
Competitive Online Convex Optimization with
Switching Costs and Ramp Constraints

Ming Shi†, Xiaojun Lin†, Sonia Fahmy‡

†School of Electrical and Computer Engineering
‡Department of Computer Science

Purdue University, West Lafayette, IN, USA

Email: {sming,linx,fahmy}@purdue.edu

Dong-Hoon Shin

AT&T Labs, San Ramon, CA, USA

Email: misaengma@gmail.com

Abstract—We investigate competitive online algorithms for
online convex optimization (OCO) problems with linear in-stage
costs, switching costs and ramp constraints. While OCO problems
have been extensively studied in the literature, there are limited
results on the corresponding online solutions that can attain small
competitive ratios. We first develop a powerful computational
framework that can compute an optimized competitive ratio
based on the class of affine policies. Our computational frame-
work can handle a fairly general class of costs and constraints.
Compared to other competitive results in the literature, a key
feature of our proposed approach is that it can handle scenarios
where infeasibility may arise due to hard feasibility constraints.
Second, we design a robustification procedure to produce an
online algorithm that can attain good performance for both
average-case and worst-case inputs. We conduct a case study
on Network Functions Virtualization (NFV) orchestration and
scaling to demonstrate the effectiveness of our proposed methods.

I. INTRODUCTION

We study online convex optimization (OCO) with switching

costs and ramp constraints, which has become an important

tool for modeling many classes of practical decision problems

with uncertainty, including machine learning [1], network-

ing [2], cloud computing [3] and cyber-physical systems [4].

In the type of OCO problem that we are interested in, at

each time t, the environment (or adversary) reveals the input

A(t). The decision maker then must choose the decision X(t)
from a convex set and incurs a linear cost Ct(X(t), A(t)).
Additionally, there is a switching cost that penalizes the change

|X(t) − X(t − 1)| for each time t and/or a ramp constraint

on the magnitude of the change X(t)−X(t− 1). The goal is

to minimize the overall cost, which is non-linear (and convex)

due to the switching cost. Further, since future inputs, i.e.,

A(t + 1), A(t + 2), ..., A(T ), are not revealed at time t, this

problem becomes an online decision problem. Clearly, this

formulation is general and can model many important online

decision problems. For example, in the Network Functions

Virtualization (NFV) orchestration and scaling problem [5], a

data center operator must decide where to instantiate Virtual-

ized Network Functions (VNFs) on virtual machines (VMs)

or containers such as Docker [6] running on servers in order

to process incoming traffic. Here, A(t) represents the traffic

load, which can be uncertain before time t; X(t) represents

the mapping from VNFs to VMs or containers; the linear cost

Ct(X(t), A(t)) represents VM/container cost and/or distance

cost (e.g., latency) [7]. Finally, the switching cost captures

the overhead for migrating demand/state among different VNF

instances and the cost of instantiating and tearing down

VNF instances. As another example, in the real-time dispatch

problem in power systems [8], the system operator needs

to decide how to adjust the power level of the generators

to balance the electricity demand. Here, A(t) represents the

uncertain demand and renewable supply revealed on different

buses at time t; X(t) represents the dispatch decisions of

the generators; the linear cost Ct(X(t), A(t)) represents the

generation cost of the dispatch decisions. Finally, generators

have ramp constraints so that their power output level can at

most change by a given value each time.

In this paper, we aim to develop online algorithms with

low competitive ratios for this type of OCO problem. Here,

the competitive ratio is the maximum ratio of the cost of

an online algorithm to that of the offline optimal solution

(the latter assuming that all inputs are known in advance),

taken over all possible input sequences. Despite the importance

of OCO, there are limited results in the literature on the

corresponding competitive online algorithms. Most studies of

OCO focus on the regret [1], [9], [10], which is the difference

between the cost of the online algorithm and the cost of

the optimal static decision chosen in advance. Such a static

decision, however, does not respond to inputs dynamically, and

thus is not a useful reference for comparison in application

scenarios such as NFV and power systems. Among those

that study competitive performance against the dynamic offline

optimal solution, the references [11] and [12] show that the

competitive difference of their proposed algorithms are upper

bounded, which implies that the competitive ratio may also

be upper bounded under certain conditions. However, they do

not provide a way to optimize the competitive ratio, and thus

the resulting competitive ratio may still be fairly large. To the

best of our knowledge, there is no systematic framework to

optimize the competitive ratio of online algorithms for the type

of OCO problems that this paper studies.

To address this open question, our first contribution (in

Sec. III) is to develop a general and tractable framework that



allow us to find online algorithms with optimized competitive

ratios for this type of OCO problem. Capitalizing on the ideas

from robust optimization [13], we consider the case where

the future uncertain inputs, A(1), A(2), ..., A(T ), are from an

uncertainty set U . In practice, such an uncertainty set U can be

obtained from imprecise forecasts and historical data [8], [14].

Yet, searching among all possible online decisions appears

to be intractable. Instead, in order to obtain simpler policies

with reasonably good performance, we focus on affine policies,

where the decision X(t) at time t is an affine function of the

input A(t), i.e., X(t) = η(t) + H(t)A(t). Thus, designing

an online algorithm boils down to designing the parameters

η(t) and H(t) (which depends only on the uncertainty set U
but not the actual inputs). Through this restriction to affine

policies, we can formulate the problem of optimizing the

competitive ratio as a minmax optimization problem. We

call the resulting online algorithm the Robust Affine Policy

(RAP). Since this optimization problem is still non-convex, we

propose approximations that effectively convexify the problem

and make it tractable. In this way, our proposed computational

framework can be used to design online algorithms with

optimized competitive ratios for OCO problems with fairly

complex structures and constraints. We note that the idea of

affine policies has been used in adjustable robust optimiza-

tion [15] to minimize the worst-case cost. In contrast, our

approach applies affine policies to minimize the competitive

ratio. This approach has not been studied before and gives rise

to new technical difficulties as we discuss in Sec. III.

A key feature of our proposed approach is that it can

gracefully handle situations where infeasibility may arise due

to hard feasibility constraints in the OCO problem. By “hard

feasibility constraints,” we refer to situations where, after the

input A(t) is revealed at time t, no feasible decision X(t)
can be found. This situation usually arises when there are

both ramp constraints and demand-supply balance constraints.

Specifically, due to the ramp constraint, the decision X(t) at

time t cannot differ too much from X(t − 1). Thus, when

the demand is too high at time t, but X(t − 1) was not

properly chosen, there may not exist any X(t) that can meet

the demand. Such a problem can occur in both power systems

and NFV. In contrast, the studies in [11] and [12] do not

consider such hard feasibility constraints because they do not

simultaneously enforce ramp constraints and demand-supply

balance constraints. As a result, their competitive guarantees

would not hold when there were hard feasibility constraints. To

the best of our knowledge, our proposed approach is the first

to give online algorithms with optimized competitive ratios

with or without such constraints.

Our second key contribution (in Sec. IV) is to resolve

a dilemma between the worst-case and average-case perfor-

mance. Note that while our proposed Robust Affine Policy

(RAP) is optimized for the worst-case competitive ratio, it may

be too conservative and thus incur high costs for average-case

inputs. Other heuristic algorithms (such as RHC, i.e., Receding

Horizon Control [12], discussed in Sec. V) may perform well

for the average case, but produce inferior competitive ratios

for worst-case scenarios. Thus, an open question is whether

one can get the best of both worlds. We address this dilemma

by providing a “robustification” procedure. Given any online

algorithm π0 that is perceived to have good average-case per-

formance, we intelligently combine π0 with RAP to produce

a new online algorithm with the same worst-case competitive

ratio as RAP while still attaining comparable average-case

performance to π0. We note that this “robustification” idea

was first introduced in our earlier work [14]. However, our

OCO problem formulation is much more general, requiring

a new robustification procedure to be developed. We use

Network Functions Virtualization (NFV) [5] as a case study

and simulate the robustified version of RHC. Our simulation

results in Sec. V show that the robustified-RHC algorithm

performs close to RHC when the uncertainty is low. When the

uncertainty is high, the robustified-RHC algorithm performs

significantly better, especially for worst-case inputs.

As discussed above, our work is related to robust op-

timization [13], [15], but differs in that we focus on a

different objective of competitive ratios rather than worst-

case costs. Our NFV case study is also related to the lit-

erature of NFV orchestration and scaling. However, most

existing studies either assume a static model [7], [16]–[18],

or provide heuristic online algorithms without any perfor-

mance guarantees [19], [20]. The references [21] and [22]

study online NFV orchestration and scaling, although they

do not consider the distance cost (e.g., latency), which is an

important cost component, especially when optimizing over

multiple data centers. More recently, the reference [23] uses

the regularization method to develop online algorithms for

NFV orchestration and scaling over multiple data-centers. One

of the key differences of our work is that we utilize partial

future knowledge, i.e., in the form of an uncertainty set U ,

to obtain potentially smaller competitive ratios. In contrast,

it is unclear how to generalize the approaches in [21]–[23]

to utilize such partial future knowledge. Further, in deriving

their competitive ratios, the studies in [21] and [23] do not

consider constraints on the number of servers available or

ramp constraints on the rerouting decisions. NFV orchestration

and scaling is also related to the FL (facility location) [24]

and GAP (generalized assignment problem) [25], for which

competitive online algorithms have been developed. However,

in NFV, the demand fluctuates (both increases and decreases)

over time in both the online and offline settings. In contrast,

online FL and GAP problems usually assume that new demand

is sequentially added over time towards a final offline setting

where all demand is present. Further, the cost constraints

of OCO problems are usually more general, e.g., involving

switching costs and ramp constraints. Thus, it is unclear how

to apply the competitive results from this literature to OCO

and online NFV orchestration and scaling problems.

II. PROBLEM FORMULATION

We now present our model for online convex optimization

(OCO) problems with linear in-stage costs, switching costs

and ramp constraints.



A. OCO with Linear In-Stage Costs

In the OCO problem that we consider, there are T

rounds of decisions, t = 1, 2, ..., T . There is a cost-function

Ct(X(t), A(t)) for each time t, which is a function of the input

A(t) ∈ R
M (e.g., traffic load) revealed by the environment at

time t, and the action X(t) ∈ R
N taken by the decision maker

(e.g., system administrator) at time t. Throughout this paper,

we assume that Ct(·, ·) is a linear function of (X(t), A(t)).
Further, there is a switching cost β|X(t) − X(t − 1)| that

penalizes the change of decision at time t (hence the transpose

of β is a given vector in R
N ). The action X(t) must be

chosen to satisfy certain constraints. We assume that one set

of constraints Xt(A(t)), which may depend on the input A(t),
can be written as a linear inequality in (X(t), A(t)), i.e.,

D1X(t) +D2A(t) ≤ 0, ∀ t, (1)

where the transposes of D1 and D2 are in R
N and R

M ,

respectively. (As in Real Analysis, we use “∀” for “for all”,

and use “∃” for “there exists”.) Further, there may be ramp

constraints

|Xn(t)−Xn(t− 1)| ≤ ∆n
X , ∀ n, t, (2)

where Xn is the n-th element of X . As we will illustrate with

a case study, this construction can model several types of costs

and constraints. Let A(t1:t2) denote the input sequence A(t)
from t = t1 to t2. Define X(t1:t2) similarly.

At each time t, the environment reveals A(t) first. Then the

decision maker picks the action X(t) and incurs the in-stage

cost Ct(X(t), A(t)) and the switching cost β|X(t)−X(t−1)|.
Note that although Ct(·, ·) is linear, the switching cost still

makes the whole problem convex. Further, this problem is an

online problem because the decision maker does not know the

future values of A(t+1), A(t+2), ..., A(T ) when she makes

the decision X(t).
As we discussed in the introduction, the combination of

the linear constraint (1) and the ramp constraint (2) may lead

to infeasibility. If X(t − 1) is not properly chosen, the ramp

constraint limits how far X(t) can deviate from X(t − 1).
Then, there may not exist a feasible point that simultaneously

satisfies (1) and (2). For example, this infeasibility can occur

when the demand increases suddenly and the traffic cannot

be rerouted as quickly to serve the demand. Thus, a key

contribution of our work is to be able to deal with cases with

or without such “hard infeasibility constraints.”

B. Uncertainty Set

Recall that the input A(t) is unknown to the online algo-

rithm until time t. Intuitively, if A(t) can vary in arbitrary

ways, one may have to take the most conservative decisions

to avoid future infeasibility. Thus, in order to make the online

decision problem practically more interesting, we introduce

an uncertainty set to model the set of uncertain inputs that

we care about. Specifically, we assume that the trajectory

A(1), A(2), ..., A(T ) chosen by the environment must be from

an uncertainty set U . We expect that this uncertainty set U can

be constructed from prediction and historical data [8], [14].

Next, we describe three ways (that can be used in combination)

to formulate the uncertainty set U .

(i) Day-ahead prediction: Let ADAP(1:T ) denote a predicted

trajectory of A(1:T ). We may assume that the real trajectory

A(1:T ) must be within a neighborhood around ADAP(1:T ),

Am
lower(t) ≤ Am(t) ≤ Am

upper(t), ∀ m, t, (3)

where the upper/lower bounds are given by

Am
upper(t) = (1 + εm(t))×Am

DAP(t), ∀ m, t, (4)

Am
lower(t) = max{0, (1− εm(t))×Am

DAP(t)}, ∀ m, t, (5)

and εm(t) is the uncertainty level for time t.

(ii) Demand changing speed: Often, demand (e.g., traffic

or renewable energy) may not change arbitrarily fast. We can

model such knowledge by imposing

|Am(t)−Am(t− 1)| ≤ ∆m
A , ∀ m, t. (6)

(iii) The different elements of A(t) may not hit the upper

or lower bounds in (3) simultaneously. Thus, we can impose

the following constraint (known as the “budget” constraint in

the robust optimization literature [13, p. 47]),

M
∑

m=1

|Am(t)−Am
DAP(t)|

εm(t)×Am
DAP(t)

≤ Γ, ∀ t. (7)

Clearly, if Γ = 0, the uncertainty set only contains the day-

ahead prediction ADAP(1:T ). Thus, the model becomes deter-

ministic. As Γ increases, more uncertainty will be considered.

The uncertainty set U that we use in this paper is specified

by a combination of the above constraints. We note that

the constraint (6) introduces temporal coupling of the inputs,

which can be used to refine the near-term future uncertainty.

Specifically, at any time t, A(1:t) has already been revealed to

the online algorithm. Thus, the future uncertainty remaining

in the interval [t+ 1, T ] can be written as

UA(1:t) = {A(t+ 1 : T ) | ∃A
′

(1:T ) ∈ U , such that,

A
′

(1:t) = A(1:t), A
′

(t+ 1 : T ) = A(t+ 1 : T )}.
(8)

C. The Performance Metric

As we discussed earlier, the total cost incurred by the

decision maker is given by

C(X(0), X(1:T ), A(1:T )) =
T
∑

t=1

{Ct(X(t), A(t))

+ β|X(t)−X(t− 1)|}.

(9)

For an online algorithm π, at each time t the decision X(t)
can only be based on the already-known inputs A(1:t) and

knowledge about the future uncertainty given by (8). Let

Cπ(A(1:T )) be the total cost of algorithm π. We compare

it with an offline solution that is assumed to know the entire

input A(1:T ) ahead of time. We denote the cost of the optimal



offline solution as COPT(A(1:T )), which is the optimal value

of the following optimization problem,

min
X(0:T ):(1),(2)

C(X(0), X(1:T ), A(1:T )). (10)

Then, the competitive ratio of algorithm π, given by

CRπ , max
A(1:T )∈U

Cπ(A(1:T ))

COPT(A(1:T ))
, (11)

is the worst-case ratio between the online cost and the offline

optimal cost, over all possible inputs from the uncertainty set.

We are thus interested in online solutions to OCO with small

competitive ratios. Although the notions of uncertainty sets

and affine policies (used later) are from the robust optimization

literature [13], our objective in (11) is quite different. In the

robust optimization literature, the objective is usually to mini-

mize the worst-case (absolute) cost, i.e., max
A(1:T )∈U

Cπ(A(1:T )).

Our objective of the competitive ratio, which is commonly

used in the CS literature, instead focuses on a relative ratio

comparing with the offline optimal solution. This difference

leads to new technical difficulties in the optimization prob-

lem. In some way, competitive ratios can be viewed as less

conservative than robust optimization because we do not only

care about the worst-case cost.

D. A Case Study

We now use the Network Functions Virtualization (NFV)

orchestration and scaling problem [5] as a case study to

illustrate how our model can be used to study practical costs

and constraints. We will also use it in our numerical evaluation

in Sec. V. Nonetheless, the computational framework that we

present later can be used for other problems, such as in power

system operation [8].

We first follow the simplified NFV model in [7] (without

precedence constraints). The network is modeled as a graph

G(V,E). There are S servers, each of capacity Ws occupy-

ing some node in V , s = 1, 2, ..., S. There are L clients,

l = 1, 2, ..., L, each of which generates traffic at some node

in V . Each client requires one or more Virtualized Network

Functions (VNFs), e.g., firewalls, intrusion detection systems,

caches and load balancers. Each VNF is indexed by a positive

integer f in the set F = {1, 2, ..., F}. We use a
f
l (t) to denote

the processing need for function f at time t due to the traffic

generated by client l. Note that we can set a
f
l (t) = 0 if client

l does not need function f .

Decisions and constraints: The NFV system administrator

maps the VNFs to physical servers to serve the incoming

demand. Let yfs (t) denote the size (resource requirements) of

VNF f at server s at time t. Let x
f
l,s(t) denote the amount of

demand from client l that is routed to server s for processing

of function f at time t. The decision X(t) in our general

OCO model then corresponds to a vector [xf
l,s(t), y

f
s (t)]. These

actions must satisfy the following constraints. First, all the

arriving demand needs to be served. Therefore, we must have

S
∑

s=1

x
f
l,s(t) ≥ a

f
l (t), ∀ l, f, t. (12)

Second, when the demand arrives at the server s, the size of

the corresponding functions that are placed on server s must be

able to meet the demand. Assume that each unit-size function

can serve one unit-size demand. Thus, we must satisfy

L
∑

l=1

x
f
l,s(t) ≤ yfs (t), ∀ s, f, t. (13)

Third, resources on each server s must be able to support

all functions placed there [26]. Assume that each unit-size

function f needs wf
s amount of resources at server s. Thus,

we have
F
∑

f=1

yfs (t)w
f
s ≤Ws, ∀ s, t. (14)

The above constraints form the linear constraint set Xt(A(t)).
In-stage Costs: There are costs for resource consumption of

VNFs, and distance costs for routing the demand of clients,

i.e.,

Φ(X(1:T )) =

T
∑

t=1

S
∑

s=1

F
∑

f=1

pfsy
f
s (t)+

T
∑

t=1

L
∑

l=1

S
∑

s=1

F
∑

f=1

dl,sx
f
l,s(t)

(15)

where pfs is the cost of hosting a unit of virtualized function

f on server s, and dl,s is the distance (e.g., latency) cost of

routing a unit of traffic load from client l to server s.

The model so far is similar to [7], which focuses on each

snapshot in time, and assumes perfect knowledge of demand.

In contrast, in this paper we wish to model decisions under

uncertain and dynamic demand. Thus, we use an uncertainty

set U as in Sec. II-B to model demand uncertainty. Note that a

key benefit of NFV is that virtualized functions can be instan-

tiated and torn down on-demand, and service can be moved

across VNF instances as needed. However, such changes

still incur non-negligible overhead. Specifically, because most

VNFs are stateful, rerouting traffic from one VNF instance to

another requires state migration [27]. Further, instantiating and

tearing down VNFs incurs significant overhead. Therefore, we

introduce the following additional costs and constraints.

Ramp Constraints: We may impose ramp constraints on the

changes in routing decisions. If a certain amount of network

bandwidth is reserved for state migration, rerouting cannot

occur too fast. Such a constraint can be written as

|xf
l,s(t+ 1)− x

f
l,s(t)| ≤ ∆f

X,l,s, ∀ l, s, f, t. (16)

Switching/Migration Costs: There is overhead for state

migration and changes in instantiation, i.e.,

Ψ(X(0), X(1:T )) =

T
∑

t=1

L
∑

l=1

S
∑

s=1

F
∑

f=1

β
f
1,l,s|x

f
l,s(t)

− x
f
l,s(t− 1)|+

T
∑

t=1

S
∑

s=1

F
∑

f=1

β
f
2,s|y

f
s (t)− yfs (t− 1)|,

(17)

where β
f
1,l,s and β

f
2,s are cost parameters for state migration

in rerouting and for the overhead in instantiating and tearing-

down VNF instances, respectively. (Note that the absolute



values |x| may also be replaced by max{x, 0} and one can

still apply the proposed methodology in this paper.)

Hence, in our online NFV orchestration and scaling prob-

lem, the cost function is the sum of (15) and (17). Note

that our model is more general than [21]–[23] because we

simultaneously consider the distance costs, constraints on the

available server capacity, and the ramp constraints, when we

study the competitive performance.

III. A COMPUTATIONALLY TRACTABLE FRAMEWORK

In this section, we introduce a computationally tractable

framework to attain small competitive ratios for general OCO

problems with linear in-stage costs, switching costs and ramp

constraints. Note that a key benefit for online decisions is

that the decision at time t can be adjusted based on the new

input A(t) just revealed. Thus, they can be more efficient than

classical robust optimization where all decisions must be made

ahead of time. This adjustability is similar to the adjustable

robust optimization [13, p. 355], [15], where some decisions

are made in a “wait-and-see” manner. However, searching

among all possible online decisions is usually an intractable

problem: each action X(t) can be an arbitrary function of the

past A(1:t), and searching over such a functional space is very

difficult when the problem size is large [13, p. 363], [15].

Instead, next we will borrow the idea of affine policies

from [13, p.368] and [15] in order to obtain a computationally

tractable framework.

Specifically, in our proposed robust affine policy (RAP), we

restrict X(t) to be an affine function of A(t), i.e.,

X(t) = η(t) +H(t)A(t), ∀ t, (18)

where η(t) ∈ R
N and H(t) ∈ R

N×M are determined before

hand. Note that once η(t) and H(t) are determined, the

online decision (18) becomes extremely simple. Instead, the

complexity moves to the pre-calculation of η(t) and H(t)
based on the knowledge of the uncertainty set U .

Given η(t) and H(t), the cost of the online decisions can

be readily calculated as

CRAP(A(1:T )|X(0),η,H) = C(X(0), X(1:T ), A(1:T )),

where X(1:T ) is given by (18). However, the online decisions

must still satisfy both (1) and (2). In other words, we need that

(1), (2) hold for all A(1:T ) ∈ U , given (18). (19)

We can thus formulate the optimization problem for minimiz-

ing the competitive ratio as

min
{X(0),η,H:(19)}

max
A(1:T )∈U

CRAP(A(1:T )|X(0),η,H)

COPT(A(1:T ))
. (20)

Although affine policies have been used in [13, p. 368] and

[15], using a similar approach as in the optimization problem

(20) introduces new technical difficulties. Note that for each

A(1:T ) ∈ U , the ratio
CRAP(A(1:T )|X(0),η,H)

COPT(A(1:T )) is convex in η, H

and X(0). Thus, the inner maximization produces a convex

objective in η, H, X(0) for outer minimization. However, it

is unclear how to solve the inner maximization problem itself

because it involves a ratio of convex functions. Next, we will

show step-by-step how to optimize an upper bound of (20) via

a tractable convex optimization problem.

Step-1: Even without considering the ratio, the numera-

tor CRAP(A(1:T )|X(0),η,H) in (20) is convex in A(1:T ).
Maximizing a convex function is in general intractable. We

resolve this issue by introducing a linear upper bound on

CRAP(A(1:T )|X(0),η,H) (see also [28, p. 228]). Specifically,

note that the only non-linearity in CRAP(A(1:T )|X(0),η,H)
is from the switching cost β|X(t) − X(t − 1)| = β|η(t) +
H(t)A(t)− η(t− 1)−H(t− 1)A(t− 1)|. We now introduce

a new variable µ(t) ∈ R
N that upper-bounds each element of

this switching cost for all A(1:T ) ∈ U , i.e.,

µ(t) ≥ β|η(t) +H(t)A(t)− η(t− 1)

−H(t− 1)A(t− 1)|, ∀ t > 1

µ(1) ≥ β|η(t) +H(t)A(t)−X(0)|











∀A(1:T )
∈U.

(21)

Let C̃RAP(A(1:T )|η,H,µ) =
∑T

t=1{Ct(X(t), A(t)) + µ(t)},
where X(t) is given by (18). Then, CRAP(A(1:T )|X(0),η,H)
≤ C̃RAP(A(1:T )|η,H,µ) for all A(1:T ) ∈ U . Hence, we

can obtain an upper bound of (20) by solving the following

optimization problem instead

min
{X(0),η,H,µ:(19),(21)}

max
A(1:T )∈U

C̃RAP(A(1:T )|η,H,µ)

COPT(A(1:T ))
. (22)

Note that the numerator is now a linear function in A(1:T ).
Step-2: The ratio in the inner maximization problem in (22)

is usually not a concave function of A(1:T ). Thus, it is still

not obvious how to maximize the ratio. Using the following

lemma from our earlier work [14], we now show that this

inner maximization problem can be converted to an equivalent

convex problem.

Lemma 1: For fixed B ∈ R
M×N , b ∈ R

M , c ∈ R
1×N and

α ∈ R, suppose that the following conditions are simultane-

ously satisfied:

(a) f(x) is a convex function of x ∈ R
N ;

(b) f(x) > 0 in the constrained region of Bx ≤ b;

(c) There exists x satisfying Bx ≤ b and cx+ α > 0.

Then, sup
x,y
{ cx+α

y : y = f(x),Bx ≤ b} = sup
x′ ,u

{cx
′

+ αu :

1 ≥ uf(x
′

u ),Bx
′

≤ bu, u > 0}.
A detailed proof is given in [29]. Note that the second

supremum is a convex problem because uf(xu ) is a convex

function whenever f(x) is convex [30, p. 89]. The result of

this lemma is somewhat similar to the convex transformation

of linear-fractional program [30, p. 89]. However, here the

denominator is non-linear, and thus Lemma 1 is more general.

We now verify that the conditions of Lemma 1 hold for

(22). For condition (a), we note that COPT(A(1:T )) is the

minimum of a convex function C(X(0), X(1:T ), A(1:T ))
over X(0:T ) in a convex set. Thus, COPT(A(1:T )) is a convex

function of A(1:T ) [30, p. 87]. For conditions (b) and (c),

COPT(A(1:T )) and C̃RAP(A(1:T )|η,H,µ) are both positive,

so these conditions trivially hold. Hence, based on Lemma 1,

we can convert the inner maximization of (22) to an equivalent



convex optimization problem. We note that although this

transformation has been used in [14], the step-1 from (20) to

(22) is also crucial because otherwise the numerator of (20)

is not linear and thus Lemma 1 cannot be applied.

Step-3: Note that the inner maximization of (22) can be

converted to a convex program, we can then focus on the

outer minimization. As we discussed earlier, the objective of

the outer minimization is convex in η, H and X(0). It remains

to check its constraints. These constraints are of the form that

some inequalities must hold for all A(1:T ) ∈ U . It turns out

that these constraints are also convex in η, H and X(0), and

can be converted to linear constraints (See [15] for related

techniques). We take one part of the constraint (19) as an

example. Note that by (19), the linear inequality (1) must hold

for all A(1:T ) ∈ U . For any η, H, the inequality (1) for each

t becomes,

D1[η(t) +H(t)A(t)] +D2A(t) ≤ 0, ∀ A(1:T ) ∈ U

⇔ max
A(1:T )∈U

{D1[η(t) +H(t)A(t)] +D2A(t)} ≤ 0

⇔ max
A(1:T )∈U

{[D1H(t) +D2]A(t)} ≤ −D1η(t).

(23)

Note that A(1:T ) ∈ U can be written as a set of linear

constraints1, thus the left-hand-side of (23) is of the form

maxCTA, subject to EA ≤ b where A corresponds to

A(1:T ), and η, H enter into the matrix C. By duality [30],

max
EA≤b

CTA = min
ETλ≥C

bTλ, (24)

where CT , bT , ET are the transposes of C, b, E, respectively.

Thus, (23) is equivalent to: there exists λ such that
{

bTλ ≤ −D1η(t)
ETλ ≥ C

, (25)

which is a convex constraint in λ, η(t) and C (i.e., η, H).

(See our technical report [29] for further details.)

In summary, through the above three steps, we have ob-

tained a convex problem (22), which can be effectively solved

to obtain η and H. (See our technical report [29] for details

of the optimization algorithms that we used.) Let CR be the

optimal value of (22). Then, the competitive ratio of RAP (18)

based on the optimal η and H is no larger than CR.

Remark: Although the solution approach in this section

assumes continuous decision variables, it can be generalized

to deal with certain integer constraints. Due to page limits, we

refer readers to [29] for details.

IV. ALGORITHM ROBUSTIFICATION

In Sec. III, we developed a tractable computational frame-

work to calculate an optimized competitive ratio CR among

the class of affine policies. Let the corresponding robust

affine policy (RAP) be denoted by π∗
RAP, which will attain a

competitive ratio no larger than CR. However, as is often the

case with competitive online algorithms in the literature, the

policy π∗
RAP may be too conservative in nature. For example,

1Note that U may involve absolute values, but can still be converted to a
linear form (see [29] for details).

consider the scenario where the uncertainty set U is given

by a predicted input trajectory plus/minus possible errors. In

order for π∗
RAP to attain the competitive ratio CR, it must

“defend” against the worst case where the input is far away

from the prediction. Specifically, it may have to over-provision

resources. As a result, if the input is actually very close to the

prediction (which usually corresponds to a larger probability

mass on average), π∗
RAP may incur a higher cost than necessary.

In contrast, a popular method in the literature to deal with

sequential decisions under uncertainty is RHC (Receding

Horizon Control) [12]. At each time t, RHC assumes that the

future demand is exactly the same as the most-recent near-term

prediction, which is based on revealed demand, day-ahead

prediction and possible constraints, e.g., (3), (6), (7). Then,

RHC minimizes the cost over the entire future horizon and

commits to the first decision X(t). Intuitively, if the input is

close to the prediction (which we refer to as the average case),

RHC may actually perform very well. The problem, of course,

is that RHC cannot guarantee as low a competitive ratio as

CR. In summary, we see a dilemma between worst-case and

average-case performance. In this section, we will address

this dilemma by significantly generalizing the “robustification”

procedure of our earlier work [14] to obtain good performance

for both worst-case and average-case inputs.

In our proposed robustification procedure, we begin with an

online algorithm π0 that is believed to achieve good average-

case performance (e.g., π0 could be a variant of RHC from

[12]). We are also given the competitive ratio CR, which is

optimized among the class of affine policies as in Sec. III. We

aim to produce a new online policy π that attains comparable

average-case performance as π0, but at the same time the

worst-case competitive ratio CR. Our basic idea for this new

policy π is to follow the decisions of π0 as much as possible,

unless doing so will violate the competitive ratio CR. Our first

step is thus to develop a way to check whether the decision

of π0 will violate the competitive ratio CR.

Toward this end, let us focus on a time t. Note that the

decisions of this algorithm π before time t have already been

made. The algorithm π0 now produces a decision Xπ0(t) for

time t. In order to verify whether this new decision will still

attain CR, we need to check whether the following holds:

Cπ(A(1:T )) ≤ CR · COPT(A(1:T )),

∀ A(t+ 1 : T ) ∈ UA(1:t),
(26)

where UA(1:t) is given in (8). Let Cπ(A(1 : t − 1)) denote

the past cost of the online algorithm π from time 1 to t− 1,

excluding the switching cost from time t−1 to t. (Again, this

cost is known at time t, regardless of whether or not π has

followed π0 before time t.) Based on the decision Xπ0
(t) of

algorithm π0, let Cπ0
(A(t)) = Ct(Xπ0

(t), A(t))+β|Xπ0
(t)−

Xπ(t − 1)|. Further, let Cπ(A(t + 1 : T )) denote the future

cost from time t + 1 to time T (including the switching cost

from Xπ0(t) to Xπ(t+1)). Then, because we want to follow



the decision Xπ0
(t), (26) is equivalent to checking

Cπ(A(1 : t− 1)) + Cπ0
(A(t)) + Cπ(A(t+ 1 : T ))

− CR · COPT(A(1:T )) ≤ 0, ∀A(t+1 : T ) ∈ UA(1:t).
(27)

However, the difficulty of checking (27) is that not only the

future input has not been revealed yet, we do not even know

what decision the algorithm π will take on these future inputs!

To circumvent this difficulty, we estimate Cπ(A(t + 1 : T ))
based on affine policies. In this case, the affine policy can be

written as

X(t′) = η(t′) +H(t′)A(t′), t′ = t+ 1, t+ 2, ..., T. (28)

Note that in general this pair of (η, H) may be different from

those calculated in the previous section. Let CRAP(A(t + 1 :
T )|η,H) denote the future cost Cπ(A(t+1 : T )) if π follows

the affine policy (28). We can then formulate the following

optimization problem:

ζ
′

1,t , min
{η,H:(19) restricted

to A(t+1:T )∈UA(1:t)}

max
A(t+1:T )
∈UA(1:t)

{Cπ(A(1 : t− 1))

+ Cπ0
(A(t)) + CRAP(A(t+ 1 : T )|η,H)

− CR · COPT(A(1:T ))}.

(29)

Similar to Step-1 of Sec. III, (29) may be intractable because

the maximization part is a non-convex problem. Nonetheless,

we can use the technique in Step-1 of Sec. III [see (21)]

to introduce a new set of variables µ that upper-bounds the

switching costs in (29). In this way, we can obtain an upper

bound of ζ
′

1,t via a convex program, given by

ζ1,t , min
{η,H,µ:(19),(21)
(31) restricted to

A(t+1:T )∈UA(1:t)}

max
A(t+1:T )
∈UA(1:t)

{Cπ(A(1 : t− 1))

+ Cπ0(A(t)) + C̃RAP(A(t+ 1 : T )|η,H,µ)

− CR · COPT(A(1:T ))}

(30)

where C̃RAP(A(t+1:T )|η,H,µ)=
∑T

t′=t+1{Ct′(X(t′), A(t′))+
µ(t′)}, X(t′) is given by (28), and the additional constraint

(31) is given below by

µ(t+ 1) ≥ β|η(t+ 1) +H(t+ 1)A(t+ 1)−Xπ0(t)|

∀A(t+ 1) ∈ UA(1:t).
(31)

Thus, if ζ1,t ≤ 0, we can be assured that following the decision

of algorithm π0 at time t will retain the same competitive ratio

CR.

We still need to determine what to do if ζ1,t > 0. In that

case, we no longer follow the decision of algorithm π0 at time

t. Instead, we find X(t) as well as a different affine policy

based on the following optimization problem

ζ2,t , min
{X(t),η,H,µ:(19),
(21) restricted to

A(t+1:T )∈UA(1:t)}

max
A(t+1:T )
∈UA(1:t)

{Cπ(A(1 : t− 1))

+ Ct(X(t), A(t)) + β|X(t)−Xπ(t− 1)|

+ C̃RAP(A(t+ 1:T )|η,H,µ)− CR · COPT(A(1:T ))}.
(32)

Note that as long as ζ2,t ≤ 0, we can use the decision X(t)
from the optimization problem (32) at time t, and we are

assured that following the corresponding affine policy will

attain the competitive ratio CR. Thus, at time t, if ζ1,t > 0,

our new algorithm π will follow X(t) from the optimization

problem (32). The detailed robustification procedure is shown

in Algorithm 1.

Algorithm 1 Robustification Procedure

Input: CR, U , and Algorithm π0

Output: π: Robustified version of π0

FOR t = 1 : T
Update UA(1:t), Cπ(A(1 : t − 1)), Xπ0

(t) and Cπ0
(A(t)).

Solve (30) to get ζ1,t
if ζ1,t ≤ 0 then

Xπ(t)← Xπ0(t)
else

Solve (32) to get a new optimal X(t)
Xπ(t)← X(t)

end if

END

Intuitively, if we can show that ζ2,t ≤ 0 at all time t, then

Algorithm 1 will attain the same competitive ratio CR. This

can be shown by induction: if at the previous time we already

verify ζ1,t−1 ≤ 0, it implies that the corresponding affine

policy should make the objective of (32) ≤ 0. Thus, optimizing

(32) will only produce an even lower ζ2,t ≤ 0. We then obtain

the following result.

Theorem 1: Algorithm π is CR−competitive, that is, for

all A(1 : T ) ∈ U ,

Cπ(A(1 : T )) ≤ CR · COPT(A(1 : T )). (33)

The proof is available in our technical report [29].

V. SIMULATION RESULTS

In this section, we use the NFV orchestration and scaling

problem in Sec. II-D as a case study to evaluate the perfor-

mance of our proposed competitive online algorithm. Since

there is little public data on NFV topologies and traces, we

use synthetic scenarios. There are 100 clients (L = 100), 10

servers (S = 10), and 10 different VNFs (F = 10). Other

parameters are listed in Table I.2 In Table I, U [a, b] denotes

the uniform distribution in the interval [a, b].

We will compare our proposed online algorithm π with both

the offline optimal solution and RHC (Receding Horizon Con-

trol). Note that [11] proposes an extended enhanced version

of RHC, called AFHC (Averaging Fixed Horizon Control),

which is shown to attain a bounded competitive difference.

However, AFHC assumes a perfect look-ahead window with

size ω, i.e, at each time t, the immediate future inputs in a

window of size ω is assumed to be known. In practice such a

2Note that with container technology (such as Docker [6]), the granularity
of VNF resource allocation is much finer [6] than with VMs. Hence, we use
a large value of Ws for the server capacity.



TABLE I: Simulation Parameters.

Time horizon T 24

Resources needed for a unit of VNF f w
f
s U[0,1]

on server s
Resources available on server s Ws 5000
Distance cost of routing a unit of traffic dl,s U[0,10]
load from client l to server s

Cost of host resources consumed by a p
f
s U[0,50]

unit of VNF f on server s

Uncertainty level ε
f
l
(t) 0.2

Parameter of the ramp constraint ∆f
X,l,s

U[1,5]

Parameter of the demand changing speed ∆f
A,l

20

Parameter of the budget constraint Γ 15

perfect look-ahead window is often not available. Hence, we

do not compare with AFHC with ω > 1. On the other hand,

RHC may be viewed as a special case of AFHC with ω = 1.

RHC is often found to exhibit good average-case performance

[12]. Thus, we can use it as the online algorithm π0, which

we will robustify as in Sec. IV.

In order to evaluate these solutions, we generate random

demand as follows. First, we generate the predicted trajec-

tory ADAP(1:T ). For each time t, ADAP(1:T ) is uniformly

distributed in a given set (see [29] for details). Second, we

generate the uncertain demand A′
real(1:T ) around ADAP(1:T )

by adding i.i.d white Gaussian noise with variance σ
f
l (t)

2 =

(εfl (t) · A
f
DAP,l(t) · ρ)

2, where we call ρ the “variability” of

the demand sequence. When ρ is large, the demand sequence

fluctuates more significantly in time and is more likely to

hit the extreme cases in the uncertainty set U . On the other

hand, the uncertainty set U is given independent of ρ, and

hence the value of CR is also independent of ρ. Thus,

the demand trajectory A′
real(1:T ) may not always obey the

constraints imposed on the uncertainty set U , including (3),

(6), (7). Hence, we further adjust it to obtain the “real” demand

iteratively in time. Specifically, for each t, if A′
real(t) (along

with Areal(t − 1)) does not satisfy the constraints of U , we

change it to the closest value that satisfies the constraints of

U . (See our technical report [29] for details.)

Note that the offline optimal solution is assumed to know

Areal(1:T ) in advance. In contrast, at each time t, our proposed

policies and RHC only know the real demand up to time

t, as well as the predicted demand for t + 1, ..., T . As we

mentioned in Sec. I, RHC may cause infeasibility due to the

hard feasibility constraints. Here, whenever RHC finds no

feasible solution at time t, we allow it to violate the ramp

constraint (2) by paying another high penalty of 103 for each

unit of violation of the ramp constraint. Note that our proposed

algorithms never pay this penalty because they always respect

the ramp constraints.

In Fig. 1, we report the competitive ratio CR of our

proposed robust affine policy π∗
RAP. As we vary the uncertainty

level ε of U , the competitive ratio increases almost linearly.

Note that even when ε = 0.6, i.e., the real demand may vary

60% from the predicted value, the competitive ratio is around

2.5, which is relatively small.

The value of CR reported above is the theoretical upper

bound of the competitive ratio over all inputs. We also col-

lect the empirical competitive ratio (ECR) under the random

demand trajectory that we generated, which is the ratio of the

total cost of an online algorithm π to that of the optimal offline

solution for each generated trajectory.

We plot in Fig. 2 the empirical CDF (Cumulative Distri-

bution Function) of the value of ECR over 20 trials, where

ECRRAP, ECRRHC and ECRRobustified-RHC correspond to RAP,

RHC and the robustified version of RHC, respectively. We

first observe that at all values of variability ρ, the ECR of our

proposed robustified-RHC algorithm never exceeds the value

of CR (which is 1.2786 when ε = 0.2). In contrast, the ECR

of RHC increases as ρ increases, and it exceeds CR for a

significant fraction of trials when ρ = 1 and ρ = 20. Clearly,

RHC fails to control the worst-case competitive ratio when

the future demand is highly variable. Specifically, due to the

ramp constraint, such high variability may lead to infeasibility

for RHC, which produces the high online costs. On the other

hand, π∗
RAP incurs much higher ECR than both robustified-

RHC and RHC when ρ = 1
30 . This suggests that RAP is too

conservative when the prediction turns out to be quite accurate.

In summary, what is particularly appealing for our proposed

robustified-RHC policy is that it not only attains much smaller

ECR than RHC when ρ is large, but also attains almost the

same performance as RHC when ρ is small.

In Fig. 3, we plot how CR varies with the magnitude

of switching costs. Intuitively, when the parameter β of the

switching cost is large, the online decisions become more

difficult, and thus the competitive ratio will increase. This is

shown in Fig. 3. For example, when β = 10, Fig. 3a shows

that the total amount of switching cost (17) is almost 60%
of the in-stage cost (15). From Fig. 3b, the corresponding

competitive ratio increases to about 3. However, when β

further increases, the switching cost dominates (See Fig. 3a),

and our competitive ratio further increases. We note that for

certain online problems (e.g., [31]), constant competitive ratios

may be obtained even when the switching cost is arbitrarily

high. This suggests that there may be room to improve our

online algorithms, e.g., by integrating ideas from ski-rental

problems [2], [31], to obtain even better competitive ratios.

VI. CONCLUSION

We study competitive online algorithms for OCO problems

with linear in-stage costs, switching costs and ramp con-

straints. First, we present a powerful computational framework

to obtain an optimized competitive ratio given an uncertainty

set. Second, we provide a robustification procedure to obtain

robustified online algorithms with both good average-case per-

formance and an optimized competitive ratio. We demonstrate

the power of our proposed approach through a case study for

NFV. The robustified version of a popular heuristic algorithm

RHC is shown to attain good performance for both average-

case and worst-case inputs. For future work, we plan to study

matching lower bounds for the optimal competitive ratio and

compare that with ours. For NFV, we are also interested
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in generalizing our methodology to incorporate precedence

constraints [21], [22].
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