
  

Abstract—Models of cardiac electrophysiology are useful for 
studying heart functions and cardiac disease mechanisms. 
However, cardiac models often have a great level of complexity, 
and it is often computationally prohibitive to simulate tissue and 
organ activities in a real-time fashion. To address the challenge, 
simplified models such as Aliev-Panfilov model are developed to 
reduce model complexity, while providing necessary details of 
cardiac functions. Simplified models may induce uncertainty, 
which can deteriorate the accuracy and reliability of cardiac 
models. In addition, model parameters are calibrated with noisy 
data and cannot be known with certainty. It is important to 
assess the effect of parametric uncertainty on model predictions. 
For the probabilistic, time-invariant parametric uncertainty, a 
generalized polynomial chaos (gPC) expansion-based method is 
presented in this work to quantify and propagate uncertainty 
onto model predictions. Using gPC, a measure of confidence in 
model predictions can be quickly estimated. As compared with 
sampling-based uncertainty propagation techniques, e.g., Monte 
Carlo (MC) simulations, the gPC-based method in this work 
shows its advantages in terms of computational efficiency and 
accuracy, which has the potentials for dealing with complicated 
cardiac models, e.g., 2D tissue and 3D organ models. 

I. INTRODUCTION 

Cardiac models are widely used to study cardiac disease 
mechanisms. For example, mathematical models were used to 
study glycosylation modulation dynamics on cardiac electrical 
signaling among CDG patients [1]. In addition, cardiac models 
can also be applied in clinical setting to explore better surgical 
strategies [2]. Reliable models and accurate simulation results 
can provide useful information that cannot be obtained from 
in-vitro experiments, which may assist physicians for better 
diagnosis and treatment planning of heart diseases [3, 4]. 

Models of various species have been developed since the 
first model proposed by Hodgkin and Huxley (i.e., HH model), 
which provides detailed descriptions of ion channel gating and 
cardiac electrical signaling [5, 6, 7]. Such detailed models 
often include hundreds of equations. For example, the model 
of an adult human atrial cell includes 10 ion currents described 
by over a hundred equations [8]. The model complexity poses 
significant challenges on their clinical applications, since it is 
computationally demanding to study tissue and organ activity 
with the detailed models. To reduce the computational burden, 
a simplified model, i.e., FitzHugh-Nagumo model, was first 
developed, which uses two state variables to describe the 
depolarization and the repolarization of cardiac cells [9]. This 

model, however, cannot precisely quantify restitution property 
of cardiac tissue, i.e., the relationship between action potential 
duration (APD) and the cardiac cycle length. To overcome this 
issue, the Aliev-Panfilov model was developed to mimic the 
cardiac electrophysiology in a more realistic way. 

Although the simplified cardiac models have shown great 
advantages in terms of computational efficiency, a main 
restrictive factor for using these models in clinical diagnosis 
and therapeutic design is model uncertainty [10]. Uncertainty, 
originating from model calibration or intrinsic variability of 
cardiac cells, may deteriorate the model accuracy. To improve 
the reliability and credibility of cardiac models, it is necessary 
to quantify and propagate uncertainty onto model predictions. 

Uncertainty quantification and propagation has been well 
studied in engineering and science filed [11]. For example, 
sampling-based Monte Carlo (MC) simulation is one of the 
most popular methods [12]. However, MC is computationally 
prohibitive for multiscale cardiac modeling across disparate 
organizational levels, from ion channel to cell to tissue to the 
whole organ, since it requires a larger number of simulations. 

Uncertainty propagation with the generalized polynomial 
chaos (gPC) expansion has been recently studied in different 
control, fault detection, and optimization problems [13, 14]. 
As compared to MC, gPC can propagate a complex probability 
distribution of uncertainty onto model predictions in a real-
time fashion, from which the statistical moments of the model 
predictions can be easily and analytically estimated [14]. 

The work presents a gPC-based uncertainty propagation 
method, which can approximate parametric uncertainty with 
analytical expansions, and can explicitly account for nonlinear 
nature of cardiac models. This paper is organized as follows. 
Section II presents the theoretical background of gPC and the 
Aliev-Panfilov model. The simulation results and discussion 
are given in Section III followed by conclusions in Section IV. 

II. BACKGROUND AND METHODOLOGY 

A. Aliev-Panfilov model 
The Aliev-Panfilov model is used to investigate the effect 

of uncertainty on cardiac electrical signaling, which can be 
defined with two variables as: 

𝑑𝑢

𝑑𝑡
= 𝑘1𝑢(𝑢 − 𝑎)(1 − 𝑢) − 𝑘2𝑢𝑟 − 𝑖𝑠𝑡  (1) 

𝑑𝑟

𝑑𝑡
= 𝜀(𝑢, 𝑟)[−𝑟 − 𝑘1𝑢(𝑢 − 𝑎 − 1)] 

ε(u, r) = 𝜀0 +
𝜇1𝑟

𝜇2 + 𝑢
 

(2) 

, where u is the transmembrane potential, and r is the recovery 
variable that initiates repolarization. Cardiac activities, such as 
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the initiation and upstroke of action potential, are controlled 
by the first term in (1), in which parameter k1 is an excitation 
rate constant and a is the threshold parameter related to the 
threshold potential. The term ist denotes the stimulation current. 
The restitution properties of the action potential (AP) are 
determined by the term ε(u, r). The Aliev-Panfilov model can 
not only ameliorate the description of the shape of AP, but also 
prevent the system from being super-repolarized [15]. Model 
parameters used in this work are given in Table I. 

TABLE I.  MODEL PARAMETERS IN ALIEV-PANFILOV MODEL 

Parameter values units Parameter values units 
a 0.1 / ε0 0.0002 ms-1 
k1 8 ms-1 μ1 0.0155 ms-1 
k2 1 ms-1 μ2 0.3 / 

 

B. Generalized Polynomial Chaos Expansion 
In this work, the generalized polynomial chaos (gPC) is 

used to study the effect of parametric uncertainty on model 
predictions, such as action potential (AP). The gPC represents 
an uncertainty as a function of another random variable in the 
Wiener-Askey framework [14]. For brevity, let define the 
Aliev-Panfilov model in (1) and (2) as: 

𝒙̇ = 𝑓 (𝑡, 𝒙, 𝒗, 𝒑) (3) 

, where the vector x contains the two dimensionless variables 
u and r with initial values x0 at t=0, v is deterministic model 
parameters, i.e., fixed constant numbers, while p is a vector of 
parametric uncertainties. It is important to note that p will be 
defined with probability density functions (PDF) in lieu of 
fixed values, which can be calibrated with in-vitro data. 

To evaluate the effect of parametric uncertainty on model 
predictions, the first step is to rewrite each parameter 𝑝𝑖  (i = 1, 
2,…, np) in p as a function of a set of independent random 
variable 𝝃 = {𝜉𝑖} as: 

𝑝𝑖  =  𝑝𝑖  (𝜉𝑖) (4) 

, where ξi is the ith random variable. It is assumed that {𝜉𝑖} are 
independent and identically distributed (iid). Following the 
definition of gPC expansion [14], the parametric uncertainty p 
and model predictions x can be approximated by orthogonal 
polynomial basis function {𝜙𝑘(ξ)} as: 

𝑝𝑖(𝜉𝑖)= ∑𝑝̂k𝜙𝑘(𝜉𝑖)
∞

k=0

≈∑𝑝̂k𝜙𝑘(𝜉𝑖)
q

k=0

 (5) 

𝑥(𝑡,ξ) = ∑𝑥̂k𝜙𝑘(ξ)
∞

k=0

≈∑𝑥̂k𝜙𝑘(ξ)
Q

k=0

 (6) 

, where {𝑥̂k} and {𝑝̂k} are the gPC coefficients of parametric 
uncertainty and model predictions at each time t, and {𝜙𝑘(ξ)} 
represent the multi-dimensional orthogonal polynomial basis 
functions of 𝝃. When the PDFs of p are known, {𝑝̂k} can be 
determined such that p follows a prior distribution. Then, the 
gPC coefficients of model predictions, {𝑥̂k}, can be calculated 
by substituting (5) and (6) into (3) and by applying a Galerkin 
projection onto both sides of (3) with respect to polynomial 
chaos basis functions {𝜙𝑘(ξ)} as: 

〈ẋ(t,ξ), 𝛷k(ξ)〉 =  〈 f (t, x(t,ξ), v, p(ξ)),𝛷k(ξ)〉 (7) 

Note that infinite terms are used to estimate the PDFs of 
parametric uncertainty and model predictions in (5) and (6). 
For practical application, however, truncation is required. The 
total number of terms of x in (6), i.e., Q, can be calculated as 
function of an arbitrary order q in Eq. 5 and the number of 
parametric uncertainty (np) in p as: 

Q =  ((𝑛𝑝  +  𝑝)! /(n𝑝! 𝑝!)) –  1 (8) 

As seen in (8), the number of terms for the model predictions 
in (6) increases as the polynomial order 𝑞 in (5) and/or the total 
number of uncertainty 𝑛𝑝  in (9) increases. To improve the 
computational efficiency, sensitivity analysis will be used to 
identify significant parametric uncertainty before applying the 
gPC expansions, which will be discussed later. 

The inner product in (7) between two vectors is defined as: 

〈ψ(ξ),ψ'(ξ) 〉= ∫ψ(ξ)ψ'(ξ)W(ξ)dξ  (9) 

, where the integration is calculated over the domain defined 
by random variables ξ, and W(ξ) is the weighting function, i.e., 
the PDF of ξ, which is selected according to polynomial basis 
functions. For example, Hermite polynomial basis functions 
are the choice of normal distributed ξ. 

Once the gPC coefficients in (6) are available, it is possible 
to quickly compute the statistical moments of x at any given 
time instant 𝑡 as a function of the coefficients {𝑥̂k} in (6) as: 

E(𝑥(t)) = E(∑ 𝑥̂𝑖(𝑡)𝜙𝑖
𝑄

𝑖=0
) 

= 𝑥̂𝑖(𝑡)𝐸(𝜙𝑖) +∑𝐸(𝜙𝑖)

𝑄

𝑖=1

= 𝑥̂0(𝑡) 

(10) 

Var(𝑥(t)) = 𝐸 (𝑥̂(𝑡) − 𝐸(𝑥̂(𝑡))
2
) 

= E

(

 (∑𝑥̂𝑖(𝑡)𝜙𝑖

𝑄

𝑖=0

− 𝑥̂(𝑖=0)(𝑡))

2

)

    
(11) 

                    = 𝐸 ((∑𝑥̂𝑖(𝑡)𝜙𝑖

𝑄

𝐼=0

)

2

)  =∑𝑥̂𝑖(𝑡)
2𝐸(𝜙𝑖

2)

𝑄

𝑖=0

 

The first and second statistical moments calculated from 
(10) and (11) are the mean and variance of x, respectively. It 
is important to note that the variance in x originates from the 
parametric uncertainty. In addition, the gPC enables the rapid 
calculation of the PDF profiles of model predictions x with 
analytical formulas above. Thus, the computational burden can 
be significantly reduced for uncertainty propagation, which 
will be further discussed in the results section below. 

III. RESULTS AND DISCUSSION 

A.  Sensitivity Analysis 
Cardiac models may involve many model parameters, and 

uncertainty in model parameters may have different effect on 
the model predictions. The appropriate selection of the most 



  

sensitive uncertainty is essential for uncertainty propagation. 
Thus, the effect of parametric uncertainty on model prediction 
is studied in this section. 

As shown in Section II A, there are six model parameters, 
i.e., a, k1, k2, ε0, μ1, μ2, in the Aliev-Panfilov model, which can 
possibly affect the shape and duration of action potential (AP).  
For this reason, the effect of each parameter on the AP duration 
was studied by measuring the 90% of the AP amplitude, which 
corresponds to the 90% repolarization, e.g., APD90. 

To identify the most significant parametric uncertainty, the 
factional factorial design and the half-normal probability were 
used. It is assumed that each parameter can be varied between 
two levels, i.e., +1 and -1. For example, parameters can be 
randomized with a +10% change and a -10% change in their 
nominal values as given in Table I. For each parameter, two 
model predictions with respect to APD90, e.g., 𝑤𝑝𝑖

+ .  and 𝑤𝑝𝑖
− . , 

can be calculated with respect to each level. To evaluate the 
effect of parameter on model prediction, the model output is 
also calculated when parameters are maintained at nominal 
values, e.g., 𝑤𝑝𝑖

0 . The effect of uncertainty in parameter 𝑝𝑖  (i = 
1, 2,…, np) on the model prediction is then evaluated as: 

δ𝑤𝑝𝑖 =
|𝑤𝑝𝑖

+ − 𝑤𝑝𝑖
0 |

𝑤𝑝𝑖
0

+
|𝑤𝑝𝑖

− − 𝑤𝑝𝑖
0 |

𝑤𝑝𝑖
0

 (12) 

, where 𝑝𝑖  is the ith parameter in p. The effect  δ𝑤𝑝𝑖  in (12) is 
evaluated for each parameter for two case scenarios to identify 
significant parametric uncertainty. For the first case scenario, 
each parameter is randomized with a +10% change and a -10% 
change, while each parameter is assumed to be vary between 
+20% and -20% in the second case scenario. 

To illustrate the effect of parametric uncertainty on the AP 
duration, the half-normal probability diagram is used. The key 
is to use a normal curve as the reference distribution against 
which the significance of effect is tested [16]. This can be 
calculated as: 

[Φ−1 (0.5 +
0.5[𝑖 − 0.5]

𝑘
) , δ𝑤𝑝𝑖] (13) 

, where i=1,⋯,k represents the ith parameter in 𝒑, Φ-1 is the 
cumulative distribution function of a standard normal 
distribution. The effect calculated in (12) for each parameter 
can be organized in an increasing order and can be shown 
against the coordinates based on the half-normal diagram. Fig. 
1 shows the sensitivity analysis result of half-normal diagram. 

 
Figure 1.  Half-normal probability plots for sensitivity analysis: (a) Results 

for ±10% change; (b) Results for ±20% change 

As seen in Fig. 1, most of the parameters have relatively 
lower effect on model predictions as compared to the threshold 
parameter a in both case scenarios. Therefore, parameter a was 

identified as the most sensitive parametric uncertainty, which 
will be approximated with gPC as explained in Section II B. 

B. Uncertainty propagation and model predictions 
Using the sensitivity analysis results above, the effect of 

parametric uncertainty in a on model predictions of the Aliev-
Panfilov model was further investigated. For clarification, it is 
assumed that parameter a follows a normal distribution. The 
value of a given in Table I was used as the mean values, and a 
standard deviation is assumed to be 1% of its mean value. To 
obtain orthogonality Hermite polynomial was selected as the 
basis functions, which is suitable for normal distribution [14]. 
The simulation results of AP are shown in Fig. 2. 

 

  

Figure 2.  Parametric uncertainty propagation in Aliev Panfilov model 
using the gPC expansion 

In the presence of parametric uncertainty in a, Fig. 2 (a) 
shows the gPC coefficients the transmembrane potential u and 
the recovery variable r. Since one uncertainty was considered 
(𝑛𝑝=1), and two terms can be used to estimate a, i.e., 𝑝=2, thus 
two terms (i.e., Q=2) are used in the gPC models of each model 
prediction. As seen in Fig. 2 (a), u0 and r0 represent the mean 
values of the model predictions, while u1 and r1 are the gPC 
coefficients that can be used to estimate the variance resulting 
from uncertainty in a. As seen, due to the uncertainty, there is 
noticeable variations in repolarization region in Fig. 2 (a). 

To quantitatively evaluate the uncertainty in the model 
predictions resulting from parametric uncertainty a, Fig. 2 (b) 
shows the variance calculated with gPC coefficients. It was 
found that the transmembrane potential u appears relatively 
larger variability in repolarization (34~36 ms). Further, the 
effect of uncertainty on recovery variable r is more significant 
in the range of 20 to 40 ms. It should be noted that gPC enables 
implicit mapping between uncertain parameters and the model 
perditions with explicit functions. The model predictions can 
be expressed with a series of orthogonal polynomials, from 

a a 

k2 
k1 

ε0 

μ1 

μ2 

k2 k1 μ1 

μ2 ε0 

(a) (b) 

(a) 

(b) 



  

which statistical moments can be quickly calculated from the 
gPC expansion coefficients given in (10) and (11). 

Given the stochastic models of the cardaic cell, we further 
investigated the APD restitution in the presence of uncertainty. 
The simulation protocol used to generate APD restituion is 
designed as follows. Cardiac cell was stimulated every 100 ms 
for 10 cycles to reach a steady state, then another stimulation 
was triggered after 100 ms, 80 ms, 50 ms, 40 ms, and 32 ms, 
respectively. The APDs and their variances in the last cycle 
were measured in each experiment, and the results are shown 
in Fig. 3. As seen in Fig. 3 (a), the mean of the APD50 decrease 
as the Cycle Length (CL) decreases, i.e., the APD50 for the five 
aforementioned CL are 8.36 ms, 17.53 ms, 21.84 ms, 27.22 ms, 
and 28.91 ms, respectively. In addition, the variance of APD10, 
APD50, and APD90 were estimated to illustrate the effect of 
uncertainty on different APDs, which are shown in Fig. 3 (b). 
It was found that larger CL leads to bigger variability, and the 
variance of APD10 is most sensitive to the change of CL. 

 
Figure 3.  APD restitution in the presence of uncertainty. (a) mean value of 

APDs vs. Cycle Length, (b) Variance of APDs vs. Cycle Length 

C. Computational efficiency 
Further, experiments were conducted to compare the 

efficiency between the proposed gPC method and Monte Carlo 
(MC) simulations in terms of computational time. For the gPC 
method, ~60s were needed to calculate the gPC coefficients, 
whereas ~250s were required for 100 samples with the MC. It 
is important to note that the gPC coefficients can be used to 
rapidly estimate the mean and variance in model predictions 
with (10) and (11). In addtion, it was found that 100 samples 
in MC may fail to provide accurate results, as compared to the 
gPC, e.g., the upper and lower limits of action potential (AP) 
at each time instant, which can further affect the estimation of 
the effect of uncertainty on the AP duration. Thus, an even 
larger number of samples are required in MC, which could 
further increase the computational cost. 

IV. CONCLUSION 

This work presents an approach to propagate parametric 
uncertainty in the Aliev-Panfilov model onto the model 
predictions of membrane potential. The influence of each 
parameter on model predictions was evaluated via a sensitivity 
analysis. Parametric uncertainty with the highest sensitivity 

index was quantified with a gPC model, and its effect on model 
prediction was approximated with a Galerkin projection. The 
gPC shows its advantage in terms of computational efficiency, 
which enables efficient uncertainty analysis across different 
organizational levels such as cells, tissues, and the heart. 
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