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Abstract—Models of cardiac electrophysiology are useful for
studying heart functions and cardiac disease mechanisms.
However, cardiac models often have a great level of complexity,
and it is often computationally prohibitive to simulate tissue and
organ activities in a real-time fashion. To address the challenge,
simplified models such as Aliev-Panfilov model are developed to
reduce model complexity, while providing necessary details of
cardiac functions. Simplified models may induce uncertainty,
which can deteriorate the accuracy and reliability of cardiac
models. In addition, model parameters are calibrated with noisy
data and cannot be known with certainty. It is important to
assess the effect of parametric uncertainty on model predictions.
For the probabilistic, time-invariant parametric uncertainty, a
generalized polynomial chaos (gPC) expansion-based method is
presented in this work to quantify and propagate uncertainty
onto model predictions. Using gPC, a measure of confidence in
model predictions can be quickly estimated. As compared with
sampling-based uncertainty propagation techniques, e.g., Monte
Carlo (MC) simulations, the gPC-based method in this work
shows its advantages in terms of computational efficiency and
accuracy, which has the potentials for dealing with complicated
cardiac models, e.g., 2D tissue and 3D organ models.

I. INTRODUCTION

Cardiac models are widely used to study cardiac disease
mechanisms. For example, mathematical models were used to
study glycosylation modulation dynamics on cardiac electrical
signaling among CDG patients [1]. In addition, cardiac models
can also be applied in clinical setting to explore better surgical
strategies [2]. Reliable models and accurate simulation results
can provide useful information that cannot be obtained from
in-vitro experiments, which may assist physicians for better
diagnosis and treatment planning of heart diseases [3, 4].

Models of various species have been developed since the
first model proposed by Hodgkin and Huxley (i.e., HH model),
which provides detailed descriptions of ion channel gating and
cardiac electrical signaling [5, 6, 7]. Such detailed models
often include hundreds of equations. For example, the model
of an adult human atrial cell includes 10 ion currents described
by over a hundred equations [8]. The model complexity poses
significant challenges on their clinical applications, since it is
computationally demanding to study tissue and organ activity
with the detailed models. To reduce the computational burden,
a simplified model, i.e., FitzHugh-Nagumo model, was first
developed, which uses two state variables to describe the
depolarization and the repolarization of cardiac cells [9]. This
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model, however, cannot precisely quantify restitution property
of cardiac tissue, i.e., the relationship between action potential
duration (APD) and the cardiac cycle length. To overcome this
issue, the Aliev-Panfilov model was developed to mimic the
cardiac electrophysiology in a more realistic way.

Although the simplified cardiac models have shown great
advantages in terms of computational efficiency, a main
restrictive factor for using these models in clinical diagnosis
and therapeutic design is model uncertainty [10]. Uncertainty,
originating from model calibration or intrinsic variability of
cardiac cells, may deteriorate the model accuracy. To improve
the reliability and credibility of cardiac models, it is necessary
to quantify and propagate uncertainty onto model predictions.

Uncertainty quantification and propagation has been well
studied in engineering and science filed [11]. For example,
sampling-based Monte Carlo (MC) simulation is one of the
most popular methods [12]. However, MC is computationally
prohibitive for multiscale cardiac modeling across disparate
organizational levels, from ion channel to cell to tissue to the
whole organ, since it requires a larger number of simulations.

Uncertainty propagation with the generalized polynomial
chaos (gPC) expansion has been recently studied in different
control, fault detection, and optimization problems [13, 14].
As compared to MC, gPC can propagate a complex probability
distribution of uncertainty onto model predictions in a real-
time fashion, from which the statistical moments of the model
predictions can be easily and analytically estimated [14].

The work presents a gPC-based uncertainty propagation
method, which can approximate parametric uncertainty with
analytical expansions, and can explicitly account for nonlinear
nature of cardiac models. This paper is organized as follows.
Section II presents the theoretical background of gPC and the
Aliev-Panfilov model. The simulation results and discussion
are given in Section III followed by conclusions in Section I'V.

II. BACKGROUND AND METHODOLOGY

A. Aliev-Panfilov model

The Aliev-Panfilov model is used to investigate the effect
of uncertainty on cardiac electrical signaling, which can be
defined with two variables as:
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, where u is the transmembrane potential, and 7 is the recovery
variable that initiates repolarization. Cardiac activities, such as



the initiation and upstroke of action potential, are controlled
by the first term in (1), in which parameter 4; is an excitation
rate constant and « is the threshold parameter related to the

threshold potential. The term i, denotes the stimulation current.

The restitution properties of the action potential (AP) are
determined by the term &(u, 7). The Aliev-Panfilov model can
not only ameliorate the description of the shape of AP, but also
prevent the system from being super-repolarized [15]. Model
parameters used in this work are given in Table 1.

TABLE L MODEL PARAMETERS IN ALIEV-PANFILOV MODEL

Parameter values units | Parameter values units
a 0.1 / £0 0.0002 ms™!
ki 8 ms™! 1 0.0155 ms!
k> 1 ms™! 10 03 /

B. Generalized Polynomial Chaos Expansion

In this work, the generalized polynomial chaos (gPC) is
used to study the effect of parametric uncertainty on model
predictions, such as action potential (AP). The gPC represents
an uncertainty as a function of another random variable in the
Wiener-Askey framework [14]. For brevity, let define the
Aliev-Panfilov model in (1) and (2) as:

x=f(t,x,v,p) (3)

, where the vector x contains the two dimensionless variables
u and r with initial values xp at =0, v is deterministic model
parameters, i.e., fixed constant numbers, while p is a vector of
parametric uncertainties. It is important to note that p will be
defined with probability density functions (PDF) in lieu of
fixed values, which can be calibrated with in-vitro data.

To evaluate the effect of parametric uncertainty on model
predictions, the first step is to rewrite each parameter p; (i =1,
2,..., np) in p as a function of a set of independent random
variable § = {¢;} as:

pi = pi (&) “4)

, where & is the i random variable. It is assumed that {;} are
independent and identically distributed (iid). Following the
definition of gPC expansion [14], the parametric uncertainty p
and model predictions x can be approximated by orthogonal
polynomial basis function {¢ (&)} as:
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, where {X,} and {p,} are the gPC coefficients of parametric
uncertainty and model predictions at each time #, and {¢, (&)}
represent the multi-dimensional orthogonal polynomial basis
functions of &. When the PDFs of p are known, {p;} can be
determined such that p follows a prior distribution. Then, the
gPC coefficients of model predictions, {X;}, can be calculated
by substituting (5) and (6) into (3) and by applying a Galerkin
projection onto both sides of (3) with respect to polynomial
chaos basis functions {¢; (&)} as:

(x(2.0), 2p()) = (f (1, x(2.E), v, p()), Pi(&)) (M

Note that infinite terms are used to estimate the PDFs of
parametric uncertainty and model predictions in (5) and (6).
For practical application, however, truncation is required. The
total number of terms of x in (6), i.e., O, can be calculated as
function of an arbitrary order ¢ in Eq. 5 and the number of
parametric uncertainty (#,) in p as:

0= (np +p)!/(np!pH) -1 ®)

As seen in (8), the number of terms for the model predictions
in (6) increases as the polynomial order g in (5) and/or the total
number of uncertainty n, in (9) increases. To improve the
computational efficiency, sensitivity analysis will be used to
identify significant parametric uncertainty before applying the
gPC expansions, which will be discussed later.

The inner product in (7) between two vectors is defined as:
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, where the integration is calculated over the domain defined
by random variables & and W(¢) is the weighting function, i.e.,
the PDF of &, which is selected according to polynomial basis
functions. For example, Hermite polynomial basis functions
are the choice of normal distributed &.

Once the gPC coefficients in (6) are available, it is possible
to quickly compute the statistical moments of x at any given
time instant ¢ as a function of the coefficients {X;} in (6) as:
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The first and second statistical moments calculated from
(10) and (11) are the mean and variance of x, respectively. It
is important to note that the variance in x originates from the
parametric uncertainty. In addition, the gPC enables the rapid
calculation of the PDF profiles of model predictions x with
analytical formulas above. Thus, the computational burden can
be significantly reduced for uncertainty propagation, which
will be further discussed in the results section below.

III. RESULTS AND DISCUSSION

A. Sensitivity Analysis

Cardiac models may involve many model parameters, and
uncertainty in model parameters may have different effect on
the model predictions. The appropriate selection of the most



sensitive uncertainty is essential for uncertainty propagation.
Thus, the effect of parametric uncertainty on model prediction
is studied in this section.

As shown in Section II A, there are six model parameters,
i.e., a, ki, k2, €0, t11, p2, in the Aliev-Panfilov model, which can
possibly affect the shape and duration of action potential (AP).
For this reason, the effect of each parameter on the AP duration
was studied by measuring the 90% of the AP amplitude, which
corresponds to the 90% repolarization, e.g., APDoj.

To identify the most significant parametric uncertainty, the
factional factorial design and the half-normal probability were
used. It is assumed that each parameter can be varied between
two levels, i.e., +1 and -1. For example, parameters can be
randomized with a +10% change and a -10% change in their
nominal values as given in Table I. For each parameter, two
model predictions with respect to APDo, €.g., Wp+r and wy, .,
can be calculated with respect to each level. To evaluate the
effect of parameter on model prediction, the model output is
also calculated when parameters are maintained at nominal
values, e.g., ng. The effect of uncertainty in parameter p; (i =

1,2,..., ny) on the model prediction is then evaluated as:
+ 0
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, where p; is the i parameter in p. The effect dwp, in (12) is

evaluated for each parameter for two case scenarios to identify
significant parametric uncertainty. For the first case scenario,
each parameter is randomized with a +10% change and a -10%
change, while each parameter is assumed to be vary between
+20% and -20% in the second case scenario.

To illustrate the effect of parametric uncertainty on the AP
duration, the half-normal probability diagram is used. The key
is to use a normal curve as the reference distribution against
which the significance of effect is tested [16]. This can be
calculated as:

B 0.5[i — 0.5]
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, where i=1,-- k represents the i parameter in p, @' is the
cumulative distribution function of a standard normal
distribution. The effect calculated in (12) for each parameter
can be organized in an increasing order and can be shown
against the coordinates based on the half-normal diagram. Fig.
1 shows the sensitivity analysis result of half-normal diagram.
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Figure 1. Half-normal probability plots for sensitivity analysis: (a) Results

for £10% change; (b) Results for +20% change

As seen in Fig. 1, most of the parameters have relatively
lower effect on model predictions as compared to the threshold
parameter a in both case scenarios. Therefore, parameter a was

identified as the most sensitive parametric uncertainty, which
will be approximated with gPC as explained in Section II B.

B. Uncertainty propagation and model predictions

Using the sensitivity analysis results above, the effect of
parametric uncertainty in a on model predictions of the Aliev-
Panfilov model was further investigated. For clarification, it is
assumed that parameter a follows a normal distribution. The
value of a given in Table I was used as the mean values, and a
standard deviation is assumed to be 1% of its mean value. To
obtain orthogonality Hermite polynomial was selected as the
basis functions, which is suitable for normal distribution [14].
The simulation results of AP are shown in Fig. 2.
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Figure 2. Parametric uncertainty propagation in Aliev Panfilov model
using the gPC expansion

In the presence of parametric uncertainty in a, Fig. 2 (a)
shows the gPC coefficients the transmembrane potential u and
the recovery variable 7. Since one uncertainty was considered
(n,=1), and two terms can be used to estimate q, i.€., p=2, thus
two terms (i.e., 0=2) are used in the gPC models of each model
prediction. As seen in Fig. 2 (a), uo and ro represent the mean
values of the model predictions, while u; and r; are the gPC
coefficients that can be used to estimate the variance resulting
from uncertainty in a. As seen, due to the uncertainty, there is
noticeable variations in repolarization region in Fig. 2 (a).

To quantitatively evaluate the uncertainty in the model
predictions resulting from parametric uncertainty a, Fig. 2 (b)
shows the variance calculated with gPC coefficients. It was
found that the transmembrane potential u appears relatively
larger variability in repolarization (34~36 ms). Further, the
effect of uncertainty on recovery variable r is more significant
in the range of 20 to 40 ms. It should be noted that gPC enables
implicit mapping between uncertain parameters and the model
perditions with explicit functions. The model predictions can
be expressed with a series of orthogonal polynomials, from



which statistical moments can be quickly calculated from the
gPC expansion coefficients given in (10) and (11).

Given the stochastic models of the cardaic cell, we further
investigated the APD restitution in the presence of uncertainty.
The simulation protocol used to generate APD restituion is
designed as follows. Cardiac cell was stimulated every 100 ms
for 10 cycles to reach a steady state, then another stimulation
was triggered after 100 ms, 80 ms, 50 ms, 40 ms, and 32 ms,
respectively. The APDs and their variances in the last cycle
were measured in each experiment, and the results are shown
in Fig. 3. As seen in Fig. 3 (a), the mean of the APDs decrease
as the Cycle Length (CL) decreases, i.e., the APDs for the five
aforementioned CL are 8.36 ms, 17.53 ms, 21.84 ms, 27.22 ms,
and 28.91 ms, respectively. In addition, the variance of APDq,
APDsy, and APDy were estimated to illustrate the effect of
uncertainty on different APDs, which are shown in Fig. 3 (b).
It was found that larger CL leads to bigger variability, and the
variance of APDg is most sensitive to the change of CL.
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Figure 3. APD restitution in the presence of uncertainty. (a) mean value of
APDs vs. Cycle Length, (b) Variance of APDs vs. Cycle Length

C. Computational efficiency

Further, experiments were conducted to compare the
efficiency between the proposed gPC method and Monte Carlo
(MC) simulations in terms of computational time. For the gPC
method, ~60s were needed to calculate the gPC coefficients,
whereas ~250s were required for 100 samples with the MC. It
is important to note that the gPC coefficients can be used to
rapidly estimate the mean and variance in model predictions
with (10) and (11). In addtion, it was found that 100 samples
in MC may fail to provide accurate results, as compared to the
gPC, e.g., the upper and lower limits of action potential (AP)
at each time instant, which can further affect the estimation of
the effect of uncertainty on the AP duration. Thus, an even
larger number of samples are required in MC, which could
further increase the computational cost.

IV. CONCLUSION

This work presents an approach to propagate parametric
uncertainty in the Aliev-Panfilov model onto the model
predictions of membrane potential. The influence of each
parameter on model predictions was evaluated via a sensitivity
analysis. Parametric uncertainty with the highest sensitivity

index was quantified with a gPC model, and its effect on model
prediction was approximated with a Galerkin projection. The
gPC shows its advantage in terms of computational efficiency,
which enables efficient uncertainty analysis across different
organizational levels such as cells, tissues, and the heart.
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