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Abstract 

This study presents a vision-based approach that employs RGB video images as the sole source for inferring 

thermoregulation states in the human body in response to thermal condition/sensation variations in indoor 

environments. The primary objective is to contribute to our envisioned thermoregulation-based HVAC 

control that leverages actual thermal demands from end-users’ thermoregulation states for increased energy 

efficiency. Our approach has been proposed in the context of four constraints of feasibility and scalability: 

non-intrusiveness, applicability, sensitivity, and ubiquity. To this end, the approach leverages ubiquitously 

obtainable RGB-video images (through webcams or smartphones) and photoplethysmography (PPG), a 

well-known optical technique for measuring blood volume changes in the microvascular bed of skin. 

Specifically, the approach leverages the mechanism of controlling the blood flow to skin surface (blood 

vessels’ dilation and constriction) to adjust heat dissipation. Given the subtle nature of PPG signals and 

their susceptibility to noise, we proposed a framework that uses a combination of independent component 

analysis and adaptive filtering to reduce unwanted and in-band artifacts while preserving the amplitude 

information of PPG signals. The framework was experimentally evaluated using transient thermal 

conditions to account for applicability and sensitivity attributes. Therefore, without considering an 

acclimation time for stability of thermoregulation states, human subjects were exposed to varying 

temperatures (~ 20 – 30C) while reporting their thermal sensations. In total, for 10 human subjects out of 

15, a positive correlation between vision-based indicators, skin temperature, and thermal sensations were 

observed demonstrating promising potential in inferring thermal sensations of occupants with sufficient 

sensitivity. 

Keywords: User-centered HVAC system; Personalized thermal comfort; photoplethysmography (PPG); 

Thermoregulation; Adaptive filtering; Skin temperature. 

1. Introduction 

The major objective of heating, ventilation, and air conditioning (HVAC) systems is to provide satisfactory 

thermal conditions for occupants by leveraging thermal feedbacks from the environment. The feedback is 

commonly represented as temperature variations in an environment with implied user thermal satisfaction. 

Current HVAC systems are designed to use the predicted mean vote (PMV) model, promoted by standards, 

such as American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) standard 

55 [1], as an approach for reflecting occupants’ perspective. However, it has been indicated that the use of 

generalized metrics of the human-related parameters does reflect the characteristics of actual occupants. 

Consequently, a considerable portion of occupants endure thermal dissatisfaction [2] due to inaccurate 

thermal sensation estimation (stemmed either from PMV limitations [3-6] or inaccurate information from 

individuals) or over-cooling/heating [7]. Such operational limitations often bring about considerable 

reduction in energy efficiency of HVAC systems despite their leading contribution in driving building 

energy demands [8]. 

In addressing the aforementioned limitations, integration of post-occupancy feedback from diverse actual 

occupants [9] into the control loop of HVAC systems is a key step to satisfy individual thermal demands. 

The fast-pace growth in ubiquitous communication technologies have provided the ground for this change. 

This class of techniques, which is commonly called personalized (alternatively user-centered or user-led) 
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HVAC control, seeks to integrate thermal sensations of actual occupants into HVAC control loop through: 

(1) occupant voting and profiling systems (OVPS) or (2) physiological sensing technologies (PST). In the 

last decade, the OVPS approach has thrived by leveraging the capabilities of mobile computing 

technologies (such as smartphones) that provide high accessibility to contextual thermal feedback from 

occupants [10-12], which paved the way for personalized thermal comfort profiling [8, 13] and their 

applications in distributed control logic [14-16]. Although OVPS methods have contributed to personalized 

HVAC control, their success calls for consistent contributions from users [17, 18]. Moreover, as the survey-

based methods rely on direct quantification of occupants’ feedback, regardless of diverse influencing 

factors like thermoregulation states, the moderate accuracy (~60 – 70%) in profiling has been obtained [19, 

20]. 

The emergence and maturity of non-intrusive and wearable sensing technologies has drawn attention to the 

potential of PST. In interaction with variable thermal conditions, the human body regulates a number of 

physiological processes (collectively known as the thermoregulation mechanisms) to maintain the constant 

core internal temperature. Leveraging such a mechanism, the variations in skin temperature [21-23], heart 

rate [24], and respiration [25-27] have been studied as potential parameters for quantifying 

thermophysiological responses and assessing occupants’ thermal comfort. The candidate technologies for 

PST-based thermal comfort assessment require to be non-intrusive such as infrared imaging, Doppler radar 

sensors, and wearable sensors (e.g., smartwatches) to account for reduced interruptions in occupants 

activities [28]. 

In this study, following the emerging trend of PST-based methods, we have sought to investigate the 

feasibility of a ubiquitous and cost-effective approach for thermoregulation states inference. RGB video 

images are conveniently accessible via omnipresent smart computing devices. Furthermore, in their daily 

activities, a majority of office occupants often work in front of camera-equipped devices. If RGB video 

images can be used for thermal comfort assessment, they could provide a cost-effective method for PST-

based thermal sensation inference. Accordingly, as the fundumental steps in this feasibility assessment, we 

have attempted to answer the following questions: 

 Is it possible to use RGB video images, as the sole information source, to infer the thermoregulation states 

across a range of typical thermal sensations and their associated thermal conditions? 

In our prior studies, we have examined the potential of utilizing RGB video images to assess 

thermoregulation states in low (20C) versus high (30C) thermal conditions with a prolonged acclimiaton 

time (20 minutes) during which the human body transitions into a steady thermoreglation state [29, 30]. 

The Eulerian magnification algorithm [31] that amplifies subtle skin color variations was used as the key 

algorithm. To further investigate the feasibility, in this study, we investigated the feasibility of using RGB 

video image under transient thermal conditions and therefore devised a novel framework to address the 

challenges associated with the subtlety of variations.  

 Is video imaging analysis sufficiently sensitive to infer when a user’s thermal sensation changes? 

It is desirable for a building system to identify individual discomfort of the occupants and respond to it in 

a timely manner to adjust the indoor conditions and minimize thermal dissatisfaction. Accordingly, in the 

experimental studies human subjects were exposed to transient thermal condition without prolonged and 

unrealistic acclimation times. Given the smaller range of temperature variations that human subjects 

experience and the subtlety of physiological variations, we proposed to use a motion noise removal 

algorithm using independent component analysis (ICA) and adaptive filtering to infer the states of 

thermoregulation. 

The rest of the paper has been structured as follows. Section 2 describes the characteristics and requirements 

of the envisioned thermoregulation-based HVAC operation and the association between the 

thermoregulation mechanism and photoplethysmography (PPG) approach, which we employed to extract 

indicator of thermoregulation states. The third section elaborates our proposed framework for evaluating 
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thermoregulation states through RGB video images. The experimental procedures for investigating our 

objectives are described in Section 4. The fifth section presents the results, and Section 6 concludes the 

paper. 

2. Thermoregulation-based HVAC control and motivation 

This study contributes towards our vision to employ the thermoregulation mechanisms as a direct feedback 

to control HVAC systems. Using the correlation of physiological responses with ambient conditions, it is 

expected that personalized and realistic thermal demands could be quantified with minor dedication from 

occupants. We refer to this envisioned system as thermoregulation-based HVAC control, which infers end-

users’ thermoregulation states and manages indoor thermal conditions accordingly. The conceptual 

framework is as illustrated in Figure 1. Moving towards realization of such a system, we have investigated 

a potential measurement technology that uses RGB images and could be embedded in the desired system. 

 

Figure 1. The envisioned framework for thermoregulation-based HVAC control 

As noted, technologic developments have provided an opportunity for measuring real-time physiological 

responses from the human body. This is the foundation of our vision to move towards thermoregulation-

based control, in which HVAC systems take occupants’ thermoregulation states into account rather than 

measuring average temperature within a space. Moreover, the approach could account for personalized 

thermal sensation with reduced commitment from occupants. Realization of such feedback system calls for 

measurement techniques with the following attributes: 

 Applicability: Being capable of inferring the correlation of at least one physiological parameter 

with the ambient thermal conditions so that thermoregulation states could be identified,  

 Non-intrusiveness: Minimize interruptions/interference with occupants’ activities, 

 Sensitivity: Recognize subtle variations in physiological responses corresponding to thermal 

sensations in a timely manner so that the system can promptly respond to a discomfort state, 

 Ubiquity: Be pervasively available to facilitate scalable data collection process and enable 

distributed assessment of thermal sensations in an environment. 

The merits of ubiquity and non-intrusiveness that RGB video cameras offer motivated our exploration on 

their applicability and sensitivity, which are closely related to real-world implementation. 

2.1. Photoplethysmography (PPG) technology and thermoregulation 

Photoplethysmography (PPG) is our main approach in inferring thermoregulation states. PPG is commonly 

utilized in medical domains for non-intrusive measurement of physiological indicators (i.e., vital signs). 

Smart computing devices such as smartwatches have adopted PPG to provide physiological information to 

their users [32]. PPG methodologies rely on a light source to illuminate the tissue and a photodetector (e.g., 

a camera) to capture signals. In conventional PPG methods, dedicated red and/or infrared (IR) wavelengths 

have been used as the light source treating ambient light as an interference [33]. To tackle such interferences, 

in an example study, a nontransparent cover was used to minimize the influence of ambient light on PPG 

signals [34]. However, Verkruysse et al. [35] changed the trend by employing normal ambient light as a 

PPG light source. In their research effort, using a low-cost webcam, human subjects’ videos were taken at 

a distance of 1.5 meters, and heart rate and respiration rate were identified. This study implemented the fast 
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Fourier transform (FFT) algorithm on the spatially averaged RGB channel values, and extracted the 

frequency having the maximum amplitude within the typical cardiopulmonary frequency (cardiac cycle: 

0.75 – 4 Hz, pulmonary cycle: 0.1 – 0.5 Hz).  

It has been also reported that the green channel has the most robust PPG information among RGB channels, 

since the hemoglobin absorption bands belong to yellow and green light. Leveraging this property, Poh et 

al. [36] further demonstrated the feasibility of using ambient light as the PPG light source for detection of 

heart rates. In order to eliminate the effect of the motion artifacts, they used ICA, one of the techniques for 

blind source separation (BSS), in processing the PPG signals before extracting heart rates. Eliminating 

artifacts, mostly induced by voluntary and involuntary motion, is an important preprocessing step in using 

the PPG methodologies [36]. Through that study, they reported that heart rates could be more accurately 

identified by the estimated PPG signals. Qi et al. [37] also demonstrated the feasibility of using another 

BSS technique, Joint BSS, to improve the accuracy of heart rate detection, using RGB pixel values, captured 

at a distance. 

PPG signals have been also investigated in measurement of the thermophysiological responses of the human 

body. In his thorough review on the clinical application of PPG, Allen [38] stated that PPG waveforms 

contain thermoregulation information as one of the components. It has been also demonstrated that the 

vasoconstriction (constricting blood vessels for reduced heat dissipation) process causes a decrease in 

amplitude of PPG signals [39, 40]. Allen et al. [41] employed PPG to infer vasoconstriction induced by a 

deep inspiration gasp by extracting the signal segment, in which the amplitude of PPG decreased. Along 

the same line, Larsen et al. [42] explored the changes in spectral power contained in the thermoregulatory 

frequency band (0.01 – 0.08Hz) to examine anesthesia. These studies, with medical applications as their 

main objective, have used wearable sensors with dedicated light sources. However, in consideration of what 

has been envisioned for the HVAC system, non-intrusive physiological parameter measurements are 

preferable. 

It has been stated that the peripheral temperature can be inferred by changes in the amplitude of PPG signals 

[43]. Figure 2 illustrates the underlying mechanism that enables this inference: as the ambient temperature 

changes, the hypothalamus sends nerve impulses to regulate the shunt vessels and arterioles. In low 

temperatures, the shunt vessels are expanded while arterioles are constricted (Figure 2 (a)) limiting heat 

dissipation from the skin surface. In high temperatures, the process is reversed (Figure 2 (b)). The 

adjustments in arterioles, close to the skin surface, are the key mechanism that affect the PPG signal 

amplitude variations: the expansion of blood vessels (i.e., increased blood volume) boosts the variation of 

the amplitude in PPG signal, and vice versa. 
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Figure 2. Thermoregulation mechanism though skin and expected PPG signal variations 

Therefore, our approach utilizes non-intrusively observed PPG signals (images that are captured from a 

distance through a camera) to infer indicators of thermoregulation states by quantifying the variations in 

the amplitude of PPG signals. Furthermore, we have investigated whether the variation of PPG signal 

amplitude is correlated with other physiological response indicators such as skin temperature or heart rate. 

3. Video thermoregulation state assessment 

Our approach uses plethysmography signals, extracted from the facial skin that is sensed by red, green, and 

blue (RGB) sensors. This approach was inspired by the study of Poh et al. [36], in which the PPG method 

that uses ambient light as the PPG light source has been used for heart rate monitoring. Leveraging the 

adjustments of skin blood perfusion as the main thermoregulation mechanism of interest, this approach 

relies on the variations in plethysmography signals’ amplitude that represent blood volume change in the 

skin tissue. Due to subtlety of the PPG signal variations and potential reduction in signal to noise ratio 

(SNR), we have proposed a framework that recovers the artifact-free PPG signal without compromising the 

amplitude information. Figure 3Error! Reference source not found. represents the proposed framework 

The following subsections elaborate on the details of each step used in Figure 3. It is important to note that 

this framework is a feature extraction framework and the extracted indicators of thermoregulation states 

cannot be deemed as absolute values in the context of this study. 
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Figure 3. Block diagram of the proposed framework: Thermoregulation state assessment based on RGB 

video images of the face 

3.1. Region of interest (ROI) identification  

Given its exposure during daily activities in an indoor environment, facial skin has been selected as our 

region of interest. Specifically, for the purpose of this study, we have focused on the cheek area as it has 

been demonstrated to have a high signal-to-noise ratio (SNR) [44] and potential for higher information gain 

in thermal sensation analysis [21]. Moreover, the symmetry of the face, helps us measure the skin 

temperature for a comparative analysis. Figure 4 illustrates the configuration of the skin temperature sensor 

as well as an example of the area of skin pixels that were used in our PPG analysis. For the cheek pixels 

isolation process, we employed the Viola-Jones algorithm, a boosted cascade classifier that rapidly detects 

an object in images with high accuracy [45], which has been often applied to recognize face within an image 

[36, 46, 47]. This algorithm eliminates the unwanted background. In the second step, in this study, we have 

used a heuristic to extract right cheek area. Once the face is recognized in each  frame, the selected frame 

is divided into 50 small frames (i.e. five rows and ten columns). Then, the 38th region (4th row and 8th 

column) is isolated as the region of interest (Figure 4). The spatial average of the RGB pixel values in each 

frame is used to trace raw RGB signals. Although spatial averaging brings about reduced resolution, it 

significantly improves the SNR [35]. 

 

Figure 4. Region of interest (the right cheek) isolation process. 

3.2. Motion artifacts removal  

A key component of the proposed framework is to reduce artifacts that affect the PPG signal amplitude 

variations. Motion artifacts could be considered the most important source of noise in this application as it 

has been reported by other studies in the PPG domain [48-50]. In medical applications of PPG, 

accelerometer sensors are often used in combination with PPG sensing system to quantify the impact of 
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motion. Nonetheless, our motion artifact reduction has been inspired by the study of  Ram et al. [51], who 

proposed a novel approach for curtailing motion artifacts without an additional hardware to capture the 

motion signals. 

As the first step in the framework, the motion noise signal is separated using ICA, which generates 

independent underlying source signals from the original signal – i.e., PPG and motion-artifact signals [50, 

51] under the assumption that the RGB signals (i.e. the original observations) are the result of a mixture of 

statistically independent PPG and motion artifacts. This can be represented by 

𝑥(𝑡) = 𝐴𝑠(𝑡) (1) 

where 𝑥(𝑡)  is the original color signal time series (𝑥(𝑡) = [𝑟(𝑡), 𝑔(𝑡), 𝑏(𝑡)]𝑇)  and 𝑠(𝑡)  is the source 

signals (𝑠(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), 𝑠3(𝑡)]
𝑇). In general, ICA generates the same number of output signals from 

the original set of signals [52], therefore, 𝐴 is a square matrix with mixture coefficients. The objective of 

using ICA is to transform a set of RGB signals into the approximated source signal (i.e., �̂�(𝑡)) as follows. 

�̂�(𝑡) = 𝑊𝑥(𝑡) (2) 

where 𝑊 is a demixing matrix that maximizes non-gaussianity (a key principle of ICA) for each signal [53]. 

We used the FastICA algorithm, one of the most widely used ICA methods [54], which achieves a very fast 

convergence, compared to ordinary ICA methods that utilize the gradient method [53]. In order to meausre 

nongaussianity, negentropy (a normalized differential entropy) was employed because it provides robust 

approximation. The following equations represent how the negentropy is calculated. 

𝐽(𝑡) ∝ [𝐸{𝐺(𝑡)} − 𝐸{𝐺(𝑣)}]2 (3) 

𝐺(𝑡) = −exp(−𝑡2/2) (4) 

where 𝐽 is negentropy, 𝐸 is expectation (average), 𝑣 is a gaussian variable of zero mean and unit variance 

(i.e., standardized). 

PPG signal can be recovered by ICA [36], but the ICA-processed signal has the following limitations [55]: 

(1) The recovered source signals are normalized, hence they do not contain signal amplitude information, 

which is critical in our application, and (2) the recovered source signals have permutation ambiguity. In 

other words, ICA is beneficial when the objective is the frequency retrieval (e.g., retrieving heart rate), but 

it does not preserve the amplitude of the signal for feature extraction. Therefore, the ICA-processed PPG 

signal will not be sufficient for our approach. However, as indicated by Peng et al. and Ram et al. [50, 51], 

motion artifact signal can be estimated by ICA without the use of additional hardware. PPG signals in the 

raw RGB signals only represent 0.1% of total amplitude [51], so the overall shape of the raw RGB signals 

is mainly shaped by the artifact signals. Hence, we calculate correlation coefficients of each ICA output 

signal with the green channel signal to identify the artifact signal (hereinafter �̂�(𝑡)). As noted, green 

channel 𝑔(𝑡) has been demonstrated to have the most robust PPG information [35] among all channels. 

This process helps identify the artifact signal automatically as the order of the estimated source signals (the 

output of ICA) is not known and interchangeable (permutation ambiguity). 

In order to recover the artifact-free PPG signal, in the next step Adaptive Filtering is utilized. Adaptive 

Filtering is known as one of the best options for in-band noise cancellation while maintaining the amplitude 

information of PPG signals [49]. Adaptive filtering requires input and reference signals to reshape the 

reference signal for a better match with the input signal. By using the ICA-processed motion artifact signal 

as the reference signal and the average green channel waveform as the input signal, the motion artifact 

component in the green channel signal 𝑦(𝑡) could be retrieved: 

 𝑦(𝑡) = 𝑤𝑇�̂�(𝑡) (5) 

where 𝑤 is the coefficient vector, which is iteratively updated using an error signal, �̂�(𝑡), computed by 

comparing 𝑦(𝑡) the output signal with 𝑔(𝑡) input signal (�̂�(𝑡) = 𝑔(𝑡)– 𝑦(𝑡)), rendering a closer match 
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between the output signal and the input signal. In this study, we used the most widely used least mean 

squares (LMS) adaptive filter [56], which takes an instantaneous estimate of the mean square error as the 

cost function (Equation (4)). 

 𝑤(𝑡) = 𝑤(𝑡 − 1) + 𝜇�̂�(𝑡)�̂�(𝑡) (6) 

where 𝜇 is the convergence factor that determines the step size between coefficient vectors. In the end, the 

PPG signal �̂�(𝑡) is recovered as an error signal. This procedure is illustrated in a block diagram in Figure 

5. 

 

Figure 5. Block diagram of an adaptive filter and the application of this study [48]. 

3.3. Thermoregulation state evaluation:  

In the last step of the proposed framework, the variance of the recovered PPG signal is calculated as an 

index representing the thermoregulation state (i.e., inferring the blood vessels conditions). We call this 

index pulsatile intensity (𝑃𝐼) (see Equation (4)). 

 𝑃𝐼 =
1

𝑡 − 1
∑(�̂�(𝑖) − 𝜇)2
𝑡

𝑖=0

 (7) 

where 𝜇 represents the mean of the PPG signal. The fluctuation of the PPG signal, presented by the variance, 

indicates the blood vessels’ conditions that are regulated by the thermoregulation mechanism and is used 

as the representation for pulsatile intensity. 

4. Experimental Study 

An experimental study was conducted to assess the performance of the framework and address the research 

questions. The main objective of the experimental study was to evaluate the applicability of the proposed 

methodology. As its primary objective implies, the approach is expected to act as feedback for adjusting 

the indoor conditions based on end-users' thermal preferences. Therefore, it is desirable for the system to 

infer varied thermoregulation states corresponding to changes in thermal sensations. Hence, the sensitivity 

of the system in detection of changes is a critical factor. Several studies that have used PST-based 

techniques stated that physiological responses and thermal sensations of subjects become stable at least 

after 20 minutes [57-59]. Consequently, in these studies, an acclimation time has been often taken into 

account while measuring physiological processes under different thermal conditions (see Table 1 for 

detailed information on these studies).  

The need for a prolonged acclimation time can lead to a discomfort period when it comes to real-time 

operation of building systems. In other words, if prolonged acclimation time is required, occupants need to 

endure uncomfortable thermal conditions until a building system infers the discomfort and shifts to a new 

control state. Therefore, in our experiments we did not consider a predefined or prolonged acclimation time 

prior to measurement of the physiological response of human subjects. In doing so, a transient temperature 

variation was employed in our experiments  (from 20 to 30ºC [58]). There are precedents in adopting such 

an approach (i.e., using no acclimation time) in studies on association between skin temperature and thermal 

sensations. For example, in a study by Nagano et al. [57], they immediately exposed the human subjects to 
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lower temperatures (22, 25, 28, and 31C) after had been experiencing a high temperature (34 or 37C) for 

50 minutes. Once subjects experienced the lower temperature conditions, the subjects’ mean skin 

temperatures and thermal sensations showed an immediate change. Choi and Loftness [60] also used a 

transient condition in identification of the body parts that provide the most robust skin temperature 

information for thermal comfort assessment. 

Table 1. Spectrum of studies on physiological response measurements. 

Measured physiological 

response 

Measurement 

technique 

Temperature 

range 

Acclimation 

time 
Reference 

Skin temperature, ECG, EEG 
Thermocouples, 

ECG, electrodes 
21 – 29C 60 Minutes [61] 

Skin temperature, ECG 
Thermocouples, 

ECG 
21 – 29C 40 minutes [62] 

Skin temperature Thermometer 21 – 33C 15-20 minutes [4] 

Heart rate Webcams 20 – 29C 20 minutes [24] 

Heart rate variability ECG 21 – 29C 40 minutes [58] 

Skin temperature, heart rate, 

blood pressure 
Thermocouples 19 – 22C 30 minutes [63] 

Heart rate PPG 20 – 29C 20 minutes [24] 

Respiration Doppler Radar 20 – 29C 20 minutes [25] 

 

4.1. Experimental Set-up 

We set up a thermal chamber with the dimensions of 4.2 (length)  3.0 (width)  2.8 (height) 𝑚3 as our 

testbed. The testbed was equipped with an air handling unit, enabling us to adjust the thermal condition 

from low (18 – 19C) to high (29 – 30C) temperatures. This testbed does not have any windows, and its 

door opens to a corridor.  Thus, the artificial lighting system was the only source for illumination. In order 

to quantify the ambient conditions in the room, air temperature was recorded by a DHT22 

temperature/humidity sensor ( 0.5C and  2 – 5% accuracy) connected to an Arduino microprocessor in 

the vicinity of subjects during the entire experiment. The experimental setup was designed to mirror a 

realistic scenario as well. In doing so, subjects were sitting <1.0 meters away from the webcam. It was a 

reasonable distance considering that smart devices are usually located less than 1.0 meter from users and 

personalized computer webcams are usually located within 1.0 meters from users’ face (Figure 6). For the 

RGB sensor, Logitech HD Pro Webcam 920 with 30 frames per second (FPS) was used in the experiments, 

which represents a commonly accessible webcam technology and was proven to be comparable to cameras 

with higher FPS [64]. The pixel resolution for this sensor is 1080p (1,9201,080 pixels). We also utilized 

a E-type thermocouple sensor that is composed of chromel and constantan, to measure facial skin 

temperature and a NeuLog fingertip heart rate and pulse sensor to measure subjects’ heart rate. 
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Figure 6. Testbed setup and the procedure of the experiment. 

In total, 15 human subjects (eight males and seven females) were recruited in this study. All human subjects 

who participated in this experiment had light skin complexions. Two of the male subjects had several 

pimples on their face and most of female participants appeared to wear slight makeup. Although makeup 

could block pulsatile physiological signals, we did not provide recommendations for avoiding it in order to 

check the applicability of the framework regardless of the makeup. Table 2 presents the characteristics of 

the participants. At the time of the experiments, they declared that they were healthy with no history of 

cardiovascular problems that might affect the observations in the experiment. In order to ensure that the 

experimental procedure only reflects thermoregulation reaction in the body, participants were asked to 

avoid drinking alcohol a day before the experiments and any caffeine-contained drinks at least two hours 

prior to the experiments. They were also requested to refrain from heavy physical activities, smoking, and 

eating heavy meals prior to the experiments. The level of 0.5 clo (e.g. short-sleeved shirts and trousers [65]) 

was recommended to participants. However, we did not strictly control the combination of clothes. Most 

of male subjects followed the recommended clothes as intended, but some female subjects wore a skirt with 

long sleeve shirts. The experimental studies were conducted upon receiving the approval of Virginia Tech’ 

Internal Review Board (IRB) and informed consent was obtained. 

Table 2. Information of human subjects, participated in this experiment. 

# of subject Gender Facial feature # of subject Gender Facial feature 

1 Male None 8 Female None 

2 Male None 9 Male Glasses 

3 Male None 10 Female Makeup 

4 Female None 11 Female Makeup 

5 Male None 12 Male None & Pimples 

6 Male None 13 Female Makeup 

7 Male Glasses & Pimples 14 Female Makeup & Glasses 

   15 Female Makeup 

 

The experimental procedure included recording videos, measuring skin temperature and heart rates, and 

asking subjects’ thermal sensations and preferences. For thermal preferences, we used an ASHARE-like 

thermal sensation scales with five degrees (Hot, Warm, Neutral, Cool, and Cold) as the middle degrees (–

1, 0, and 1) in the ASHRAE scale represents the satisfactory condition [1]. This modified ASHRAE scale 

has been commonly used in other studies for personalized thermal comfort modeling [7, 12, 13]. Transient 

thermal conditions were simulated by gradually increasing the temperature in the testbed. We started from 

the low temperature. Once the low temperature was set, the human subject was asked to enter the testbed. 

Test bed 

1. Controlled from 18 – 19°C 

(low) to 29 – 30°C (high) 

gradually

A thermocouple for 

skin temperature

A heart 

rate sensor

3. Captured 

video images 

for one minute

2. Changes in 

thermal 

sensations
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To eliminate the residual heat, caused by the participants’ activity (mainly due to walking to the testbed), 

five minutes of an acclimation time was used prior to the beginning of the experiment. During this transition 

time, ground truth instrumentations were configured: the thermocouple sensor on the left cheek as well as 

the heart rate sensor on a fingertip. Two physiological responses of skin temperature and heart rate were 

measured during the entire experiment. At this stage, each human subject was asked to input his/her thermal 

sensation and a video of the facial area was captured for one minute. It is worth mentioning that we 

requested subjects to be as still as possible while recording their videos to reduce excessive motion artifacts. 

Upon collecting the initial set of data, we increased the air temperature by 1C increment per five-minute 

intervals on average and human subjects were asked to declare when their thermal sensation changes. 

Whenever human subjects shifted their perception under the five thermal sensation criteria (cold, cool, 

neutral, warm, and hot), subjects were asked to report their thermal sensations through an online survey, 

stay stationary, and look at the webcam for one minute while we recorded their facial videos. The 

experiment was terminated once each human subject perceived the environment as hot and the last video 

data was captured. 

5. Data Analytics’ Results and Discussion 

The framework implementation and the analyses were conducted in the MATLAB environment. Upon 

detection of ROI, the artifact-free PPG signal for the green channel of each video was obtained using the 

proposed framework. The same initial matrix for FastICA, recommended by Hyvärinen and Oja [53], and 

the filter length and step size parameter for the LMS adaptive filter were set through empirical observations. 

We employed the heuristically-identified matrix of [0.5286, 0.8449, 0.0820; 0.7338, 0.1204, 0.6686; 0.7625, 

0.1625, 0.6262] and values of 512 and 0.001, respectively, which presented stable outcomes in our dataset. 

Thermoregulation states, represented by pulsatile intensity indicators, of each participant were calculated, 

and compared against air temperature, skin temperature, and heart rate at the times, when each subject 

changed his/her thermal sensations. The results are presented in two following subsections: (i) the 

relationships between temperature variation, thermal sensations, and conventional physiological responses 

such as skin temperature and heart rate and (ii) pulsatile intensities for different ranges of thermal sensations 

and their associated ambient temperatures. 

5.1. Conventional Physiological Responses 

Figure 7 to Figure 9 show the association between human subjects’ thermal sensations with air temperature, 

facial skin temperature, and heart rate, respectively. As noted, facial skin temperature was measured using 

a heat-flux sensor array, which was attached on one of the cheeks for each human subject. As noted, due to 

the symmetry of the face, the cheek area was selected to provide a comparative ground for assessment of 

the proposed vision-based system. The sensor was not exposed to the ambient air so to ensure that the 

temperature values are mainly derived from skin heat flux. 

When air temperature is taken into account (Figure 7), it could be observed that each participant had 

different thermal ranges for their thermal sensations. In other words, they manifested different thermal 

preferences, which is the core concept in support of the need for personalized thermal comfort quantification. 

Subjects revealed different thermal sensations even at the same temperature. A notable example is 

perception differences, observed between subject #1 and #14. At the 22.2 C, it was cool to the former but 

it was already warm (almost hot) to the latter. The boxplot also illustrates that the gap between the 1st and 

3rd quartiles in the warm and hot states are 3 and 4 degrees Celsius. As this figure shows, some of the 

participants did not perceive the environment as cold. Only five participants started with a cold perception. 

It is important to note that the human subjects were not aware of the temperature values in the testbed.  

Another important observation in this experiment is the gap between sensitivity of individual participants. 

Human sensitivity to thermal condition variations is an interesting feature that could play an important role 

in adaptive energy management in buildings. For instance, for human subject #3, the neutral state started at 

19.5°C and persisted until 25.0°C. The gap was 4.5°C. On the other hand, it was varied within 1.2°C for 

subject #14, who was the most sensitive participant to thermal changes. The takeaway from these 
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observations is twofold: (1) the timeframe between perception changes for some individuals is too short 

and (2) different individuals have different mechanisms for response to ambient conditions and internal 

thermal set points. 

As literature also states, skin temperature was observed to be a more reliable physiological response than 

the heart rate. Figure 8 shows the skin temperature values when each subject reported a change in their 

thermal sensations. For all subjects, the skin temperatures revealed an increasing trend along with the air 

temperatures during the experiments. On the other hand, as represented in Figure 9, a consistent increasing 

trend in the heart rates was only observed for subject #2. For subject #3, 6, 9, 10, 12, and 13, the heart rates 

gradually increased within a certain range (e.g. from cool to warm for subject #10), but the heart rates for 

other participants fluctuated. As Figure 10 demonstrates, only by grouping the data from warm and hot 

conditions as well as cool and cold conditions an increasing pattern for heart rate variations is observed.  

 

Figure 7. Air temperatures when each human subject changed their thermal sensations. 

 

Figure 8. Cheek skin temperatures of 15 human subjects when they changed their thermal sensations. 
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Figure 9. Heart rates of 15 human subjects extracted when they changed their thermal sensations. 

 

Figure 10. Box plots of the measured heart rates for 15 human subjects: (a) Grouping cold & cool and 

warm & hot, and (b) Each thermal sensation. 

5.2. Pulsatile Intensity 

As noted, the proposed framework was used to calculate the pulsatile intensity at the times that subjects 

expressed a change in their thermal sensations. The results of these calculations have been presented in 

Figure 11: (a) shows the cases with an increasing trend and (b) the cases that do not show a trend. The 

results showed an increasing trend for seven male and five female participants. As indicated in Figure 11 

(a), for subjects #2 and 7, pulsatile intensities steadily increased from cold (cool) to hot thermal sensation 

states. Among these subjects were two with pimples on their face. For subject #1, 4, 5, 11, 12, 13, 15, an 

increasing trend was shown from cold (cool) to warm and decreased when they felt hot. Through an 

exploration of the PPG literature we came across Lindberg and Oberg [66] study, in which they have 

demonstrated that the sweat water content significantly influences the amount of PPG signal caught by a 

photodetector. Therefore, one possibility for our observations is that higher temperatures triggered sweating 
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for these participants, which is another thermoregulation mechanism in high temperatures. Even though an 

increasing trend was observed as the ambient temperature increases at the hot state, the pulsatile intensity 

values were not increased at the neutral and warm states for subject #3, and slightly dropped at the warm 

state for subject # 9. In the case of subject 14, the pulsatile intensity increased significantly at the neutral 

state and remained throughout the experiment. These results demonstrated compatibility with the 

thermoregulation process, in which blood vessels were generally dilated to dissipate more heat as the 

ambient temperature increased. 

Figure 11 (b) illustrates the unsuccessful cases. For subject #6, 8, and 10 the pulsatile intensities fluctuated 

as the temperature increased. The possible contributing factor could be the use of makeup on facial skin for 

subjects #10 or the distance between the subject and the camera for subject #6, who sat at the maximum 

limit of 1.5 meters. Consequently, the reduced quality of the images could have contributed in the 

observations. Nonetheless, the aforementioned circumstances could be considered as limitation of the 

proposed methodology. 

In addition to what described above, in the interpretation of the results, a number of factors could be taken 

into account. As observed in the previous section, different individuals manifest different characteristics in 

response to thermal condition variations. As noted, the sweating process might start at higher temperatures 

when the subjects are feeling hot, which could affect the observations. Therefore, the visible 

thermoregulation processes should be also investigated in future directions of the study. Given that we have 

not strictly controlled the behavior (in terms of clothing insulation and the use of make-up) of the 

participants, 12 positive cases out of 15 shows promising results for further investigations in this direction. 

 

(a) Subject having an increasing tendency in pulsatile intensity. 

 

(b) Subjects having fluctuated pulsatile intensities and a decreasing tendency. 
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Figure 11. Pulsatile intensities of 15 subjects in different thermal sensations. 

Table 3 presents the correlation coefficient of pulsatile intensity with skin temperature and heart rate. As 

shown in this table, the pulsatile intensities are highly correlated with skin temperature. Ten cases out of 

12, for which we observed a successful performance show a strong correlation with the skin temperature 

variation, which is an established physiological response when it comes to thermal condition variations in 

an environment. In the analysis between the pulsatile intensity and skin temperature, we observed seven 

highly correlated cases and three moderately correlated cases. This analysis further demonstrates the 

promising performance of pulsatile intensity for RGB-image based thermal comfort assessment.  

Table 3. Correlation coefficient analysis between pulsatile intensity, skin temperature, and heart rate. 

# of 

subject 

Correlation coefficient analysis 

Pulsatile intensity & 

skin temperature 

Pulsatile intensity & 

heart rate 

1 0.5003 0.0338 

2 0.9549 0.9671 

3 0.5468 0.3322 

4 0.7481 0.0143 

5 0.2053 0.6022 

6 –0.1418 –0.5147 

7 0.8876 –0.2792 

8 –0.3481 0.4692 

9 0.6619 –0.0700 

10 0.2760 0.5160 

11 0.1931 0.0378 

12 0.6549 0.9981 

13 0.3231 –0.5832 

14 0.7250 –0.5697 

15 0.8146 –0.2735 

Blue colored cell: highly correlated (> 0.6);  

Light blue colored cell: moderately correlated (> 0.3). 

 

6. Conclusion 

We presented a vision-based approach that uses RGB videos for inferring the thermoregulation states in the 

human body as they correspond to the thermal condition/sensation variations in an environment. In doing 

so, we focused on the vasoconstriction and vasodilation mechanisms, which adjust the blood perfusion to 

skin vascular bed and thus the amplitude of PPG signal. This approach could contribute to our envisioned 

thermoregulation-based HVAC systems that evaluate actual thermal demands based on end-users’ 

thermoregulation states. The approach was proposed in the context of four feasibility attributes: 

applicability, non-intrusiveness, sensitivity, and ubiquity. RGB-video images are ubiquitously obtainable 

through smart devices such as personal computer webcams or smartphone cameras, thereby we evaluated 

the remaining attributes in this study. 

We proposed a framework to extract subtle amplitude variations of PPG signal by accounting for unwanted 

artifacts derived specifically by motion. A combination of the ICA and LMS adaptive filtering algorithms 

were integrated in a framework to remove the unwanted and in-band artifacts while preserving the 

amplitude information of the PPG signal. The variance of the PPG signal was used to assess 

thermoregulation states. This framework was experimentally assessed considering the interconnected 

attributes of applicability and sensitivity for the system integration. In the experimental study, the human 

subjects were exposed to transient temperature variations within the typical range of indoor temperatures 
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(20 – 30C) to cover all possible thermal sensations, and an acclimation time was minimized with the aim 

of assessing the sensitivity. Using the proposed framework, it was demonstrated that RGB video images 

have the potential to be used in inferring the thermal sensations of occupants with sufficient sensitivity. In 

total, for 10 human subjects out of 15, a positive correlation between pulsatile intensity, skin temperature, 

and thermal sensations were observed. It is important to note that both physiological responses (skin 

temperature and pulsatile intensity) are triggered by the same thermoregulation mechanism. 

However, unexpected outcomes (i.e., fluctuating trends) were also observed. There are a number of 

remaining challenges to be tackled for practical implementation. In another study, we asked subjects to be 

stationary while recording to minimize variations in light illumination and motions, which, in practice, 

might not be fully feasible and calls for intelligent algorithms that capture the images when subjects are 

focused. Moreover, distance between camera and subject plays a role. In farther distances (beyond a 

personal zone) the resolution of optical sensor might not be sufficient to capture amplitude variation induced 

by thermophysiological responses, which is also the limitation of PPG-based thermoregulation state 

evaluation. As demonstrated in the results, sweating and makeup could block PPG signals. Therefore, 

exploring the coupling of pulsatile intensities, ambient temperature, and other meta data from subjects in 

the context of a learning algorithm needs to be carried out in future directions of the study. On the algorithm 

side, although we used the most widely used ICA and adaptive filtering methods, there is still room for 

improving our approach. For example, the LMS adaptive filtering method calls for two user-selected inputs 

(i.e., filter length and step size), which can be automatically selected by the algorithm in real-time. 

Therefore, the future directions of this research include (1) in depth causality analysis to better understand 

the causes for lack of performance in some of the cases, (2) increased scale of the experiments for statistical 

analysis of the performance by repeating the experiments for same human subjects, (3) investigation of 

alternative blind source separation and adaptive filtering techniques to assess its impact on the framework’s 

performance, and (4)  system integration for HVAC control and assessment of the thermal comfort and 

energy efficiency implications. 
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