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Progress in the hydrogen fuel field requires a clear understanding and characterization of how
materials of interest interact with hydrogen. Due to the inherently quantum mechanical nature of
hydrogen nuclei, any theoretical studies of these systems must be treated quantum dynamically.
One class of material that has been examined in this context are dihydrogen complexes. Since their
discovery by Kubas in 1984, many such complexes have been studied both experimentally and the-
oretically. This particular study examines the rotational dynamics of the dihydrogen ligand in the
Fe(H)2(H2)(PEtPh2)3 complex, allowing for full motion in both the rotational degrees of freedom and
treating the quantum dynamics (QD) explicitly. A “gas-phase” global potential energy surface is first
constructed using density functional theory with the Becke, 3-parameter, Lee-Yang-Parr functional;
this is followed by an exact QD calculation of the corresponding rotation/libration states. The results
provide insight into the dynamical correlation of the two rotation angles as well as a comprehensive
analysis of both ground- and excited-state librational tunneling splittings. The latter was computed to
be 6.914 cm�1—in excellent agreement with the experimental value of 6.4 cm�1. This work represents
the first full-dimensional ab initio exact QD calculation ever performed for dihydrogen ligand rotation
in a coordination complex. Published by AIP Publishing. https://doi.org/10.1063/1.5026637

I. INTRODUCTION

Within the past few decades, there has been a societal
push toward cleaner energy and, more specifically, efficient
and safe hydrogen fuel technologies.1–3 Pure hydrogen com-
bustion results in only water as a product—i.e., no carbon is
involved. Moreover, based on the mass:energy ratio, hydrogen
has nearly three times the gravimetric energy density of gaso-
line.4 While the ultimate widespread utilization of hydrogen
as a fuel is indeed highly desirable as a fundamentally clean
energy source, many associated technical problems have yet
to be adequately solved for this to become practical in real-
ity. Among other issues is the need to store large quantities
of hydrogen gas in a small volume under ambient conditions
with facile uptake and release kinetics.

Porous materials with extremely large surface areas—
such as metal-organic frameworks (MOFs)3,5,6—satisfy most
of these requirements, except for the fact that the rela-
tively weak binding of hydrogen by physisorption requires
low temperatures for their operation. Much stronger bind-
ing of hydrogen can in principle be obtained by molecular
chemisorption—or the coordination of dihydrogen to metal
centers, as discovered by Kubas in 19847—if incorporated
within materials with high surface areas. Accordingly, there
has been a particular interest in the utilization of hydride
metal systems such as dihydrogen complexes in the devel-
opment of attractive materials for hydrogen storage.2,8 In
any event, the significance of the discovery of dihydrogen
binding now extends well beyond its fundamental impor-
tance9 to areas of enormous practical consequence such as

catalytic hydrogenation,1,10 hydrogen storage,11 and hydroge-
nase function.12

By now, hundreds of dihydrogen complexes have been
synthesized, and extensively characterized, mainly by NMR
methods, single crystal neutron or X-ray diffraction, and chem-
ical reactivity studies. The focus of much of this work has been
of a structural nature—e.g., to establish dihydrogen coordina-
tion and to determine the degree of H–H bond activation from
the measured dihydrogen bond lengths. This information is
most reliably derived from NMR studies of the JHD coupling
in partially deuterium exchanged systems13 since diffraction
studies can be hampered by the large degree of delocalization
of the hydrogen atoms. This is particularly true for transition
metal polyhydrides with both dihydrogen and hydride lig-
ands on the same metal,14 which can in some cases rapidly
interchange. This type of reaction is important for describing
hydrogen spillover in catalytic reactions, and more recently,
also in systems that utilize spillover under saturated conditions
to increase hydrogen storage capacities at ambient temper-
atures11,15,16 relative to what is possible via physisorption
alone.

In fact, the incorporation of some open metal sites for
molecular hydrogen coordination in porous materials has been
proposed to be the crucial step in making sorption based
materials viable systems for hydrogen storage at ambient tem-
perature, since this type of binding can easily achieve the
necessary heats of adsorption above those of simple physisorp-
tion, as some recent experimental studies have shown.17

Nonetheless, significant progress in this important application
requires a thorough understanding and characterization of how
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hydrogen interacts with those materials on an atomic level
scale. This requires detailed studies of the dynamics of the
adsorbed or bound hydrogen molecules, along with structural
results, combined together in high level computational studies.
Here it is of particular importance to note that the dynam-
ics of hydrogen, being the lightest element, are inherently
of quantum mechanical nature and must be treated accord-
ingly. It is therefore remarkable that very few previous studies
of hydrogen-material interactions have incorporated quantum
dynamics (QD)18–27—apart from those that deal only with the
quantum rotation of the H2 molecule.28

There has, of course, been much interest in the behav-
ior of the dihydrogen ligand from the time that Kubas et al.
first reported their findings of a (η2-H2) ligand in a coordina-
tion compound,14,29–36 and, as a result, many one dimensional
(1-D) and some two dimensional (2-D) QD models have been
used to analyze the dihydrogen dynamics.14,37–39 Models with
just one rotational degree of freedom (d.o.f.) (phenomenolog-
ical as well as ab initio) were shown40 to be an adequate
representation of the reorientation of the dihydrogen ligand,
as the strong metal-dihydrogen interaction should keep the
molecule confined to a plane as it rotates. Previous 2-D mod-
els for dihydrogen complexes, however, did not use ab initio
methods because of the difficulty in deriving such a potential
energy surface (PES).39 Physisorbed hydrogen, on the other
hand, always retains two rotational degrees of freedom because
of the weak binding, and its rotation has generally been treated
by 2-D QD, either using a phenomenological approach or a
potential energy surface (PES) derived via ab initio or force
field methods.41

One of the main goals of this work, accordingly, has
been to provide the first ever comprehensive ab initio QD
study of the 2-D rotation dynamics of the dihydrogen lig-
and in a metal complex. For this study, we have cho-
sen the Fe(H)2(H2)(PEtPh2)3 coordination complex primarily
because of the extensive amount of previous work that has been
carried out on this compound14,39,42,43 but also because the
presence of additional hydride ligands gives rise to exchange
with the dihydrogen—which we plan to study with high dimen-
sional QD in the future. The Fe(H)2(H2)(PEtPh2)3 complex
also has a unique staggered structure that is tied to its flux-
ional behavior.42 The most recent computational study was
performed by Došlić et al.14 in 2011. They analyzed the dihy-
drogen rotation in 1-D for both partially and fully optimized
Fe(H)2(H2)(PEtPh2)3, in the gas phase.

This study examines the Fe coordination compound,
Fe(H)2(H2)(PEtPh2)3, in the gas phase, with the goal of estab-
lishing a better understanding of the rotational QD of the H2

ligand by including the second rotational degree of freedom
(d.o.f.). Two separate QD calculations are performed, one
for each of the two accurate ab initio potential energy sur-
faces (PESs) determined in this work: relaxed and (mostly)
frozen. To our knowledge, there has not been a comprehen-
sive rotational (2-D) QD study for any dihydrogen ligand
in a metal complex prior to this study. This work uncovers
several unexpected dynamical features, such as the highly
asymmetric nature of azimuthal libration, and also signifi-
cant correlation between in-plane and out-of-plane rotational
motion—which manifests as “wobbling” and/or snaking of the

minimum energy path (MEP) for hindered rotation. We also
report ground and excited state tunneling splittings as well
as an unexpected strong Fermi resonance. Ultimately, these
details may prove important for facilitating the exchange with
the nearby hydride ligands, but as mentioned this remains a
question for future investigations.

II. THEORY AND BACKGROUND
A. Dihydrogen complexes and the barrier
to (1-D azimuthal) H2 rotation

The discovery by Kubas et al.7 that molecular hydro-
gen (H2) can form an η2 “σ complex” is widely viewed as
a key development in inorganic chemistry within the last two
decades of the 20th century.2,14,34,40 In addition to their poten-
tial in the field of clean energy, dihydrogen complexes also
present the opportunity to examine a complex hindered rotor
model.32,40 A key indicator for the coordination of hydro-
gen in molecular form is the observation of the transitions
of the hindered rotations of the dihydrogen ligand by inelas-
tic neutron scattering (INS) spectroscopy. These transitions
can be interpreted by phenomenological models (1-D reori-
entation in a double-minimum potential) where the barrier to
rotation is determined in a fitting procedure.40 Alternatively,
electronic structure calculations have shown the barrier to be
of largely direct electronic origin32—in contrast to the case of
physisorbed hydrogen, where the barrier arises entirely from
nonbonded interactions.28

The origin of the electronic interaction is the overlap of
the respective molecular orbitals of the metal and the dihydro-
gen.40 The dominant interaction is donation from the filled σ
orbital of the dihydrogen to an unfilled, symmetric d orbital on
the metal, and this is accompanied by back donation to the H2

σ∗(H2) orbital. The latter interaction requires that the d orbitals

(dyz or dxz) on the metal must be filled.39 This results in the
highest of the two occupied orbitals determining the preferred
orientation. This is partially due to the orbital being the closest
in energy to the acceptingσ∗(H2). In the case that both the dyz and
dxz orbitals are filled, the result is no strongly preferred orien-
tation. Therefore, the barrier between the two conformations
is relatively small (generally < 1000 cm�1). This allows the
two hydrogen nuclei to go through large amplitude librational
or even rotational motion, which can lead to an exchange of
their positions. This is why only one peak can be observed
for an H2 ligand in 1H NMR spectra in solution at room
temperature.

The other ligands on the metal center can strongly affect
the electronic state of the metal and hence the dihydrogen
binding. The more basic the ligands, the more the electron
density is shifted to the metal, which in turn raises the energy
of the highest occupied d orbital of the complex. This will
result in an increased interaction with σ∗(H2), which can then
strengthen the back-donation enough to result in cleavage of
the H–H bond (an accepted mechanism for oxidative addi-
tion to form a dihydride). Similarly, π-acceptors may compete
with the back donation, which also results in dihydrogen cleav-
age, in the more π-basic transition metals (such as group 6).
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The presence of electron rich ligands also has this effect.
Alternatively, strong σ-donors may impede the σ-donation
from the dihydrogen, inhibiting the binding of the dihydrogen
ligand.40

Non-bonded or steric interactions between the hydrogen
atoms of the dihydrogen ligand and the atoms on nearby co-
ligands can also affect the barrier to rotation, but seem to be
appreciably less important than the electronic interactions.40 In
principle, the barrier to rotation should be zero, if the ligands
in the plane parallel to the rotation were perfectly symmet-
ric. However, crystal structure data for W(CO)3(H2)(Pi–Pr3)2

reveal that the WP4 structure is distorted, and at least one of
the P–W–P angles bends back and away from the dihydrogen
ligand.40 This type of distortion is commonly observed for
dihydrogen complexes and it rehybridizes the metal orbitals in
such a way that the overlap of σ∗(H2) shows a variation through
the rotation in the plane parallel to the WP4 fragment (i.e.,
azimuthal rotation). This distortion can also be influenced by
steric effects or crystal packing forces. The use of different
counter ions or solvent molecules in crystallization of the com-
pound can therefore result in different molecular structures and
barriers to dihydrogen rotation.

Although the above discussion pertains to a different
dihydrogen compound than the Fe(H)2(H2)(PEtPh2)3 complex
considered here, similar comments are expected to hold. In par-
ticular, a relatively small barrier to 1-D azimuthal rotation is
expected, which is further reduced if the substrate is allowed
to relax. This property may account for differences between
crystal structure results and those of the gas phase and is used
here to justify consideration of both the frozen and relaxed
PES models. In any event, Fig. 1 presents the fully relaxed
Fe(H)2(H2)(PEtPh2)3 complex geometry obtained from our
density functional theory (DFT) calculations, as discussed in
Sec. III A.

The rotational exchange of the two hydrogen nuclei in the
dihydrogen ligand (i.e., H2 permutation) is associated with a
symmetric-double-well azimuthal PES reaction profile (illus-
trated, e.g., in Fig. 5). For the lowest-lying librational states,

FIG. 1. Fully relaxed global minimum geometry of the gas phase
Fe(H)2(H2)(PEtPh2)3 complex, obtained from our DFT calculations as dis-
cussed in Sec. III A. The dihydrogen ligand (front two H atoms) is rotated
slightly out of its azimuthal plane.

the barrier induces a “tunneling splitting” of the hypothetical
energy levels of the two identical single wells. The splitting
increases rapidly with librational excitation, until it is compa-
rable to the single-well level spacing itself, and can no longer
be properly identified as “splitting” per se. Traditionally, this
is presumed to occur near the top of the barrier, although in
reality hydrogen can manifest clear “tunneling splitting” even
above the barrier.19,44,45 At higher energies, the librational
states become rotational states, and a different dynamical pic-
ture becomes relevant. In particular, the states become fully
delocalized and, at sufficiently high energies, again occur
in nearly degenerate pairs—now corresponding to different
linear combinations of energetically identical clockwise and
counterclockwise rotations.

Figure 2 presents a rotation/libration energy level dia-
gram for a double-well PES with a single rotational d.o.f.—the
azimuthal coordinate, φ. As the barrier height increases, the
energetic separation between the two lowest levels—i.e., the
librational ground state tunneling splitting—decreases very
rapidly.40,46 Conversely, in the other limit, where the bar-
rier height decreases to well below the zero-point energy, all
energy levels approach those of a free rotor. The states are well
labeled by the usual azimuthal quantum number, |m| = nφ . The
lowest-lying m = 0 state is singly degenerate, but for the rota-
tionally excited |m| > 0 states, ± m form doubly degenerate
pairs.

Double-well tunneling splitting is a notoriously difficult
quantity to compute with high accuracy,45 as it is extremely
sensitive to various dynamical features. Even in just 1-D, the
magnitude of the splitting varies exponentially with both the
height and width of the barrier. The shape of the barrier itself
can also play an important role. For the Fe(H)2(H2)(PEtPh2)3

complex, in particular, the 1-D azimuthal barrier is highly
asymmetric and structured (Fig. 5)—far from the broad, fea-
tureless, harmonic, or sinusoidal form adopted by standard
tunneling models. The impact of the other dynamical d.o.f.’s
(Sec. II B) can also be substantial, even when the direct
coupling is not so strong.47 Moreover, some tunneling split-
tings may be too small to be detected experimentally with
the available neutron scattering instrumentation, as has been
the case for the so-called stretched H–H complexes.32,48 In
any event, for Fe(H)2(H2)(PEtPh2)3, a librational ground state

FIG. 2. Schematic indicating rotation/libration energy levels as a function of
energy or rotational barrier height.32,40 As the barrier height increases (i.e.,
moving to the right), the low-lying energy levels manifest in pairs that exhibit
increasingly small tunneling splitting. In the opposite limit of low barrier/high
energy (i.e., the left side of the figure), the energy levels pair up by azimuthal
quantum number, |m| = nφ .
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tunneling splitting was observed and found to be around
6 cm�1.42

B. H2–H–H exchange and (full 2-D) H2 rotation

A considerable number of dihydrogen complexes also
possess one or more hydride ligands on the metal center, which
in most cases rapidly exchange with the dihydrogen, even at
very low temperatures. This process can result in a single peak
for both H and H2 in 1H NMR spectra at high temperatures,
which may decoalesce at sufficiently low temperatures into
separate signals for H and H2.14,49 In other words, the hydride
and dihydrogen ligands are indistinguishable at high temper-
atures, on account of rapid H2-hydride exchange dynamics.50

Many NMR studies including the one by Oldham et al.50

on cationic iridium complexes of the form [CpIr(L)H3]BF4

(where L = various Pr3) have clearly demonstrated this effect.
As a consequence of the exchange dynamics, it becomes
impossible to determine the JHD coupling constant for an H-D
ligand in the NMR, as well as the relaxation of the dihydrogen
ligand via rotational tunneling. The barrier for exchange can
be very close to that for H2 rotation, as in the case of IrXH2(η2

H2)(Pr3)2, but typically is found to be higher in energy.3,14 Nor-
mally the exchange processes would be expected to occur clas-
sically through transition states, though in previous theoretical
studies these were found to be high in energy.42

In any event, for the Fe(H)2(H2)(PEtPh2)3 complex of
this study, such H2-hydride exchange dynamics are found to
be facile, at least above room temperature.14,49 While such
exchange dynamics will form the focus of a future QD study,
here, we examine only the dihydrogen rotation dynamics,
which are most relevant at lower temperatures. For the present
study, the Fe(H)2(H2)(PEtPh2)3 coordination complex is of
particular interest, due to the availability of experimental
results and the depth of the studies done over the past few
decades.14,30,35,39,42 Moreover, Fe(H)2(H2)(PEtPh2)3, initially
reported by Aresta et al., is a natural extension to previous Ru
and Os studies.42,51

The most recent comprehensive study of Fe(H)2(H2)
(PEtPh2)3 of which we are aware was performed by one of
the authors (Eckert) and co-workers, in 2011.14 They cre-
ated 1-D PES reaction profiles for both partially and fully
relaxed Fe(H)2(H2)(PEtPh2)3, by varying the azimuthal coor-
dinate (we denote “φ,” they denote “θ”) over 18 different points
in the range 0 < φ < π/2. They performed DFT calculations
using the hybrid functional Becke, 3-parameter, Lee-Yang-
Parr (B3LYP), keeping the polar angle (and in the partially
relaxed case, all other atoms) fixed at the crystal structure
geometry. For the partially relaxed PES, they obtained a 1-D
azimuthal barrier height of 332.269 cm�1.

The present study examines the Fe(H)2(H2)(PEtPh2)3

complex in the gas phase, with the goal of establishing a
better understanding of the H2 rotational QD, and expands
upon Eckert’s 2011 work by providing a full 2-D QD rota-
tional study, allowing both polar (θ) and azimuthal (φ) angles
to vary freely. Formally, we define φ in terms of rotation
in the azimuthal plane—i.e., the plane perpendicular to the
Fe–H2 vector that extends from the Fe atom to the H2 cen-
ter of mass. The polar angle θ is then defined as the angle

between the Fe–H2 vector and the H–H vector. Separate 2-D
PESs for both frozen and (fully) relaxed complex substrates are
constructed, in order to ascertain which of the two dynamical
pictures is more appropriate. We note that the gas phase model
system likely relaxes more easily than the true crystal struc-
ture.14 This can be attributed to both the crystal packing forces
and the considerable intermolecular interactions.40 In princi-
ple, a better approach to relaxation would include neighboring
molecules—although this is unfeasible, due to the fact that a
single unit cell contains close to 800 atoms. In any event, the
frozen results obtained here appear to simulate the condensed
phase system much better.

This 2-D study illustrates the important dynamical role
played by quantum tunneling and also by θ–φ correlation. The
latter manifests in various ways—in the snaking of the min-
imum energy path and resultant “wobbling” rotation, in the
ground and excited state tunneling splittings, and also in the
presence of Fermi resonances—all of which will be explored.

III. COMPUTATIONAL DETAILS

The basic strategy is to first compute the potential energy
explicitly, using DFT, at a large number of 2-D ab initio
geometries (θ, φ). A global PES, V (θ, φ), describing the H2

ligand hindered rotor dynamics, is then fit to the ab initio data,
using an expansion in spherical harmonics. Finally, using the
resultant V (θ, φ), a 2-D quantum Hamiltonian matrix is con-
structed, whose diagonalization provides the hindered rotor
quantum eigenstates—i.e., the rotation/libration energy levels
and wavefunctions. All such quantum states are computed up
to ∼6000 cm�1, which provides a complete characterization of
the rotational QD in the energy range of interest and beyond.
Analysis of the computed states then provides useful QD infor-
mation, such as state labels (from wavefunction density plots),
tunneling splittings, an understanding of θ–φ correlation,
etc.

A. Ab initio electronic structure calculations
and global PES fits

The “ab initio” electronic structure calculations were
performed by means of DFT, using the hybrid Becke, 3-
parameter, Lee-Yang-Parr (B3LYP)52,53 functional, together
with the SV(P) basis set.54 The Stuttgart effective core poten-
tial55 was used for the Fe atom. All calculations were carried
out using the TURBOMOLE program suite.56 As an initial
test, the fully relaxed equilibrium structure was computed
and compared with the previous DFT B3LYP calculations14

and also with previous crystal structure data.42 Select bond
lengths are compared in Table I, where we note that the exper-
imental values are from the crystal structure refinement as
opposed to the gas phase structures of the calculations. The
latter show a variation that is typical when using somewhat
different methodologies.

The relaxed PES was constructed first. Initially, a crude
PES was constructed, using 100 ab initio points distributed
in a uniform 10 × 10 lattice over 0 ≤ θ ≤ π and 0 ≤ φ ≤ π.
Note that H–H permutation symmetry allows one to immedi-
ately flesh out the rest of solid angle space (corresponding to
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TABLE I. Bond lengths in Å, for the global minimum geometry of the
Fe(H)2(H2)(PEtPh2)3 complex, as obtained from one experimental source
(crystal structure, column II) and two theoretical sources (gas phase DFT,
columns III and IV). Hydrogen atoms H1 and H2 comprise the dihydrogen
ligand, whereas H3 and H4 are the hydride ligands. In column II, the numbers
in parentheses are standard deviations.

Theory (DFT B3LYP)

Bond Experiment (Ref. 42) (Ref. 14) (Sec. III A)

H1–H2 0.821(10) 0.844 0.820

Fe–H1 1.576(9) 1.600 1.630
Fe–H2 1.607(8) 1.634 1.632
Fe–H3 1.514(6) 1.502 1.531
Fe–H4 1.538(7) 1.509 1.532

Fe–P1 2.162(5) 2.240 2.185
Fe–P2 2.175(4) 2.251 2.190
Fe–P3 2.206(4) 2.317 2.270

�π ≤ φ ≤ 0) through the relation V (π � θ, π + φ) = V (θ, φ). For
each such ab initio calculation, the Fe and dihydrogen ligand
geometries were frozen, and all other atoms were allowed to
relax. From the resultant crude, relaxed PES, it became clear
that the potential exhibits a very rapid, monotonic increase as
θ varies away from the azimuthal plane—exhibiting a “polar
barrier” of ∼22 000 cm�1 at θ = 0 or π. This is nearly two
orders of magnitude larger than the corresponding azimuthal
barrier of 248 cm�1 and much beyond the dynamically rele-
vant range. Moreover, in this most important region near the
azimuthal plane, fitting errors were much larger than the target
accuracy of ∼10 cm�1.

A much-improved relaxed PES was then constructed, as
follows. First, from the crude PES, the energy contours, V (θ,
φ) = 2000 cm�1, were determined [where V (θ, φ) is taken to
be zero at the minimum]. These contours are shown in the
right side of Fig. 3; they represent the extreme edges of the
dynamically relevant region of configuration space, denoted
θmin(φ) and θmax(φ). Next, a set of 18 uniformly distributed
φ values was chosen from 0 to 17π/18 in increments of π/18.
For each φ value, a φ-specific set of 11 uniformly distributed
θ values was chosen, ranging from θ = θmin to θ = θmax, in
increments of (θmax � θmin)/10. This results in a new set of
198 ab initio points over the most dynamically relevant region,
as indicated in the left side of Fig. 3. Finally, for improved
quality, one additional fixed θ value (θ = 1.000) was added
and paired with all 18 φ values, resulting in 216 points in all.

Several additional refinements of the relaxed PES were also
considered, but will not be reported here.

The frozen PES was generated in a similar fashion to the
improved relaxed PES described above, but with some minor
differences. First, of course, none of the complex substrate
atoms were allowed to relax but were instead fixed at their gas
phase minimum geometry values—except for the two hydrides
which were relaxed. The rationale is that the hydrides should
be at least as mobile as the dihydrogen atoms—even if the
other, heavier atoms are more or less “frozen” on the time
scale of the dihydrogen rotation (or alternatively, if the frozen
model is intended to simulate the condensed phase). Second,
for reasons discussed in Sec. IV A 1, it was simpler to just use
the fixed values θmin = 1.1108 and θmax = (π �θmin) = 2.0308.
The resultant 198 ab initio points thus flesh out a uniform
rectangular lattice.

For both the relaxed and frozen PESs, it is necessary to fit
a global functional form to the respective ab initio data (which
incidentally, may be found in the supplementary material).
Given the rotational, solid angle nature of the configuration
space and the H–H permutation symmetry, a natural choice for
the expansion functions are the spherical harmonics, Y l ,m(θ,
φ). In particular, due to the above-referenced H–H permutation
symmetry, only even l values contribute. We therefore expand
V (θ, φ) in all even-l Y l ,m(θ, φ) functions up to some maximum
value lmax—i.e.,

V (θ, φ) =
lmax∑

l=0,even

l∑
m=−l

Cl,mYl,m(θ, φ). (1)

To determine the optimal expansion coefficients, Cl ,m,
for a given PES dataset, a least squares fit was applied. Three
separate lmax values were considered, i.e., lmax = 6, 8, 10. A
test of numerical convergence was then applied by comparing
the resultant V (θ, φ) functions. It was thus determined that
lmax = 8 achieves the desired fitting accuracy of 10 cm�1 or
better throughout the dynamically relevant region, for both the
relaxed and frozen PESs. This corresponds to an expansion in
45 spherical harmonics in all (i.e., 2l + 1 for each of l = 0, 2,
4, 6, 8). The set of expansion coefficients for both the relaxed
and frozen PESs is provided in Table II.

B. Quantum dynamics calculations

To compute quantum eigenstates, it is necessary to repre-
sent the Hamiltonian operator, Ĥ, as an N ×N matrix, H̃ , using
a finite representation of N basis functions. The Hamiltonian

FIG. 3. (Left) The first 198 ab initio
points comprising the improved relaxed
PES dataset. θ values are generated
from the 2000 cm�1 contour of the crude
relaxed PES. φ is limited to 0 to π with-
out loss of generality, due to H–H per-
mutation symmetry. (Right) The crude
relaxed PES, V (θ, φ), up to 2000 cm�1.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004816
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TABLE II. Spherical harmonic PES expansion coefficients, Cl ,m (hartree),
for the relaxed PES and the frozen PES used in this paper. Negative m coef-
ficients are obtained from the positive m coefficients listed below, via the
relation Cl,−m = (−1)m C∗l,m.

(l, m) Relaxed PES coefficients Frozen PES coefficients

(0,0) 0.000 750 43 0.001 072 51
(2,0) 0.124 368 81 0.125 105 29
(2,1) 0.004 923 02 + 0.005 096 70 i 0.005 842 81 � 0.001 338 42 i
(2,2) 0.001 048 25 + 0.000 849 52 i 0.000 730 67 + 0.000 479 94 i
(4,0) 0.011 059 78 0.029 820 83
(4,1) 0.000 815 14 + 0.000 812 55 i 0.005 750 26 � 0.003 653 27 i
(4,2) 0.000 074 05 + 0.000 114 67 i 0.000 726 51 � 0.000 569 40 i
(4,3) �0.000 068 10 + 0.000 064 61 i �0.000 307 61 + 0.000 261 85 i
(4,4) 0.000 088 39 + 0.000 014 97 i 0.000 135 62 + 0.000 052 19 i
(6,0) �0.002 072 26 0.007 115 50
(6,1) 0.000 030 20 � 0.000 141 54 i 0.003 291 78 � 0.002 227 74 i
(6,2) 0.000 067 40 � 0.000 023 56 i 0.000 584 82 � 0.000 555 47 i
(6,3) 0.000 062 54 + 0.000 013 91 i 0.000 182 1 � 0.000 043 20 i
(6,4) �0.000 088 89 � 0.000 005 25 i �0.000 147 08 � 0.000 043 99 i
(6,5) 0.000 025 17 + 0.000 004 95 i �0.000 033 11 � 0.000 056 30 i
(6,6) 0.000 006 41 � 0.000 022 97 i 0.000 001 66 � 0.000 043 43 i
(8,0) �0.000 851 03 0.000 657 42
(8,1) �0.000 063 94 � 0.000 086 52 i 0.000 799 64 � 0.000 622 23 i
(8,2) 0.000 011 21 � 0.000 029 78 i 0.000 152 87 � 0.000 208 35 i
(8,3) 0.000 029 16 + 0.000 016 64 i 0.000 092 53 � 0.000 036 65 i
(8,4) 0.000 011 01 � 0.000 004 80 i �0.000 047 04 � 0.000 021 13 i
(8,5) 0.000 000 45 + 0.000 001 84 i �0.000 028 86 � 0.000 051 04 i
(8,6) 0.000 046 75 � 0.000 007 24 i 0.000 043 53 � 0.000 048 26 i
(8,7) �0.000 005 71 + 0.000 022 54 i �0.000 008 02 + 0.000 005 10 i
(8,8) 0.000 069 30 + 0.000 004 59 i 0.000 042 67 + 0.000 004 60 i

operator is given by

Ĥ = V̂ + T̂rot = V (θ, φ) +
l̂2

2I
, (2)

where l̂2 is the total angular momentum, I = µR2
e is the dihy-

drogen moment of inertia, µ = 925.332 a.u. is the dihydrogen
reduced mass, and Re = 0.819 525 Å is the H–H bond length
for the gas phase minimum geometry (Table I). The repre-
sentational basis is itself taken to be composed of spherical
harmonics, with 〈θ, φ|lm〉 = Y l ,m(θ, φ).

The individual matrix elements of H̃—i.e., H l ,m ,l ′,m′

= 〈lm|Ĥ |l′m′〉—are therefore given by the following:

Hl,m,l′,m′ =

∫
Y ∗l,m(θ, φ)Ĥ Yl′,m′(θ, φ) sin θdθdφ

= 〈lm | T̂rot | l
′m′〉 + 〈lm | V (θ, φ) | l′m′〉. (3)

The kinetic energy contribution is particularly simple, result-
ing in a diagonal matrix because the Y l ,m’s are eigenstates of
T̂rot,

Tl,m,l′,m′ =
~2

2I
l(l + 1)δl,l′δm,m′ . (4)

The potential energy contribution is more complicated, as
it requires a separate 2-D integral for every one of the N2 matrix
elements. On the other hand, because V (θ, φ) is itself expressed
in terms of spherical harmonics, an analytic evaluation of the
V l ,m ,l ′,m′ matrix elements is possible. In particular, one finds
that

〈lm | V (θ, φ) | l′m′〉 =
∫ π

0
sin θdθ

∫ π

−π

dφY ∗l,m(θ, φ)V (θ, φ)

×Yl′,m′(θ, φ)

=

lmax∑
l′′=0,even

l′′∑
m′′=−l′′

Cl′′m′′

∫ π

0
sin θdθ

×

∫ π

−π

dφY ∗lmYl′′m′′Yl′m′ , (5)

where the integrals—changing our notation slightly—become∫
sin θdθ

∫
dφ Y ∗l3m3

Yl2m2 Yl1m1

=

[
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)

] 1
2

C(l1l2l3; m1m2m3)C(l1l2l3; 000).

(6)

Thus, the integrals in Eq. (5) can be analytically expressed
in terms of Clebsch-Gordan coefficients, C(l1l2l3; m1m2m3).57

In this manner, each of the N2 matrix elements is obtained as
a sum over 45 Clebsch-Gordan terms of the Eq. (6) form. In
practice, this can get rather large so that evaluation of these
terms becomes the computational bottleneck. To reduce the
necessary computational effort, all of the necessary Clebsch-
Gordan coefficients are precomputed—i.e., up to lMAX = 20
for the even-l calculations and lMAX = 19 for the odd-l calcu-
lations, where lMAX is the truncation parameter that limits the
size of the representational basis, via l ≤ lMAX.

Note that because of the H–H permutation symmetry of
the Hamiltonian, the para-H2 and ortho-H2 quantum states can
be computed separately. In particular, the para-H2 states have
even spatial symmetry and can be associated with l = even.
The ortho-H2 states have odd spatial symmetry and correspond
to l = odd. To compute a finite representational Hamilto-
nian matrix, therefore, one uses all even-l or odd-l spherical
harmonic basis functions, up to the maximum value lMAX.
By increasing lMAX, recomputing eigenvalues and compar-
ing with smaller lMAX eigenvalues, the level of numerical
convergence can be assessed. Note that the convergence is vari-
ational, meaning that all computed eigenvalues converge from
above, because the representation is analytic. In this manner,
it was demonstrated that using the values lMAX = 20 and lMAX

= 19, for para-H2 and ortho-H2, respectively, the resultant
computed energy eigenvalues are all basis-set converged to an
accuracy of 10�2 cm�1 or better, up to a maximum energy of
∼6000 cm�1. Most states are far better converged.

C. Creating and analyzing wavefunction density plots

From the even and odd Hamiltonian matrices, eigenvec-
tors are also obtained. For each eigenvector, the corresponding
wavefunction is obtained by multiplying each component by
the corresponding spherical harmonic function and summing.
Taking the square amplitude then results in the wavefunction
density. By plotting and analyzing wavefunction densities, it
becomes possible to assign labels to each of the states—i.e.,
(nθ , nφ)—in terms of the number of excitations in θ and φ,
respectively, based on the number of peaks that manifest in
the corresponding direction. Note that nθ + nφ = even/odd, for
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the l = even/odd calculations, respectively. In principle, this
property can also aid in the label assignments, although for
this particular application, almost all of the labels are straight-
forward. Note further that each new excitation in θ results in
a new peak, whereas each new excitation in φ results in two
new peaks, due to the periodic symmetry exhibited by the φ
d.o.f. As discussed, these are associated with two new quantum
states which become nearly degenerate in the large-nφ limit, in
which nφ corresponds to ±m. Finally, pairs of quantum states
that exhibit tunneling splitting always correspond to the same
nθ value and adjacent nφ values.

IV. RESULTS
A. Global PESs: relaxed vs. frozen
1. Basic features

Following the procedures described in Sec. III A, global
PESs of the Eq. (1) form were constructed, for both (improved)
relaxed and (mostly) frozen geometries. Plots of the relaxed
and frozen PESs are indicated, respectively, in the left and
right sides of Fig. 4, spanning the dynamically relevant region
up to 2000 cm�1. Significant θ–φ correlation can be observed
in both PESs, manifesting as a slight snaking of the azimuthal
channel. The azimuthal rotational barrier can also be observed,
albeit just barely.

From the figure, it is clear that the rotational dynamics
are effectively restricted to a fairly narrow polar band, extend-
ing about 20◦ in either direction above and below the θ = π/2
azimuthal plane. It is also clear that the improved relaxed PES
turns out to exhibit less snaking/correlation than the crude
relaxed PES. For this reason, when constructing the frozen
PES, we simply used fixed θ limits for the lattice of ab initio
points—rather than a varying lattice as in the left side of Fig. 3.
In the event, however, it turns out that the resultant frozen PES
also exhibits more snaking than the (improved) relaxed PES,
particularly at the higher energies of the dynamically relevant
range, near 2000 cm�1. This might be attributable to the extra
motions needed for the dihydrogen to move around pendant
ligands that are frozen in place.

2. Reaction pathways and profiles, and azimuthal
barrier heights

In all theoretical investigations thus far conducted,
the global minimum geometry of the Fe(H)2(H2)(PEtPh2)3

complex exhibits a slight tilting of the dihydrogen out of the

azimuthal plane. This presents a natural question: what hap-
pens as the dihydrogen undergoes azimuthal rotation? Does
the polar angle θ remain constant? H–H permutation symme-
try suggests otherwise: after a 180◦ azimuthal rotation, θ must
become (π � θ), in order that the two H atoms be exchanged—
thus resulting in the second equivalent minimum geometry.
Moreover, the pathway between the two equivalent minima—
expressed as a function, θ(φ)–need hardly be a smooth straight
line.

In order to connect with previous model calculations per-
formed on the H2 rotational dynamics that only considered
1-D azimuthal motion, in this section, we discuss various 1-
D azimuthal reaction profiles, generated from our 2-D PES’s.
As discussed above, the symmetry and tilted global minimum
geometry provide several reasonable possibilities. The sim-
plest is to assume strict rotation within the θ = π/2 azimuthal
plane. This is the procedure that was adopted in previous 1-D
model calculations. An advantage is that the resultant reaction
profile exhibits correct doubly periodic behavior. A disadvan-
tage is that V (π/2, φ) passes through neither the true global
minima nor the true transition states (both are overestimated).
Alternatively, one can fix θ = θequil, which ensures that the reac-
tion pathway passes through one true minimum. However, this
choice does not respect H–H permutation symmetry; not only
is the resultant V (θequil, φ) not doubly periodic, but it misses the
second global minimum. The third and arguably best choice
is to take θ(φ) to be the minimum energy path (MEP). This
choice passes through both equivalent minima, as well as both
equivalent transition states, and otherwise exhibits the desired
double periodicity.

The extent to which the three reaction profiles defined
above—and their associated reaction pathways—differ from
each other provides a measure of the extent of θ–φ correlation
at low energy. In Fig. 5, we present all such reaction profiles
and pathways, for both the relaxed and frozen PESs. The results
are somewhat interesting. For the relaxed PES, the global min-
ima (θequil = 1.571 51) are in fact barely tilted from θ = π/2 so
that the θ = θequil and θ = π/2 reaction profiles are practically
identical. On the other hand, the transition state geometry is
significantly tilted, and the MEP otherwise exhibits rather con-
voluted snaking over a θ range of about 0.07 rad—implying
significant “wobbling” in the rotational dynamics. Yet despite
this, the MEP reaction profile is actually fairly close to the
other two.

By contrast, the three reaction profiles for the frozen PES
show more variation and are all somewhat different from each

FIG. 4. Plots of the two PESs, V (θ,
φ), used in this paper to compute quan-
tum states for dihydrogen rotation in the
Fe(H)2(H2)(PEtPh2)3 complex: (left)
(improved) relaxed PES; (right) frozen
PES. In both cases, only the dynami-
cally relevant region up to 2000 cm�1

is indicated.
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FIG. 5. (Left) Reaction profiles, V [θ(φ), φ], for dihydrogen rotation in the Fe(H)2(H2)(PEtPh2)3 complex, obtained using three different reaction pathways:
θ(φ) = π/2 (yellow, solid); θ(φ) = θequil, the value at the global minimum (red, solid); θ(φ) = MEP, the minimum energy path (blue, dashed). (Right) The three
reaction pathways just described, θ(φ), indicated in the same manner as the reaction profiles. Blue circles represent the global minima; yellow-orange squares
represent the transition states (azimuthal barriers). Upper plots refer to the relaxed PES; lower plots refer to the frozen PES.

other. Here, the minimum geometry is also significantly tilted,
accounting for the differences between the θ = π/2 and θ = θequil

= 1.584 39 reaction profiles. The MEP reaction pathway spans
a slightly broader θ range (about 0.10 rad) than in the relaxed
PES case, although the curve itself is much smoother. This
implies greater snaking or tilted rotation in the frozen case,
but less wobbling. In any event, it seems that the details of the
snaking—much like the resultant tunneling splitting itself—
depends sensitively on the PES. An additional point of interest
is the symmetry of the reaction profiles that arises due to the
H–H permutation symmetry. This is a translational (doubly
periodic) symmetry, but not a reflection symmetry. Indeed, all
reaction profiles are found to be highly asymmetric with respect
to reflection. This effect, probably due to the steric interac-
tions, has not been much considered in prior calculations but
is clearly dynamically very significant.

In comparing the broad features of the relaxed vs. frozen
PESs, these appear to be qualitatively similar to each other,
especially vis-à-vis the pattern of asymmetry. On the other
hand, there is one highly significant difference: the frozen
PES has a much higher barrier height (440.410 cm�1) than the
relaxed PES (315.450 cm�1). Note that these barrier height
quantities are defined using the MEP—or equivalently, as
the difference between the global minimum and transition
state potential energy values. In accord with the discussion in
Sec. II A, we expect the frozen PES to exhibit a substantially
smaller ground state tunneling splitting—as is indeed found to
be the case (Sec. IV B 2).

B. Quantum dynamics calculations:
Rotation/libration states
1. Energy levels and transition frequencies

As per the discussion in Sec. III B, all para-H2 (e) and
ortho-H2 (o) quantum rotation/libration states were computed
up to∼6000 cm�1—to an accuracy of 0.01 cm�1 or better—for
both the relaxed and frozen PESs. For every quantum state,
both energy levels and wavefunctions were computed. Note
that for a 2-D system, it is possible to visualize the entire wave-
function density at once. Accordingly, visual inspection of the
wavefunction density plots is the simplest means of assigning
(nθ , nφ) labels and is the strategy adopted here (Sec. IV B 3).

Table III reports zero-point energies, together with all
excited state rotation/libration transition frequencies up to
∼2000 cm�1. All states indicated in the table are converged
to a few 0.0001 cm�1 or better. Both e and o states are merged
together, in increasing energetic order. In addition to (nθ , nφ)
labels, we also provide e{v} or o{v} labels, where e{v} is the
v’th para-H2 state, in increasing energetic order. Results are
presented for both the relaxed and frozen PESs. Although the
energies and frequencies for the two PESs differ significantly
from each other, the e/o ordering of excited states is exactly the
same in both cases over the energy range indicated—although
at higher energies, there are some differences. A compre-
hensive list of all computed energy levels, for both PESs, is
reported in the supplementary material. All energy levels for
both PESs are also represented in Fig. 6. From the figure, both

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004816
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TABLE III. Zero-point energies and transition frequencies, for the ground
and excited rotation/libration states, respectively, associated with dihydro-
gen rotation in the Fe(H)2(H2)(PEtPh2)3 complex. Columns I–III: relaxed
PES; columns IV–VI: frozen PES. Energies (third column in each group) are
reported in cm�1. All quantum states are assigned both e/o{v} and (nθ , nφ )
labels, in the first and second column of each group, respectively.

Relaxed PES Frozen PES

e/o{v} (nθ , nφ ) Energy (cm�1) e/o{v} (nθ , nφ ) Energy (cm�1)

e1 (0,0) 925.580 e1 (0,0) 1043.835
o1 (0,1) 12.996 o1 (0,1) 6.914
o2 (0,1) 139.728 o2 (0,1) 187.302
e2 (0,2) 226.200 e2 (0,2) 250.218
e3 (0,2) 277.595 e3 (0,2) 338.315
o3 (0,3) 495.995 o3 (0,3) 533.938
o4 (0,3) 507.986 o4 (0,3) 550.504
e4 (0,4) 851.596 e4 (0,4) 884.606
e5 (0,4) 860.338 e5 (0,4) 898.692
o5 (0,5) 1312.548 o5 (0,5) 1344.482
o6 (0,5) 1313.890 o6 (0,5) 1347.928
o7 (1,0) 1656.367 o7 (1,0) 1868.929
e6 (1,1) 1672.627 e6 (1,1) 1877.479
e7 (1,1) 1792.892 e7 (0,6) 1903.114
e8 (0,6) 1872.147 e8 (0,6) 1903.529
e9 (0,6) 1872.388 e9 (1,1) 2054.242

FIG. 6. Plot of all computed energy levels below ∼6000 cm�1, in energetic
order, for the quantum rotation/libration states associated with dihydrogen
rotation in the Fe(H)2(H2)(PEtPh2)3 complex: relaxed PES (red circles);
frozen PES (blue squares).

the tunneling splitting near-degeneracy at low energies and the
azimuthal nearly free-rotor near-degeneracy at higher energies
are clearly visible.

2. Tunneling splittings and comparison
with previous work

The ground state tunneling splitting corresponds to the
transition e1(0, 0)← o1(0, 1). In Table IV, the transition fre-
quencies for both the relaxed and frozen PESs of the present
study are extracted from Table III and compared with previous
experimental and theoretical results. The experimental data are
from a neutron scattering study performed in the condensed
phase by Eckert et al.,42 whereas the previous theoretical
predictions are all based on 1-D azimuthal models.14

Remarkably, the 2-D frozen PES prediction of 6.914 cm�1

obtained here agrees with the experimental value of 6.4 cm�1

to within one half wavenumber, or less than 10%. This level of
agreement is astonishing for an ab initio tunneling splitting cal-
culation and is perhaps a bit serendipitous. On the other hand,
the frozen PES predictions for the other two experimentally
available transition frequencies—i.e., for e1(0, 0)← o2(0, 1)
and e1(0, 0)← e2(0, 2)—also agree very well with the exper-
imental observations. For the latter transition, the agreement
is better than 2 cm�1 out of ∼250 cm�1—i.e., better than 1%.
For e1(0, 0)← o2(0, 1), the discrepancy is nearly an order of
magnitude larger—which is still excellent—and comparable
to the error in the PES itself.

The above performance of the frozen PES should be com-
pared with that of the other theoretical predictions—i.e., the
relaxed PES of the present study, as well as the 1-D azimuthal
model calculations performed previously, using various den-
sity functionals. In comparison with the relaxed PES, it is
clear that the frozen PES performs much better. In particu-
lar, the (necessarily) lower azimuthal rotation barrier of the
relaxed PES results in a much larger tunneling splitting—and
much lower excited state energies—than for the frozen PES.
All of the 1-D model predictions behave similarly; indeed,
TPSS even achieves quantitative agreement with the relaxed
PES predictions.

The above state of affairs should seem odd, considering
that the 1-D models are based on frozen, not relaxed, struc-
tures. On the other hand, there is a straightforward physical
explanation which is that the snaking of the azimuthal chan-
nel behaves as a de facto increase in the barrier height. Such
behavior has been observed previously in quantum systems.58

For the present Fe(H)2(H2)(PEtPh2)3 complex, the magnitude
of this effect is evidently comparable to that of relaxing the
substrate vs. keeping it frozen. In any event, the lesson seems
clear: accurate modeling of the experimental data requires that
both (a) frozen substrates and (b) 2-D snaking dynamics are
employed.

TABLE IV. Rotation/libration transition frequencies (in cm�1) for the three lowest-lying excited quantum states
associated with dihydrogen rotation in the Fe(H)2(H2)(PEtPh2)3 complex. A comparison of experimental results42

vs. various theoretical predictions is presented (most relevant in bold face).

1-D azimuthal models14 2-D PESs (this work)

Transition Experiment42 wB97XD B3LYP TPSS Relaxed Frozen

e1(0, 0)← o1(0, 1) 6.4 10.7 8.8 12.3 12.996 6.914
e1(0, 0)← o2(0, 1) 170 148.4 155.4 139.1 139.728 187.302
e1(0, 0)← e2(0, 2) 252 223.6 228.4 222.2 226.200 250.218
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The 2-D QD calculations enable predictions of excited
state tunneling splittings, of two different kinds. The first
kind consists of the usual splittings associated with excita-
tions in nφ , which are expected to increase rapidly. Indeed,
for the first such excited state—i.e., o2(0, 1)—the (exper-
imental) tunneling splitting is already ∼80 cm�1 which is
comparable to the level spacing. Moreover, the correspond-
ing excitation energies are also comparable to the azimuthal
barrier height. This suggests that for nφ > 1, tunneling is no
longer meaningful.

The 2-D QD calculations also provide excited state tun-
neling splittings associated with excitations in nθ . These are
interesting because they provide another indication of θ–φ
correlation: if θ and φ were completely decoupled, then the
tunneling splittings would be independent of nθ . Table V
presents excited-state tunneling splittings over the ranges
nφ = {0, 1} and nθ = {0, 1, 2, 3}. Both relaxed and frozen
results are presented. From the table, it is clear that increas-
ing nθ gives rise to a significant increase in the tunneling
splittings for a given nφ . This trend can be easily under-
stood as follows: for larger nθ excitations, the system explores
a larger region of θ space, and so the impact of snaking
(e.g., to increase the effective barrier height) becomes less
significant.

TABLE V. Ground and excited state tunneling splittings (in cm�1) for dihy-
drogen rotation in the Fe(H)2(H2)(PEtPh2)3 complex. Excitations in both nθ
and nφ are considered. Column I: e/o(nθ , nφ ) label for the lower state of
each tunneling splitting pair; column II: relaxed PES; column III: frozen PES
(bold).

State label Relaxed PES Frozen PES

e(0, 0) 12.996 6.914
o(1, 0) 16.260 8.550
e(2, 0) 19.405 10.587
o(3, 0) 23.491 12.979

o(0, 1) 86.472 62.916
e(1, 1) 100.655 74.548
o(2, 1) 114.938 86.635
e(3, 1) 130.076 100.151

3. Wavefunction density plots

Wavefunction density plots are used to assign (nθ , nφ)
labels—and additionally, to pair up states based on tunneling
splitting or on |±m| = nφ values. Wavefunction density plots
are also used to identify Fermi resonances.

Figure 7 presents wavefunction density plots for the
ground and first two excited rotation/libration states of the

FIG. 7. Wavefunction density plots for
the three lowest-lying rotation/libration
states of the Fe(H)2(H2)(PEtPh2)3 com-
plex, computed using the relaxed PES
and presented in both rectilinear (left)
and spherical (right) (θ, φ) views: (top)
ground state, e1(0, 0); (middle) first
excited state, o1(0, 1); (bottom) second
excited state, o2(0, 1).
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Fe(H)2(H2)(PEtPh2)3 complex, computed using the relaxed
PES. On the right side of the figure, the wavefunction den-
sities are presented in an intuitive spherical or “solid angle”
space view, in which the radial distance corresponds to the
relative probability that the dihydrogen is oriented in a given
direction. For the ground state, for instance, we see that the
dihydrogen is well localized in both θ and φ, about two equiva-
lent (antipodal) geometries. Such plots are useful for geometric
visualization. However, since nθ and nφ are nearly good quan-
tum numbers, for state labeling purposes, it is also convenient
to use a “rectilinear” view, as on the left side of the figure.

The ground and first excited states are tunneling splitting
partners. This is clear from the fact that the pair of density
peaks occur at the same location and that the first excited state
has a node at the symmetric double-well barrier. Interestingly,
the first and second excited states are also paired together,
through their common nφ = 1 value. This is indicated by the
fact that these two plots both exhibit two peaks in the azimuthal
direction that are shifted out of phase, relative to each other.
These patterns persist throughout the spectrum.

Figure 8 presents the six lowest-lying rotation/libration
states of the Fe(H)2(H2)(PEtPh2)3 complex, computed using
the frozen PES, in the rectilinear view. Here, a comparison
between the second [o2(0, 1)] and third [e2(0, 2)] excited states
is interesting. These form an excited state tunneling splitting
pair and so should have peaks at the same locations—yet based
on nφ , o2(0, 1) should have only two peaks and e2(0, 2) should
have only four peaks. An examination of the plots reveals how
these conditions are satisfied. At higher energies, the patterns
of peaks and nodes become more regular, for the most part.
The first excitation in θ does not occur until 1870 cm�1 [o7(1,
0)]. Wavefunction density plots for the states of the (nθ , 0)
progression are presented in Fig. 9. Note that the high lying
(nθ , 0) states have quite large probability far from the azimuthal
plane at θ = π/2.

For the relaxed PES, Fermi resonances have been
observed above 2000 cm�1. Note that these always involve
a quartet of states, since each distinct (nθ , nφ) configuration
includes two states. Figure 10 presents the wavefunction den-
sity plots for the four states belonging to the lowest-lying Fermi

FIG. 8. Wavefunction density plots for
the six lowest-lying rotation/libration
states of the Fe(H)2(H2)(PEtPh2)3 com-
plex, computed using the frozen PES:
(a) e1(0, 0); (b) o1(0, 1); (c) o2(0, 1);
(d) e2(0, 2); (e) e3(0, 2); (f) o3(0, 3).
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FIG. 9. Wavefunction density plots for
the four lowest-lying rotation/libration
states in the (nθ , 0) progression of the
Fe(H)2(H2)(PEtPh2)3 complex, com-
puted using the frozen PES: (a) e1(0, 0),
0 cm�1; (b) o7(1, 0), 1868.93 cm�1; (c)
e16(2, 0), 3754.65 cm�1; (d) o26(3, 0),
5657.12 cm�1.

resonance, near 2500 cm�1. For these four states, the wave-
functions themselves exhibit a snaking pattern—indicating,
once again, the effect of θ–φ correlation. As a consequence,
the set of peaks and nodes can be interpreted in two different

ways—in this case, either as (0, 7) or as (1, 4). The frozen PES
does not exhibit any Fermi resonances below 6000 cm�1.

Wavefunction density plots for many high-lying states are
presented in the supplementary material.

FIG. 10. Wavefunction density plots
for the four rotation/libration states
belonging to the lowest Fermi resonance
of the Fe(H)2(H2)(PEtPh2)3 complex,
computed using the relaxed PES: (a)
o10, 2522.88 cm�1; (b) o11, 2524.65
cm�1; (c) o12, 2566.35 cm�1; (d) o13,
2572.33 cm�1. These states correspond
to (nθ , nφ ) = (0, 7) and (1, 4).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-004816
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V. SUMMARY AND CONCLUDING REMARKS

For fundamental as well as practical reasons, there is
an interest in understanding how hydrogen—in both atomic
and molecular forms—interacts with nanomaterials. The effect
of the material substrate on both the hydrogen spectroscopy
and reactivity is of interest. To this end, understanding the
structural modifications caused by the host substrate—e.g., to
the equilibrium bond length of a guest H2 molecule, say—
is obviously important. On the other hand, hydrogen—being
the lightest element—does not localize at any single specific
structure but tends to delocalize over many geometries. More-
over, QD effects such as tunneling can also be important. A
proper characterization of hydrogen therefore requires a quan-
tum treatment of the dynamics (i.e., nuclear motion) as well
as the electronic structure.

In this study, we examine the QD of the dihydrogen ligand
in the Fe(H)2(H2)(PEtPh2)3 complex. Above room tempera-
ture, the H2 can interact with the two nearby hydride ligands—
in an interesting, complex-mediated, hydrogen exchange reac-
tion that will serve as the focus of future work. Here, as an
initial study, we examine the dynamics below room temper-
ature, which are dominated by hindered rotation/libration of
the H2 ligand. The structure and dynamics in this context have
been well characterized experimentally, through crystal struc-
tures, NMR, and neutron scattering experiments. Part of our
motivation for the present study, therefore, is to assess the
validity and/or limits of our full-dimensional ab initio QD
methodology—which, to our knowledge, has not been applied
previously to hydrogen ligands in a coordination complex
(though similar calculations have been performed for H2@C60

and Hn-carbon-nanotube systems18,19).
The structural part of the present study, conducted using

DFT with the B3LYP functional, is the most straightfor-
ward aspect. Our calculation of the minimum-energy struc-
ture predicts an elongated H2 bond length of 0.820 Å, in
excellent agreement with the experimental value of 0.821
Å. The computed Fe–H and Fe–P bond lengths are also in
good agreement with previous experimental measurements
and theoretical calculations. As for the H2 hindered rotation
dynamics, this is investigated explicitly over the full 2-D spher-
ical rotation space. Two limiting models are considered, one
in which the substrate is allowed to relax fully as the H2

rotates and one for which it is “frozen” at the equilibrium
structure. The latter is presumed to be a better model for
experiments, most of which were conducted in the condensed
phase—although it should be noted that we consider only gas-
phase structures here (as is also true of previous theoretical
work).

Having developed new 2-D PESs for each of the two
models described above, we then computed all of the corre-
sponding rotation-libration quantum states, to very high energy
(6000 cm�1) and numerical convergence accuracy (10�4 cm�1

for transition frequencies up to 2000 cm�1). For the H2 hin-
dered rotational dynamics in the Fe(H)2(H2)(PEtPh2)3 com-
plex, 2000 cm�1 is a very safe upper limit on the dynamically
relevant energy range. That said, there is some interest in the
higher-lying rotational states as well, as these may be relevant
for more energetic processes. Besides the H2–H–H exchange

reaction already discussed, there might be coupling with the
first H2 stretch excitation—which, in a different Fe compound,
was found to lie at 2973 cm�1 above the ground state.48 A simi-
lar “softening” of the H2 vibrational frequency can be expected
in Fe(H)2(H2)(PEtPh2)3. It is perhaps noteworthy that we have
discovered a Fermi resonance in this spectral region around
2500 cm�1—although only for the relaxed PES, not for the
frozen PES.

In any event, the frozen PES developed here yields excel-
lent agreement with all available experimental transition fre-
quencies42—e.g., subwavenumber for the ground state tun-
neling splitting, and ∼10 cm�1 or better for the next higher-
lying ortho-H2 and para-H2 transitions (note that for neu-
tron scattering, both are symmetry-allowed). This is all the
more remarkable, considering that our calculation is purely
ab initio, with no (semi)-empirical corrections of any kind.
On the other hand, given that the frozen PES fitting errors
are themselves a few cm�1, throughout the dynamically rele-
vant space, some of this agreement may be fortuitous. In any
case, the present success certainly seems to validate our QD
methodology and bodes very well for future studies of this
kind.

More specifically, within the general context of hydro-
gen ligand QD, the lessons suggested by the present study
can be summarized as follows: (1) the frozen substrate model
works much better than the relaxed substrate model; (2) the
choice of DFT functional, basis set, etc. is less important
than the dynamical model, e.g. frozen vs. relaxed; (3) all
H-atom d.o.f.’s must be treated explicitly quantum mechan-
ically; (4) gas-phase calculations can do a reasonable job of
mimicking crystal experiments, provided that the local struc-
ture is similar. Regarding (3), it seems clear that even rel-
atively small coupling across d.o.f.’s of the type observed
here can result in very significant QD effects. In particular,
tunneling splittings are notoriously difficult to compute accu-
rately, in part, because they depend sensitively on even small
couplings of this kind. For the Fe(H)2(H2)(PEtPh2)3 system,
for example, all previous 1-D calculations overestimated the
ground state tunneling splitting because the θ–φ correlation
that was ignored acts as if to increase the azimuthal barrier
height.58

On the other hand, QD quantities such as tunneling split-
tings are probably much more forgiving with respect to varia-
tion of the equilibrium structure—at least insofar as the H-atom
coordinates are concerned. This, of course, reflects the highly
delocalized nature of the hydrogen, which naturally tends to
average over small features of the PES. The precise location of
the global minimum geometry therefore may not matter very
much, particularly if the PES is quite flat, or has small barriers,
as is the case here.

SUPPLEMENTARY MATERIAL

See supplementary material for the following: raw ab ini-
tio data for both the relaxed and frozen PESs; comprehensive
list of all computed energy levels for the relaxed and frozen
PESs; wavefunction density plots for many high-lying states,
for the frozen PES.
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