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1. Introduction

The M; model of radiative transfer is a nonlinear system of hyperbolic balance laws, and reads

Y + V- YV = —oy @ + ¢ (1.1a)
dy D+ Ve - y DOy Wy = —(05 + oa)y!V + ¢, (1.1b)
vOx,y,00= vy,  ¥vOxy,0) =y ). (1.1¢)

The quantities ¥, v, ) are, respectively, the zeroth (particle density), first (mean velocity) and second moment
(pressure) over the unit sphere S2 of the angular flux v/,

AL :=/ v(R)de, WO ;=/ Qu()dR, y? = Q2Ty(R)dse,
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and are, respectively, a scalar, a vector, and a matrix. The system is supplemented by the closure condition

(1)
WWWWW%:m§@w@, (1.2)
where
_ 1—x(np).,  3x(n)—1nn 344
D(n) = 2 id + B W and X(f) = 5—‘{_27 fifz fOl‘f (S [0, 1] (1.3)

Here, D is a matrix, n = % is a vector, and f = |n| is a scalar. The quantity x(f) is called the Eddington factor [1,2]. Let

X C R? be a bounded polygonal domain, then the system (1.1a)-(1.1b) can be written as a general first-order system of
balance laws

U
E+V-f=s, inX x (0,T) (1.4)
U(x,y,0) =ug(x,y), for(x,y) e X (1.5)
where F = [F, G] and
W(O) w)sl) 1//)('1) —o‘aw(o) I q(o)
U= |y | F=|v@|. 6= |v@|.S=|—(os+ov{" +q" |,
o] L 9] Leromt+e

keeping in mind the closure relation (1.2). Here, w,ﬁ” and \/I)(,U denote the first and second component of (1), respectively,
similarly for wg’ to %(/5)-

The system has to be complemented with boundary conditions of the form

Ux,y, t) =y, y,t), for(x,y) € I(0X,U) x (0, T), (1.6)

where the operator I returns the influx boundaries, i.e. those parts of the boundary where information is transported into the
domain [3]. Whether a part of the boundary is an influx boundary also depends on the solution itself, since the information
direction can be read off the sign of the eigenvalues of the directional Jacobian in normal direction at these points. In our
numerical experiments, we consider compactly supported initial data which do not reach the boundary before the final time.
We prescribe Dirichlet boundary conditions identical to the initial conditions, hence the numerical solution is unaffected by
the boundaries.

The expression for D in (1.3) comes from closing the moment system by an entropy closure using the entropy for photons.
See for example [1,4-11] and references therein for more information. These references also discuss many properties which
make the M; model, and entropy closures in general, quite appealing. Among these are symmetric hyperbolicity, i.e. the
system can be transformed into a symmetric hyperbolic system, and a natural entropy-entropy flux pair, both of which
ensure some level of well-posedness [3,12]. The hyperbolicity is of main interest in this work, and will be discussed in
detail below. We especially focus on its connection to realizability — the fact that a moment vector can be reproduced by a
non-negative particle density.

When the M; model is discretized using a monotone first-order scheme for hyperbolic equations (e.g. the Lax-Friedrichs
scheme), it can be shown that the numerical solution will never leave the set of realizable moments [13]. This means that
starting with a realizable initial condition, the numerical solution will be realizable at every time step. This is in particular
required, since the model is not well-defined outside of the realizability set.

Unfortunately, and this is the main topic of this paper, higher-order numerical schemes do not automatically preserve this
property, as will be discussed later. We use the Discontinuous Galerkin (DG) method, which provides a general framework
to construct numerical schemes of arbitrary approximation order to solve hyperbolic balance laws. The original DG method
was introduced in 1973 by Reed and Hill [14] for neutron transport and has been developed further to the Runge-Kutta
Discontinuous Galerkin (RKDG) method by Cockburn et al. in a series of papers [15-19]. A (k 4+ 1)st order RKDG method
uses a piecewise-polynomial approximation of degree k in space and a (k 4+ 1)st order strong stability preserving explicit
Runge-Kutta scheme in time.

A DG scheme has to be supplemented by a limiting strategy. This typically consists of a slope limiter which ensures
stability of the solution. A standard example of such a limiter is the TVBM (total variation bounded in the means) limiter [ 18].
For a system of balance laws, limiting the conserved variables component-wise can result in oscillations, due to the Gibbs
phenomenon [20]. Instead, the limiter has to be applied in characteristic variables, i.e. Riemann invariants that are obtained
by diagonalizing the system Jacobian [19,21]. In general, limiting in the characteristic variables gives superior results [ 13,22].
However, there are numerous examples for which the numerical solution obtained by limiting in the characteristic variables
and component-wise limiting are comparable, e.g. [21,23-26]. In these situations, since the transformation to and from the
characteristics requires additional computational effort, component-wise limiting is faster.
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It has been shown in [13] that a robust numerical approximation of the M; model in 1D requires an additional limiter:
a realizability limiter which ensures that the model remains well-posed. This has been extended to the general, one-
dimensional, My case in [27]. In the current work, we extend this realizability limiting strategy to two dimensions. In
addition, we demonstrate that in the absence of the realizability limiter, the TVBM limiter applied in the characteristic
variables leads to a qualitatively superior solution compared to component-wise limiting; however, this limiter alone is
not enough to guarantee moment realizability of the scheme.

The M; model therefore might serve as a good benchmark test for DG implementations, because it absolutely requires
very careful limiting. We arrive at this conclusion experimentally, by running several well-known radiation transport test
cases with two independently developed third-order DG schemes on unstructured triangular grids and regular rectangle
grids.

The rest of this paper is organized as follows. In Section 2, we describe in detail the concept of realizability, and how it
is connected to the well-posedness of the M; model. The DG implementations are described in Section 3. The realizability
limiter will be developed and analyzed in Section 4. Section 5 contains the results from the test cases.

2. Properties of the M; model

From the general theory of moments one can deduce conditions on a given set of values, that are necessary and sufficient
for the existence of a probability measure whose moments match these values [28]. Such moments are called realizable. In
our case, we can restrict ourselves to measures that have a formal density (i.e. for the closure we allow Dirac §’s as densities).
Given a scalar ¥ and a vector ¥(!, these are the zeroth and first moment of a non-negative density if and only if [28-30]

w(o) > 0 and |‘/,(1)| < w(o)’

The interior of the realizable set is described by () > 0 and || < (. It has been shown in [31] that, under reasonable
assumptions on the initial conditions, the analytical solution of the M; model in one spatial dimension remains realizable
for all time. Until now, no similar statement could be made for the M; model in multiple dimensions or higher-order My
models.

As mentioned before, the hyperbolicity of the M; model is a direct consequence of the entropy closure. Additional insight
can be obtained by computing the eigenvalues explicitly. Given a unit direction vector n = (n, n,)", we have to determine
the eigenvalues of the directional Jacobian

ndx(U) + nyJy(U), (2.1)

where J; and J, are the Jacobians of F and G, respectively. Because of the invariance of the model under coordinate
1

transformations, the eigenvalues can only depend on the angle between (" and n, and the absolute value lﬁo;l- The

eigenvalues can be computed analytically, but the formulas are very lengthy so we do not show them here (cf. [32]). Fig. 1
shows the eigenvalues for two different angles. The most important observation is that the eigenvalues collapse into one
value at the boundary of the realizability region, i.e. for WE;;‘ = 1. Inspection of the Jacobian shows that at that boundary
the Jacobian is no longer diagonalizable, i.e. the M; model loses (strict) hyperbolicity. This means that the M; model is only
well-posed in the interior of the domain of realizability. As a consequence, in a numerical scheme one should always ensure
staying in the interior of the realizability domain.

3. Runge-Kutta discontinuous Galerkin method
3.1. Spatial discretization

In this section, we describe the Runge-Kutta Discontinuous Galerkin method (RKDG) for solving (1.4)-(1.6). Following the
approach outlined in a series of papers by Cockburn and Shu [ 15-17,19], we discretize in space using piece-wise polynomials
of degree k, that are allowed to be discontinuous at the cell interface. The time discretization is performed by a strong stability
preserving explicit Runge-Kutta scheme of order k + 1 [33].

In the following, let 7, be a partition of a polygonal computational domain X and K be an element in 7, with boundary
edges e. For each t € [0, T], we seek an approximate solution Up(x, t) in the DG space

VE={v e L®(X) : v|x € PK), VK € Tp}

where PX(K) is the set of polynomials of degree k. We follow the Galerkin approach: first we multiply (1.4) by a smooth test
function v and integrate by parts over each element. We replace the exact solution U and smooth test function v by the
approximation solution Uy, and vy, (both in V,f) respectively to obtain:

%/Uh(x,t)vh(x)dx—i-z F(Up(x, t)) - me gvp(x)dI”
Kk ecdk ¥ €

—/]—‘(Uh(x,t))-Vvh(x)dx: /S(Uh(x, O)un(x)dx Yoy, € V¥, (3.1)
K K
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Fig. 1. Eigenvalues of the M; model as a function of for 1//y = 0 and two values of n.

where n, g is the outward unit normal to the boundary of K. We take Uy(x, 0) on each element to be the L,-projection of the
initial condition on V[, i.e.,

f Un(x, 0)vn(x) dx = f upup(x)dx, Vuy € V¥ (32)
K K
The choice of a discontinuous basis implies that our approximate solution Uy(x, t) is discontinuous across edges. In this case
the normal trace F(Up(x, t)) - ne ¢ is not defined on the element boundary dK. We replace the normal trace by a numerical
flux function H, k(x, t) that depends on the approximate solution from the interior and exterior of the element K. Thus we
define

He k(x, t) = He kg (Un(x™ ) 1), Up(x™1, 1)), (3.3)
where
Up(x™™ ) t) = lim  Up(&, 1),
E—(x,y)ek

for the approximate solution defined from the interior of the element K and
wh(x, t) ifx € 90X,

ext{K} —
Un(x ,t)—{ lim Up(&,t), otherwise
E—(xy)gK

for the points on the exterior of K. Using the numerical flux (3.3), the discrete weak formulation (3.1)-(3.2) becomes

oo Lo oot 3 [ Hwio ), 0,066, e dr
ecdK
—/]—‘(Uh(x, t))onh(x)dx=/S(Uh(t,x))vh(x)dx, Y, € V,lf, (34)
K K

f Un(x, 0)op(x) dx = / upup(x)dx, Vuy € VF. (3.5)
K K

We choose the global Lax-Friedrichs flux

He k(a,b) = %|:}‘(a) ‘Mg + F(b) - ne g — a(b— Cl)i|, (3.6)

where the numerical viscosity constant « is taken as the global estimate of the absolute value of the largest eigenvalue of
the Jacobian (2.1). For the M; model, we can take o = 1.

Boundary conditions (1.6) have to be incorporated via the quantities U,(x®K}, t) in the edge integral, if the edge e is
part of the boundary. We take the simplest approach possible by adding so-called “ghost cells” which are then filled with
the corresponding values for U. Note, however, that the validity of this approach, due to its inconsistency with the original
boundary conditions ( 1.6), is not entirely non-controversial, but the question of appropriate boundary conditions for moment
models is an open problem [34-38] which is not explored here.
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Eqgs. (3.4)-(3.5) can be written as a system of ODEs on each element after inverting the mass matrix in (3.4). Indeed, let
{01, ¢2, ..., @n,} denote a basis of the space of polynomials of degree k on cell K, where N, = %(k + 1)(k + 2). On each
element, the DG approximate solution Uy, of the components has the form

Ng

Ng Ng 1)
0 © v vy
WO = } :a:/f o, Y = E af* g, and YV = E o ¢ 37)
i=1 i=1 i=1

© oy . . . L .
where a;/' , oz,‘(/’ , a}/’ are unknowns to be determined. Using the form of the approximate solution in (3.7), we can write

(3.4)-(3.5) in matrix form:

d
Mﬁah + Hap — Fap = Say, (3.8)
Mo = U, (3.9)
where «y, is the vector of solution coefficients and
(M); = / eipi, (H) = Z /He,K(X, i, (F)i= / F(Un) - Vo (3.10)
K ecax e K
(5) = [ S and (Vo) = [ g (3.11)
K K
o o (0) () L (1 (1) (1) (1) (0) 4 (1 (1)
The complete coefficient vector is given by o, = {a}” e, oz;gk ,ai/x e, aﬁx ,oz;//y e, aﬁky },wherea;ﬂ ,a;/* , ;//y

are the coefficients of the numerical approximation to the zeroth and first order moments, respectively. We can write (3.8)-
(3.9) in the form

%ah = Lp(ap), onX x (0,T) (3.12)

an(x,0) = ap (3.13)
where

Lh(ap) = M~ '(Say + Fay — Harp). (3.14)

We approximate the solution by discontinuous quadratic polynomials in space and the third-order strong stability preserving
Runge-Kutta time discretization scheme proposed in [39,40], also known as the Shu-Osher scheme. Let {t"}g=0 be a partition
of [0, T] and let At = t""' — ", n = 0,...,N — 1, then the time stepping scheme updating the coefficients of the DG
polynomials can be written as:

e Seta® = M~ 'Up;

e Forn=1,...,N — 1compute aﬂ“ as follows:
1. a?) = ap + Aty Ly(ap)
2 1 1
2. oy - %aﬂ + %(a,(l )y Atnﬁh(al(l )))
3 2 2
3. ) = ol + %(a,ﬁ ' Aty Ly(el?))
4. Set aﬂ“ = a,(f .

This Runge-Kutta method is a convex combination of (iterated) forward Euler steps. Using the convexity of the
realizability domain, one can show that it preserves realizability under a specific CFL-condition. We use this property to
achieve high order also in time without the need of dealing with complicated time-discretizations in the proof of realizability
preservation.

3.2. Quadrature rules

The assembly of the discrete operator £p(a) (3.12) is done using numerical quadrature that is exact for polynomials of
degree 2k + 1 for edge integrals, and degree 2k for volume integrals, respectively for both the rectangular and triangular
meshes. In addition, we will need a modified Gaussian quadrature rule to construct the realizability limiter. This rule consists
of quadrature points in the interior of the cell and on its boundary where the latter form one-dimensional quadratures on
the element edges. This is crucial to balance the different appearing types of spatial integrals in the proof of the realizability-
preserving property. These rules are described in the following section that closely follows the construction in [41].
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Fig. 2. Position of the quadrature nodes under the three projections g;. The color corresponds to the weight w? at the quadrature node.

3.2.1. Triangles
We start with two quadrature rules on the interval [— 1, %], a Gaussian rule

(e D) e s

and a Gauss-Lobatto rule

1 1
=2 (-1 0 1), @%= 5 (1 4 1). (3.15)
We map the tensor product rule of those Gauss and Gauss-Lobatto quadrature rules from the square [—5, 5]2 onto the
triangle K with vertices VX, ..., VX using the three degenerate projections
1 1 1 1 1
g1(u,v)=(5+v)V{( (2 +U)(5 )V£(+(5—U)(§—U)V3K
1 1 1 1 1
&(u,v) = (5 + )V + (2 + u)(i I (5 - u)(i —v)Vf
1 " 1 1 " 1 1 K
g(u,v) = (5 +)V; +(§ + U)(E -V, +(5 - U)(E —v)V,.

Let U denote the cell average of the numerical solution Uy, represented by the DG polynomial py on triangle K, following [41]
it holds that

2SS Y nea ) (5w

i=1 a=1 =1

Note that the Gauss-Lobatto points on the edge are always taken twice (see Fig. 2).
The authors of [41] showed that the cell mean can be constructed as the following convex combination of inner and
boundary points:

3 L
_ 2 : .
U =) gwﬂﬁ;“ﬂugj}; + Y U (3.16)

where U;””" and U{,’}f represent the evaluation of the DG polynomial py at the respective interior and boundary quadrature
nodes (x)"", y'"") and (x!'¢, yI"§ ) (compare Fig. 2), and L = 3(N —2)(k + 1) = 9 is the number of inner points. With this we
obtain a quadrature rule with 18 points which is accurate for polynomials of order 2k — 1 = 3.

The flux term in (3.4) should be approximated by the 1D (k + 1) point Gauss quadrature with weights w?:

Zwam ydr = ZZ%N%%M(%%W& (3.17)
e

ecdk i=1 =1

where [}, is the length of edge eX.
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3.2.2. Rectangles
For the assembly of the discrete operator in the rectangular DG code we use a tensor quadrature rule of the 1D 4-point
1

Gauss-Lobatto rule on —5, 31k

o (L5 o 2= L
u_zﬁ(ﬁ 1 1 +5), S5 5 01).

However for the proof of our main theorem we only need the three point rule (3.15) which will give a weaker CFL-condition.
3.3. Slope limiting

In order to enforce stability [42,43] and to mitigate numerical oscillations caused by the Gibbs phenomenon we apply a
slope limiter to every stage of the Runge—Kutta time stepping scheme. We implement the slope limiter detailed by Cockburn
and Shu in [15]

a if |a;] < M(Ax)?

m(ay, az, ...,a,) = .
(@, a n) m(ay, az, . . ., ay) otherwise,

(3.18)
where M is an estimated bound on the second derivative of the solution around smooth extrema [ 16], Ax is the characteristic
length of each element and m is the minmod function

sign(a;) minflay|, |az|, ..., |aa[}  if sign(a;) = sign(az) = - - - = sign(ay),

m(ay, az, ..., ay) = else

The limiter can be applied component-wise to the primitive variables or in the characteristic variables. For limiting in the
characteristic variables we first construct a matrix R that diagonalizes the directional Jacobian in the normal direction
n = (ny, ny) evaluated at the mean in each element

R (ndi(Uy) + ny]y(Uk))R = A. (3.19)

Applying the limiter in the characteristic variables ensures that the solution is total variation bounded in the means (TVBM).
4. Realizability limiter

We want to construct a scheme so that the numerical solution stays realizable with respect to the cell means. The proofs
presented in this section follow the strategy used in [44], which has also been used in the construction of realizability-
preserving limiters for the M; model in 1D [13].

First we need a technical lemma.

Lemma4.1. Let v € R? be an arbitrary unit vector. For the My model the combination of moments (y(© 4 (1. v (1) £ . )
is realizable.

Proof. Let v be a non-negative density that realizes y(*) and (. Then (1 & v - £2)y(£2) is a non-negative density that
realizes the combined moments. O

Let us now consider the higher-order scheme (3.4). Due to the convexity of the realizable set it suffices to investigate the
forward-Euler discretization in time since the used SSP integrator is just a convex combination of such Euler steps.

Theorem 4.2 (Main Result). One forward-Euler step of the scheme (3.4) with the DG polynomial px of degree k yields realizable
cell averages if px(xs, ys) is realizable for all (x, ys) € SK and if the CFL condition

2. At
30 (1 — At (04 + 0%)) — 2|K|l;( >0Vi=1,...,3 (4.1)

holds. Here w1 is the quadrature weight of the N-point Gauss-Lobatto rule on [—%, %] for the first quadrature point.

Proof. For simplicity assume that o; = o, = 0 and q¢ = 0. Furthermore, to ease notation, we drop the symbol n for all
quantities at the current time step. After application of the forward-Euler scheme the cell averages in element K satisfy

3
—n+1 3 At E int :
U =Ux~— K| i /e,-HeiJ< (U, Uiy dx

(36) 1/}1(<0) / At / ‘/fK(l) 1/fK(z) N
= PR—— d ’
(‘7’1(<1) 2[K] 4 Z 1/’(1 2 K| £ Z Vi) = Vi) Merk "
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where Uy = pg and Uki) = pk() denote the polynomial representations of Uy, on element K and on its neighbor K(i) sharing
edge e; with K, respectively.

Evaluating the second integral using the Gaussian quadrature as in (3.17) it is easy to see by using Lemma 4.1 that on
each edge e; the quantity

(0) (1) k+1 (0) (1)

Vi) = V) - Meik dx=1 Z Viing — Ykip - Meik

(1) (2) n —K (1) (2) n
WK(: WK(: e, K =1 1/’K(z K(i),p * "ei.K

isrealizable since ) w? = 1.Here, 1/;,2%?)‘ P denotes the evaluation of the polynomial representation of 1(%) on the neighboring

element K(i) at the quadrature node associated with w? on e; and similarly for all other moments.

Now it suffices to show that the first terms in this equation are realizable, too. We rewrite the cell average into a
combination of interior points and edge points:

3 k+1
ZZ w AlUmt_i_Z~yUmner
i=1 =1
k+1
f Ug dx =Y wPL Ul
] /3 1

Then

L 3 k+1 2 At
_ ~ 1 yinner Bymt (21 —
( m) Mlz/( )dx_Zw e S w2 - k).

y=1 i=1 g=1

Under the CFL condition, we immediately get that

3 k+1 At
~ y 1 rinner B yint 7/\1 i
Yarup+ Y3 wtoty (3 - k)

y=1 i=1 p=1

is realizable since the quadrature weights sum up to 1.
For absorption and scattering we assume for simplicity that o5 and o, are constant in K. Then we can write the cell
averages of the source term as

3 k+1
=35t (st v (o))

i=1 =1 i,B,int
- 0
+ WY (O’ Uinner +o ( ))
]/2:; o 1)ﬁy inner

Thus the updated cell averages can be written as the moments of a non-negative distribution, i.e. UI’(’+1 = f (é) Ex(£2)d2
with
L 0.
Ex=) [(1 — At @+ o) ¥+ f e d.Q]

y=1
int _ _ii int
o Dow [w (— (1= At (00 + 05) 2|K|1) 2|1<| Vi p fw drz}

The quantity 1//”””” is any nonnegatlve distribution function realizing Uy inner similarly for '”t and Y, g. It is easy to see that
under the given assumptions Z¢ > 0, which implies that U'Prl is by deﬁmtlon realizable. D

A similar result can be obtained on the rectangular grid by going through the same lines of the previous proof, replacing
the quadrature rules on the triangle with those on the rectangles. More details can be found in [29].

Theorem 4.3 (Main Result for Rectangular Grid). One forward-Euler step of the scheme (3.4) with the DG polynomial px of degree
k yields realizable cell averages if px(xs, ys) is realizable for all (xs, ys) € S,’f and if the CFL condition
At

At
1— At - = _= >0 42
W1 ( (0q + 05)) Ax ay > (4.2)

holds. Here w1 is the quadrature weight of the N-point Gauss-Lobatto rule on [— % %] for the first quadrature point.
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Remark 4.4. We want to note that the required CFL conditions (4.1) and (4.2) are not any more restrictive than what standard
DG methods generally incur. Assume for simplicity o, = os = 0 and consider (4.2), the stability condition for the DG scheme
reads
At At 1
—+—= )
Ax Ay T 2k+1
where k denotes the polynomial degree used. We collect the corresponding values for the classical and our modified CFL

condition in the following table, where w; is taken from the N-point GauR-Lobatto rule that integrates polynomials of
degree k:

(4.3)

k 0o 1 2 3 4
_1 1 1 1 1
2k+1 3 5 7 9
S 1 1 1
1 2 6 6 12

Note that w; = %kz + k+ % for k odd. It can be seen that these values are in a similar range for reasonably small k.

All that remains is to ensure that the assumptions of the two theorems are satisfied. This can be achieved by a simple
scaling limiter. A similar limiter has been derived in other contexts, e.g. shallow water [45], Euler equations [44] and gas
dynamics [46]. The basic idea is to dampen the higher-order parts of the DG polynomial px(x, y) until at all quadrature
nodes (xs, ys) € S,’f the evaluation p(xs, ys) is realizable. It has been reported in [46] that this limiter, due to its simplicity,
can destroy the formal accuracy of the scheme in certain non-generic situations. This has been investigated in a one-
dimensional setting for minimum-entropy models in [27]. There, it has been shown that close to the realizability boundary
the convergence order can drop. However, we still expect order preservation in most practical cases.

Writing the limited polynomial as

N Ni
_ (3.7)
Pi(x,y) = 0Pk + (1 = O)pi(x.y) = 0o o1 +(1-0)) alpi=alpi+(1-0)> oy
i=1 i=2

it becomes clear that the cell average of py is preserved and only higher-order coefficients are damped by the factor (1 — 6)
where 6 is chosen as the minimal value in the set

{(5 e [0,1] ] pi(xs,ys) is realizable for all (x, ys) € S,’f} . (4.4)

Such a 6 always exist under the assumption that py is realizable as a consequence of the convexity of the realizable set. To
calculate 6; it suffices to find the intersections of the ray segments

{60 + (1 — 0)pi(x6, ¥5) 1 6 € [0, 11}, (x5, ¥5) € SF (45)
with the boundary of the realizable set
[(0@, y D) e R? | @ = [y} = {(I/,m), yV) e R? | @ > 0, (y©) = |1/,<1>|2}. (456)

Using the condition (w(m)2 = |y |2 from (4.6) and the parameterization of the ray segment (4.5) we get

(69 + (1= 03 @)* £ (09) + (1 — ) V)* + (95" + (1 — )y V).
Rearranging this expression, collecting the coefficients in powers of 6 yields the polynomial equation
0=r(0)=ad®>+bo +c,
a= (50 =y + (B =) + (50— 9
b =2 (W) = 90y = (U0 B0 = () D07
€= =) + )+ ()

Since r(0) is a quadratic polynomial, it possibly has two zeros in the set [0, 1]. Due to convexity, the largest zero in this set is
the correct choice for 6;, since it corresponds to the intersection with the (%) > 0 part of the double cone |1//“)|2 < (¢,
while the smaller zero (which is by definition farther away from Uy ) corresponds to the intersection with the ¢ < 0 part
of the double cone. Finally, set 6 := max;0;.

Note that in each intermediate step of the Runge-Kutta scheme the realizability limiter is always applied after the slope
limiting. Applying the slope limiter can destroy the realizability again [29].
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Table 1
Abbreviation of limiter combinations. Setting M = oo is equivalent to disabling the slope
limiter. O and A correspond to the rectangular and triangular meshes, respectively.

Abbr. Explanation

SLMO/A Slope limiter in primitive variables with the constant M specified
CLMO/A Slope limiter in characteristic variables with the constant M specified
SRLMO/A Slope limiter in primitive variables + realizability limiter

CRLMO/A  Slope limiter in characteristic variables + realizability limiter

5. Numerical results

In this section, we compare the performance of the RKDG schemes on unstructured triangular meshes and uniform
rectangular meshes for various combinations of limiters. Specifically we consider the limiter combinations given in Table 1.
The time step is taken as indicated by (4.1).

To ensure that our research is reproducible, the codes used in this publication can be found on GitHub, see [47].

In the numerical results that follow we denote the mesh size on both unstructured triangular meshes and uniform
rectangular meshes by h. All plots show either the zeroth moment () or the norm of the first normalized moment

V] = |%|. The loss of realizability is indicated in the latter by the use of black (|¢'| > 1) and white (v < 0)
colors.

Before we describe the test cases and the results, we detail some of the steps in the algorithm, and the computation of
the errors.

Fixing a DG solution which is not realizable. In test cases where the realizability limiter is not used (SLM/CLM) the solution
may violate the realizability condition and thus the flux function cannot be evaluated. We therefore compute a modified
numerical solution which we use only to compute the flux, i.e. the actual solution in each cell remains the same. We modify
the values of the numerical solution locally at each Gauss point as follows: let € be a specified numerical tolerance, if () < €
then we set ¥/(¥) = ¢. In addition, if the normalized first moment

1/,(1)

f3=|W| > (1—¢),

1 1
we modify the values of first moment as follows: w,EU = 1/}—x(l —e)and wﬁl) = wf—y(l —¢). We choose a tolerance of e = 10712,

Transformation to characteristic variables.

In the case of the triangular meshes the matrices R and R™' from (3.19) are computed using the GSL linear algebra
package [48] while they can be precomputed analytically in case of the rectangular grid. The transformation to and from the
characteristic variables is achieved by left multiplying the variables by R ~! and R, respectively.

In case that we need the transformation to characteristic variables and do not use the realizability limiter (i.e. CLM),
we use the same realizability fix as in the flux function, but for the computation of the transformation matrices only. This
ensures that transformation matrices are invertible due to the strict hyperbolicity of the moment system in the interior of
the realizable set. The transformation matrix has a condition number of roughly 2 /¢, where € is the distance of the (cell mean
of the) normalized first moment to the realizability boundary. Note that this implies that close to the realizability boundary,
significant round-off errors may occur. However, we have performed numerical experiments with the linesource test case
with e = 107>, 1072, 1074, and observed no significant effect of the cutoff parameter.

Comparison to a reference solution. We note that for a general f > 0 we have that

1
og10(Nl1ky = Mog1o( Ml 2k + ||mvxf|h2(1<)-
We can therefore use the evaluation of the DG polynomial and its first-order derivatives in every element K to calculate its
logarithmic Sobolev representation locally.

The reference solution is computed using a first-order Lax-Friedrichs finite-volume scheme on an equidistant rectangular
grid with 8192 x 8192 grid points. The gradients for the reference solution are obtained using centered finite difference
formulas. Finally, the argument in the norm is evaluated on every point of the reference grid and integrated using a
quadrature with equal weights at exactly those reference points (rectangle rule).

Choosing the limiter parameter M. The solutions of the benchmark test cases that follow are plotted on a logarithmic scale.
We thus choose the value of M in (3.18), using the logarithmic Sobolev norm error, as

M = argminy.qlogio (47 ) — 10810 (V) lrce (5.1)

Since every evaluation of (5.1) requires to solve the full system of equations, finding the true minimum using e.g. a gradient
method is not feasible. We therefore restricted ourselves to the discrete set of (almost) logarithmically spaced values
M e M :=1{0.1,0.2,0.5, 1, 2, 10, 22, 46, 100, 150}.
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Table 2
L'- and L*°-errors and observed convergence order v for the first component of the realizability-limited, piece-wise linear and quadratic reconstructions
of U(x, y) from (5.2) with £ = 1074,

1/h k=1 k=2
E} v E° v Omax E; v E° v Ormax

5 5.535e—02 - 2.790e—01 - 3.210e—01 1.787e—02 - 6.567e—02 - 1.783e—-01
10 1.252e—02 2.1 1.269e—01 1.1 3.960e—01 1.483e—03 3.6 1.153e—02 2.5 5.305e—02
20 2.774e—03 2.2 3.831e—-02 1.7 4.117e-01 1.382e—04 3.4 1.495e—-03 2.9 1.391e—-02
40 6.500e—04 2.1 1.001e—02 1.9 4.154e—01 1.551e—05 3.2 1.878e—04 3.0 3.519e—03
80 1.568e—04 2.1 2.531e—-03 2.0 4.164e—01 1.881e—06 3.0 2.350e—05 3.0 8.824e—04
160 3.847e—05 2.0 6.345e—04 2.0 4.166e—01 2.332e—-07 3.0 2.938e—06 3.0 2.205e—04
320 9.526e—06 2.0 1.587e—04 2.0 4.166e—01 2.909e—-08 3.0 3.673e—07 3.0 5.431e—05

5.1. Failure of the realizability limiter

We want to extend the investigation in [27] to our two-dimensional setup. Define the two moment vectors

1 1 1 1
U0=(1—§)<1>+$<0>,U1=106- ((1—5)(0>+§(0)>.
0 0 1 0

Both of them satisfy |%| = 1— &, i.e. the distance to the realizability boundary can be controlled by the parameter &. Due

to the convexity of the realizable set every convex combination of Uy and U; will be realizable as well. We can thus define
the vector of functions

U(x,y) = (1 — A(x, y))Uo + A%, y)U1, (5.2)
Axy) = cos (2 (x —;y)n) +1 c[0.1].

which is realizable for all (x, y) € [0, 1]°.

Now we discretize the domain, for simplicity, using the structured rectangular mesh with equidistant step sizes. We
project U(x, y) onto the DG basis of degree k, k € {0, 1, 2} and apply the realizability-preserving limiter from Section 4. Then
we refine the grid and calculate L;- and Lo-errors for the zeroth moment (% as

1 1
E} = / f ’wéo)(x,y)—wéo)(x,y) dxdy, EF = max |vO%xy) - v k)|,
0o Jo (x.y)el0,1]2

where 1/f,§0) denotes the exact zeroth moment of U and 1[/‘,(10) its limited DG polynomial. In practice, the integral in E,} is

approximated by a high-order tensor Gaussian quadrature on every cell and the max in Eg* is taken over the same quadrature
nodes.
The observed convergence order v is defined by

D v
B _ (’L) (53)
E;, hy

where fori € {1, 2}, E,fi is the error E! for the numerical solution using cell size h;, for p € {1, co}.

We found that taking & € [0, 10™] places the moment curve U(x, y) close enough to the boundary of realizability that the
realizability limiter was active for every number of cells we considered. In Table 2 we show convergence rates for & = 1074,
These results show the expected convergence order k + 1 in all cases. In this table we include the column 6p,.x, Which gives
the maximum value of 6 from the realizability limiter over all spatial cells. That 6y, is nonzero in each row indicates that
the realizability limiter was active for every reconstruction.

Pushing U closer to the realizability boundary (¢ < 107°) degrades the convergence order of the piecewise-linear
reconstruction, verifying the mentioned convergence problems. This is demonstrated in Table 3 for the extreme case £ = 0,
i.e. moments are placed on the realizability boundary. Surprisingly, the third-order approximation has the full convergence
order for all tested £ e [0, 1073]. Note that this is different to the results in [27] where the third-order approximation
degrades to second order. The reason for this is still unclear but might be due to the high non-linearity of the M3 model used
in [27]. We checked several variants of the test (by choosing different vectors on the unit sphere instead of (1, 0, 0)T and
modifying the weight 1078 in front of U;) and all showed the same behavior.

Full convergence tests for this scheme in one and two dimensions can be found in [27,29].

5.2. Line source

Our first benchmark is the line-source test as proposed in [49]. It is a Green’s function problem, where a pulse of particles
is emitted from a line in an infinite medium. This corresponds to an initial condition of the form ¥(®(x,y) = ¢ - 8(x, ),
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Table 3
L'- and L*°-errors and observed convergence order v for the first component of the realizability-limited, piece-wise linear and quadratic reconstructions
of U(x, y) from (5.2) with § = 0.

1/h k=1 k=2
E} v E° v Ormax E} v E° v Omax

5 6.716e—02 - 3.594e—01 - 5.603e—01 1.787e—02 - 6.567e—02 - 1.783e—01
10 1.532e—-02 2.1 1.269e—01 1.5 3.960e—01 2.033e—-03 3.1 1.153e—02 2.5 5.305e—02
20 3.143e—-03 2.3 3.831e—02 1.7 4.117e—01 1.577e—04 3.7 1.495e—03 2.9 1.391e—02
40 6.966e—04 2.2 1.001e—02 1.9 4.154e—01 1.614e—05 33 1.878e—04 3.0 3.519e—03
80 1.626e—04 2.1 2.531e—-03 2.0 4.164e—01 1.901e—06 3.1 2.350e—05 3.0 8.829e—04
160 3.920e—05 2.1 6.345e—04 2.0 4.166e—01 2.338e—07 3.0 2.938e—06 3.0 2.217e—04
320 9.625e—06 2.0 3.008e—04 1.1 4.167e—01 2.912e—08 3.0 3.673e—07 3.0 8.294e—05

-0.4 0 0.4

Fig. 3. Line source: ¥ of Lax-Friedrichs reference solution on a 8192 x 8192 grid.

whose lack of regularity makes this problem especially hard to tackle for the method of moments, including the M; model,
see e.g. [50]. The parameters of this test are as follows:

Domain: [—0.5, 0.5]% with h = 0.004

Time T = 0.45

Parameters: o, = 05, = 0,q® =0,¢" =0

Initial condition: smoothed Dirac ¢@(x, y) = max(exp(—lO"Z:—zyz), 10~4) with o = 0.02, yV(x,y) =0

Boundary conditions are Dirichlet conditions consistent with the initial conditions. Because the signal does not reach
the boundary, these conditions do not influence the result.

Due to the rotational invariance of the initial condition and the flux of the M; model the exact solution for the line-source
problem has rotational symmetry. (See Fig. 3.)

This symmetry is easily destroyed by the application of the slope limiter in primitive variables (SLOO/A, Fig. 4). It is
visible for both mesh types that the solution is strongly asymmetric in density as well as normalized velocity. Furthermore,
realizability is lost in parts of the domain (black and white spots).

Applying the characteristic limiter (CLOO/A) yields much better results: the solution is much more symmetric and as
showninTables 4 and 5, it is even realizable in the mean at the final time step. However, the realizability in the mean does not
hold at every time step and in addition there are a Gauss points on both meshes at which the solution is unrealizable. We note
that the fact that primitive-variable limiting (SLOCI/A) can result in non-physical oscillations is a well-known phenomenon
and has been reported in case of the M; model in one dimension in [13].

Unfortunately, choosing M = 0 in the minmod limiter results in a flattening of the solution at smooth extrema and
first-order convergence in the Lo,-norm [ 16]. Setting M = 22 results in sharper solutions in the sense that the width of the
wave front is decreasing (Fig. 5). However, this comes at the price of a realizability loss resulting in a complete destruction
of the solution (see e.g. CL220 in Fig. 5). Similar results occur with the primitive-variable limiter (not shown). This can be
fixed by further application of the realizability limiter (CRL220J/A). The now-realizable solutions show the same sharpness
as with CL2200/A. Furthermore, good rotational symmetry is still visible.
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SLo, 4@ SLOA, ¢© crog, »© CLOA,
g . @ @
-04 O 0.4 -04 0 0.4 —-04 O 0.4
x x x
SLOA, [¢)] crod, ¢ CLOA, ||
—-04 0 0.4 -04 O 0.4
x T x x
Fig. 4. Line source: comparison of primitive and characteristic slope limiter.
CL.220, 4 CL22A, © CRL220, 4(© CRL22A, 4(©
0.4
> 0
—-0.4
-04 O 0.4 —-04 0 0.4 -04 O 0.4
x x x
CL22A, |¢M| CRL220J, 6| CRL22A, |¢M)]
1
0.4 [ |
) O a @ @ |
—0.4 0'
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Fig. 5. Line source: comparison of the characteristic limiter with and without realizability limiter.

Table 4

Line source: percentage of non-realizable cells and quadrature points on
rectangular mesh.

SLooO SLOO) SL220 CLoO CL220
max; GP 11.49% 8.19% 13.01% 0.84% 7.69%
max; CM 10.09% 8.08% 10.59% 0.81% 5.87%
GP(tf) 11.49% 3.26% 13.01% 0.06% 7.69%
CM(tr) 10.09% 3.15% 10.59% 0.00% 5.87%

A natural question arising is if the realizability limiter on its own is enough to provide a good solution. It has been shown
in [13] that even in one dimension spurious oscillations can occur. Similarly, as shown in Fig. 6, symmetry is not preserved
and slight oscillations are visible, especially in the normalized velocity. Although the solution is everywhere realizable, a

slope limiter is strictly necessary to dampen the Gibbs phenomenon. Similar observations have been made in case of the
Euler equations in [44,51].
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Table 5
Line source: percentage of non-realizable cells and quadrature points on tri-
angular mesh.

SLooA SLOA SL22A cLoa CL22A
max; GP 81.01% 5.01% 30.10% 0.03% 0.33%
max; CM 80.33% 5.03% 25.12% 0.00% 0.17%
GP(ty) 81.01% 5.05% 30.10% 0.01% 0.20%
CM(t;) 80.33% 5.00% 25.12% 0.00% 0.08%
SRLoold, () SRLooA, 3 SRLoo[, |¢™M)] SRLooA, ¢
10—8 1076 10~% 102 10=% 1079 10=* 1072 0 0.20.40.60.8 1 0 0.2040608 1
B | N |
! Ll ! ! L '
0 0.4 —-04 O 0.4 —-04 0 0.4 —-04 O 0.4
X X X x
Fig. 6. Line source: realizability limiter only.
SRLOO, 4© SRLOA, 1 SRL220J, SRL22A, 4©
047\ T ] [T T T [T T ] [T T T 1072
4 104
> 0o | | (| -F = -
106
—0.4 L1 | L L1 | | L1 | L L ! |
10-8
—-04 0 0.4 —-04 O 0.4 —-04 O 0.4 —-04 O 0.4
x X X X
SRLOO, |¢™M)| SRLOA, || SRL220, |¢M)] SRL22A, |¢(M|
0.4 ¢
;3 0 @ @ l
—0.4 < ;
—-04 0 0.4 —-04 O 0.4 —-04 O 0.4 —-04 O 0.4
T T xr i

Fig. 7. Line source: primitive variable and realizability limiter.

As we have shown, using the characteristic and realizability limiter together yields good results. However, the change
to characteristic fields is expensive and the transformation matrices become arbitrarily poorly conditioned close to the
realizability boundary [52], yielding inaccurate results. Unfortunately, Fig. 7 shows that the combination of limiting in the
primitive-variable and realizability limiter is not enough to obtain good results. It appears that these solutions are even
worse than the realizability-limiter-only solutions shown in Fig. 6.

Our numerical tests show that in general the characteristic limiter combined with the realizability limiter (CRLM) is
superior to the combination of limiting in the components and the realizability limiter (SRLM). However, the differences
between the two limiting strategies are most dramatic for the linesource test case. In the rest of the problems we consider,
the solutions both look good and are comparable.

InTables 4 and 5 we summarize the performance of the slope limiter in the absence of the realizability limiter by counting
the proportion of non-realizable cells (CM) and Gauss points (GP). We provide both the maximum values in the time interval
(taken over a sample of 20 equidistant time points) and the values at the final time step for each mesh. It is clear that the
characteristic limiter (CLMO/A) performs better than the slope limiter in primitive variables (SLMO/A). In fact the final
solution from the characteristic limiter (CLOCJ/A) is realizable in the mean on both meshes. However, realizability in the
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Fig. 8. Homogeneous disk: 19 of Lax-Friedrichs reference solution on a 8192 x 8192 grid.

Table 6
Homogeneous disk: percentage of non-realizable cells and quadrature points
on rectangular mesh.

SLooO SLOD) SL0.20 CLOO CL0.2O
max; GP 24.13% 12.46% 18.95% 1.57% 5.53%
max; CM 21.95% 7.19% 15.08% 0.22% 1.14%
GP(tf) 4.93% 12.46% 18.46% 1.23% 2.91%
CM(ty) 0.26% 7.19% 9.39% 0.06% 0.06%

mean and at the Gauss points is not guaranteed at all time steps on the time interval. These results further reinforce the
need for the realizability limiter.

5.3. Homogeneous disk

Our next test case is the two-dimensional version of the homogeneous sphere test, which is often used to test radiation
transport codes, see e.g. [53-56]. It consists of a static homogeneous and isothermal sphere that radiates in vacuum [57].
It is well-suited to test moment approximations since it admits an analytical stationary solution for the underlying kinetic
transport equation [58]. The parameters in the two-dimensional setting are as follows:

e Domain: [—5, 5] with h = 0.05

e Time: 3.00

e Parameters: Let D be the unit disk D = {(x,y) : x> +y? < 1}.Seto; = 0; 6, = 10 on D, zero otherwise; source
q® = 1on D, zero otherwise; ¢’ = 0

e Initial condition: ¥® = 1071°, () =0

e Boundary conditions: ¢ = 10710, () = 0

This test case is numerically challenging due to the discontinuous parameters. Furthermore, its solution is again radially
symmetric, simplifying the analysis of the quality of the limiter configurations. (See Fig. 8.)

As in the line source test case, we observe that the application of the primitive-variable limiter results in an oscillatory
solution which is not realizable. This is shown in Fig. 9. In case of the triangular mesh strong filaments form at the edge of the
disk. Using the characteristic limiter slightly improves the solution. However, and in contrast to the line source, even with
M = 0 the characteristic limiter is no longer able to preserve realizability in the mean (see Tables 6 and 7), furthermore, a
larger proportion of the Gauss points are not realizable. Additionally, at the boundary of the disk the quality of the solution
is strongly reduced due to the bad condition number of the transformation matrix, which goes to infinity for values of |¢!|
approaching 1 [52]. (See Fig. 10.)

Adding the realizability limiter strongly improves the quality of the solution (Fig. 10). As before, choosing M = 0.2 gives
less diffusive results.

A quantitative analysis of the slope limiters (SLMO/A) and (CLMO/A) show that limiting in characteristic variables yields
better results but the solution remains unrealizable.



414 P. Chidyagwai et al. / Journal of Computational and Applied Mathematics 342 (2018) 399-418

SLOA, 1 cLog, »© CLOA, ¥©
102
104
10-6
-4 0 4
x x x
SLoC, [¢M)]

Fig. 9. Homogeneous disk: comparison of primitive and characteristic slope limiter.
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Fig. 10. Homogeneous disk: comparison of the characteristic limiter with and without realizability limiter.

Table 7
Homogeneous disk: percentage of non-realizable cells and quadrature points
on triangular mesh.

SLooA SLOA SLO.2A CLoA CLO.2A
max; GP 71.75% 34.25% 41.73% 5.65% 33.65%
max; CM 71.62% 34.41% 40.18% 5.75% 32.64%

GP(tr) 71.75% 34.25% 41.73% 5.65% 33.65%
CM(ty) 71.61% 34.41% 40.18% 5.71% 32.64%

5.4. Flash
In this test case a bulk of mass is moving from the center of the domain to the right boundary [59]. The parameters are
given as follows:

e Domain: [—10, 10]% with h = 0.06
e Time: 6
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Fig. 11. Flash test: 1 of Lax-Friedrichs reference solution on a 8192 x 8192 grid.

SLoO, 4@ SLOA, 4 crod, »© CLOA,

=Y
108
-10-5 0 5 10 -10-5 0 5 10 —-10-5 0 5 10 —-10-5 0O 5 10
X X X X
sLodd, [¢)| SLOA, |¢1)] cLod, || CLOA, o)
5
> 0

—10
-10-5 0 5 10 -10-5 0 5 10

xT x xT x

Fig. 12. Flash test: comparison of primitive and characteristic slope limiter.

e Parameters: Let D be unit disk with radius 0.5, D = {(x,y) : x> +y*> < 0.25}. Set o5 = 0; 0, = 0; source ¢© = 0,
(1) —
g’ =0
e Initial condition: @ = 1, y{" = 0.9, y{" = 0on D, %@ = 1071, (V) = 0 otherwise
e Boundary conditions: % = 1071, /() =0

The reference solution at the final time is depicted in Fig. 11.

Due to the initial condition which is placed close to the boundary of realizability this test is well suited to show the
inability of standard slope limiters to preserve realizability. This is demonstrated in Fig. 12 where similar effects as before
occur.

A comparison of Figs. 12 and 13 confirms that the combination of the characteristic limiter with the realizability limiter
yields the best solutions. The performance of the slope limiter without the realizability limiter in Tables 8 and 9 is consistent
with previous observations in the line source and homogeneous disk test cases.
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Fig. 13. Flash test: characteristic limiter with realizability limiter for different values of M.

Table 8
Flash: percentage of non-realizable cells and quadrature points on rectangu-
lar mesh.
SLooO SLOO) SL0.50 CLoO CL0.500
max; GP 14.84% 13.97% 20.88% 0.86% 19.75%
max; CM 11.77% 11.53% 14.27% 0.22% 15.01%
GP(tf) 14.70% 13.97% 20.88% 0.86% 19.75%
CM(tr) 9.50% 11.53% 14.27% 0.22% 15.01%
Table 9
Flash: percentage of non-realizable cells and quadrature points on triangular
mesh.
SLooA SLOA SLO.5A CLOA CLO.5A

max; GP 55.21% 24.12% 50.14% 5.45% 50.99%
max; CM 55.18% 24.27% 49.10% 5.63% 39.00%
GP(tf) 55.28% 24.12% 50.14% 5.45% 40.99%
CM(ty) 55.18% 24.27% 49.10% 5.63% 39.00%

6. Conclusions and outlook

In this work, we have investigated a third order realizability-preserving DG method to approximate solutions to the M;
model of radiation transport. The results show that in all test cases presented, the realizability limiter is imperative to ensure
the realizability of the numerical solutions.

Based on these results, we advocate the M; model as an ideal test case that pushes the boundaries of high-order
realizability-preserving numerical methods. The model equations are highly nonlinear, and are well-posed only in a
geometrically complex (yet convex) domain of realizability. Furthermore, practically relevant solutions are not just wave
fronts, but rather beam-like solutions, or they possess Dirac-like source terms. Solutions and material coefficients tend to
vary over several orders of magnitude. Furthermore, so-called source-detector problems in radiation transport require an
accurate solution (in terms of the relative error) at one or more specific points in space.

The results presented in this paper cast some doubt on whether DG is a competitive numerical scheme for M1, considering
the accuracy requirements commonly encountered in practice. For instance, for the homogeneous disk test case the DG
solution possesses around 10° degrees of freedom. It is comparable in quality to a Lax-Friedrichs (LF) solution with roughly
the same number of degrees of freedom (2048 x 2048 ~ 4 - 10%), which however is significantly faster to compute because
no limiting is needed. Similarly, in the line source test case, the best DG solution is comparable to a 1024 x 1024 LF solution.

In several test cases, the high-order DG method yields reliable results only if a full limiting strategy is employed, including
transformations to and from the characteristic variables. Not only do those transformations incur a significant cost, they also
become less and less well conditioned when higher accuracy requirements are imposed. It is therefore questionable whether,
for the M; model, the high-order DG methodology will ever become more efficient than a simple monotone first-order
scheme that automatically guarantees realizability.
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That being said, it should be pointed out that the DG methodology studied here, albeit being an established standard
method, can most certainly be improved. For instance, more sophisticated limiting techniques, such as WENO limiting with
KXRCF shock detection [60,61], or limiters that incorporate high-order approximations during the limiting process [62,63],
could be combined with the realizability-preserving limiter. This would remove the need for the problem-dependent
minmod parameter M. Furthermore, more efficient time stepping schemes could be applied, such as explicit low-storage
SSP Runge-Kutta schemes [64], SSP multi-step Runge-Kutta methods [65,66] (which both require less evaluations of the
differential operator £;,), or even Implicit-Explicit schemes [67,68] (to remove the dependence on the right-hand side (o,
and o;) in the CFL condition (4.1)).

Further research steps include realizability limiting for higher-order minimum-entropy models (i.e., My with N > 2)
in two and three dimensions, similar to [27]. The main challenge in that context is that a complete characterization of the
realizability set by means of simple algebraic criteria is still outstanding. One possible remedy is to use discrete realizability
criteria with respect to a quadrature rule [52]. Moreover, in general a high number of quadrature points is necessary to
produce solutions without discernible discrete ray artifacts [27,29,50], resulting in an extremely high cost for realizability
limiting. Hence less expensive strategies to guarantee realizability need to be developed.
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