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Abstract This is an invited discussion of review paper “Nonparametric Bayesian
Inference in Applications” by Peter Müller, Fernando A. Quintana and Garritt L.
Page.

Keywords Bayesian nonparametrics ·Dirichlet process mixtures · Integro-difference
equation models · Spatial Poisson processes · Spatio-temporal modeling

We commend the authors for an interesting review of applications of nonparametric
Bayesian (NPB) modeling. The authors have made fundamental contributions to the
methodology and applications of Bayesian nonparametrics, including the application
areas discussed in this paper, and it is always stimulating to read on their perspective
on NPBmodeling and inference. In this discussion of the paper, we provide additional
details on Bayesian nonparametric modeling methods for spatial data analysis, the
area on which the authors focus for more detailed discussion and literature review.
Onemeans to organize discussion of NPB spatial models revolves around the different
data structures: point-referenced data, areal unit data, and spatial point patterns (see,
e.g., Banerjee et al. 2015). In all three cases, the data structure is typically enriched in
applications with spatial data recorded over time, requiring appropriate elaborations
of the spatial models. We have recently reviewed NPB methods for disease mapping,
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one of the main areas of application involving areal unit data (Kottas 2016). Here,
we provide some additional discussion and references that complement the paper
in the direction of spatio-temporal modeling for point-referenced data. Moreover,
the discussion of NPB modeling for spatial point processes contributes an additional
component to the review.

Spatio-temporal modeling for point-referenced data

The authors have provided a detailed review of the modeling aspects of various NPB
methods for spatial point-referenced data. In many applications, arising, for instance,
in ecology, epidemiology and environmental sciences, data is collected over both
space and time. For discrete-time settings, it is possible to incorporate spatial NPB
priors into a dynamic spatial process model. For instance, Kottas et al. (2008) use
the spatial DP prior (Gelfand et al. 2005) for the spatial process that generates the
innovations, ηt (s), of the transition equations for spatial random effects, θt (s) =
ρ θt−1(s) + ηt (s). However, general modeling methods for spatio-temporal data seek
to capture the interactions between the spatial and temporal components. Cressie and
Wikle (2011) provide a systematic treatment of spatio-temporal models. Here, we
focus on integro-difference equation (IDE) models, a particular class of dynamical
spatio-temporal models, and discuss recent work that incorporates NPB components
to enhance the inferential scope of the IDE modeling framework.

Denote by Xt (s) the process at spatial location s and time t , and by Yt (s) the
associated response. In the simplest form, the data observations can be related to the
process through Yt (s) = Xt (s) + εt (s), where εt (s) is (independent) observation noise.
(For simpler notation, we ignore covariate information which may be incorporated at
the observation level of the model.) Under an IDE model formulation, the evolution
of the process is specified as follows:

Xt (s) =
∫

k(u − s | θ)Xt−1(u) du + ωt (s)

where ωt (s) is a zero mean, possibly spatially correlated, error process, and k is a
redistribution kernel with parameters θ , typically assumed to belong to a location
family of distributions (as the notation above suggests).

The concept of an IDEmodel is that the process at time t−1 is propagated in time by
re-weighting it using the kernel k, which acts in space. This model structure provides
a simple, yet effective and interpretable way to express the relationship between the
space and time components, using linear dynamics. As the kernel shifts or expands,
the nature of the dependence between the process at a specific location and the process
at previous time points changes accordingly. In fact, the first two moments of the IDE
kernel distribution determine, respectively, the advection and diffusion of the process
(Brown et al. 2000; Storvik et al. 2002). The IDE model can be made more flexible
through spatially dependent kernel parameters, θs (e.g., Xu et al. 2005). In particular,
the covariance function of an IDEprocess Xt (s),with a stationary initial process X0(s),
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is non-stationary in space for all t > 0, when the IDE kernel parameters depend on
spatial location (Richardson et al. 2016).

In essentially all applications of IDE models, Gaussian kernels are used, owing to
the convenience in their specification and computation. In Richardson et al. (2017a),
it is shown that IDEs with non-Gaussian kernels allow for the description of higher
order properties in the spatio-temporal process, and, in particular, the skewness and
tail behavior of the IDE kernel can be associated with such properties. Thus, although
complex spatial fields will often exhibit non-linear dynamics, non-Gaussian kernels
can help explain some of the complexity. This feature can be further enhanced by
extending the IDE kernel parameters to vary across the spatial region. From a NPB
modeling perspective, such considerations naturallymotivate exploring nonparametric
prior models for the IDE kernel.

Richardson et al. (2016) studied nonparametric mixture prior models for the IDE
kernel, in the special case of one-dimensional space (therefore, the location s is
scalar). More specifically, the kernel density was modeled with a Gaussian mixture,
k(u − s | σ 2,Gs) = ∫

N(u − s | μ, σ 2) dGs(μ), with a location-dependent mixing
distribution Gs assigned a spatial DP prior (with a baseline Gaussian process defined
on one-dimensional space). The reason for the restriction to one-dimensional space
involves the computational challenges in implementation of the model for full poste-
rior inference. IDE models are typically applied to data using a common orthonormal
basis representation for the process Xt (s) and the IDE kernel k (e.g., Wikle 2002).
This representation results in a dynamic linear model for the data vectors collecting
all responses across space at each time point, albeit with the IDE kernel parameters
entering the distribution for the corresponding state vectors in a highly non-linear
fashion. To facilitate implementation, Richardson et al. (2016) used Hermite polyno-
mials (which are orthogonal with respect to the weight function exp(−x2)) to define
a basis representation that is more compatible with the Gaussian densities driving the
mixture model for the IDE kernel, as well as Hamiltonian MCMC steps in the poste-
rior simulationmethod. Nevertheless, the extension to two-dimensional space remains
challenging for the spatial DP mixture IDE kernel model. The univariate case is not
without merit, as there are environmental applications where variables are recorded
across time by altitude, length or depth. In particular, the data example of Richardson
et al. (2016) involves ozone pressure data obtained by releasing a balloon in the air
that collects ozone pressure measurements at certain intervals throughout its flight.
For this data example, the location-dependent DP mixture model was shown to out-
perform in prediction stationary IDEmodels with different parametric kernels, as well
as the non-stationary Gaussian IDE kernel model with location-dependent mean and
variance parameters.

To achieve balance between model flexibility and computational feasibility for a
two-dimensional space, Richardson et al. (2017b) propose a semiparametric approach.
The IDE kernel is modeled with the bivariate stable distribution, which is defined
through a location parameter vector µ = (μ1, μ2), a scalar parameter α ∈ (0, 2] that
controls tail behavior, and a finite measure 	 on [0, 2π ] that controls skewness, orien-
tation and spread. Note that the basis representation for the IDE kernel requires only
the characteristic function of the kernel distribution, and thus the lack of a closed-form
expression for the bivariate stable density does not pose any difficulties in this context.
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A nonparametric prior model is used for d	, scaled by a parameter c > 0, building on
ideas from Bernstein polynomial priors for densities with compact support (Petrone
1999). In particular, d	 is represented as a weighted combination of Beta densities
with fixed parameters producing density shapes that span [0, 2π ]. The weights are
defined through increments of a distribution function on [0, 2π ], which is assigned
a geometric weights prior (Mena et al. 2011). Kernel process convolutions (Higdon
1998) are used to model spatially dependent parameters μ1(s), μ2(s), log(c(s)) and
�−1(η(s)), whereη is the randomvariable on (0, 1) that defines the geometricweights.
Using data on sea surface temperature in the tropical Pacific Ocean, it is shown that
the semiparametric model has better predictive performance than the state-of-the-art
Gaussian IDE kernel model with spatially varying parameters.

Bayesian nonparametric methods for spatial Poisson processes

For spatial point patterns, observed in a bounded region D ⊂ R
k (with k ≥ 2), the

number of points and their locations are random.Moreover, many applications involve
marks, a set of variables yi associated with each random location si ∈ D; the mark yi
takes values in mark space M and it may comprise both categorical and continuous
variables. For model-based inference, the point pattern is assumed to arise from a
(marked) spatial point process and the interest lies in modeling and inference for func-
tionals characterizing the point process. Here, we focus on spatial non-homogeneous
Poisson processes (NHPPs), the most tractable class of point processes, as well as the
one that has received more attention in the Bayesian nonparametrics literature.

A spatial NHPP can be defined through its intensity function, λ(s), for s ∈ D, a non-
negative and locally integrable function for all B ⊆ D, such that: for any such B, the
number of points in B, N (B), follows a Poisson distribution with mean

∫
B λ(u)du;

and given N (B), the point locations within B are i.i.d. arising according to den-
sity λ(s)/{∫B λ(u)du}. Using theMarking Theorem (e.g., Møller and Waagepetersen
2004), one can conceptualize a marked Poisson process as a NHPP on the joint
location-mark spaceD×Mwith joint intensityμ(s, y), provided the marginal inten-
sity

∫
M μ(s, y)d y = λ(s) is locally integrable.

One of the earlier approaches to NPB inference for spatial NHPP intensities can be
found in Heikkinen and Arjas (1998) where piecewise constant functions, driven by
Voronoi tesselations and Markov random field priors, were used to model the inten-
sity surface. The approach was extended in Heikkinen and Arjas (1999) to a model
for spatial point patterns influenced by concomitant variables. Another approach to
(approximate) Bayesian inference for spatial NHPPs is based on log-Gaussian Cox
process models, where the NHPP intensity function is modeled on the logarithmic
scale through a Gaussian process (e.g., Møller et al. 1998; Brix and Diggle 2001;
Brix and Møller 2001). Related work can be found in Liang et al. (2009) where
a Bayesian hierarchical model for marked NHPPs is developed, using an exten-
sion of the log-Gaussian Cox process to accommodate different types of covariate
information. These approaches require relatively complex computational schemes for
posterior inference, including reversible jump Markov chain Monte Carlo methods
and Metropolis-adjusted Langevin algorithms.
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A different direction involves mixture representations for the NHPP intensity func-
tion based on convolutions of a non-negative kernel (which is not necessarily a density)
with a weighted gamma process (Ishwaran and James 2004) or with a general Lévy
random field (Wolpert and Ickstadt 1998). Extensions of the gamma process convo-
lution model to regression settings are considered in Ickstadt and Wolpert (1999) and
Best et al. (2000). The approach of Wolpert and Ickstadt (1998) is extended by Kang
et al. (2014) to model hierarchically a collection of related spatial point patterns.

It is also possible to utilizemore traditional nonparametricmixtures tomodel NHPP
intensity functions by casting the inference questions in a density estimation frame-
work. The key observation is that the intensity function can be normalized to a density:
f (s) = λ(s)/γ , for s ∈ D, where γ = ∫

D λ(u)du < ∞ is the total integrated intensity
overD. The NHPP definition implies that the likelihood for an observed point pattern
{s1, ..., sN } ⊂ D can be expressed as γ N exp(−γ )

∏N
i=1 f (si ), such that inference for

the NHPP intensity amounts to density estimation for the NHPP density f (s). More-
over, since γ only scales the intensity function, a flexible nonparametric prior model
for the NHPP density (along with a prior for γ ) suffices to capture general shapes
for the intensity surface. This method was developed for spatial NHPPs (Kottas and
Sansó 2007) and temporal NHPPs (Kottas and Behseta 2010), using DP mixtures of
Beta densities to model the NHPP density, with further choices for the DP mixture
kernel considered in Taddy and Kottas (2012). The method was adapted for indirectly
observed spatial point patterns by Ji et al. (2009), with an application to analysis of
immunological studies.

Casting the modeling for NHPPs in a density estimation setting has practical bene-
fits, with respect to posterior simulation which draws fromwell established techniques
for nonparametric mixturemodels, as well as methodological advantages, with respect
to extensions to modeling marked NHPPs and to inference under hierarchical settings.
Taddy and Kottas (2012) build a modeling approach for marked NHPPs fromDPmix-
tures for the point process density over the joint location-mark space, f (s, y) =
μ(s, y)/γ , with (s, y) ∈ D × M. Here, the integrated intensity can be defined in
terms of either the joint or marginal process, γ = ∫

D
∫
M μ(s, y) d yds = ∫

D λ(s)ds.
This approach can handle multivariate marks and it yields fully nonparametric infer-
ence for the marginal point process intensity, λ(s) = γ f (s), and for the conditional
mark density, h( y | s) = f (s, y)/ f (s). Since the prior model for the marked NHPP
is built from a DP mixture, it enables hierarchical extensions through dependent DP
priors (MacEachern 2000) for the mixing distributions. A practically useful extension
involves dynamic modeling of marked point patterns recorded over discrete time. Two
relevant applications consist of dynamic estimation of violent crime intensity surfaces
(Taddy 2010) and of seasonal hurricane intensities (Xiao et al. 2015).
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