis. The Fe–Co MOC was prepared via a hydrothermal reaction with $Co(NO_3)_2$ · $6H_2O$ and $FeCl_3$ as the metal sources and trimesic acid as the ligand. The trimesic molecule was coordinated with Co or Fe ions to form a metal organic complex structure (inset a). Fe–Co oxide/C hollow spheres were obtained after carbonization at 500 °C in Ar. A mixture of $CoFe_2O_4$ and Co was observed in the Fe–Co oxide/C hollow spheres (inset b). A Fe–Co–P alloy nanostructure was obtained after a controlled phosphidation by *in situ*-generated PH₃. The crystal structure of the Fe–Co–P alloy is presented in inset c.

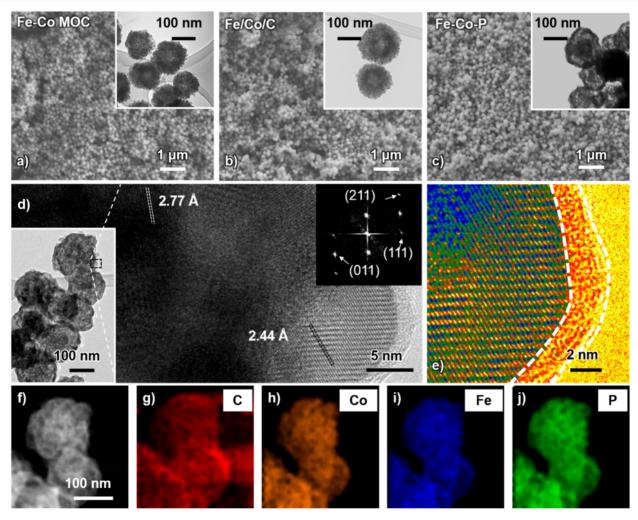


Figure 2. Morphology and elemental distribution of the Fe-Co-P nanostructures. (a-c) Scanning electron microscopy images (inset: TEM images) of the prepared Fe-Co MOC, CoFe₂O₄-based metal oxide/C composites, and Fe-Co-P nanostructure. (d) High-resolution TEM image of the Fe-Co-P nanostructure with a corresponding fast Fourier transform pattern. (e) Colored Z-contrast HRTEM image of the Fe-Co-P nanostructure. (f) Scanning TEM image and the corresponding elemental mapping of (g) carbon, (h) cobalt, (i) iron, and (j) phosphorus.

47 colleagues showed that Ni-Fe and Ni-Mn double hydroxides 48 can be promising OER catalysts based on a joint theoretical— 49 experimental study.³⁷ Bell and co-workers mechanistically 50 revealed the origin of pronounced OER activities of Ni-Fe-51 based oxyhydroxides.³⁸ Due to the low intrinsic electrical 52 conductivity, metal oxide/hydroxide/oxyhydroxide materials 53 have high charge transfer resistance, resulting in large 54 overpotentials.^{39,40} Hybridization with various carbonaceous 55 materials, such as graphene, 41,42 heteroatom-doped graphene, 56 carbon nanotube, 43,44 and porous carbon nanosheets, 45 have 57 been explored. More recently, metal sulfides and nitrides with 58 better intrinsic electrical conductivity have been investigated. 59 Zhang's group fabricated Co-S nanosheets on carbon tubes 60 embedded on carbon paper, which exhibited comparable 61 overpotentials to benchmark RuO₂. 46 In another work, Ni₃N 62 nanosheets were employed as an efficient OER catalyst due to 63 their metallic nature and disordered structure. 47 The structural 64 stability of carbon-hybridized materials and metal sulfides or 65 nitride nanosheets in OERs are still challenging, 48 which 66 hinders their implementation in OER-related applications. 67 Emerging phosphide $^{49-51}$ compounds exhibit the most 68 interesting OER performance (i.e., superior electrochemical 69 activity, long-term stability, and low cost); however, the OER 70 mechanism of phosphide compounds remains unknown due to 71 their complicated compositions.

In this work, a facile and scalable method for preparing hollow and conductive Fe-Co-P alloys with outstanding OER catalytic properties is reported. The hollow structure provides abundant active surface sites and short mass transfer pathways. The metallic conductivity facilitates charge transfer, and the uniform structure enables the structure-properties relationship investigation. This general approach of designing multifunctional alloy OER catalysts could be applied in a variety of related research topics, such as fuel cells, electrolyzers, and metal-air batteries.

82 RESULTS AND DISCUSSION

Synthesis of Fe-Co-P Alloy Materials. A schematic 84 illustration for the preparation of the Fe-Co-P catalyst is 85 displayed in Figure 1. The Fe-Co metal-organic complex 86 (MOC) was prepared by a hydrothermal reaction. To prepare 87 the initial Fe-Co MOC, iron chloride (FeCl₃) and cobalt 88 nitrate $(Co(NO_3)_2 \cdot 6H_2O)$ with a stoichiometric ratio of 3:2 89 were dissolved in a solvent mixture of N,N-dimethylformamide, 90 ethanol, and water with trimesic acid (BTC) as the ligand. The 91 mixture was heated at 150 °C for 12 h, allowing the formation 92 of an Fe-Co MOC structure through a self-assembly process 93 (Figure 1a). The Fe-Co MOC was then annealed at 500 °C in 94 Ar with a ramp rate of 2 °C/min. The organic ligands were 95 carbonized, and metal (Fe/Co) oxides were formed. Sodium 96 hypophosphite (NaH₂PO₂) was used as the phosphorus (P) 97 source due to its low toxicity. Upon heating, NaH₂PO₂ thermally decomposed and released PH3, which converted the metal oxide/C structure into an Fe-Co-P alloy.⁵² No 100 surfactant or template was applied in the entire process, which avoided labor-intensive post-treatment and enabled a cost-102 effective scale-up.

Characterization of Fe-Co-P Alloy Materials. The precursor Fe-Co MOC materials and their carbonization and phosphidation products were characterized. The scanning electron microscopy (SEM) imaging in Figure 2a shows that the Fe-Co MOC structure assembles into highly uniform nanospheres. The transmission electron microscopy (TEM)

image in the inset revealed the hollow cavities of Fe-Co MOC 109 as evidenced by the obvious contrast difference. The details of 110 the structure evolution are illustrated in Figure S1. During the 111 hydrothermal reaction, the iron and cobalt metal ions 112 coordinated with trimesic acid and formed small clusters in 113 the first 6 h of reaction. Followed by another 3 h reaction, the 114 clusters aggregated into the solid spheres, as shown in Figure 115 S1b. The formation of the bigger particles could be explained as 116 the Ostwald ripening process. At the same time, the materials 117 within the particle recrystallized under hydrothermal condition. 118 The crystallized materials were formed on the surface of the 119 particle, resulting in a hollow spherical hierarchical structure. 120 Such a dissolution/crystallization process has been reported 121 previously in our report.⁵³ The carbonization of Fe-Co MOC 122 was also studied by thermogravimetric analysis (TGA) over a 123 temperature range from room temperature to 800 °C, which 124 revealed that there were several weight loss steps, as shown in 125 Figure S2. The annealing temperature (500 °C) ensured 126 carbonization without causing further degradation. After 127 carbonization, the hollow structure was largely maintained in 128 the metal oxide/C composites (mostly of CoFe₂O₄), and no 129 significant structural collapse was observed (Figure 2b). 130 Phosphidation was undertaken following a previously reported 131 procedure; 52 however, the annealing temperature and reaction 132 time were adjusted to achieve an optimized product. After 133 phosphidation, a hollow Fe-Co-P nanostructure was obtained 134 (Figure 2c). High-resolution TEM (HRTEM) images in Figure 135 2d showed d-spacings of 2.44 and 2.77 Å, which can be indexed 136 to the interplane of (111) and (011) of the Fe-Co-P alloy, 137 corresponding to the fast Fourier transform (FFT) pattern. The 138 values of the d-spacing were between those of FeP and CoP, 139 suggesting an alloy formation of nanostructured Fe-Co-P. 140 The carbon matrix, which improved electric conductivity, was 141 not only characterized by Raman spectroscopy (Figure S3) but 142 also observed and visualized in a colored HRTEM image 143 (Figure 2e). A scanning transmission electron microscopy 144 (STEM) image of the Fe-Co-P alloy (Figure 2f) further 145 confirmed the presence of a highly porous hollow sphere 146 structure. The elemental maps of carbon, iron, cobalt, and 147 phosphorus were also measured by STEM energy-dispersive X- 148 ray spectroscopy (EDX), which demonstrated that all of the 149 elements were homogeneously distributed in the Fe-Co-P 150 alloy nanostructures. The specific surface areas of Fe-Co 151 MOC, Fe/Co/C and Fe-Co-P alloy were determined 152 through the Brunauer-Emmett-Teller (BET) method (Figure 153 S4). The Fe-Co MOC showed a specific surface area of 154 157.7m²/g. After carbonization, the specific surface area of Fe/ 155 Co/C was $62.1m^2/g$. It is worth noting that the specific surface 156 area of Fe–Co–P alloy increased to $104.1 \text{ m}^2/\text{g}$ after 157 phosphidation, which increased the catalytic sites for the 158 oxygen evolution reaction. The Fe-Co-P alloy samples with 159 different Fe/Co ratio were synthesized (Figure S5) as well to 160 explore the optimized composition for OER catalysts.

The structure of the as-prepared materials was investigated 162 by X-ray diffraction (XRD) and analysis of the diffraction 163 patterns (Figure 3). After carbonization at 500 °C, the organic 164 f3 ligand decomposed, as evidenced by the infrared spectrum in 165 Figure S6. Several characteristic peaks related to metal oxides 166 emerged in the XRD results (Figure 3a), which can be 167 attributed to the formation of the spinel structure of CoFe₂O₄. 168 Small peaks, related to metallic Co, were also detected in Figure 169 3a, which may have been formed by carbon-reduced cobalt 170 oxide at 500 °C. Phosphidation was conducted after the 171

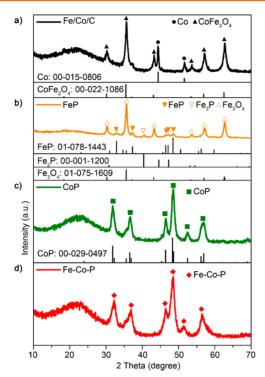


Figure 3. Powder X-ray diffraction profiles of as-prepared CoFe₂O₄ (with residual Co), FeP, CoP, and Fe-Co-P. (a) CoFe₂O₄ (with Co), (b) FeP, (c) CoP, and (d) fresh Fe-Co-P. During carbonization, the Fe-Co MOC was converted to a mixture of metal oxide/metal (CoFe₂O₄ and Co metal). After phosphidation at 400 °C, Co MOC was fully converted to CoP and Fe MOC was partially phosphorized.

172 carbonization. Before analyzing the complicated ternary Fe-173 Co-P alloy, FeP and CoP were studied individually. The single 174 metal phosphides, FeP and CoP, were prepared by the same 175 phosphidation procedures with the exception of using only an 176 Fe or Co precursor. Figure 3b shows the phosphidation results 177 of the Fe-MOC-derived materials, which indicate that partial 178 phosphidation was achieved with Fe₃O₄, Fe₂P, and FeP 179 coexisting. The dominant peaks belong to Fe₃O₄. The scattered peaks at 32.7, 37.2, 46.3, 46.9, and 48.3° can be assigned to the (011), (111), (112), (202), and (211) planes of FeP (JCPDS 182 No. 01-078-1443), respectively. Unlike Fe MOC, Co MOC was 183 successfully converted into pure CoP under the same reaction conditions. As can be seen in Figure 3c, the peaks at 31.6, 36.3, 46.4, 48.5, 52.4, and 56.8° are attributed to the (011), (111), (211), (103), and (321) planes of CoP (JCPDS No. 00-029-187 0497), respectively. No oxides or other cobalt phosphides (i.e., 188 Co₂P, CoP₂, and CoP₃) were observed in Figure 3c, suggesting 189 that Co MOC was fully converted to CoP. The phosphidation 190 product of CoFe₂O₄ is shown in Figure 3d. XRD peaks of Fe-Co-P obtained from phosphidation at 400 °C showed the 192 same pattern as that of the CoP with the exception that they are 193 located between the references peaks of FeP and CoP, with the peak positions at 32.2, 36.9, and 51.3° corresponding to the (011), (111), and (103) planes of Fe-Co-P, respectively. The 196 theoretical peak positions of the Fe-Co-P alloy were also calculated by Vegard's law,54 which was consistent with the 198 experimental results, indicating the as-prepared Fe-Co-P was 199 a uniform alloy. It should be noted that to prepare a uniform 200 metal phosphide, an optimized temperature is crucial both 201 thermodynamically and kinetically. When the phosphidation

temperature was set to 350 $^{\circ}$ C, CoFe₂O₄ was partially 202 phosphorized, as shown Figure S7. Peaks attributed to 203 CoFe₂O₄ were still observed and accompanied by the formation 204 of the Fe–Co–P alloy. The partially phosphorized sample was 205 also characterized by STEM-EDX (Figure S8). Elemental 206 mappings showed that the phosphorus content on the surface 207 was much higher than that of core parts, suggesting nonuniform 208 phosphorus distribution due to partial phosphidation.

Fe–Co–P Alloy OER Catalyst Evaluation. The OER 210 electrocatalytic properties of the prepared Fe–Co–P alloy 211 catalyst, its monometallic counterparts (CoP and FeP), and 212 CoFe₂O₄ were measured in N₂-saturated 1 M KOH electrolyte 213 using a rotating disk electrode. In Figure 4a, the Fe–Co–P 214 64

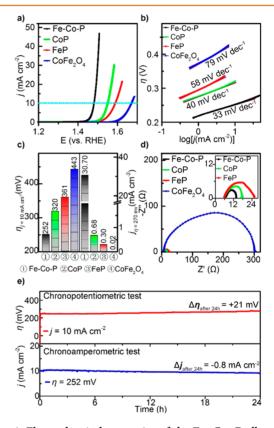


Figure 4. Electrochemical properties of the Fe–Co–P alloy as an OER electrocatalyst. (a) OER polarization curves, (b) Tafel plots, (c) comparison of overpotentials and current densities, and (d) Nyquist plots for the Fe–Co–P alloy, CoP, FeP, and CoFe₂O₄ nanostructures. (e) Chronopotentiometric and chronoamperometric tests of the Fe–Co–P alloy catalyst at a constant current density of 10 mA/cm² (V-t) and overpotential of 252 mV (i-t), respectively. All the measurements were performed in 1 M KOH with a rotating disk electrode.

catalyst demonstrated a much lower onset potential and higher 215 specific current compared to CoP, FeP, and CoFe₂O₄, 216 indicating that it has excellent intrinsic OER catalytic activity. 217 Specifically, the overpotential of the Fe–Co–P alloy catalyst 218 required for achieving a specific current density of $10~\text{mA/cm}^2$ 219 was only 252 mV, which was significantly lower than that of 220 CoP (320 mV), FeP (361 mV), and CoFe₂O₄ (443 mV). The 221 overpotentials of Fe–Co–P alloy catalysts with different Fe/Co 222 ratios were compared in Figure S9. The results indicated that 223 Fe and Co with an atomic ratio of 3:2 exhibited the best OER 224 performance. (Under a specific current density of $10~\text{mA/cm}^2$, 225

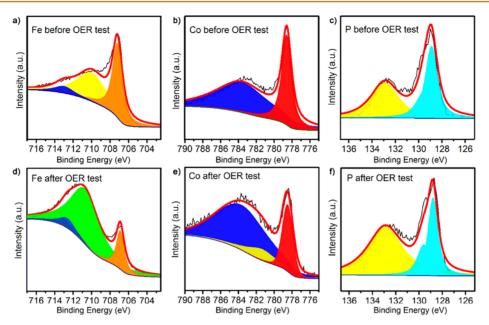


Figure 5. Investigation of the electronic structure of the Fe-Co-P catalyst via high-resolution XPS analysis before and after the OER test. (a-c) Fe 2p, Co 2p, and P 2p XPS spectra of the Fe-Co-P alloy catalyst before the OER test. (d-f) Fe 2p, Co 2p, and P 2p XPS spectra of the Fe-Co-P catalyst after the OER test. The Co $2p_{3/2}$ peaks after the OER showed that the valences of Co were similar to those of fresh Fe-Co-P catalyst, indicating the Co elements were stable under the reactions. A peak for FeOOH (green area) was observed, suggestive of an enhanced valence state of Fe after the OER reaction in the Fe 2p XPS spectrum. The black lines in (a-e) are the experimental data. The red lines in (a-e) represent the curve fitting using the Gaussian-Lorentzian algorithm. The orange areas in (a,d), red areas in (b,e), and light blue areas in (c,f) are the metallic peaks for Fe, Co, and P, respectively. The yellow areas in (a,c,e,f) could be associated with oxidation due to air contact. The blue areas in (a,d) and (b,e) are Co and Fe auger peaks.

226 the overpotentials of Fe-Co-P alloy samples with Fe/Co = 3:1 and Fe/Co = 1:1 were 348 and 303 mV, respectively.) Tafel plots in Figure 4b showed that the Tafel slope for the Fe-Co-P alloy catalyst was 33 mV/dec, confirming the four-electrontransfer reaction pathway.⁵⁵ The other catalysts had much higher Tafel slopes with values of 40 mV/dec for CoP, 58 mV/ dec for FeP, and 79 mV/dec for CoFe₂O₄, indicating a lower conversion efficiency in water oxidation. Remarkably, comparisons of the delivered current density at a specific overpotential of 270 mV (E = 1.50 V vs reversible hydrogen electrode, RHE) 236 revealed that the Fe-Co-P alloy catalyst exhibited a value of 237 30.70 mA/cm², which is more than 3 orders of magnitude 238 higher than that of CoFe₂O₄ (0.02 mA/cm²; Figure 4c). Compared to the monometallic phosphides, the Fe-Co-P catalyst also showed greatly improved activity, with current densities ~100 times higher than that of FeP and 45 times higher than that of CoP. The charge transfer resistances were analyzed by the Nyquist plots in Figure 4d. The solution resistance was consistent for all the measurements with a value 244 of 6 Ω (Figure 4d, inset). The carbonized metal organic 245 complex (CoFe₂O₄) showed a much higher interfacial charge transfer resistance of approximately 300 Ω as compared to that of the Fe–Co–P alloy (13 Ω), CoP (18 Ω), and FeP (26 Ω), which is consistent with their OER activities ($CoFe_2O_4 \ll FeP$ < CoP < Fe-Co-P alloy) and signifies the obviously greater reaction kinetics of metal phosphides. The comparison of the OER performance between this Fe-Co-P alloy catalyst and other transition metal phosphide systems are provided in Table SI. The electrochemical stability of the prepared Fe-Co-P catalyst was tested by both chronopotentiometric (V-t) and 256 chronoamperometric (i-t) methods, as shown in Figure 4e. 257 For a constant current output at 10 mA/cm², the required 258 overpotential after a 24 h test increased only 21 mV compared

to the initial test (252 mV). In the i-t stability test, the 259 retention of current density was 92% (with a loss of only 0.8 260 mA/cm²) after a 24 h test. Both measurements suggested that 261 the prepared Fe-Co-P alloy OER catalyst was not only highly 262 active but also very stable in an electrochemical environment. 263 The stabilities of the FeP and CoP catalysts were also tested in 264 Figure S10, in which CoP was active at the beginning but 265 degraded quickly, while FeP was less active but stable 266 throughout. In the first and second CV scans, an irreversible 267 anodic peak was observed at 1.24 V for the Fe-Co-P alloy 268 (Figure S11), which could be associated with the formation of 269 metal oxyhydroxides.⁵⁶ Similar irreversible changes were also 270 observed for CoP and FeP but with much higher oxidation 271 potentials at the onset, indicating the modified electronic 272 structure of the Fe-Co-P catalyst caused by the ternary alloy 273 formation.

XPS/XAS Analysis and Simulation. The outstanding 275 OER performance of the Fe-Co-P alloy catalyst benefits from 276 its enhanced intrinsic conductivity. Density of states (DOS) 277 values were calculated to inspect the electronic structure of 278 FeP, CoP, and the Fe-Co-P alloy (Figure S12a). Compared 279 with the DOS of FeP and CoP, the DOS of Fe-Co-P alloy 280 had a higher ratio of states located near the Fermi level, 281 indicating a better conductivity of the ternary alloy. In contrast, 282 the DOS of the other Fe- or Co-containing materials such as 283 FeCo₂O₄ (1.194 eV) and FeOOH (1.968 eV) had large band 284 gaps.⁵⁷ The crystal structure and model electron density are 285 provided in Figure S12b. To further investigate the local surface 286 changes of the catalyst along with the OER, the Fe-Co-P alloy 287 electrodes were analyzed before and after a reaction by surface- 288 surveying XPS and high-resolution XPS. In the wide range, 289 surface-surveying XPS (Figure S13) detected Fe, Co, P, C, and 290 O peaks. The atomic ratio between Fe and Co was 3:2, which 291

294 Co-P catalyst composition. The appearance of small amounts 295 of oxygen was possibly from either slight oxidation of Fe/Co 296 induced by air exposure or the surface functional OH groups of 297 the carbon layers. 58,59 The carbon peaks were consistent with the HRTEM image (Figure 2e), which showed the formation of 299 amorphous carbon layers. As shown in Figure 5a, the Fe 2p_{3/2} 300 at 707.1 eV was observed, which was positively shifted 301 compared to metallic Fe (706.8 eV) while slightly negatively shifted (0.4 eV) compared to pure FeP (707.5 eV). The 303 results could be attributed to the existence of neighboring Co atoms that balance the oxidation state of Fe. In contrast, the Co 2p_{3/2} peaks (778.5 eV) in Figure 5b showed a higher binding energy than pure CoP (778.1 eV),⁶¹ indicating electron donation from Co to P and to Fe in the Fe-Co-P alloy 308 system. The peaks with binding energies of 128.8 and 129.5 eV 309 in Figure 5c could be assigned to P $2p_{3/2}$ and P $2p_{1/2}$, which were shifted to lower binding energy positions compared to 311 those of elemental phosphorus, indicating the electron donation from both Fe and Co to P. After OER, a prominent peak on the Fe $2p_{3/2}$ spectrum with a binding energy of 711.1 eV was observed in Figure 5d, which could be associated with the electrochemically formed FeOOH. 62,63 The Co $2p_{3/2}$ peaks after the OER in Figure 5e showed that the valence status of Co was similar to that of the fresh Fe-Co-P catalyst, suggesting that the Co elements were stable under such reactions. Similar results were also observed in other Co/Fe-OOH systems, ⁵⁶ in which the Fe was believed to be capable of stabilizing the Co 321 species. No obvious peak shits of P 2p were observed after the 322 OER (Figure 5f), indicating the stability of the P element in the 323 catalyst. The yellow peaks in Figure 5a,c,e,f were associated 324 with surface oxidation due to the air exposure. Co and Fe auger 325 peaks were also observed and marked in dark blue (Figure 326 5a,b,d,e). 56 The electronic structure change of binary alloy catalysts FeP and CoP were also investigated, as shown in 328 Figure S14. For FeP catalyst, the peak related to oxyhydroxide was observed after the OER, which is similar in the case of Fe-Co-P catalyst. Compared with the Co 2p_{3/2} peaks in the Fe-Co-P catalyst, clear peak shifts from metallic Co to Co(OH)₂ and CoOOH were observed in the CoP catalyst after OER. Co and Fe K-edge X-ray absorption near-edge structure 334 (XANES) spectra were collected for the Fe-Co-P alloy catalyst before and after OER. As shown in Figure 6a,b, a tiny pre-edge peak (~0.01 in height) of Co(II) is present in 337 $Co(NO_3)_2 \cdot 6H_2O$. For the Fe-Co-P alloy, a much higher peak (\sim 0.2 in height) was observed with an edge energy of 7709 eV, which is the same as that obtained for a Co foil and illustrates the metallic nature of Co in the Fe-Co-P alloy. A broad leading edge peak with a height of ~0.15 (edge energy 7112 eV) was observed in the Fe K-edge data, consistent with the metallic nature of Fe in the Fe-Co-P alloy. After OER (Figure

292 was consistent with the stoichiometric ratio between the Fe and

293 Co precursors and suggestive of an accurate control of Fe-

337 Co(NO₃)₂·6H₂O. For the Fe-Co-P alloy, a much higher peak 338 (~0.2 in height) was observed with an edge energy of 7709 eV, 339 which is the same as that obtained for a Co foil and illustrates 340 the metallic nature of Co in the Fe-Co-P alloy. A broad 341 leading edge peak with a height of ~0.15 (edge energy 7112 342 eV) was observed in the Fe K-edge data, consistent with the 343 metallic nature of Fe in the Fe-Co-P alloy. After OER (Figure 344 6b), an increase in the white line intensity (~7725 eV at the Co 345 K-edge and ~7132 eV at the Fe K-edge) of the XANES spectra, 346 as well as a shift in the leading edge to higher energy, was 347 observed for both Co and Fe, suggesting the formation of 348 oxidized species on the catalyst surface. The edge energies of 349 both the Co and Fe edges remain the same as the fresh 350 catalysts, which suggests the bulk of the catalyst remains in the 351 Fe-Co-P alloy.

Co and Fe K-edge extended X-ray absorption fine structure (EXAFS) spectra were also collected for the Fe—Co—P alloy catalyst before and after OER and fitted using modified FeP

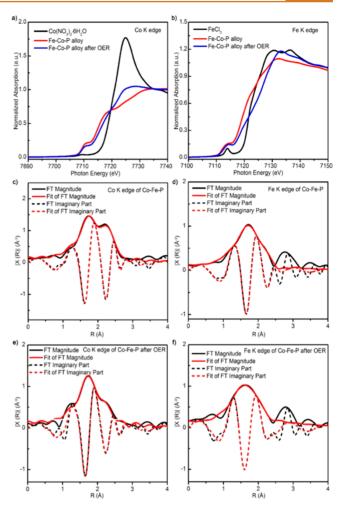


Figure 6. X-ray absorption spectra of the Fe-Co-P catalyst before and after OER. (a,b) XANES spectra at Co K-edges and Fe K-edges of the Fe-Co-P catalyst before OER. (c-f) Fourier transformed k^{-3} weight EXAFS oscillations measured at Co K-edge and Fe K-edge of the Fe-Co-P catalyst before and after OER.

and CoP crystal structures as the models. The fitting results are 355 shown in Figure 6c-f and summarized in Table 1. EXAFS 356 tl fitting results of the Co K-edge data of the fresh catalyst 357 confirm that the average coordination number of the Co sites is 358 approximately 5 before OER, suggesting the presence of 359 coordinated unsaturated Co sites (CoP has 6 P atoms 360 surrounding each Co). Co-P and Co-Co(Fe) distances are 361 about 2.24 and 2.63 Å, respectively, very similar to the Co-P 362 and Co-Co distances in CoP. EXAFS fitting results of the Fe- 363 Co-P after OER indicate that the average P coordination 364 number of the Co sites did not change much, while the number 365 of Co-Co neighbors decreased from 4 to ~1. The Co-P 366 distance of 2.26 Å is very similar to that of 2.24 Å obtained 367 before OER (within the error). The Co-Co(Fe) distances also 368 did not change. Attempts to include a Co-O path in the fit did 369 not lead to a better data fit, and it is believed that the oxidized 370 Co species represents only a small fraction on the alloy surface, 371 as also suggested by the XANES shift.

EXAFS fitting results of the Fe K-edge data of the fresh 373 catalyst suggest an average P coordination number of 6; the 374 number of Fe neighbors is 2. The Fe-P and Fe-Fe(Co) 375 distances were 2.25 and 2.63 Å, respectively. The Debye- 376 Waller factors of both the Fe-P and Fe-Fe(Co) paths are 377

Table 1. Fitting Results Obtained from EXAFS Fe and Co K-Edges of Fe-Co-P Catalyst before and after OER

Fe-Co-P alloy	absorber—scatterer pair	coordination number	bond distance (Å)	σ^2	ΔE_0 (eV)	data range	R factor
before OER Co edge	Со-Р	5.0	2.24 ± 0.02	0.008 ± 0.002	-0.9 ± 1.5	k-space 3.0-11.0 Å ⁻¹	K^1 : 0.003
, and the second	Co-Co(Fe)	4.0	2.63 ± 0.01	0.007 ± 0.002		R-space 1.20-2.70 Å	K^2 : 0.004 K^3 : 0.007
after OER Co edge	Co-P	5.0	2.26 ± 0.04	0.009 ± 0.002	-3.1 ± 4.7	k-space 3.0-11.0 Å ⁻¹	K^1 : 0.012
	Co-Co(Fe)	0.9	2.63 ± 0.05	0.001 ± 0.012		R-space 1.27-2.62 Å	K^2 : 0.006
							K^3 : 0.006
before OER Fe edge	Fe-P	6.0	2.25 ± 0.06	0.014 ± 0.008	-8.8 ± 6.0	k-space 3.0-11.0 Å ⁻¹	K^1 : 0.003
	Fe-Fe(Co)	2.0	2.63 ± 0.08	0.011 ± 0.011		R-space 1.20-2.46 Å	K^2 : 0.003
							K^3 : 0.009
after OER Fe edge	Fe-O	2.0	1.96 ± 0.06	0.006 ± 0.011	2.5 ± 3.4	k-space 3.0-10.0 Å ⁻¹	K^1 : 0.001
	Fe-P	4.0	2.35 ± 0.05	0.016 ± 0.011		R-space 1.00-2.43 Å	K^2 : 0.003 K^3 : 0.012

378 relatively large (0.014 and 0.011), which could also be expected 379 in FeP due to the presence of various Fe-P and Fe-Fe 380 distances. After OER, the presence of Fe-O scattering was 381 observed, which is consistent with the XANES results on the 382 formation of FeOOH species. The average Fe-P distance of 383 2.35 Å and Fe-O distance of 1.96 ± 0.06 Å were consistent 384 with the Fe-O distances of 1.99-2.12 Å in FeOOH. 385 Consistent with the XANES analysis, the bulk of the alloy 386 remains Fe-Co-P, and the oxidized species were only formed 387 on the surface. The XANES and EXAFS results also reconcile 388 the electrochemistry and XPS analyses, demonstrating that the 389 high-valent state FeOOH is formed on the surface as the major 390 oxidized species. The Co component retained its low-valent 391 nature during the OER reaction with only a small fraction 392 oxidized.

The metal oxyhydroxides were recognized as highly active 394 OER catalysts in many recent studies. 56,64-68 Here, the electrochemistry analysis, quantum calculation, and X-ray analysis suggest that the in situ-generated FeOOH on the 397 Fe-Co-P alloy substrates possess highly promising OER-type 398 electrocatalytic properties with the following aspects. (1) The 399 Fe-Co-P phosphides provide metallic conductivity that 400 lowers the required overpotential. Although the pristine metal 401 oxyhydroxide is active for OER, it is not conductive enough to 402 deliver the charge involved in the reactions, while the Fe-Co-403 P alloy is very conductive. (2) The ternary Fe-Co-P alloy 404 formation could adjust the OH bond breakage and OO bond 405 formation via tuning the energetics of all intermediates (*OH, 406 *O, *OOH), in which the adsorptions on a single FeOOH 407 species are too strong, while those on single Co-based sites are 408 too weak. The uniform alloy formation guarantees that the Fe 409 and Co scatters are highly closed, which can provide abundant 410 adjacent active sites. (3) The existence of Fe in the Fe-Co-P 411 alloy can stabilize the Co valence, providing a synergistic effect 412 from the high activity of CoP and high stability of FeP. (4) The 413 carbon outer layer also enables stabilization functionality 414 toward the OER.

415 CONCLUSION

416 In conclusion, we present a facile and scalable method for 417 preparing a hollow and conductive Fe—Co—P alloy with 418 outstanding OER catalytic properties. In this material, the 419 hollow structure provides abundant surface active sites and 420 short mass transfer pathways, while the metallic conductivity 421 facilitates charge transfer. Furthermore, the uniform structure 422 enables the investigation of structure/properties relationship. The overpotential of the Fe–Co–P catalyst required for 423 achieving a specific current density of $10~\text{mA/cm}^2$ is only 252 424 mV, comparable with noble metal oxide (IrO₂ and RuO₂) 425 catalysts, and superior to most previously reported OER 426 catalysts. The current density at 1.5 V (νs RHE) of the Fe– 427 Co–P catalyst was 30.70 mA/cm², which is more than 3 orders 428 of magnitude greater than that obtained for CoFe₂O₄ (0.02 429 mA/cm²), 100 times more active than that of FeP, and 45 times 430 more active than that of CoP. The electrochemically induced 431 high-valent state of Fe stabilized the Co in the low-valent state, 432 enabling the simultaneous enhancement of activity and stability 433 of the OER catalyst. This general approach to designing 434 multifunctional alloy OER catalysts could be applied to a 435 variety of related research topics.

EXPERIMENTAL SECTION

Materials and Characterization. Iron chloride (FeCl₃, 98%, Alfa 438 Aesar), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 95%, Sigma-439 Aldrich), trimesic acid (95%, Sigma-Aldich), ethanol (200 proof, 440 Decon Laboratories, Inc.), *N,N*-dimethylformamide (DMF, ACS 441 grade, EMD), and sodium hypophosphite monohydrate (NaH₂PO₂· 442 H₂O, Alfa Aesar) were used as received.

The SEM characterization was carried out using a JEOL JSM- 444 7401F, and TEM images were collected using a JEOL 1203 or FEI 445 Tecnai G2 F20. HRTEM images and corresponding EDX maps were 446 obtained via a FEI Tecnai G2 F20 equipped with a super ultrathin 447 window energy-dispersive X-ray spectrometer. XRD patterns were 448 obtained by using a Rigaku Ultima IV X-ray diffractometer with a Cu 449 K α radiation (λ = 1.5604 Å). The BET method was used to determine 450 the specific surface area in the relative vapor pressure range of 0.001 to 451 0.27. TGA measurements were carried out by using a Q500 (TA 452 Instruments) under Ar with a temperature ramp of 5 °C/min. The 453 electrochemical analyses were performed by using a CHI760D 454 electrochemical analyzer. Diffuse reflectance infrared Fourier transform 455 spectra (Thermo Scientific) were obtained by log(1/ISB), where the 456 ISB was the IR single beam intensity of the samples.

Fe–Co MOC synthesis. Fe–Co MOC was synthesized via a 458 hydrothermal reaction. Specifically, 0.05 g of FeCl₃, 0.05 g of 459 $Co(NO_3)_2$ · $6H_2O$, and 0.1 g of trimesic acid were dissolved in a 460 mixture of 10 mL of DI water, 10 mL of ethanol, and 10 mL of DMF 461 under vigorous stirring. The solution was then transferred into a 462 Teflon-lined autoclave and heated to 150 °C for 12 h. The final 463 products were centrifuged at 4000 rpm for 20 min and washed three 464 times with ethanol and water. The precipitate was collected and dried 465 at 80 °C. Fe/Co MOC was prepared by dissolving 0.1 g of FeCl₃ or 466 0.1 g of $Co(NO_3)_2$ · $Co(NO_3)_2$ · $Co(NO_3)_3$ ·Co(NO

Fe-Co-P Catalyst Synthesis. Fe-Co MOC powder was placed 470 into a tube furnace, then heated up to 500 °C with 2 °C/min, and held 471

437

472 for 1 h in Ar to achieve the Fe/Co/C catalyst. For the phosphidation 473 process, 50 mg of Fe/Co/C catalyst was placed behind 1 g of 474 NaH₂PO₂·H₂O in the gas input direction with 100 sccm Ar flow, then 475 heated up to 350 or 400 °C with 5 °C/min, and kept for 1 h. After 476 phosphidation, the resulting catalyst was collected until the furnace 477 was cooled to room temperature.

Electrochemical Test. The catalyst was dispersed in an ethanol/ Nafion solution (v/v = 1/1) at a concentration of 4 mg/mL under 30 min ultrasonication. Then, the catalyst ink was deposited onto a rotating disk electrode using an in-house built spin-coating device at a rotational speed of approximately 400 rpm under a gentle hot air flow. The diameter of the rotating disk electrode is 5 mm, and the mass loading of the catalyst is 0.2 mg/cm². Electrochemical tests were performed in 1 M N_2 -saturated KOH with a three-electrode system; a working electrode. Pt wire and Ag/AgCl were employed as counter and reference electrodes. For the positive LSV scan, the scan range was set between 0.3 and 0.95 V with a scan rate of 5 mV/s and a rotating speed of 1600 rpm.

491 X-ray Absorption Test. In situ X-ray absorption spectroscopy
492 measurements at the Fe K-edge (7112 eV) and Co K-edge (7709 eV)
493 on the Fe-Co-P catalysts before and after the OER reaction were
494 made at the 10-BM bending magnet beamline of the Materials
495 Research Collaborative Access Team (MRCAT) at the Advanced
496 Photon Source (APS), Argonne National Laboratory. Measurements
497 were taken in transmission mode. An iron or cobalt foil spectrum was
498 acquired through a third ion chamber simultaneously with each
499 measurement for energy calibration. The catalysts were ground into
500 fine powders and diluted with silica (Davisil 646 silical gel from Sigma501 Aldrich) before they were pressed into a cylindrical sample holder to
502 form a self-supported wafer. All spectra were obtained at room
503 temperature in air.

DOS Calculation. DFT calculations were conducted using S05 Quantum ESPRESSO software packages. The optimization and S06 properties were calculated using Perdew—Burke—Ernzerhof general-s07 ized gradient approximation with projector-augmented wave sets from S08 Pslibrary $0.3.1.^{70}$ The plane wave kinetic energy cutoff values were 60 s09 and 600 Ry for the wave functions and the charge densities, s10 respectively. The properties were calculated after the structures were s11 relaxed. The phosphide was modeled using a $2 \times 2 \times 2$ super cell with s12 a k-point mesh of $1 \times 2 \times 1$. Furthermore, the DOS was plotted with s13 the Fermi energy set as 0 eV.

514 ASSOCIATED CONTENT

515 Supporting Information

516 The Supporting Information is available free of charge on the 517 ACS Publications website at DOI: 10.1021/acsnano.7b04646.

Further details about TGA, Raman, FTIR, XRD, XPS, TEM, and electrochemisty measurements (PDF)

520 AUTHOR INFORMATION

521 Corresponding Authors

- 522 *E-mail: jeffrey-t-miller@purdue.edu.
- 523 *E-mail: zpeng@uakron.edu.
- 524 *E-mail: yu.zhu@uakron.edu.
- 525 **ORCID** ®
- 526 Changlin Zhang: 0000-0002-1207-4264
- 527 Zhenmeng Peng: 0000-0003-1230-6800
- 528 Yu Zhu: 0000-0002-2201-9066

529 Author Contributions

530 ^LK.L. and C.Z. contributed equally to this work.

531 Notes

532 The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Dr. B. Wang for help with the SEM, Dr. M. 534 Gao for help of HRTEM, and E. Laughlin for technical support. 535 The TEM and SEM observations using FEI Tecnai F20 and 536 Quanta450 were carried out at the Liquid Crystal Institute 537 Characterization Facility of Kent State University. K.L., Y.S., 538 F.Z., H.Z., C.T., and Y.Z. thank the support from the National 539 Science Foundation (NSF) through NSF-CBET 1505943 and 540 1336057, ACS Petroleum Research Fund (PRF# 53560-DNI 541 10), and Ohio Federal Network Research (OFRN) of the 542 Center of Excellence. Use of the Advanced Photon Source is 543 supported by the U.S. Department of Energy, Office of Science, 544 and Office of Basic Energy Sciences, under Contract DE-AC02- 545 06CH11357. MRCAT operations are supported by the 546 Department of Energy and the MRCAT member institutions. 547

REFERENCES

- (1) Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; 549 Teets, T. S.; Nocera, D. G. Solar Energy Supply and Storage for the 550 Legacy and Nonlegacy Worlds. *Chem. Rev.* **2010**, *110*, 6474–6502. 551
- (2) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; 552 Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. *Chem.* 553 *Rev.* 2010, 110, 6446–6473.
- (3) Gray, H. B. Powering the Planet with Solar Fuel. *Nat. Chem.* 555 **2009**, *1*, 7–7.
- (4) Cheng, F.; Chen, J. Metal-Air Batteries: From Oxygen Reduction 557 Electrochemistry to Cathode Catalysts. *Chem. Soc. Rev.* **2012**, *41*, 558 2172–2192.
- (5) Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical 560 Challenges in Solar Energy Utilization. *Proc. Natl. Acad. Sci. U. S. A.* 561 **2006**, 103, 15729–35.
- (6) Nocera, D. G. The Artificial Leaf. Acc. Chem. Res. 2012, 45, 767 563 776.
- (7) Turner, J. A. Sustainable Hydrogen Production. Science 2004, 565 305, 972.
- (8) Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; 567 Suntivich, J.; Shao-Horn, Y. Toward the Rational Design of Non- 568 precious Transition Metal Oxides for Oxygen Electrocatalysis. *Energy* 569 *Environ. Sci.* **2015**, *8*, 1404–1427.
- (9) Chen, D.; Chen, C.; Baiyee, Z. M.; Shao, Z.; Ciucci, F. 571 Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen 572 Reduction/Evolution Catalysts for Low-Temperature Electrochemical 573 Devices. *Chem. Rev.* **2015**, *115*, 9869–9921.
- (10) Tsuji, E.; Imanishi, A.; Fukui, K.-i.; Nakato, Y. Electrocatalytic 575 Activity of Amorphous RuO₂ Electrode for Oxygen Evolution in An 576 Aqueous Solution. *Electrochim. Acta* **2011**, *56*, 2009–2016.
- (11) Hu, J.-M.; Zhang, J.-Q.; Cao, C.-N. Oxygen Evolution Reaction 578 on IrO₂-Based DSA® Type Electrodes: Kinetics Analysis of Tafel 579 Lines and EIS. *Int. J. Hydrogen Energy* **2004**, *29*, 791–797.
- (12) McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. 581 Benchmarking Heterogeneous Electrocatalysts for the Oxygen 582 Evolution Reaction. *J. Am. Chem. Soc.* **2013**, *135*, 16977–16987.
- (13) Li, X.; Hao, X.; Abudula, A.; Guan, G. Nanostructured Catalysts 584 for Electrochemical Water Splitting: Current State and Prospects. J. 585 Mater. Chem. A 2016, 4, 11973–12000.
- (14) Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of 587 Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Con- 588 version Reactions. *Chem. Soc. Rev.* **2015**, *44*, 2060–2086.
- (15) Zhang, C.; Wang, B.; Shen, X.; Liu, J.; Kong, X.; Chuang, S. S. 590 C.; Yang, D.; Dong, A.; Peng, Z. A Nitrogen-Doped Ordered 591 Mesoporous Carbon/Graphene Framework as Bifunctional Electro- 592 catalyst for Oxygen Reduction and Evolution Reactions. *Nano Energy* 593 **2016**, 30, 503–510.
- (16) Kong, X.; Zhang, C.; Hwang, S. Y.; Chen, Q.; Peng, Z. Free- 595 Standing Holey Ni(OH)₂ Nanosheets with Enhanced Activity for 596 Water Oxidation. *Small* **2017**, *13*, 1700334.

- 598 (17) Fang, Z.; Peng, L.; Lv, H.; Zhu, Y.; Yan, C.; Wang, S.; Kalyani, 599 P.; Wu, X.; Yu, G. Metallic Transition Metal Selenide Holey 600 Nanosheets for Efficient Oxygen Evolution Electrocatalysis. *ACS* 601 Nano 2017, 11, 9550–9557.
- 602 (18) Roger, I.; Shipman, M. A.; Symes, M. D. Earth-Abundant 603 Catalysts for Electrochemical and Photoelectrochemical Water 604 Splitting. *Nat. Rev. Chem.* **2017**, *1*, 0003.
- 605 (19) Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, 606 K.; Zhang, X.; Gao, C.; Zhang, L.; Lv, J.; Wang, J.; Zhang, J.; Khattak, 607 A. M.; Khan, N. A.; Wei, Z.; Zhang, J.; Liu, S.; Zhao, H.; Tang, Z. 608 Ultrathin Metal—Organic Framework Nanosheets for Electrocatalytic 609 Oxygen Evolution. *Nat. Energy* 2016, 1, 16184.
- 610 (20) Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; 611 Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible 612 Amorphization and the Catalytically Active State of Crystalline Co₃O₄ 613 During Oxygen Evolution. *Nat. Commun.* **2015**, *6*, 8625.
- 614 (21) Ganassin, A.; Maljusch, A.; Colic, V.; Spanier, L.; Brandl, K.; 615 Schuhmann, W.; Bandarenka, A. Benchmarking the Performance of 616 Thin-Film Oxide Electrocatalysts for Gas Evolution Reactions at High 617 Current Densities. *ACS Catal.* **2016**, *6*, 3017–3024.
- 618 (22) Tae, E. L.; Song, J.; Lee, A. R.; Kim, C. H.; Yoon, S.; Hwang, I. 619 C.; Kim, M. G.; Yoon, K. B. Cobalt Oxide Electrode Doped with 620 Iridium Oxide as Highly Efficient Water Oxidation Electrode. ACS 621 Catal. 2015, 5, 5525–5529.
- 622 (23) Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A. M.; Sun, X. Recent 623 Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical 624 Water Splitting. *Adv. Mater.* **2016**, *28*, 215–230.
- 625 (24) Huynh, M.; Shi, C.; Billinge, S. J. L.; Nocera, D. G. Nature of 626 Activated Manganese Oxide for Oxygen Evolution. *J. Am. Chem. Soc.* 627 **2015**, 137, 14887–14904.
- 628 (25) Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S. L. 629 Structure—Property Relationship of Bifunctional MnO₂ Nanostruc-630 tures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation 631 and Oxygen Reduction Reaction Catalysts Identified in Alkaline 632 Media. *J. Am. Chem. Soc.* **2014**, *136*, 11452—11464.
- 633 (26) Sun, W.; Cao, L.-m.; Yang, J. Conversion of Inert 634 Cryptomelane-Type Manganese Oxide into a Highly Efficient Oxygen 635 Evolution Catalyst *via* Limited Ir Doping. *J. Mater. Chem. A* **2016**, *4*, 636 12561–12570.
- 637 (27) Gerken, J. B.; Shaner, S. E.; Masse, R. C.; Porubsky, N. J.; Stahl, 638 S. S. A Survey of Diverse Earth Abundant Oxygen Evolution 639 Electrocatalysts Showing Enhanced Activity from Ni-Fe Oxides 640 Containing a Third Metal. *Energy Environ. Sci.* **2014**, *7*, 2376–2382.
- 641 (28) Han, L.; Yu, X.-Y.; Lou, X. W. Formation of Prussian-Blue-642 Analog Nanocages *via* a Direct Etching Method and Their Conversion 643 into Ni–Co-Mixed Oxide for Enhanced Oxygen Evolution. *Adv.* 644 *Mater.* **2016**, 28, 4601–4605.
- 645 (29) Yang, Y.; Fei, H.; Ruan, G.; Xiang, C.; Tour, J. M. Efficient 646 Electrocatalytic Oxygen Evolution on Amorphous Nickel—Cobalt 647 Binary Oxide Nanoporous Layers. *ACS Nano* **2014**, *8*, 9518—9523.
- 648 (30) Bates, M. K.; Jia, Q.; Doan, H.; Liang, W.; Mukerjee, S. Charge-649 Transfer Rffects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for 650 the Alkaline Oxygen Evolution Reaction. *ACS Catal.* **2016**, *6*, 155– 651 161.
- 652 (31) Rios, E.; Gautier, J. L.; Poillerat, G.; Chartier, P. Mixed Valency 653 Spinel Oxides of Transition Metals and Electrocatalysis: Case of the 654 Mn_xCo_{3-x}O₄ System. *Electrochim. Acta* **1998**, *44*, 1491–1497.
- 655 (32) Chen, L.; Dong, X.; Wang, Y.; Xia, Y. Separating Hydrogen and 656 Oxygen Evolution in Alkaline Water Electrolysis Using Nickel 657 Hydroxide. *Nat. Commun.* **2016**, *7*, 11741.
- 658 (33) Liang, H.; Meng, F.; Cabán-Acevedo, M.; Li, L.; Forticaux, A.; 659 Xiu, L.; Wang, Z.; Jin, S. Hydrothermal Continuous Flow Synthesis 660 and Exfoliation of NiCo Layered Double Hydroxide Nanosheets for 661 Enhanced Oxygen Evolution Catalysis. *Nano Lett.* **2015**, *15*, 1421–662 1427.
- 663 (34) Dong, C.; Yuan, X.; Wang, X.; Liu, X.; Dong, W.; Wang, R.; 664 Duan, Y.; Huang, F. Rational Design of Cobalt-Chromium Layered 665 Double Hydroxide as a Highly Efficient Electrocatalyst for Water 666 Oxidation. *J. Mater. Chem. A* **2016**, *4*, 11292–11298.

I

- (35) Fan, K.; Chen, H.; Ji, Y.; Huang, H.; Claesson, P. M.; Daniel, Q.; 667 Philippe, B.; Rensmo, H.; Li, F.; Luo, Y.; Sun, L. Nickel–Vanadium 668 Monolayer Double Hydroxide for Efficient Electrochemical Water 669 Oxidation. *Nat. Commun.* **2016**, *7*, 11981.
- (36) Huang, J.; Chen, J.; Yao, T.; He, J.; Jiang, S.; Sun, Z.; Liu, Q.; 671 Cheng, W.; Hu, F.; Jiang, Y.; Pan, Z.; Wei, S. CoOOH Nanosheets 672 with High Mass Activity for Water Oxidation. *Angew. Chem., Int. Ed.* 673 **2015**, 54, 8722–8727.
- (37) Diaz-Morales, O.; Ledezma-Yanez, I.; Koper, M. T. M.; Calle- 675 Vallejo, F. Guidelines for the Rational Design of Ni-Based Double 676 Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. ACS 677 Catal. 2015, 5, 5380–5387.
- (38) Louie, M. W.; Bell, A. T. An Investigation of Thin-Film Ni–Fe 679 Oxide Catalysts for the Electrochemical Evolution of Oxygen. J. Am. 680 Chem. Soc. 2013, 135, 12329–12337.
- (39) Matsumoto, Y.; Sato, E. Electrocatalytic Properties of Transition 682 Metal Oxides for Oxygen Evolution Reaction. *Mater. Chem. Phys.* 683 **1986**, *14*, 397–426.
- (40) Yeo, B. S.; Bell, A. T. Enhanced Activity of Gold-Supported 685 Cobalt Oxide for the Electrochemical Evolution of Oxygen. *J. Am.* 686 Chem. Soc. **2011**, 133, 5587–5593.
- (41) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, 688 H. $\operatorname{Co_3O_4}$ Nanocrystals on Graphene as a Synergistic Catalyst for 689 Oxygen Reduction Reaction. *Nat. Mater.* **2011**, *10*, 780–786.
- (42) Fan, X.; Peng, Z.; Ye, R.; Zhou, H.; Guo, X. M₃C (M: Fe, Co, 691 Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and 692 Stable Bifunctional Electrocatalyst for Oxygen Reduction and 693 Hydrogen Evolution Reactions. ACS Nano 2015, 9, 7407–7418.
- (43) Liu, Y.; Li, J.; Li, F.; Li, W.; Yang, H.; Zhang, X.; Liu, Y.; Ma, J. A 695 Facile Preparation of CoFe₂O₄ Nanoparticles on Polyaniline-696 Functionalised Carbon Nanotubes as Enhanced Catalysts for the 697 Oxygen Evolution Reaction. *J. Mater. Chem. A* **2016**, *4*, 4472–4478. 698
- (44) Lu, X.; Yim, W.-L.; Suryanto, B. H. R.; Zhao, C. Electrocatalytic 699 Oxygen Evolution at Surface-Oxidized Multiwall Carbon Nanotubes. *J.* 700 Am. Chem. Soc. **2015**, 137, 2901–2907.
- (45) Lin, X.; Li, X.; Li, F.; Fang, Y.; Tian, M.; An, X.; Fu, Y.; Jin, J.; 702 Ma, J. Precious-Metal-free Co-Fe-O_x Coupled Nitrogen-Enriched 703 Porous Carbon Nanosheets Derived from Schiff-Base Porous 704 Polymers as Superior Electrocatalysts for the Oxygen Evolution 705 Reaction. J. Mater. Chem. A 2016, 4, 6505–6512.
- (46) Wang, J.; Zhong, H.-x.; Wang, Z.-l.; Meng, F.-l.; Zhang, X.-b. 707 Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt- 708 Sulfide Sheets as an Efficient Electrode for Overall Water Splitting. 709 ACS Nano 2016, 10, 2342–2348.
- (47) Xu, K.; Chen, P.; Li, X.; Tong, Y.; Ding, H.; Wu, X.; Chu, W.; 711 Peng, Z.; Wu, C.; Xie, Y. Metallic Nickel Nitride Nanosheets Realizing 712 Enhanced Electrochemical Water Oxidation. *J. Am. Chem. Soc.* **2015**, 713 137, 4119–4125.
- (48) Dutta, A.; Pradhan, N. Developments of Metal Phosphides as 715 Efficient OER Precatalysts. *J. Phys. Chem. Lett.* **2017**, *8*, 144–152.
- (49) Stern, L.-A.; Feng, L.; Song, F.; Hu, X. Ni₂P as a Janus Catalyst 717 for Water Splitting: the Oxygen Evolution Activity of Ni₂P 718 Nanoparticles. *Energy Environ. Sci.* **2015**, *8*, 2347–2351.
- (50) Li, J.; Li, J.; Zhou, X.; Xia, Z.; Gao, W.; Ma, Y.; Qu, Y. Highly 720 Efficient and Robust Nickel Phosphides as Bifunctional Electro-721 catalysts for Overall Water-Splitting. ACS Appl. Mater. Interfaces 2016, 722 8, 10826–10834.
- (51) Jiang, N.; You, B.; Sheng, M.; Sun, Y. Bifunctionality and 724 Mechanism of Electrodeposited Nickel—Phosphorous Films for 725 Efficient Overall Water Splitting. *ChemCatChem* **2016**, *8*, 106—112. 726
- (52) Tian, J.; Liu, Q.; Asiri, A. M.; Sun, X. Self-Supported 727 Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D 728 Hydrogen-Evolving Cathode over the Wide Range of pH 0–14. *J. Am.* 729 *Chem. Soc.* **2014**, *136*, 7587–7590.
- (53) Zou, F.; Chen, Y.-M.; Liu, K.; Yu, Z.; Liang, W.; Bhaway, S. M.; 731 Gao, M.; Zhu, Y. Metal Organic Frameworks Derived Hierarchical 732 Hollow NiO/Ni/Graphene Composites for Lithium and Sodium 733 Storage. ACS Nano 2016, 10, 377–386.

ACS Nano

- (54) Denton, A. R.; Ashcroft, N. W. Vegard's Law. Phys. Rev. A: At., 736 Mol., Opt. Phys. 1991, 43, 3161-3164.
- (55) Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on 737 Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis 739 for Energy Conversion. Sci. Rep. 2015, 5, 13801.
- (56) Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; 740
- 741 Boettcher, S. W. Cobalt-Iron (Oxy)hydroxide Oxygen Evolution
- 742 Electrocatalysts: The Role of Structure and Composition on Activity,
- 743 Stability, and Mechanism. J. Am. Chem. Soc. 2015, 137, 3638-3648.
- (57) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; 745 Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K.
- 746 A. Commentary: The Materials Project: A Materials Genome
- 747 Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 748 011002.
- (58) Zhang, Z.; Lu, B.; Hao, J.; Yang, W.; Tang, J. FeP Nanoparticles 749 750 Grown on Graphene Sheets as Highly Active Non-Precious-Metal
- Electrocatalysts For Hydrogen Evolution Reaction. Chem. Commun.
- 2014, 50, 11554-11557.
- (59) Zhu, X.; Liu, M.; Liu, Y.; Chen, R.; Nie, Z.; Li, J.; Yao, S. 753
- Carbon-Coated Hollow Mesoporous FeP Microcubes: An Efficient 755 and Stable Electrocatalyst for Hydrogen Evolution. J. Mater. Chem. A
- 756 **2016**, 4, 8974-8977.
- (60) Hao, J.; Yang, W.; Zhang, Z.; Tang, J. Metal-Organic 757
- 758 Frameworks Derived Co_vFe_{1,v}P Nanocubes for Electrochemical
- 759 Hydrogen Evolution. Nanoscale 2015, 7, 11055-62.
- (61) Cecilia, J. A.; Infantes-Molina, A.; Rodríguez-Castellón, E.; 760 761 Jiménez-López, A. Dibenzothiophene Hydrodesulfurization over
- 762 Cobalt Phosphide Catalysts Prepared Through a New Synthetic
- 763 Approach: Effect of the Support. Appl. Catal., B 2009, 92, 100-113.
- (62) Abdel-Samad, H.; Watson, P. R. An XPS Study of the 764
- 765 Adsorption of Lead on Goethite (α-FeOOH). Appl. Surf. Sci. 1998, 766 136, 46-54.
- (63) Baltrusaitis, J.; Cwiertny, D. M.; Grassian, V. H. Adsorption of Sulfur Dioxide on Hematite and Goethite Particle Surfaces. Phys. 768 769 Chem. Chem. Phys. 2007, 9, 5542-5554.
- (64) Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.;
- 771 Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.;
- 772 Davis, R. C.; Bargar, J. R.; Nørskov, J. K.; Nilsson, A.; Bell, A. T.
- Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305-774
- 775 1313.
- (65) Ahn, H. S.; Bard, A. J. Surface Interrogation Scanning 776 Electrochemical Microscopy of Ni_{1-x}Fe_xOOH (0 < x < 0.27) Oxygen 777
- 778 Evolving Catalyst: Kinetics of the "Fast" Iron Sites. J. Am. Chem. Soc.
- 779 **2016**, 138, 313-318.
- (66) Zhang, B.; Zheng, X.; Voznyy, O.; Comin, R.; Bajdich, M.; 780
- García-Melchor, M.; Han, L.; Xu, J.; Liu, M.; Zheng, L.; García de 781
- 782 Arquer, F. P.; Dinh, C. T.; Fan, F.; Yuan, M.; Yassitepe, E.; Chen, N.;
- Regier, T.; Liu, P.; Li, Y.; De Luna, P.; et al. Homogeneously Dispersed Multimetal Oxygen-Evolving Catalysts. Science 2016, 352, 784
- 785 333-337.
- (67) Zhong, H.; Wang, J.; Meng, F.; Zhang, X. In Situ Activating
- Ubiquitous Rust towards Low-Cost, Efficient, Free-Standing, and Recoverable Oxygen Evolution Electrodes. Angew. Chem., Int. Ed. 788
- 789 **2016**, *55*, 9937–9941.
- (68) Morales-Guio, C. G.; Liardet, L.; Hu, X. Oxidatively
- Electrodeposited Thin-Film Transition Metal (Oxy)hydroxides as 791
- Oxygen Evolution Catalysts. J. Am. Chem. Soc. 2016, 138, 8946–8957. (69) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; 793
- 794 Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I.;
- 795 et al. A Modular and Open-Source Software Project for Quantum Simulations of Materials. J. Phys.: Condens. Matter 2009, 21, 395502.
- (70) Kucukbenli, E.; Monni, M.; Adetunji, B. I.; Ge, X.; Adebayo, G.
- 798 A.; Marzari, N.; de Gironcoli, S.; Dal Corso, A. Projector Augmented-
- Wave and All-Electron Calculations Across the Periodic Table: A
- 800 Comparison of Structural and Energetic Properties. arxiv.org/abs/ 801 1404.3015, 2014.