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Abstract—Evaluation of end-to-end network performance us-
ing realistic traffic models is a challenging problem in networking.
The classical theory of queueing networks is feasible only under
rather restrictive assumptions on the input traffic models and
network elements. An alternative approach, first proposed in the
late 1980s, is to impose deterministic bounds on the input traffic
that can be used as a basis for a network calculus to compute
end-to-end network delay bounds. Such deterministic bounds are
inherently loose as they must accommodate worst case scenarios.
Since the early 1990s, efforts have shifted to development of
a stochastic network calculus to provide probabilistic end-to-end
performance bounds. In this paper, we capitalize on the approach
of stochastically bounded burstiness (SBB) which was developed
for a general class of bounding functions, and was demonstrated
for a bound that is based on a mixture distribution. We specialize
the SBB bounds to bounds based on the class of phase-type
distributions, which includes mixture distributions as a particular
case. We develop the phase-type bounds and demonstrate their
performance.1

Index Terms—network performance, network calculus, phase-
type distribution, delay bounds.

I. INTRODUCTION

A challenging problem in the field of networking is how to
provide end-to-end performance guarantees while still reaping
the benefits of statistical multiplexing gain enabled by the
packet switching paradigm. Queueing theory and teletraffic
theory, which are by now considered classical branches of
applied probability, can yield analytical performance results
for a single node or network element under fairly general input
traffic and service processes. The theory of queueing networks
extends queueing theory to a network of nodes, but only under
rather restrictive assumptions on the input traffic processes
and service processes. In particular, the theory of queueing
networks cannot generally accommodate the bursty traffic
models that characterize modern networks. An alternative
approach is to impose bounds on the input traffic that can
be used as a basis for a network calculus to compute end-to-
end network delay bounds. In his pioneering papers [1], [2],
Cruz introduced the so-called (𝜎, 𝜌)-characterization of traffic
and developed an associated deterministic network calculus to
compute end-to-end delay bounds. Since such deterministic
end-to-end delay bounds must accommodate worst-case sce-
narios, they tend to be very loose. Hence, interest has turned
towards the development of a stochastic network calculus
to provide probabilistic end-to-end performance bounds. The

1This work was supported in part by the U.S. National Science Foundation
under Grant No. 1717033.

influential book by Chang [3] summarizes the state-of-the-art
on deterministic and stochastic network calculus prior to 2000.
Since 2000, stochastic network calculus has continued to be
viewed as a challenging research topic of active interest in the
networking community.

Of interest here is the class of traffic processes having
exponentially bounded burstiness (EBB) proposed by Yaron
and Sidi in [4], which in turn was heavily influenced by the
(𝜎, 𝜌)-traffic characterization and network calculus of Cruz.
The EBB concept has been applied to the analysis of end-
to-end network delay, e.g., in [5]. The basic idea of EBB is
to stochastically bound the input traffic to a network element
using an exponential function. This in turn leads to an expo-
nential bound on the tail distribution of the queue workload
distribution, as well as a probabilistic bound on the output
traffic. The input-output relation is the basis for a stochastic
network calculus to compute end-to-end network performance
bounds. In a later work, Starobinski and Sidi [6] extended the
EBB concept to the so-called stochastically bounded burstiness
(SBB), whereby input traffic is bounded by a function that
satisfies fairly general conditions, of which the exponential
function is a special case. In this paper we specialize the
SBB bound of [6] to functions that stem from phase-type
distributions. The family of phase-type distributions is closed
under mixture and convolution operations, and hence includes
the exponential mixture bound used in [6] as a particular case.
We develop the phase-type based bound and demonstrate its
performance in a preliminary numerical study.

The remainder of the paper is organized as follows. In
Section II, we provide a brief summary of the concepts of EBB
and SBB and the associated stochastic network calculus. In
Section III, we review properties of the phase-type distribution
and specialize the SBB bounds to phase-type bounds. In
Section IV, we provide a numerical example for a queue with
Markov modulated Poisson process input traffic model. The
paper is concluded with further comments in Section V.

II. STOCHASTIC NETWORK DELAY BOUNDS

In this section, we review the EBB concept in [4] and its
generalization to SBB in [6].2 These approaches to bounding
a traffic process provide the basis of a stochastic network
calculus for deriving end-to-end network delay bounds.

2As in the original papers, we shall, with minor abuse of grammar, use
the abbreviations EBB and SBB both as nouns and adjectives depending the
context.
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A. Stochastically Bounded Burstiness

A stochastic process 𝑊 = {𝑊 (𝑡) : 𝑡 ≥ 0} is called
exponentially bounded (EB) if there exist 𝛼 ≥ 0 and 𝐴 ∈ [0, 1]
such that

P{𝑊 (𝑡) ≥ 𝜎} ≤ 𝐴𝑒−𝛼𝜎, (1)

for all 𝑡 ≥ 0 and all 𝜎 ≥ 0, A traffic process with instantaneous
rate process 𝑅 = {𝑅(𝑡) : 𝑡 ≥ 0} is said to be EBB with upper
rate 𝜌 if there exist 𝛼 ≥ 0 and 𝐴 ∈ [0, 1] such that

P

{∫ 𝑡

𝑠

𝑅(𝑡) d𝑡 ≥ 𝜌(𝑡− 𝑠) + 𝜎
}

≤ 𝐴𝑒−𝛼𝜎, (2)

for all 𝑡 ≥ 𝑠 ≥ 0 and all 𝜎 ≥ 0. For a discrete-time traffic
process {𝑅𝑘 : 𝑘 = 0, 1, . . .}, essentially the same definition
of EBB applies, except that 𝑠 and 𝑡 are nonnegative integers
and the integral is replaced by a summation:

P

{
𝑡∑

𝑢=𝑠+1

𝑅𝑢 ≥ 𝜌(𝑡− 𝑠) + 𝜎
}

≤ 𝐴𝑒−𝛼𝜎. (3)

In this paper, we shall focus on the continuous-time case.
Analogous results could be developed for the discrete-time
case.

For some traffic models, the exponential bound of EBB can
be quite loose. This bound was extended in [6] to employ a
general bounding function. A stochastic process𝑊 (𝑡) is called
stochastically bounded (SB) if, for all 𝑡 ≥ 0 and all 𝜎 ≥ 0

P{𝑊 (𝑡) ≥ 𝜎} ≤ 𝑓(𝜎), (4)

where 𝑓(𝜎) ∈ ℱ , and ℱ is defined as the family of
functions such that for every 𝑛, 𝜎 ≥ 0, the 𝑛-fold integral
(
∫∞
𝜎

d𝑢)𝑛𝑓(𝑢) is bounded. For example, if 𝑓(𝜎) = 𝑒−𝛼𝜎 ,
then (

∫∞
𝜎

d𝑢)𝑛𝑓(𝑢) = (1/𝛼)𝑛𝑒−𝛼𝜎 , which will be bounded
if 𝛼 > 0. A traffic process with instantaneous rate process
𝑅(𝑡) is called SBB with upper rate 𝜌 and bounding function
𝑓(𝜎) if, for all 𝑡 ≥ 𝑠 ≥ 0 and all 𝜎 ≥ 0,

P

{∫ 𝑡

𝑠

𝑅(𝑡) d𝑡 ≥ 𝜌(𝑡− 𝑠) + 𝜎
}

≤ 𝑓(𝜎). (5)

B. Stochastic Network Calculus

We consider a network model that starts at 𝑡 = 0 and all the
network queues are empty at that time. Buffers are assumed to
be infinite. The network is assumed to be a work-conserving
system, which means that in every element of the network, no
work is created or destroyed, and the server of the element
never idles in the presence of a non-empty queue. In [6],
several important results are established that can be used to
develop a network calculus for assessing network delays using
probabilistic bounds.

∙ The SBB Characterization Theorem [6, Theorem 1] con-
siders a work-conserving system that transmits at a rate
of 𝜌, fed with a traffic stream with rate process 𝑅(𝑡). If
𝑊 (𝑡), the queue workload at time 𝑡, is SB with bounding
function 𝑓(𝜎) then the input traffic stream will be SBB
with the same bounding function 𝑓(𝜎) and upper rate 𝜌.

∙ The SBB Sum Theorem [6, Theorem 2] states that when
two SBB traffic streams 𝑅1(𝑡) and 𝑅2(𝑡) with bounding
functions 𝑓1(𝜎) and 𝑓2(𝜎) and upper rates 𝜌1 and 𝜌2 are
fed into a network element with constant service rate,
the aggregate traffic rate process 𝑅1(𝑡)+𝑅2(𝑡) will also
be SBB with upper rate 𝜌1 + 𝜌2 and bounding function
𝑔(𝜎) = 𝑓1(𝑝𝜎)+𝑓2((1−𝑝)𝜎), where 𝑝 is any value such
that 0 < 𝑝 < 1.

∙ The SBB Input-Output Relation Theorem [6, Theorem 3]
considers a traffic rate process 𝑅in(𝑡) fed as input to a
work-conserving network element that transmits at rate
𝐶. If 𝑅in(𝑡) is SBB with upper rate 𝜌 < 𝐶 and bounding
function 𝑓(𝜎), then the queue workload process 𝑊 (𝑡)
and the output rate process 𝑅out(𝑡) have the following
properties:

i) 𝑅out(𝑡) is SBB with upper rate 𝜌 and bounding
function

𝑔(𝜎) = 𝑓(𝜎) +
1

𝐶 − 𝜌
∫ ∞

𝜎

𝑓(𝑢) d𝑢, (6)

ii) 𝑊 (𝑡) is SB with bounding function

𝑔(𝜎) = 𝑓(𝜎) +
1

𝐶 − 𝜌
∫ ∞

𝜎

𝑓(𝑢) d𝑢. (7)

By the Sum Theorem, if the individual inputs to different
nodes of a network are SBB, their aggregated input stream
will also be SBB. Then by the Input-Output Relation Theorem,
𝑊 (𝑡) and 𝑅out(𝑡) of these nodes will be SB and SBB, respec-
tively. Following the same steps, we can extend this further
to other nodes, and eventually to the entire network. Thus, if
the input traffic streams to the network can be characterized
as being SBB, then the traffic streams in all links of the
network and the queue workloads at all network elements can
be characterized as being SBB and SB, respectively.

III. PHASE-TYPE NETWORK DELAY BOUNDS

In this section, we develop phase-type network delay bounds
based on the SBB calculus in [6]. The phase-type bounds
provide a useful specialization of the SBB bounds in [6]. The
class of phase-type distributions has the important property
of being dense in the family of distributions of nonnegative
random variables; i.e., the distribution of any random variable
taking values in [0,∞) can be approximated arbitrarily closely
by a phase-type distribution [7, Theorem 4.2] [8, Theorem
5.2]. In addition, phase-type distributions are mathematically
tractable and form a closed set with respect to operations such
as convolutions or mixtures. We use properties of phase-type
random variables to relate bounds on the input traffic to a
network element to bounds on the queue workload as well as
bounds on the output traffic, as is usually done in network
calculus [3], [4], [6].

A. Phase-type Distribution

The phase-type distribution is defined in terms of a Markov
chain 𝑋 = {𝑋(𝑡) : 𝑡 ≥ 0} with state space 𝐸 =
{1, 2, . . . , 𝑛, 𝑛+1}, where states 1, 2, . . . , 𝑛 are transient states
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and 𝑛 + 1 is an absorbing state. The generator of 𝑋 has the
form [9] (

Q q
0 0

)
, (8)

where Q = [𝑞𝑖𝑗 : 𝑖, 𝑗 = 1, . . . , 𝑛] is an 𝑛 × 𝑛 matrix such
that 𝑞𝑖𝑗 is the transition rate from state 𝑖 to state 𝑗 and
q = col(𝑞1, . . . , 𝑞𝑛) such that 𝑞𝑖 is the transition rate from
transient state 𝑖 to the absorbing state 𝑛 + 1. The submatrix
Q is invertible and the vector q is related to Q as follows:

q = −Q1, (9)

where 1 denotes a column vector of ones of the appropriate
dimension, which is 𝑛 in this case. Define 𝜋𝑖 = P(𝑋(0) = 𝑖)
for 𝑖 = 1, . . . , 𝑛+1 and the vector 𝝅 = (𝜋1, . . . , 𝜋𝑛). Hence,
the initial distribution of 𝑋 is given by (𝝅, 𝜋𝑛+1), where 𝜋𝑛+1

is the probability that the chain starts in the absorbing state.
Let 𝜏 = inf{𝑡 ≥ 0∣𝑋(𝑡) = 𝑛+1} be the time until absorption
of the Markov process 𝑋 . The random variable 𝜏 is phase-type
with parameter (𝝅,Q):

𝜏 ∼ PH𝑛(𝝅,Q). (10)

In this case, the cumulative distribution function and survival
function of 𝜏 are given, respectively, by

𝐹𝜏 (𝑡) = 1− 𝝅𝑒Q𝑡1, 𝑡 ≥ 0 (11)

𝑆𝜏 (𝑡) = P(𝜏 > 𝑡) = 1− 𝐹𝜏 (𝑡) = 𝝅𝑒Q𝑡1, 𝑡 ≥ 0. (12)

The Laplace transform of 𝜏 is given by

𝑀𝜏 (𝑠) := E
{
𝑒−𝑠𝜏

}
= 𝜋𝑛+1 + 𝝅[𝑠𝐼 −Q]−1q, (13)

where 𝐼 denotes an identity matrix of appropriate dimension,
in this case 𝑛×𝑛. The expected value of the phase-type random
variable 𝜏 is given by

E{𝜏} = −𝝅Q−11. (14)

The transition probabilities among the transient states of 𝑋
are given by

P(𝑋(𝑡) = 𝑗, 𝜏 > 𝑡 ∣ 𝑋(0) = 𝑖) =
[
𝑒Q𝑡

]
𝑖𝑗
, (15)

where 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛}. As the states 1, 2, . . . , 𝑛 are
transient, we have

lim
𝑡→∞

[
𝑒Q𝑡

]
𝑖𝑗
= 0, (16)

The family of phase-type distributions is closed under
convolution and mixture operations (see [9], Theorems 3.1.26
and 3.1.27, respectively). Suppose, for example, that 𝜏1 ∼
PH𝑛(𝜶,G) and 𝜏2 ∼ PH𝑚(𝜷,H) and 𝜏1 and 𝜏2 are indepen-
dent. Then 𝜏sum = 𝜏1 + 𝜏2 is a phase-type random variable
with 𝑛+𝑚 transient states such that

𝜏sum ∼ PH𝑚+𝑛

(
(𝜶,0),

(
G g𝜷
0 H

))
, (17)

where g = −G1. Thus, if 𝑋1, 𝑋2, . . . , 𝑋𝑛 are independent
exponential random variables with 𝑋𝑖 ∼ exp(𝜆𝑖), 𝑖 =

1, . . . , 𝑛, then the distribution of the sum 𝜏 = 𝑋1 + 𝑋2 +
. . .+𝑋𝑛 is given by 𝜏 ∼ PH𝑛(𝝅,Q) where

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−𝜆1 𝜆1 0 0 ⋅ ⋅ ⋅ 0
0 −𝜆2 𝜆2 0 ⋅ ⋅ ⋅ 0
0 0 −𝜆3 𝜆3 ⋅ ⋅ ⋅ 0
...

...
...

...
. . .

...
0 0 0 0 ⋅ ⋅ ⋅ 𝜆𝑛−1

0 0 0 0 ⋅ ⋅ ⋅ −𝜆𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

𝝅 = (1, 0, 0, ⋅ ⋅ ⋅ , 0).

(18)

Next consider a mixture of phase-type distributions defined by

𝜏mix =

{
𝜏1 with probability 𝑝,

𝜏2 with probability 1− 𝑝,
where 𝑝 ∈ [0, 1]. Then

𝜏mix ∼ PH𝑛+𝑚

(
(𝑝𝜶, (1− 𝑝)𝜷),

(
G 0
0 H

))
. (19)

In particular, if 𝜏 is a random variable such that with proba-
bility 𝜋𝑖, 𝜏 is exponentially distributed with parameter 𝜆𝑖 for
𝑖 = 1, . . . , 𝑛, then 𝜏 ∼ PH𝑛(𝝅,Q), where

Q = diag{−𝜆1,−𝜆2, . . . ,−𝜆𝑛}, (20)

𝝅 = (𝜋1, 𝜋2, ⋅ ⋅ ⋅ , 𝜋𝑛). (21)

B. Phase-type Bounded Burstiness

Now we specialize the general SBB concept to bounds
based on phase-type distributions. As mentioned earlier, phase-
type distributions are dense in the set of densities with non-
negative support and every density function in this set can be
approximated arbitrarily well by a phase-type distribution [7,
Theorem 4.2] [8, Theorem 5.2].

Definition 1. A stochastic process𝑊 (𝑡) is phase-type bounded
(PHB) with bounding parameter (𝝅,Q, 𝐴) if 𝐴 ∈ [0, 1] and
(𝝅,Q) is the parameter of a phase-type random variable such
that

P{𝑊 (𝑡) ≥ 𝜎} ≤ 𝐴𝝅𝑒Q𝜎1, (22)

for all 𝑡 ≥ 0 and all 𝜎 ≥ 0.

Definition 2. A continuous-time traffic stream with traffic rate
process 𝑅(𝑡) has phase-type bounded burstiness (PHBB) with
upper rate 𝜌 and bounding parameter (𝝅,Q, 𝐴) if

P

{∫ 𝑡

𝑠

𝑅(𝑡) d𝑡 ≥ 𝜌(𝑡− 𝑠) + 𝜎
}

≤ 𝐴𝝅𝑒Q𝜎1, (23)

for all 𝑡 ≥ 𝑠 ≥ 0 and all 𝜎 ≥ 0.

Next, we show that phase-type bounding functions belong
to the family of functions ℱ defined immediately after (4).

Theorem 1. Let (𝝅,Q, 𝐴) be a phase-type bounding param-
eter. Then 𝑓(𝜎) = 𝐴𝝅𝑒Q𝜎1 is monotonically decreasing and
𝑓 ∈ ℱ .

Proof. Since (𝝅,Q) is the parameter of a phase-type distribu-
tion, the function 𝑆(𝜎) = 𝝅𝑒Q𝜎1 is the associated survival
function, which by definition is monotonically decreasing.
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Therefore, 𝑓(𝜎) is a monotonically decreasing function. To
show that 𝑓 ∈ ℱ , we need to show that (

∫∞
𝜎

d𝑢)𝑛𝑓(𝑢) is
bounded. For the phase-type bounding function we have∫ ∞

𝜎

𝐴𝝅𝑒Q𝑢1d𝑢 = 𝐴𝝅

∫ ∞

𝜎

𝑒Q𝑢 d𝑢 1 (24)

= 𝐴𝝅
[
Q−1𝑒Q𝑢

]∞
𝜎

1 = −𝐴𝝅Q−1𝑒Q𝜎1. (25)

From (16), lim𝑢→∞ 𝑒Q𝑢 = 0. Hence, the right-hand side
of (25) is bounded. Repeating this argument 𝑛−1 more times
shows that (

∫∞
𝜎

d𝑢)𝑛𝑓(𝑢) is bounded.

Theorem 2 (Characterization). Consider a work-conserving
system that transmits at a constant rate of 𝜌 and is fed with
a single traffic stream with rate process 𝑅(𝑡). Let 𝑊 (𝑡) be
the workload in the system at time 𝑡. If 𝑊 (𝑡) is PHB with
parameter (𝝅,Q, 𝐴) then 𝑅(𝑡) is PHBB with upper rate 𝜌 and
bounding parameter (𝝅,Q, 𝐴).

Proof. The result follows from [6, Theorem 1], where the
bounding function is given by 𝑓(𝜎) = 𝐴𝝅𝑒Q𝜎1.

Theorem 3 (Sum). Let 𝑅1(𝑡) be PHBB with upper rate 𝜌1
and bounding parameter (𝜶,G, 𝐴1), and 𝑅2(𝑡) be PHBB
with upper rate 𝜌2 and bounding parameter (𝜷,H, 𝐴2). Then
𝑅1(𝑡) + 𝑅2(𝑡) is PHBB with upper rate 𝜌 = 𝜌1 + 𝜌2 and
bounding parameter (𝝅,Q, 𝐴) where 𝐴 = 𝐴1 +𝐴2,

𝝅 =

[
𝐴1

𝐴
𝜶,
𝐴2

𝐴
𝜷

]
, Q =

(
𝑝G 0
0 (1− 𝑝)H

)
, (26)

and 𝑝 is a real number such that 0 < 𝑝 < 1.

Proof. As 𝑅1(𝑡) and 𝑅2(𝑡) are PHBB, a special case of SBB,
we can apply the Sum theorem for SBB [6, Theorem 2]. In
this case, a bounding function of the aggregated traffic is given
by 𝑔(𝜎) = 𝑓1(𝑝𝜎) + 𝑓2((1− 𝑝)𝜎), where

𝑓1(𝜎) = 𝐴1𝜶𝑒
G𝜎1, 𝑓2(𝜎) = 𝐴2𝜷𝑒

H𝜎1. (27)

We have

𝑔(𝜎) = 𝐴1𝜶𝑒
𝑝G𝜎1+𝐴2𝜷𝑒

(1−𝑝)H𝜎1 (28)

=
[
𝐴1𝜶, 𝐴2𝜷

](𝑒𝑝G 0
0 𝑒(1−𝑝)H

)
1, (29)

from which the result follows.

Theorem 4 (Input-Output Relation). Let 𝑅in(𝑡) be the input
traffic rate process to a work-conserving element, which trans-
mits at rate 𝐶. Suppose that 𝑅in(𝑡) is PHBB with upper rate
𝜌 < 𝐶 and bounding parameter (𝝅,Q, 𝐴). Let 𝑊 (𝑡) denote
the queue workload process and let 𝑅out(𝑡) denote the output
traffic rate process. Then the following hold:

1) 𝑊 (𝑡) is PHB with bounding parameter(
𝝅(𝐶 − 𝜌)− 𝝅Q−1

E{𝜏}+ 𝐶 − 𝜌 ,Q,
𝐴(𝐶 − 𝜌+ E{𝜏})

𝐶 − 𝜌
)
, (30)

where E{𝜏} = −𝝅Q−11 is the mean of phase-type
random variable 𝜏 ∼ PH(𝝅,Q).

2) 𝑅out(𝑡) is PHBB with upper rate 𝜌 and bounding
parameter as given in (30).

Proof. 1) Since 𝑅in(𝑡) is PHBB with upper rate 𝜌 < 𝐶,
we can apply the general SBB input-output relation
theorem given in [6, Theorem 3]. In this case, 𝑊 (𝑡)
will be bounded with bounding function 𝑔(𝜎) = 𝑓(𝜎)+

1
𝐶−𝜌

∫∞
𝜎
𝑓(𝑢) d𝑢, where 𝑓(𝜎) = 𝐴𝝅𝑒Q𝜎1. We have

𝑔(𝜎) = 𝐴𝝅𝑒Q𝜎1− 𝐴𝝅Q
−1𝑒Q𝜎1

𝐶 − 𝜌 (31)

= 𝐴

[
𝝅 − 𝝅Q−1

𝐶 − 𝜌
]
𝑒Q𝜎1 (32)

=
𝐴(𝐶−𝜌+E{𝜏})

𝐶 − 𝜌
[
𝝅(𝐶−𝜌)− 𝝅Q−1

E{𝜏}+ 𝐶 − 𝜌
]
𝑒Q𝜎1.

(33)

The factor in square brackets represents a probability
distribution since

𝝅(𝐶 − 𝜌)− 𝝅Q−1

𝐸{𝜏}+ 𝐶 − 𝜌 ⋅ 1 =
𝐶 − 𝜌− 𝝅Q−11

E{𝜏}+ 𝐶 − 𝜌 = 1,

where we have used (14). Therefore, 𝑔(𝜎) is a phase-
type bounding function for the output traffic rate process.

2) Since 𝑅in(𝑡) is PHBB, following the same argument as
above we can establish that 𝑅out(𝑡) is bounded with
upper rate 𝜌 and bounding function 𝑔(𝜎) = 𝑓(𝜎) +

1
𝐶−𝜌

∫∞
𝜎
𝑓(𝑢) d𝑢, where 𝑓(𝜎) = is PH𝑛(𝝅,T, 𝐴). The

proof relies on the facts that
∫∞
𝜎
𝑓(𝑢) d𝑢 ∈ ℱ and 𝑓(𝜎)

is a decreasing function of 𝜎, which are established in
Theorem 1.

IV. CASE STUDY

In this section, we apply the PHBB bounds to a network
element fed by a Markov modulated Poisson process (MMPP)
as traffic input and compare with the EBB bounds.

A. MMPP/G/1 queue

The MMPP is a common model for traffic with a high
degree of burstiness [10]. A 2-state MMPP is parameterized
by an arrival matrix

Λ =

[
𝜆0 0
0 𝜆1

]
(34)

and a rate matrix

R =

[−𝑟0 𝑟0
𝑟1 −𝑟1

]
, (35)

which is the generator of the modulating Markov chain. When
the service times are independent and generally distributed, the
resulting queue is denoted as MMPP/𝐺/1. A relatively simple
form for the Laplace transform of the virtual waiting time of
a two-state MMPP/𝐺/1 queue is given in [11] in terms of a
transition probability matrix

D = [𝑑𝑖𝑗 : 𝑖, 𝑗 = 0, 1] =

[
1− 𝑑0 𝑑0
𝑑1 1− 𝑑1

]
, (36)

where 𝑑𝑖𝑗 is the probability that a busy period starting in
the underlying state 𝑖 ends in underlying state 𝑗. The virtual
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waiting time in an MMPP/𝐺/1 queue is equivalent to the
queue workload or buffer content in a system with a constant
rate server where packets arrives according to an MMPP with
identically distributed, independent packet lengths drawn from
a common distribution. Let𝐻(𝑠) denote the Laplace transform
of the packet length, which is equivalent to the packet service
time, assuming that the service rate is one unit (e.g., bit)
per unit time (e.g., seconds). The matrix D is determined by
numerically solving the following equations [11, Eqs. (86),
(87)]:

𝑑0 + 𝑑1 = 1−𝐻(𝑟0 + 𝑟1 + 𝜆0𝑑0 + 𝜆1𝑑1) (37)

𝑑0(𝑟1 + 𝜆1𝑑1) = 𝑑1(𝑟0 + 𝜆0𝑑0) (38)

Let f = (𝑓0, 𝑓1) denote the steady-state distribution vector
associated with D, satisfying

fD = f , f1 = 1. (39)

The Laplace transform of the queue workload is given as
follows [11]:

𝑊 (𝑠) =
𝑁(𝑠)

𝐷(𝑠)
, (40)

where

𝑁(𝑠) = 𝑠(1−𝜌)[𝑠−𝑟0−𝑟1+(𝐻(𝑠)−1)(𝑓0𝜆1+𝑓1𝜆0)] (41)

𝐷(𝑠) = 𝑠2 + [(𝐻(𝑠)− 1)(𝜆0 + 𝜆1)− (𝑟0 + 𝑟1)]𝑠

+ (𝐻(𝑠)− 1)[(𝐻(𝑠)− 1)𝜆0𝜆1 − 𝑟0𝜆1 − 𝑟1𝜆0].
(42)

B. Numerical Examples

We shall consider queues with MMPP input traffic model
and two service time distributions: exponential and Erlang-2.
The corresponding queues are denoted by MMPP/𝑀/1 and
MMPP/𝐸2/1, respectively. In [6], a numerical example based
on a discrete-time queue with Markov modulated Bernoulli
process input traffic model was considered. In that model,
the queue workload distribution was a mixture of exponential
distributions.

1) MMPP/𝑀/1 Queue: In the case of exponential service,
the Laplace transform of the packet length distribution is given
by

𝐻(𝑠) =
𝜇

𝑠+ 𝜇
. (43)

Let 𝜆avg denote the average arrival rate to the queue. Then
the queue utilization is given by

𝜌 =
𝜆avg
𝜇

=
𝑟1

𝜇(𝑟0 + 𝑟1)
𝜆0 +

𝑟0
𝜇(𝑟0 + 𝑟1)

𝜆1. (44)

For our numerical example, we set the parameters as follows:
𝑟0 = 2, 𝑟1 = 10−2, 𝜆0 = 12, 𝜆1 = 3, 𝜇 = 4. Using (44), we
compute 𝜌 = 0.7612. Applying the result (40) and inverting
the Laplace transform, the density of the queue workload
process is obtained as follows:

𝑓𝑊 (𝜎) = 0.56𝑒−1.07𝜎 +0.159𝑒−0.669𝜎 +0.239𝛿(𝜎), 𝜎 ≥ 0,
(45)

0 5 10 15

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Buffer size σ

P
r(

W
>

=
σ)

 

 

Actual Survival Function, Eq.(46)
EB bound [4]
PHB bound

Fig. 1. EB and PHB bounds for MMPP/𝑀/1 queue.

where 𝛿(𝜎) denotes the Dirac delta function. The delta func-
tion in the density function implies a discontinuity in the
distribution and survival functions at 𝜎 = 0. Since we are
interested in tail probabilities, we shall only consider the case
𝜎 > 0.

The survival function for the queue workload process 𝑊 (𝑡)
is then given by

P{𝑊 (𝑡) ≥ 𝜎} = 0.5234𝑒−1.07𝜎 + 0.2377𝑒−0.669𝜎, (46)

for 𝑡 ≥ 0, 𝜎 > 0. Based on the (46), we obtain an EB bound
as follows:

P{𝑊 (𝑡) ≥ 𝜎} ≤ 𝑒−0.669𝜎, 𝑡 ≥ 0, 𝜎 > 0. (47)

Since a mixture of exponential distributions is a special case
of the phase-type distribution, the right-hand side of (46) can
be used directly to obtain the phase-type bound. In this case,
the PHB bound can be chosen to match (46), i.e., 𝑊 (𝑡) is
PHB with bounding parameters 𝝅 = (0.6877, 0.3123),

Q =

[−1.07 0
0 −0.669

]
, (48)

and 𝐴 = 0.7611. The MMPP/𝑀/1 model is analogous to the
discrete-time queueing model studied in [6], which resulted
in an SBB bound in the form of a mixture of exponentials.
The EB and the PHB (equal to the exact result) are shown in
semi-log scale in Figure 1.

2) MMPP/𝐸2/1 Queue: When the packet length has an
Erlang-2 distribution, we have

𝐻(𝑠) =

(
2𝜇

𝑠+ 2𝜇

)2

, (49)

where 1
2𝜇 is the mean of each one of two independent

exponential random variables, which are added together to
form the Erlang-2 random variable. The queue utilization in
this case is also given by (44). The parameters are set as
follows: 𝑟0 = 2, 𝑟1 = 10−3, 𝜆0 = 20, 𝜆1 = 3, 𝜇 = 4.
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Fig. 2. EB bound, PH bound, and true tail probability for MMPP/𝐸2/1
queue.

Applying (40), we obtain the following density function for
the queue workload:

𝑓𝑊 (𝜎) = 1.05𝑒−1.38𝜎 − 0.318𝑒−11.6𝜎 − 4.65 ⋅ 10−5𝑒−14𝜎

+ 0.007𝑒−0.444𝜎 + 0.248𝛿(𝜎),
(50)

for 𝜎 ≥ 0. The survival function of the queue workload for
𝜎 > 0 is then given by

P{𝑊 (𝑡) ≥ 𝜎} = 0.7609𝑒−1.38𝜎 − 0.0274𝑒−11.6𝜎

− 0.3321 ⋅ 10−5𝑒−14𝜎 + 0.0158𝑒−0.444𝜎.
(51)

Note that 𝑊 (𝑡) is not a mixture of exponentials, nor a phase-
type distribution due to the negative coefficients on the right-
hand side of (51). Nevertheless𝑊 (𝑡) has a matrix exponential
distribution [9] and can be bounded using EB and phase-type
bounds. For the EB bound we have

P{𝑊 (𝑡) ≥ 𝜎} ≤ 𝑒−0.444𝜎, 𝑡 ≥ 0, 𝜎 > 0. (52)

The phase-type bound can be obtained by simply dropping the
negative terms on the right-hand side of (51), i.e.,

P{𝑊 (𝑡) ≥ 𝜎} ≤ 0.7609𝑒−1.38𝜎 + 0.0158𝑒−0.444𝜎. (53)

This bound is a mixture of exponentials, which is equivalent
to the SBB bound for the example of a discrete-time queue
considered in [6]. In this case 𝑊 (𝑡) is PHB with bounding
parameter (𝝅,Q, 𝐴) given by 𝝅 = (0.9806, 0.0194), and

Q =

[−1.38 0
0 −0.444

]
, (54)

and 𝐴 = 0.7760. In Figure 2 the EB and PHB curves are
shown along with the true tail probability curve. The PHB
curve lines up closely with the true tail probability, whereas the
EB provides a loose bound. We remark that an example of a
queueing model different from the MMPP/𝐸2/1, for example,

a heavy-tailed queue as in [12], would be needed to highlight
the potential benefit of the PHB bound vs. the mixture of
exponentials bound considered in [6].

V. CONCLUSION

We proposed the use of phase-type distributions to special-
ize the general bounding function in the SBB traffic burstiness
bounding framework [6]. Phase-type distributions generalize
an earlier proposed bounding function in the form of a
mixture distribution [6]. The use of phase-type distribution can
potentially lead to tighter bounds. We are currently studying
this aspect of the proposed bound and examples to realize this
potential. In this paper we proved that the bounding function
that is based on phase-type distributions is admissible and we
demonstrated the bounds for an example of an MMPP/𝐺/1
queue using results from [11].
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