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a b s t r a c t

The M1 minimum entropy moment system is a system of hyperbolic balance laws that

approximates the radiation transport equation, and has many desirable properties. Among

them are symmetric hyperbolicity, entropy decay, moment realizability, and correct be-

havior in the diffusion and free-streaming limits. However, numerical difficulties arise

when approximating the solution of the M1 model by high order numerical schemes;

namelymaintaining the realizability of the numerical solution and controlling spurious os-

cillations. In this paper, we extend a previously constructed one-dimensional realizability

limiting strategy to 2D. In addition, we perform a numerical study of various combinations

of the realizability limiter and the TVBM local slope limiter on a third order Discontinuous

Galerkin (DG) scheme on both triangular and rectangular meshes. In several test cases, we

demonstrate that in general, a combination of the realizability limiter and a TVBM limiter

is necessary to obtain a robust and accurate numerical scheme. Our code is published so

that all results can be reproduced by the reader.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

TheM1 model of radiative transfer is a nonlinear system of hyperbolic balance laws, and reads

∂tψ
(0) + ∇x · ψ (1) = −σaψ (0) + q(0) (1.1a)

∂tψ
(1) + ∇x · ψ (2)(ψ (0), ψ (1)) = −(σs + σa)ψ

(1) + q(1), (1.1b)

ψ (0)(x, y, 0) = ψ
(0)

0 (x, y), ψ (1)(x, y, 0) = ψ
(1)

0 (x, y). (1.1c)

The quantities ψ (0), ψ (1), ψ (2) are, respectively, the zeroth (particle density), first (mean velocity) and second moment

(pressure) over the unit sphere S2 of the angular flux ψ ,

ψ (0) :=
∫

S2
ψ(Ω)dΩ, ψ (1) :=

∫

S2
Ωψ(Ω)dΩ, ψ (2) :=

∫

S2
ΩΩTψ(Ω)dΩ,
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and are, respectively, a scalar, a vector, and a matrix. The system is supplemented by the closure condition

ψ (2)(ψ (0), ψ (1)) = D(
ψ (1)

ψ (0)
)ψ (0), (1.2)

where

D(n) = 1 − χ (|n|)
2

id + 3χ (|n|) − 1

2

nnT

|n|2
and χ (f ) = 3 + 4f 2

5 + 2
√

4 − 3f 2
for f ∈ [0, 1]. (1.3)

Here, D is a matrix, n = ψ (1)

ψ (0) is a vector, and f = |n| is a scalar. The quantity χ (f ) is called the Eddington factor [1,2]. Let

X ⊂ R
2 be a bounded polygonal domain, then the system (1.1a)–(1.1b) can be written as a general first-order system of

balance laws

∂U

∂t
+ ∇ · F = S, in X × (0, T ) (1.4)

U(x, y, 0) = u0(x, y), for (x, y) ∈ X (1.5)

where F = [F ,G] and

U =

⎡

⎢

⎣

ψ (0)

ψ (1)
x

ψ (1)
y

⎤

⎥

⎦
, F =

⎡

⎢

⎣

ψ (1)
x

ψ (2)
xx

ψ (2)
xy

⎤

⎥

⎦
, G =

⎡

⎢

⎣

ψ (1)
y

ψ (2)
yx

ψ (2)
yy

⎤

⎥

⎦
, S =

⎡

⎣

−σaψ (0) + q(0)

−(σs + σa)ψ
(1)
x + q(1)x

−(σs + σa)ψ
(1)
y + q(1)y

⎤

⎦ ,

keeping in mind the closure relation (1.2). Here, ψ
(1)
x and ψ

(1)
y denote the first and second component of ψ (1), respectively,

similarly for ψ
(2)
xx to ψ

(2)
yy .

The system has to be complemented with boundary conditions of the form

U(x, y, t) = γ (x, y, t), for (x, y) ∈ I(∂X,U) × (0, T ), (1.6)

where the operator I returns the influx boundaries, i.e. those parts of the boundarywhere information is transported into the

domain [3]. Whether a part of the boundary is an influx boundary also depends on the solution itself, since the information

direction can be read off the sign of the eigenvalues of the directional Jacobian in normal direction at these points. In our

numerical experiments, we consider compactly supported initial datawhich do not reach the boundary before the final time.

We prescribe Dirichlet boundary conditions identical to the initial conditions, hence the numerical solution is unaffected by

the boundaries.

The expression forD in (1.3) comes from closing themoment system by an entropy closure using the entropy for photons.

See for example [1,4–11] and references therein for more information. These references also discuss many properties which

make the M1 model, and entropy closures in general, quite appealing. Among these are symmetric hyperbolicity, i.e. the

system can be transformed into a symmetric hyperbolic system, and a natural entropy–entropy flux pair, both of which

ensure some level of well-posedness [3,12]. The hyperbolicity is of main interest in this work, and will be discussed in

detail below. We especially focus on its connection to realizability — the fact that a moment vector can be reproduced by a

non-negative particle density.

When theM1 model is discretized using a monotone first-order scheme for hyperbolic equations (e.g. the Lax–Friedrichs

scheme), it can be shown that the numerical solution will never leave the set of realizable moments [13]. This means that

starting with a realizable initial condition, the numerical solution will be realizable at every time step. This is in particular

required, since the model is not well-defined outside of the realizability set.

Unfortunately, and this is themain topic of this paper, higher-order numerical schemes do not automatically preserve this

property, as will be discussed later. We use the Discontinuous Galerkin (DG) method, which provides a general framework

to construct numerical schemes of arbitrary approximation order to solve hyperbolic balance laws. The original DG method

was introduced in 1973 by Reed and Hill [14] for neutron transport and has been developed further to the Runge–Kutta

Discontinuous Galerkin (RKDG) method by Cockburn et al. in a series of papers [15–19]. A (k + 1)st order RKDG method

uses a piecewise-polynomial approximation of degree k in space and a (k + 1)st order strong stability preserving explicit

Runge–Kutta scheme in time.

A DG scheme has to be supplemented by a limiting strategy. This typically consists of a slope limiter which ensures

stability of the solution. A standard example of such a limiter is the TVBM (total variation bounded in themeans) limiter [18].

For a system of balance laws, limiting the conserved variables component-wise can result in oscillations, due to the Gibbs

phenomenon [20]. Instead, the limiter has to be applied in characteristic variables, i.e. Riemann invariants that are obtained

by diagonalizing the system Jacobian [19,21]. In general, limiting in the characteristic variables gives superior results [13,22].

However, there are numerous examples for which the numerical solution obtained by limiting in the characteristic variables

and component-wise limiting are comparable, e.g. [21,23–26]. In these situations, since the transformation to and from the

characteristics requires additional computational effort, component-wise limiting is faster.
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It has been shown in [13] that a robust numerical approximation of the M1 model in 1D requires an additional limiter:

a realizability limiter which ensures that the model remains well-posed. This has been extended to the general, one-

dimensional, MN case in [27]. In the current work, we extend this realizability limiting strategy to two dimensions. In

addition, we demonstrate that in the absence of the realizability limiter, the TVBM limiter applied in the characteristic

variables leads to a qualitatively superior solution compared to component-wise limiting; however, this limiter alone is

not enough to guarantee moment realizability of the scheme.

The M1 model therefore might serve as a good benchmark test for DG implementations, because it absolutely requires

very careful limiting. We arrive at this conclusion experimentally, by running several well-known radiation transport test

cases with two independently developed third-order DG schemes on unstructured triangular grids and regular rectangle

grids.

The rest of this paper is organized as follows. In Section 2, we describe in detail the concept of realizability, and how it

is connected to the well-posedness of the M1 model. The DG implementations are described in Section 3. The realizability

limiter will be developed and analyzed in Section 4. Section 5 contains the results from the test cases.

2. Properties of theM1 model

From the general theory of moments one can deduce conditions on a given set of values, that are necessary and sufficient

for the existence of a probability measure whose moments match these values [28]. Such moments are called realizable. In

our case, we can restrict ourselves tomeasures that have a formal density (i.e. for the closure we allowDirac δ’s as densities).
Given a scalar ψ (0) and a vector ψ (1), these are the zeroth and first moment of a non-negative density if and only if [28–30]

ψ (0) > 0 and |ψ (1)| ≤ ψ (0).

The interior of the realizable set is described byψ (0) > 0 and |ψ (1)| < ψ (0). It has been shown in [31] that, under reasonable

assumptions on the initial conditions, the analytical solution of the M1 model in one spatial dimension remains realizable

for all time. Until now, no similar statement could be made for the M1 model in multiple dimensions or higher-order MN

models.

As mentioned before, the hyperbolicity of theM1 model is a direct consequence of the entropy closure. Additional insight

can be obtained by computing the eigenvalues explicitly. Given a unit direction vector n = (nx, ny)
T , we have to determine

the eigenvalues of the directional Jacobian

nxJx(U) + nyJy(U), (2.1)

where Jx and Jy are the Jacobians of F and G, respectively. Because of the invariance of the model under coordinate

transformations, the eigenvalues can only depend on the angle between ψ (1) and n, and the absolute value
|ψ (1)|
ψ (0) . The

eigenvalues can be computed analytically, but the formulas are very lengthy so we do not show them here (cf. [32]). Fig. 1

shows the eigenvalues for two different angles. The most important observation is that the eigenvalues collapse into one

value at the boundary of the realizability region, i.e. for
|ψ (1)|
ψ (0) = 1. Inspection of the Jacobian shows that at that boundary

the Jacobian is no longer diagonalizable, i.e. the M1 model loses (strict) hyperbolicity. This means that the M1 model is only

well-posed in the interior of the domain of realizability. As a consequence, in a numerical scheme one should always ensure

staying in the interior of the realizability domain.

3. Runge–Kutta discontinuous Galerkin method

3.1. Spatial discretization

In this section,we describe the Runge–Kutta Discontinuous Galerkinmethod (RKDG) for solving (1.4)–(1.6). Following the

approach outlined in a series of papers by Cockburn and Shu [15–17,19], we discretize in space using piece-wise polynomials

of degree k, that are allowed to be discontinuous at the cell interface. The timediscretization is performed by a strong stability

preserving explicit Runge–Kutta scheme of order k + 1 [33].

In the following, let Th be a partition of a polygonal computational domain X and K be an element in Th with boundary

edges e. For each t ∈ [0, T ], we seek an approximate solution Uh(x, t) in the DG space

V k
h = {v ∈ L∞(X) : v|K ∈ Pk(K ),∀K ∈ Th}

where Pk(K ) is the set of polynomials of degree k. We follow the Galerkin approach: first we multiply (1.4) by a smooth test

function v and integrate by parts over each element. We replace the exact solution U and smooth test function v by the

approximation solution Uh and vh (both in V k
h ) respectively to obtain:

d

dt

∫

K

Uh(x, t)vh(x) dx +
∑

e∈∂K

∫

e

F(Uh(x, t)) · ne,Kvh(x) dΓ

−
∫

K

F(Uh(x, t)) · ∇vh(x) dx =
∫

K

S
(

Uh(x, t)
)

vh(x) dx ∀vh ∈ V k
h , (3.1)
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Fig. 1. Eigenvalues of theM1 model as a function of
ψ

(1)
x

ψ (0) for ψ
(1)
y = 0 and two values of n.

where ne,K is the outward unit normal to the boundary of K . We take Uh(x, 0) on each element to be the L2-projection of the
initial condition on V k

h , i.e.,
∫

K

Uh(x, 0)vh(x) dx =
∫

K

u0vh(x) dx, ∀vh ∈ V k
h . (3.2)

The choice of a discontinuous basis implies that our approximate solution Uh(x, t) is discontinuous across edges. In this case
the normal trace F(Uh(x, t)) · ne,K is not defined on the element boundary ∂K . We replace the normal trace by a numerical
flux function He,K (x, t) that depends on the approximate solution from the interior and exterior of the element K . Thus we
define

He,K (x, t) = He,K (Uh(x
int{K }, t),Uh(x

ext{K }, t)), (3.3)

where

Uh(x
int{K }, t) = lim

ξ→(x,y)∈K
Uh(ξ, t),

for the approximate solution defined from the interior of the element K and

Uh(x
ext{K }, t) =

{

γh(x, t) if x ∈ ∂X,
lim

ξ→(x,y)̸∈K
Uh(ξ, t), otherwise

for the points on the exterior of K . Using the numerical flux (3.3), the discrete weak formulation (3.1)–(3.2) becomes

d

dt

∫

K

Uh(t, x)vh(x) dx +
∑

e∈∂K

∫

e

He,K (Uh(x
int{K }, t),Uh(x

ext{K }, t))vh(x) dΓ

−
∫

K

F(Uh(x, t)) · ∇vh(x) dx =
∫

K

S(Uh(t, x))vh(x) dx, ∀vh ∈ V k
h , (3.4)

∫

K

Uh(x, 0)vh(x) dx =
∫

K

u0vh(x) dx, ∀vh ∈ V k
h . (3.5)

We choose the global Lax–Friedrichs flux

He,K (a, b) = 1

2

[

F(a) · ne,K + F(b) · ne,K − α(b − a)

]

, (3.6)

where the numerical viscosity constant α is taken as the global estimate of the absolute value of the largest eigenvalue of
the Jacobian (2.1). For theM1 model, we can take α = 1.

Boundary conditions (1.6) have to be incorporated via the quantities Uh(x
ext{K }, t) in the edge integral, if the edge e is

part of the boundary. We take the simplest approach possible by adding so-called ‘‘ghost cells’’ which are then filled with
the corresponding values for U . Note, however, that the validity of this approach, due to its inconsistency with the original
boundary conditions (1.6), is not entirely non-controversial, but the question of appropriate boundary conditions formoment
models is an open problem [34–38] which is not explored here.
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Eqs. (3.4)–(3.5) can be written as a system of ODEs on each element after inverting the mass matrix in (3.4). Indeed, let

{ϕ1, ϕ2, . . . , ϕNk
} denote a basis of the space of polynomials of degree k on cell K , where Nk = 1

2
(k + 1)(k + 2). On each

element, the DG approximate solution Uh of the components has the form

ψ (0) =
Nk
∑

i=1

α
ψ (0)

i ϕi, ψ (1)
x =

Nk
∑

i=1

α
ψ

(1)
x

i ϕi, and ψ
(1)
y =

Nk
∑

i=1

α
ψ

(1)
y

i ϕi, (3.7)

where α
ψ (0)

i , α
ψ (1)

x , α
ψ (1)

y are unknowns to be determined. Using the form of the approximate solution in (3.7), we can write

(3.4)–(3.5) in matrix form:

M
∂

∂t
αh + Hαh − Fαh = Sαh (3.8)

Mα0
h = U0 (3.9)

where αh is the vector of solution coefficients and

(M)ij =
∫

K

ϕjϕi, (H)i =
∑

e∈∂K

∫

e

He,K (x, t)ϕi, (F )i =
∫

K

F(Uh) · ∇ϕi (3.10)

(S)i =
∫

K

S(Uh)ϕi, and (U0)i =
∫

K

u0ϕi. (3.11)

The complete coefficient vector is given byαh = {αψ
(0)

1 , . . . , α
ψ (0)

Nk
, α

ψ
(1)
x

1 , . . . , α
ψ

(1)
x

Nk
, α

ψ
(1)
y

1 , . . . , α
ψ

(1)
y

Nk
}, whereα

ψ (0)

i , α
ψ

(1)
x

i , α
ψ

(1)
y

i

are the coefficients of the numerical approximation to the zeroth and first order moments, respectively. We can write (3.8)–

(3.9) in the form

d

dt
αh = Lh(αh), on X × (0, T ) (3.12)

αh(x, 0) = α0
h (3.13)

where

Lh(αh) = M
−1(Sαh + Fαh − Hαh). (3.14)

Weapproximate the solution bydiscontinuous quadratic polynomials in space and the third-order strong stability preserving

Runge–Kutta time discretization scheme proposed in [39,40], also known as the Shu–Osher scheme. Let {tn}Nn=0 be a partition

of [0, T ] and let ∆t = tn+1 − tn, n = 0, . . . ,N − 1, then the time stepping scheme updating the coefficients of the DG

polynomials can be written as:

• Set α0 = M
−1

U0;

• For n = 1, . . . ,N − 1 compute αn+1
h as follows:

1. α
(1)

h = αn
h +∆tnLh(α

n
h )

2. α
(2)

h = 3
4
αn
h + 1

4
(α

(1)

h +∆tnLh(α
(1)

h ))

3. α
(3)

h = 1
3
αn
h + 2

3
(α

(2)

h +∆tnLh(α
(2)

h ))

4. Set αn+1
h = α

(3)

h .

This Runge–Kutta method is a convex combination of (iterated) forward Euler steps. Using the convexity of the

realizability domain, one can show that it preserves realizability under a specific CFL-condition. We use this property to

achieve high order also in timewithout the need of dealingwith complicated time-discretizations in the proof of realizability

preservation.

3.2. Quadrature rules

The assembly of the discrete operator Lh(αh) (3.12) is done using numerical quadrature that is exact for polynomials of

degree 2k + 1 for edge integrals, and degree 2k for volume integrals, respectively for both the rectangular and triangular

meshes. In addition, wewill need amodified Gaussian quadrature rule to construct the realizability limiter. This rule consists

of quadrature points in the interior of the cell and on its boundary where the latter form one-dimensional quadratures on

the element edges. This is crucial to balance the different appearing types of spatial integrals in the proof of the realizability-

preserving property. These rules are described in the following section that closely follows the construction in [41].
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(a) Positions. (b) Weights.

Fig. 2. Position of the quadrature nodes under the three projections gi . The color corresponds to the weight w̃γ at the quadrature node.

3.2.1. Triangles
We start with two quadrature rules on the interval [− 1

2
, 1

2
], a Gaussian rule

vβ = 1

2

(

−
√

3

5
0

√

3

5

)

, wβ = 1

18

(

5 8 5
)

and a Gauss–Lobatto rule

uα = 1

2

(

−1 0 1
)

, ŵα = 1

6

(

1 4 1
)

. (3.15)

We map the tensor product rule of those Gauss and Gauss–Lobatto quadrature rules from the square [− 1
2
, 1

2
]2 onto the

triangle K with vertices V K
1 , . . . , V

K
3 using the three degenerate projections

g1(u, v) = (
1

2
+ v)V K

1 + (
1

2
+ u)(

1

2
− v)V K

2 + (
1

2
− u)(

1

2
− v)V K

3

g2(u, v) = (
1

2
+ v)V K

2 + (
1

2
+ u)(

1

2
− v)V K

3 + (
1

2
− u)(

1

2
− v)V K

1

g3(u, v) = (
1

2
+ v)V K

3 + (
1

2
+ u)(

1

2
− v)V K

1 + (
1

2
− u)(

1

2
− v)V K

2 .

Let ŪK denote the cell average of the numerical solutionUh represented by the DGpolynomial pK on triangle K , following [41]
it holds that

ŪK = 2

3

3
∑

i=1

3
∑

α=1

3
∑

β=1

pK
(

gi
(

ûα, vβ
))

(

1

2
− vβ

)

wαŵβ .

Note that the Gauss–Lobatto points on the edge are always taken twice (see Fig. 2).
The authors of [41] showed that the cell mean can be constructed as the following convex combination of inner and

boundary points:

ŪK =
3
∑

i=1

2

3
wβŵα=1U int

i,β +
L
∑

γ=1

w̃γU inner
γ (3.16)

where U inner
γ and U int

i,β represent the evaluation of the DG polynomial pK at the respective interior and boundary quadrature

nodes (xinnerγ , yinnerγ ) and (xinti,β , y
int
i,β ) (compare Fig. 2), and L = 3(N − 2)(k+ 1) = 9 is the number of inner points. With this we

obtain a quadrature rule with 18 points which is accurate for polynomials of order 2k − 1 = 3.
The flux term in (3.4) should be approximated by the 1D (k + 1) point Gauss quadrature with weights wβ :

∑

e∈∂K

∫

e

He,K (x, t)ϕ
K
i (x) dΓ =

3
∑

i=1

3
∑

β=1

Hei,K (U
int
i,β ,U

ext
i,β , t)ϕ

K
i (x

int
i,β , y

int
i,β )w

β liK (3.17)

where liK is the length of edge eKi .
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3.2.2. Rectangles

For the assembly of the discrete operator in the rectangular DG code we use a tensor quadrature rule of the 1D 4-point

Gauss–Lobatto rule on [− 1
2
, 1

2
]:

uα = 1

2
√
5

(

−
√
5 −1 1

√
5
)

, ŵα = 1

12

(

1 5 5 1
)

.

However for the proof of our main theoremwe only need the three point rule (3.15) which will give a weaker CFL-condition.

3.3. Slope limiting

In order to enforce stability [42,43] and to mitigate numerical oscillations caused by the Gibbs phenomenon we apply a

slope limiter to every stage of the Runge–Kutta time stepping scheme.We implement the slope limiter detailed by Cockburn

and Shu in [15]

m(a1, a2, . . . , an) =
{

a1 if |a1| < M(∆x)2

m(a1, a2, . . . , an) otherwise,
(3.18)

whereM is an estimated bound on the second derivative of the solution around smooth extrema [16],∆x is the characteristic

length of each element andm is the minmod function

m(a1, a2, . . . , an) =
{

sign(a1)min{|a1|, |a2|, . . ., |an|} if sign(a1) = sign(a2) = · · · = sign(an),

0 else.

The limiter can be applied component-wise to the primitive variables or in the characteristic variables. For limiting in the

characteristic variables we first construct a matrix R that diagonalizes the directional Jacobian in the normal direction

n = (nx, ny) evaluated at the mean in each element

R
−1(nxJx(Uk) + nyJy(Uk))R = Λ. (3.19)

Applying the limiter in the characteristic variables ensures that the solution is total variation bounded in themeans (TVBM).

4. Realizability limiter

Wewant to construct a scheme so that the numerical solution stays realizable with respect to the cell means. The proofs

presented in this section follow the strategy used in [44], which has also been used in the construction of realizability-

preserving limiters for theM1 model in 1D [13].

First we need a technical lemma.

Lemma 4.1. Let ν ∈ R
2 be an arbitrary unit vector. For theM1 model the combination of moments (ψ (0)±ψ (1) ·ν, ψ (1)±ψ (2) ·ν)

is realizable.

Proof. Let ψ be a non-negative density that realizes ψ (0) and ψ (1). Then (1 ± ν · Ω)ψ(Ω) is a non-negative density that

realizes the combined moments. □

Let us now consider the higher-order scheme (3.4). Due to the convexity of the realizable set it suffices to investigate the

forward-Euler discretization in time since the used SSP integrator is just a convex combination of such Euler steps.

Theorem 4.2 (Main Result). One forward-Euler step of the scheme (3.4) with the DG polynomial pK of degree k yields realizable

cell averages if pK (xs, ys) is realizable for all (xs, ys) ∈ SKk and if the CFL condition

2

3
ŵ1 (1 −∆t (σa + σs))− ∆t

2 |K | l
i
K ≥ 0 ∀i = 1, . . . , 3 (4.1)

holds. Here ŵ1 is the quadrature weight of the N-point Gauss–Lobatto rule on [− 1
2
, 1

2
] for the first quadrature point.

Proof. For simplicity assume that σs = σa = 0 and q = 0. Furthermore, to ease notation, we drop the symbol n for all

quantities at the current time step. After application of the forward-Euler scheme the cell averages in element K satisfy

U
n+1

K = UK − ∆t

|K |

3
∑

i=1

∫

ei

Hei,K

(

U int
K ,U

ext
K (i)

)

dx

(3.6)=
(

ψ̄
(0)

K

ψ̄
(1)

K

)

− ∆t

2 |K |

3
∑

i=1

∫

ei

(

ψ
(0)

K

ψ
(1)

K

)

dx + ∆t

2 |K |

3
∑

i=1

∫

ei

(

ψ
(0)

K (i) − ψ
(1)

K (i) · nei,K

ψ
(1)

K (i) − ψ
(2)

K (i) · nei,K

)

dx,
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where UK = pK and UK (i) = pK (i) denote the polynomial representations of Uh on element K and on its neighbor K (i) sharing

edge ei with K , respectively.

Evaluating the second integral using the Gaussian quadrature as in (3.17) it is easy to see by using Lemma 4.1 that on

each edge ei the quantity

∫

ei

(

ψ
(0)

K (i) − ψ
(1)

K (i) · nei,K

ψ
(1)

K (i) − ψ
(2)

K (i) · nei,K

)

dx = liK

k+1
∑

β=1

wβ

(

ψ
(0)

K (i),β − ψ
(1)

K (i),β · nei,K

ψ
(1)

K (i),β − ψ
(2)

K (i),β · nei,K

)

is realizable since
∑

wβ = 1. Here,ψ
(0)

K (i),β denotes the evaluation of the polynomial representation ofψ (0) on the neighboring

element K (i) at the quadrature node associated with wβ on ei and similarly for all other moments.

Now it suffices to show that the first terms in this equation are realizable, too. We rewrite the cell average into a

combination of interior points and edge points:

UK
(3.16)=

3
∑

i=1

k+1
∑

β=1

2

3
wβŵ1U int

i,β +
L
∑

γ=1

w̃γU inner
γ ,

∫

ei

UK dx =
k+1
∑

β=1

wβ liKU
int
i,β .

Then
(

ψ̄
(0)

K

ψ̄
(1)

K

)

− ∆t

2 |K |

3
∑

i=1

∫

ei

(

ψ
(0)

K

ψ
(1)

K

)

dx =
L
∑

γ=1

w̃γU inner
γ +

3
∑

i=1

k+1
∑

β=1

wβU int
i,β

(

2

3
ŵ1 − ∆t

2 |K | l
i
K

)

.

Under the CFL condition, we immediately get that

L
∑

γ=1

w̃γU inner
γ +

3
∑

i=1

k+1
∑

β=1

wβU int
i,β

(

2

3
ŵ1 − ∆t

2 |K | l
i
K

)

is realizable since the quadrature weights sum up to 1.

For absorption and scattering we assume for simplicity that σs and σa are constant in K . Then we can write the cell

averages of the source term as

S(UK ) =
3
∑

i=1

k+1
∑

β=1

2

3
wβŵ1

(

σaU
int
i,β + σs

(

0

ψ
(1)

i,β,int

))

+
L
∑

γ=1

w̃γ
(

σaU
inner
γ + σs

(

0

ψ
(1)

γ ,inner

))

.

Thus the updated cell averages can be written as the moments of a non-negative distribution, i.e. Un+1
K =

∫

(

1

Ω

)

ΞK (Ω) dΩ

with

ΞK =
L
∑

γ=1

w̃γ
[

(1 −∆t (σa + σs)) ψ
inner
γ + σs

4π

∫

ψ inner
γ dΩ

]

+
3
∑

i=1

k+1
∑

β=1

wβ
[

ψ int
i,β

(

2

3
ŵ1 (1 −∆t (σa + σs))− ∆t

2 |K | l
i
K

)

+ ∆t

2 |K | l
i
KψK (i),β + σs

4π

∫

ψ int
i,β dΩ

]

.

The quantityψ inner
γ is any nonnegative distribution function realizing U inner

γ , similarly forψ int
i,β andψK (i),β . It is easy to see that

under the given assumptionsΞ n
K ≥ 0, which implies that Un+1

K is by definition realizable. □

A similar result can be obtained on the rectangular grid by going through the same lines of the previous proof, replacing

the quadrature rules on the triangle with those on the rectangles. More details can be found in [29].

Theorem 4.3 (Main Result for Rectangular Grid). One forward-Euler step of the scheme (3.4)with the DG polynomial pK of degree

k yields realizable cell averages if pK (xs, ys) is realizable for all (xs, ys) ∈ SKk and if the CFL condition

ŵ1 (1 −∆t (σa + σs))− ∆t

∆x
− ∆t

∆y
≥ 0 (4.2)

holds. Here ŵ1 is the quadrature weight of the N-point Gauss–Lobatto rule on [− 1
2
, 1

2
] for the first quadrature point.
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Remark 4.4. Wewant to note that the required CFL conditions (4.1) and (4.2) are not anymore restrictive thanwhat standard

DGmethods generally incur. Assume for simplicity σa = σs = 0 and consider (4.2), the stability condition for the DG scheme

reads

∆t

∆x
+ ∆t

∆y
≤ 1

2k + 1
, (4.3)

where k denotes the polynomial degree used. We collect the corresponding values for the classical and our modified CFL

condition in the following table, where ŵ1 is taken from the N-point Gauß–Lobatto rule that integrates polynomials of

degree k:

k 0 1 2 3 4

1
2k+1

1 1
3

1
5

1
7

1
9

ŵ1 1 1
2

1
6

1
6

1
12

Note that ŵ1 = 1
4
k2 + k + 3

4
for k odd. It can be seen that these values are in a similar range for reasonably small k.

All that remains is to ensure that the assumptions of the two theorems are satisfied. This can be achieved by a simple

scaling limiter. A similar limiter has been derived in other contexts, e.g. shallow water [45], Euler equations [44] and gas

dynamics [46]. The basic idea is to dampen the higher-order parts of the DG polynomial pK (x, y) until at all quadrature

nodes (xs, ys) ∈ SKk the evaluation pK (xs, ys) is realizable. It has been reported in [46] that this limiter, due to its simplicity,

can destroy the formal accuracy of the scheme in certain non-generic situations. This has been investigated in a one-

dimensional setting for minimum-entropy models in [27]. There, it has been shown that close to the realizability boundary

the convergence order can drop. However, we still expect order preservation in most practical cases.

Writing the limited polynomial as

pθK (x, y) := θpK + (1 − θ )pK (x, y)
(3.7)= θαU

1 ϕ1 + (1 − θ )

Nk
∑

i=1

αU
i ϕi = αU

1 ϕ1 + (1 − θ )

Nk
∑

i=2

αU
i ϕi

it becomes clear that the cell average of pK is preserved and only higher-order coefficients are damped by the factor (1 − θ )

where θ is chosen as the minimal value in the set
{

θ̃ ∈ [0, 1] | pθ̃K (xs, ys) is realizable for all (xs, ys) ∈ SKk

}

. (4.4)

Such a θ always exist under the assumption that pK is realizable as a consequence of the convexity of the realizable set. To

calculate θs it suffices to find the intersections of the ray segments

{

θ ŪK + (1 − θ )pK (xs, ys) | θ ∈ [0, 1]
}

, (xs, ys) ∈ SKk (4.5)

with the boundary of the realizable set

{(

ψ (0), ψ (1)
)

∈ R
3 | ψ (0) =

⏐

⏐ψ (1)
⏐

⏐

}

=
{

(

ψ (0), ψ (1)
)

∈ R
3 | ψ (0) ≥ 0,

(

ψ (0)
)2 =

⏐

⏐ψ (1)
⏐

⏐

2
}

. (4.6)

Using the condition
(

ψ (0)
)2 =

⏐

⏐ψ (1)
⏐

⏐

2
from (4.6) and the parameterization of the ray segment (4.5) we get

(

θψ̄ (0) + (1 − θ )ψ (0)
)2 !=

(

θψ̄ (1)
y + (1 − θ )ψ (1)

)2 +
(

θψ̄ (1)
y + (1 − θ )ψ (1)

)2
.

Rearranging this expression, collecting the coefficients in powers of θ yields the polynomial equation

0
!= r(θ ) = aθ2 + bθ + c,

a = −
(

ψ̄ (0) − ψ (0)
)2 +

(

ψ̄ (1)
x − ψ (1)

x

)2 +
(

ψ̄ (1)
y − ψ (1)

y

)2

b = 2 ·
(

(

ψ (0)
)2 − ψ̄ (0) · ψ (0) −

(

ψ (1)
x

)2 + ψ̄ (1)
x · ψ (1)

x −
(

ψ (1)
y

)2 + ψ̄ (1)
y · ψ (1)

y

)

c = −
(

ψ (0)
)2 +

(

ψ (1)
x

)2 +
(

ψ (1)
y

)2
.

Since r(θ ) is a quadratic polynomial, it possibly has two zeros in the set [0, 1]. Due to convexity, the largest zero in this set is

the correct choice for θs, since it corresponds to the intersection with the ψ (0) ≥ 0 part of the double cone |ψ (1)|2 ≤ (ψ (0))2,

while the smaller zero (which is by definition farther away from ŪK ) corresponds to the intersection with the ψ (0) ≤ 0 part

of the double cone. Finally, set θ := maxsθs.

Note that in each intermediate step of the Runge–Kutta scheme the realizability limiter is always applied after the slope

limiting. Applying the slope limiter can destroy the realizability again [29].
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Table 1

Abbreviation of limiter combinations. SettingM = ∞ is equivalent to disabling the slope

limiter. □ and △ correspond to the rectangular and triangular meshes, respectively.

Abbr. Explanation

SLM□/△ Slope limiter in primitive variables with the constantM specified

CLM□/△ Slope limiter in characteristic variables with the constantM specified

SRLM□/△ Slope limiter in primitive variables + realizability limiter

CRLM□/△ Slope limiter in characteristic variables + realizability limiter

5. Numerical results

In this section, we compare the performance of the RKDG schemes on unstructured triangular meshes and uniform
rectangular meshes for various combinations of limiters. Specifically we consider the limiter combinations given in Table 1.
The time step is taken as indicated by (4.1).

To ensure that our research is reproducible, the codes used in this publication can be found on GitHub, see [47].
In the numerical results that follow we denote the mesh size on both unstructured triangular meshes and uniform

rectangular meshes by h. All plots show either the zeroth moment ψ (0) or the norm of the first normalized moment

|φ(1)| = |ψ (1)

ψ (0) |. The loss of realizability is indicated in the latter by the use of black (|φ(1)| > 1) and white (ψ (0) < 0)

colors.
Before we describe the test cases and the results, we detail some of the steps in the algorithm, and the computation of

the errors.

Fixing a DG solutionwhich is not realizable. In test cases where the realizability limiter is not used (SLM/CLM) the solution
may violate the realizability condition and thus the flux function cannot be evaluated. We therefore compute a modified
numerical solution which we use only to compute the flux, i.e. the actual solution in each cell remains the same. We modify
the values of the numerical solution locally at each Gauss point as follows: let ϵ be a specified numerical tolerance, ifψ (0) < ϵ
then we set ψ (0) = ϵ. In addition, if the normalized first moment

f := |ψ
(1)

ψ (0)
| > (1 − ϵ),

wemodify the values of firstmoment as follows:ψ
(1)
x = ψ1

x

f
(1−ϵ) andψ (1)

y = ψ1
y

f
(1−ϵ).We choose a tolerance of ϵ = 10−12.

Transformation to characteristic variables.
In the case of the triangular meshes the matrices R and R

−1 from (3.19) are computed using the GSL linear algebra
package [48] while they can be precomputed analytically in case of the rectangular grid. The transformation to and from the
characteristic variables is achieved by left multiplying the variables by R

−1 and R, respectively.
In case that we need the transformation to characteristic variables and do not use the realizability limiter (i.e. CLM),

we use the same realizability fix as in the flux function, but for the computation of the transformation matrices only. This
ensures that transformation matrices are invertible due to the strict hyperbolicity of the moment system in the interior of
the realizable set. The transformationmatrix has a condition number of roughly 2/ϵ, where ϵ is the distance of the (cell mean
of the) normalized first moment to the realizability boundary. Note that this implies that close to the realizability boundary,
significant round-off errors may occur. However, we have performed numerical experiments with the linesource test case
with ϵ = 10−5, 10−12, 10−14, and observed no significant effect of the cutoff parameter.

Comparison to a reference solution.We note that for a general f > 0 we have that

∥log10(f )∥H1(K ) = ∥log10(f )∥L2(K ) + ∥ 1

log10f
∇xf ∥L2(K ).

We can therefore use the evaluation of the DG polynomial and its first-order derivatives in every element K to calculate its
logarithmic Sobolev representation locally.

The reference solution is computed using a first-order Lax–Friedrichs finite-volume scheme on an equidistant rectangular
grid with 8192 × 8192 grid points. The gradients for the reference solution are obtained using centered finite difference
formulas. Finally, the argument in the norm is evaluated on every point of the reference grid and integrated using a
quadrature with equal weights at exactly those reference points (rectangle rule).

Choosing the limiter parameterM . The solutions of the benchmark test cases that follow are plotted on a logarithmic scale.
We thus choose the value ofM in (3.18), using the logarithmic Sobolev norm error, as

M = argminM≥0∥log10
(

ψ
(0)

M

)

− log10

(

ψ
(0)

ref

)

∥H1(X). (5.1)

Since every evaluation of (5.1) requires to solve the full system of equations, finding the true minimum using e.g. a gradient
method is not feasible. We therefore restricted ourselves to the discrete set of (almost) logarithmically spaced values
M ∈ M := {0.1, 0.2, 0.5, 1, 2, 10, 22, 46, 100, 150}.



P. Chidyagwai et al. / Journal of Computational and Applied Mathematics 342 (2018) 399–418 409

Table 2

L1- and L∞-errors and observed convergence order ν for the first component of the realizability-limited, piece-wise linear and quadratic reconstructions

of U(x, y) from (5.2) with ξ = 10−4 .

1/h k = 1 k = 2

E1
h ν E∞

h ν θmax E1
h ν E∞

h ν θmax

5 5.535e−02 – 2.790e−01 – 3.210e−01 1.787e−02 – 6.567e−02 – 1.783e−01

10 1.252e−02 2.1 1.269e−01 1.1 3.960e−01 1.483e−03 3.6 1.153e−02 2.5 5.305e−02

20 2.774e−03 2.2 3.831e−02 1.7 4.117e−01 1.382e−04 3.4 1.495e−03 2.9 1.391e−02

40 6.500e−04 2.1 1.001e−02 1.9 4.154e−01 1.551e−05 3.2 1.878e−04 3.0 3.519e−03

80 1.568e−04 2.1 2.531e−03 2.0 4.164e−01 1.881e−06 3.0 2.350e−05 3.0 8.824e−04

160 3.847e−05 2.0 6.345e−04 2.0 4.166e−01 2.332e−07 3.0 2.938e−06 3.0 2.205e−04

320 9.526e−06 2.0 1.587e−04 2.0 4.166e−01 2.909e−08 3.0 3.673e−07 3.0 5.431e−05

5.1. Failure of the realizability limiter

We want to extend the investigation in [27] to our two-dimensional setup. Define the two moment vectors

U0 = (1 − ξ )

(

1

1

0

)

+ ξ

(

1

0

0

)

,U1 = 10−6 ·
(

(1 − ξ )

(

1

0

1

)

+ ξ

(

1

0

0

))

.

Both of them satisfy |ψ (1)

ψ (0) | = 1 − ξ , i.e. the distance to the realizability boundary can be controlled by the parameter ξ . Due

to the convexity of the realizable set every convex combination of U0 and U1 will be realizable as well. We can thus define
the vector of functions

U(x, y) = (1 − λ(x, y))U0 + λ(x, y)U1, (5.2)

λ(x, y) = cos (2 (x + y) π)+ 1

2
∈ [0, 1],

which is realizable for all (x, y) ∈ [0, 1]2.
Now we discretize the domain, for simplicity, using the structured rectangular mesh with equidistant step sizes. We

project U(x, y) onto the DG basis of degree k, k ∈ {0, 1, 2} and apply the realizability-preserving limiter from Section 4. Then
we refine the grid and calculate L1- and L∞-errors for the zeroth moment ψ (0) as

E1
h =

∫ 1

0

∫ 1

0

⏐

⏐

⏐
ψ (0)

a (x, y) − ψ
(0)

h (x, y)

⏐

⏐

⏐
dxdy, E∞

h = max
(x,y)∈[0,1]2

⏐

⏐

⏐
ψ (0)

a (x, y) − ψ
(0)

h (x, y)

⏐

⏐

⏐
,

where ψ
(0)
a denotes the exact zeroth moment of U and ψ

(0)

h its limited DG polynomial. In practice, the integral in E1
h is

approximated by a high-order tensor Gaussian quadrature on every cell and themax in E∞
h is taken over the same quadrature

nodes.
The observed convergence order ν is defined by

E
p

h1

E
p

h2

=
(

h1

h2

)ν

(5.3)

where for i ∈ {1, 2}, Ep

hi is the error E
p

h for the numerical solution using cell size hi, for p ∈ {1,∞}.
We found that taking ξ ∈ [0, 10−4] places themoment curveU(x, y) close enough to the boundary of realizability that the

realizability limiter was active for every number of cells we considered. In Table 2 we show convergence rates for ξ = 10−4.
These results show the expected convergence order k + 1 in all cases. In this table we include the column θmax, which gives
the maximum value of θ from the realizability limiter over all spatial cells. That θmax is nonzero in each row indicates that
the realizability limiter was active for every reconstruction.

Pushing U closer to the realizability boundary (ξ ≤ 10−5) degrades the convergence order of the piecewise-linear
reconstruction, verifying the mentioned convergence problems. This is demonstrated in Table 3 for the extreme case ξ = 0,
i.e. moments are placed on the realizability boundary. Surprisingly, the third-order approximation has the full convergence
order for all tested ξ ∈ [0, 10−3]. Note that this is different to the results in [27] where the third-order approximation
degrades to second order. The reason for this is still unclear but might be due to the high non-linearity of theM3 model used
in [27]. We checked several variants of the test (by choosing different vectors on the unit sphere instead of (1, 0, 0)T and
modifying the weight 10−6 in front of U1) and all showed the same behavior.

Full convergence tests for this scheme in one and two dimensions can be found in [27,29].

5.2. Line source

Our first benchmark is the line-source test as proposed in [49]. It is a Green’s function problem, where a pulse of particles
is emitted from a line in an infinite medium. This corresponds to an initial condition of the form ψ (0)(x, y) = c · δ(x, y),
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Table 3

L1- and L∞-errors and observed convergence order ν for the first component of the realizability-limited, piece-wise linear and quadratic reconstructions

of U(x, y) from (5.2) with ξ = 0.

1/h k = 1 k = 2

E1
h ν E∞

h ν θmax E1
h ν E∞

h ν θmax

5 6.716e−02 – 3.594e−01 – 5.603e−01 1.787e−02 – 6.567e−02 – 1.783e−01

10 1.532e−02 2.1 1.269e−01 1.5 3.960e−01 2.033e−03 3.1 1.153e−02 2.5 5.305e−02

20 3.143e−03 2.3 3.831e−02 1.7 4.117e−01 1.577e−04 3.7 1.495e−03 2.9 1.391e−02

40 6.966e−04 2.2 1.001e−02 1.9 4.154e−01 1.614e−05 3.3 1.878e−04 3.0 3.519e−03

80 1.626e−04 2.1 2.531e−03 2.0 4.164e−01 1.901e−06 3.1 2.350e−05 3.0 8.829e−04

160 3.920e−05 2.1 6.345e−04 2.0 4.166e−01 2.338e−07 3.0 2.938e−06 3.0 2.217e−04

320 9.625e−06 2.0 3.008e−04 1.1 4.167e−01 2.912e−08 3.0 3.673e−07 3.0 8.294e−05

Fig. 3. Line source: ψ (0) of Lax–Friedrichs reference solution on a 8192 × 8192 grid.

whose lack of regularity makes this problem especially hard to tackle for the method of moments, including the M1 model,
see e.g. [50]. The parameters of this test are as follows:

• Domain: [−0.5, 0.5]2 with h = 0.004
• Time T = 0.45
• Parameters: σa = σs = 0, q(0) = 0, q(1) = 0

• Initial condition: smoothed Dirac ψ (0)(x, y) = max(exp(−10
x2+y2

σ2 ), 10−4) with σ = 0.02, ψ (1)(x, y) = 0

• Boundary conditions are Dirichlet conditions consistent with the initial conditions. Because the signal does not reach
the boundary, these conditions do not influence the result.

Due to the rotational invariance of the initial condition and the flux of theM1 model the exact solution for the line-source
problem has rotational symmetry. (See Fig. 3.)

This symmetry is easily destroyed by the application of the slope limiter in primitive variables (SL0□/△, Fig. 4). It is
visible for both mesh types that the solution is strongly asymmetric in density as well as normalized velocity. Furthermore,
realizability is lost in parts of the domain (black and white spots).

Applying the characteristic limiter (CL0□/△) yields much better results: the solution is much more symmetric and as
shown in Tables 4 and 5, it is even realizable in themean at the final time step. However, the realizability in themean does not
hold at every time step and in addition there are a Gauss points on bothmeshes atwhich the solution is unrealizable.We note
that the fact that primitive-variable limiting (SL0□/△) can result in non-physical oscillations is a well-known phenomenon
and has been reported in case of theM1 model in one dimension in [13].

Unfortunately, choosing M = 0 in the minmod limiter results in a flattening of the solution at smooth extrema and
first-order convergence in the L∞-norm [16]. Setting M = 22 results in sharper solutions in the sense that the width of the
wave front is decreasing (Fig. 5). However, this comes at the price of a realizability loss resulting in a complete destruction
of the solution (see e.g. CL22□ in Fig. 5). Similar results occur with the primitive-variable limiter (not shown). This can be
fixed by further application of the realizability limiter (CRL22□/△). The now-realizable solutions show the same sharpness
as with CL22□/△. Furthermore, good rotational symmetry is still visible.
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Fig. 4. Line source: comparison of primitive and characteristic slope limiter.

Fig. 5. Line source: comparison of the characteristic limiter with and without realizability limiter.

Table 4

Line source: percentage of non-realizable cells and quadrature points on

rectangular mesh.

SL∞□ SL0□ SL22□ CL0□ CL22□

maxt GP 11.49% 8.19% 13.01% 0.84% 7.69%

maxt CM 10.09% 8.08% 10.59% 0.81% 5.87%

GP(tf ) 11.49% 3.26% 13.01% 0.06% 7.69%

CM(tf ) 10.09% 3.15% 10.59% 0.00% 5.87%

A natural question arising is if the realizability limiter on its own is enough to provide a good solution. It has been shown

in [13] that even in one dimension spurious oscillations can occur. Similarly, as shown in Fig. 6, symmetry is not preserved

and slight oscillations are visible, especially in the normalized velocity. Although the solution is everywhere realizable, a

slope limiter is strictly necessary to dampen the Gibbs phenomenon. Similar observations have been made in case of the

Euler equations in [44,51].
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Table 5

Line source: percentage of non-realizable cells and quadrature points on tri-

angular mesh.

SL∞△ SL0△ SL22△ CL0△ CL22△
maxt GP 81.01% 5.01% 30.10% 0.03% 0.33%

maxt CM 80.33% 5.03% 25.12% 0.00% 0.17%

GP(tf ) 81.01% 5.05% 30.10% 0.01% 0.20%

CM(tf ) 80.33% 5.00% 25.12% 0.00% 0.08%

Fig. 6. Line source: realizability limiter only.

Fig. 7. Line source: primitive variable and realizability limiter.

As we have shown, using the characteristic and realizability limiter together yields good results. However, the change

to characteristic fields is expensive and the transformation matrices become arbitrarily poorly conditioned close to the

realizability boundary [52], yielding inaccurate results. Unfortunately, Fig. 7 shows that the combination of limiting in the

primitive-variable and realizability limiter is not enough to obtain good results. It appears that these solutions are even

worse than the realizability-limiter-only solutions shown in Fig. 6.

Our numerical tests show that in general the characteristic limiter combined with the realizability limiter (CRLM) is

superior to the combination of limiting in the components and the realizability limiter (SRLM). However, the differences

between the two limiting strategies are most dramatic for the linesource test case. In the rest of the problems we consider,

the solutions both look good and are comparable.

In Tables 4 and 5we summarize the performance of the slope limiter in the absence of the realizability limiter by counting

the proportion of non-realizable cells (CM) and Gauss points (GP).We provide both themaximum values in the time interval

(taken over a sample of 20 equidistant time points) and the values at the final time step for each mesh. It is clear that the

characteristic limiter (CLM□/△) performs better than the slope limiter in primitive variables (SLM□/△). In fact the final

solution from the characteristic limiter (CL0□/△) is realizable in the mean on both meshes. However, realizability in the
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Fig. 8. Homogeneous disk: ψ (0) of Lax–Friedrichs reference solution on a 8192 × 8192 grid.

Table 6

Homogeneous disk: percentage of non-realizable cells and quadrature points

on rectangular mesh.

SL∞□ SL0□ SL0.2□ CL0□ CL0.2□

maxt GP 24.13% 12.46% 18.95% 1.57% 5.53%

maxt CM 21.95% 7.19% 15.08% 0.22% 1.14%

GP(tf ) 4.93% 12.46% 18.46% 1.23% 2.91%

CM(tf ) 0.26% 7.19% 9.39% 0.06% 0.06%

mean and at the Gauss points is not guaranteed at all time steps on the time interval. These results further reinforce the
need for the realizability limiter.

5.3. Homogeneous disk

Our next test case is the two-dimensional version of the homogeneous sphere test, which is often used to test radiation
transport codes, see e.g. [53–56]. It consists of a static homogeneous and isothermal sphere that radiates in vacuum [57].
It is well-suited to test moment approximations since it admits an analytical stationary solution for the underlying kinetic
transport equation [58]. The parameters in the two-dimensional setting are as follows:

• Domain: [−5, 5]2 with h = 0.05
• Time: 3.00
• Parameters: Let D be the unit disk D = {(x, y) : x2 + y2 ≤ 1}. Set σs = 0; σa = 10 on D, zero otherwise; source

q(0) = 1 on D, zero otherwise; q(1) = 0
• Initial condition: ψ (0) = 10−10, ψ (1) = 0
• Boundary conditions: ψ (0) = 10−10, ψ (1) = 0

This test case is numerically challenging due to the discontinuous parameters. Furthermore, its solution is again radially
symmetric, simplifying the analysis of the quality of the limiter configurations. (See Fig. 8.)

As in the line source test case, we observe that the application of the primitive-variable limiter results in an oscillatory
solutionwhich is not realizable. This is shown in Fig. 9. In case of the triangularmesh strong filaments form at the edge of the
disk. Using the characteristic limiter slightly improves the solution. However, and in contrast to the line source, even with
M = 0 the characteristic limiter is no longer able to preserve realizability in the mean (see Tables 6 and 7), furthermore, a
larger proportion of the Gauss points are not realizable. Additionally, at the boundary of the disk the quality of the solution
is strongly reduced due to the bad condition number of the transformation matrix, which goes to infinity for values of |φ1|
approaching 1 [52]. (See Fig. 10.)

Adding the realizability limiter strongly improves the quality of the solution (Fig. 10). As before, choosingM = 0.2 gives
less diffusive results.

A quantitative analysis of the slope limiters (SLM□/△) and (CLM□/△) show that limiting in characteristic variables yields
better results but the solution remains unrealizable.
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Fig. 9. Homogeneous disk: comparison of primitive and characteristic slope limiter.

Fig. 10. Homogeneous disk: comparison of the characteristic limiter with and without realizability limiter.

Table 7

Homogeneous disk: percentage of non-realizable cells and quadrature points

on triangular mesh.

SL∞△ SL0△ SL0.2△ CL0△ CL0.2△
maxt GP 71.75% 34.25% 41.73% 5.65% 33.65%

maxt CM 71.62% 34.41% 40.18% 5.75% 32.64%

GP(tf ) 71.75% 34.25% 41.73% 5.65% 33.65%

CM(tf ) 71.61% 34.41% 40.18% 5.71% 32.64%

5.4. Flash

In this test case a bulk of mass is moving from the center of the domain to the right boundary [59]. The parameters are
given as follows:

• Domain: [−10, 10]2 with h = 0.06
• Time: 6
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Fig. 11. Flash test: ψ (0) of Lax–Friedrichs reference solution on a 8192 × 8192 grid.

Fig. 12. Flash test: comparison of primitive and characteristic slope limiter.

• Parameters: Let D be unit disk with radius 0.5, D = {(x, y) : x2 + y2 ≤ 0.25}. Set σs = 0; σa = 0; source q(0) = 0,
q(1) = 0

• Initial condition: ψ (0) = 1, ψ
(1)
x = 0.9, ψ

(1)
y = 0 on D, ψ (0) = 10−10, ψ (1) = 0 otherwise

• Boundary conditions: ψ (0) = 10−10, ψ (1) = 0

The reference solution at the final time is depicted in Fig. 11.
Due to the initial condition which is placed close to the boundary of realizability this test is well suited to show the

inability of standard slope limiters to preserve realizability. This is demonstrated in Fig. 12 where similar effects as before
occur.

A comparison of Figs. 12 and 13 confirms that the combination of the characteristic limiter with the realizability limiter
yields the best solutions. The performance of the slope limiter without the realizability limiter in Tables 8 and 9 is consistent
with previous observations in the line source and homogeneous disk test cases.
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Fig. 13. Flash test: characteristic limiter with realizability limiter for different values ofM .

Table 8

Flash: percentage of non-realizable cells and quadrature points on rectangu-

lar mesh.

SL∞□ SL0□ SL0.5□ CL0□ CL0.5□

maxt GP 14.84% 13.97% 20.88% 0.86% 19.75%

maxt CM 11.77% 11.53% 14.27% 0.22% 15.01%

GP(tf ) 14.70% 13.97% 20.88% 0.86% 19.75%

CM(tf ) 9.50% 11.53% 14.27% 0.22% 15.01%

Table 9

Flash: percentage of non-realizable cells and quadrature points on triangular

mesh.

SL∞△ SL0△ SL0.5△ CL0△ CL0.5△
maxt GP 55.21% 24.12% 50.14% 5.45% 50.99%

maxt CM 55.18% 24.27% 49.10% 5.63% 39.00%

GP(tf ) 55.28% 24.12% 50.14% 5.45% 40.99%

CM(tf ) 55.18% 24.27% 49.10% 5.63% 39.00%

6. Conclusions and outlook

In this work, we have investigated a third order realizability-preserving DG method to approximate solutions to the M1

model of radiation transport. The results show that in all test cases presented, the realizability limiter is imperative to ensure
the realizability of the numerical solutions.

Based on these results, we advocate the M1 model as an ideal test case that pushes the boundaries of high-order
realizability-preserving numerical methods. The model equations are highly nonlinear, and are well-posed only in a
geometrically complex (yet convex) domain of realizability. Furthermore, practically relevant solutions are not just wave
fronts, but rather beam-like solutions, or they possess Dirac-like source terms. Solutions and material coefficients tend to
vary over several orders of magnitude. Furthermore, so-called source-detector problems in radiation transport require an
accurate solution (in terms of the relative error) at one or more specific points in space.

The results presented in this paper cast some doubt onwhether DG is a competitive numerical scheme forM1, considering
the accuracy requirements commonly encountered in practice. For instance, for the homogeneous disk test case the DG
solution possesses around 106 degrees of freedom. It is comparable in quality to a Lax–Friedrichs (LF) solution with roughly
the same number of degrees of freedom (2048 × 2048 ≈ 4 · 106), which however is significantly faster to compute because
no limiting is needed. Similarly, in the line source test case, the best DG solution is comparable to a 1024× 1024 LF solution.

In several test cases, the high-order DGmethod yields reliable results only if a full limiting strategy is employed, including
transformations to and from the characteristic variables. Not only do those transformations incur a significant cost, they also
become less and lesswell conditionedwhenhigher accuracy requirements are imposed. It is therefore questionablewhether,
for the M1 model, the high-order DG methodology will ever become more efficient than a simple monotone first-order
scheme that automatically guarantees realizability.
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That being said, it should be pointed out that the DG methodology studied here, albeit being an established standard

method, can most certainly be improved. For instance, more sophisticated limiting techniques, such as WENO limiting with

KXRCF shock detection [60,61], or limiters that incorporate high-order approximations during the limiting process [62,63],

could be combined with the realizability-preserving limiter. This would remove the need for the problem-dependent

minmod parameter M . Furthermore, more efficient time stepping schemes could be applied, such as explicit low-storage

SSP Runge–Kutta schemes [64], SSP multi-step Runge–Kutta methods [65,66] (which both require less evaluations of the

differential operator Lh), or even Implicit–Explicit schemes [67,68] (to remove the dependence on the right-hand side (σa
and σs) in the CFL condition (4.1)).

Further research steps include realizability limiting for higher-order minimum-entropy models (i.e., MN with N ≥ 2)

in two and three dimensions, similar to [27]. The main challenge in that context is that a complete characterization of the

realizability set by means of simple algebraic criteria is still outstanding. One possible remedy is to use discrete realizability

criteria with respect to a quadrature rule [52]. Moreover, in general a high number of quadrature points is necessary to

produce solutions without discernible discrete ray artifacts [27,29,50], resulting in an extremely high cost for realizability

limiting. Hence less expensive strategies to guarantee realizability need to be developed.
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