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Introduction

Physical Unclonable Functions (PUFs) are a modern day realization of a millennia old concept, the physical key. However,
unlike conventional physical keys it is not feasible to copy a PUF. In modern authentication and cryptography, PUFs present
a promising alternative to storing digital keys in physical memory as the security of these schemes relies on the presumption
that these digital keys are not known to adversaries. Specifically, modern security schemes suffer from a number
vulnerabilities such as the proper implementation and physical attacks (e.g. invasive, semi-invasive, and side-channel
attacks), as well as software attacks and viruses. Such attacks often compromise the system’s integrity by gaining access to
the stored digital key [1]. As an alternative to this conventional approach, PUFs provide device specific, non-deterministic
transfer functions that can be used for authentication and secret key storage without the drawbacks mentioned above.
Instead of storing the digital key in physical memory, PUFs derive a secret key from a physical process that is sensitive to
the random and unpredictable idiosyncrasies of a physical device [2]. As a result, it is impossible, even for the manufacturer,
to clone or reproduce PUFs and their behavior. PUFs have been realized using a variety of technologies including electronic
circuits and complex optical materials. Notably, optical PUFs based on volumetric scattering have been shown to provide
orders of magnitude higher information content than their electronic counterparts [3, 4], however these optical scattering
PUFs suffer from poor repeatability and problematic compatibility with electronic integration. Recently our group
developed a novel photonic PUF based on ultrafast nonlinear optical interactions in chaotic silicon photonic micro-cavities
[5,6]. These interactions produce a highly complex and unpredictable, yet deterministic, ultrafast response that can serve as
a source of secret key material. Our nonlinear silicon photonic PUFs provide significant improvements over optical
scattering PUFs in terms of repeatability, key generation rates, and ease of integration with CMOS electronics and
telecommunications hardware, while also providing comparably large information capacity [5, 6].

In this paper, we investigate a set of eavesdropping attacks against this novel PUF. Specifically, we extract a subset of key
material from a nonlinear silicon photonic PUF and use this material construct modeling attacks with the help of deep
learning methods. The ultimate goal of this work is to understand whether an attacker armed with some subset of knowledge
about the PUF’s behavior can, within a limited time frame, design a mathematical model that is capable of correctly
emulating the entire PUF behavior. According to previous studies, such machine learning (ML) attacks have been highly
successful at emulating both electronic and optical PUFs [7]. For example, studies have shown that integrated optical
scattering PUFs are vulnerable to ML attacks when a linear optical medium is employed [7]. Intriguingly, here we find that
nonlinear silicon photonic PUFs are highly resistant to ML attacks and that this resistance is directly rooted in the nonlinear
optical behavior of the devices.

Experiment and results

In the machine learning community, deep learning is widely acknowledged as the state-of-the-art method and outperforms
other solutions in numerous fields such as computer vision, image and speech recognition, classification and machine
translation [8]. A major advantage of the deep learning framework is that it is readily adapted to new problems and for this
reason we employ deep learning to investigate ML attacks on our nonlinear silicon photonic PUF.

A PUF token is typically interrogated with the sequence of input signals called challenges and the output signals, called
responses, are recorded to generate digital key material. A set of input-ouput signal pairs, which are known as challenge-
response pairs (CRPs) are stored as a CRP database also known as a challenge-response library (CRL). The whole process
of populating a CRL is referred as an enrollment phase.

To build the CRL, we employed the same experimental setup as demonstrated in [4, 5]. To generate the challenge signals,
ultrafast 300-fs laser pulses with 90-MHz repetition rate are dispersively stretched with a spool of dispersion compensation
fiber and are then encoded by a 128-bits random binary sequence generated by a pulse pattern generator operating at a
11.52-Gbit/s rate. These challenge pulses are then amplified in and erbium doped fiber amplifier, compressed in single-
mode optical fiber, and coupled into the silicon photonic micro-cavity PUF (e.g. an example device is shown Fig. 1a). The
sequence of response pulses are amplified and then measured by filtering with a spectral mask and recording the transmitted
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pulse energy with an ADC. Finally, a post-processing algorithm derives a digital sequence from the analog power samples.
At the whole enrollment phase, we collect 960,000 CRPs to form the CRL for testing deep learning attacks. We repeated
this process at three different input optical power levels to study the impact of optical nonlinearity on the results of
adversary attack. Additionally, we repeated CRL generation at each power level to determine the repeatability of the CRL.

In the attack scenario, we assume that the attacker (Eve) has stolen some part of the CRL and Eve’s goal is to find an
algorithm that can emulate the mapping of input challenges to output responses using the stolen part of database. To
investigate this susceptibility, we construct a Deep Neural Network (DNN) and train it to learn the mapping function
between challenges and responses, this is known as an end to end deep learning architecture. During the learning phase, we
train the DNN with 70% of the total collected data and use the remaining 30% to test the performance of DNN at emulating
the devices behavior. In Fig.1b, three learning curves showing DNN prediction error versus the size of the training set are
presented for different input optical power level of the challenge laser pulses. We find that in all cases, the performance of
the DNN plateaus after approximately 50,000 training samples. Furthermore, we find that the lower power behavior is better
learned than higher power behavior indicating that the PUF’s optical nonlinearity is providing resistance to the ML attack.
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Figure 1. Deep Learning attack results. a) Scanning electronic microscope image of chaotic silicon micro-cavity b) Convergence of NN generalization
errors with respect to amount of the dataset at average power levels 32mW, 65mW and 150mW b) Normalized FHD distributions and histograms
calculated against CRL of legitimate PUF token at different power levels in the setup: “like” distribution (green) represent the FHD values between
repetitions and the response sequence from CRL of legitimate PUF, ML “clone” distribution (blue) represent the FHD values between ML predicted

response sequences and the response from CRL of legitimate PUF.

The performance of PUFs is measured using Fractional Hamming Distance (FHD) between response bit sequences and
the CRL. FHD is used as a metric to quantify repeatability and differentiability of individual PUF tokens [2]. The histogram
of FHDs between responses to repeated challenges to a PUF and the mean response of the same device is referred to as
“like” distribution, whereas the histogram of FHDs between each of those repetitions and CRL of ML generated responses
is referred to as ML “clone” distribution. Such histograms are shown in Fig. 1c at each of the three power levels. We
calculated the mean and standard deviations for each histogram that account for uniqueness and repeatability of the token
respectively. In ideal scenario, the mean of FHD distribution that accounts for comparison of one PUF device to different
PUF should be centered around the value of 0.5. As Fig.1c shows, we observe good separability of genuine PUF device
from the ML clone PUF even at low power level indicating resistance to the ML attacks at all power levels. Furthermore, at
higher optical power levels, the ML “clone” distribution is further separated from the “like” distributions, consistent with
the observation that optical nonlinearity in the system enhances its resistance to ML attacks.
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