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ABSTRACT CCS CONCEPTS

We introduce and study the notion of an outer bi-Lipschitz exten-
sion of a map between Euclidean spaces. The notion is a natural
analogue of the notion of a Lipschitz extension of a Lipschitz map.
We show that for every map f there exists an outer bi-Lipschitz
extension f’ whose distortion is greater than that of f by at most
a constant factor. This result can be seen as a counterpart of the
classic Kirszbraun theorem for outer bi-Lipschitz extensions. We
also study outer bi-Lipschitz extensions of near-isometric maps and
show upper and lower bounds for them. Then, we present applica-
tions of our results to prioritized and terminal dimension reduction
problems, described next.

We prove a prioritized variant of the Johnson-Lindenstrauss
lemma: given a set of points X C R? of size N and a permutation
(“priority ranking”) of X, there exists an embedding f of X into
ROU0gN) with distortion O(log log N) such that the point of rank j
has only O(log®*¢ j) non-zero coordinates — more specifically, all
but the first O(log>*¢ j) coordinates are equal to 0; the distortion
of f restricted to the first j points (according to the ranking) is at
most O(log log j). The result makes a progress towards answering
an open question by Elkin, Filtser, and Neiman about prioritized
dimension reductions.

We prove that given a set X of N points in R, there exists a
terminal dimension reduction embedding of R into Rd/, where

d = O(logN

84
x € Xand y € R, up to a multiplicative factor of 1 + ¢. This
improves a recent result by Elkin, Filtser, and Neiman.

The dimension reductions that we obtain are nonlinear, and this
nonlinearity is necessary.

), which preserves distances ||x — y|| between points
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1 INTRODUCTION

In this paper, we introduce and study the notion of an outer bi-
Lipschitz extension. The notion is a natural analogue of the notion
of a Lipschitz extension, which is widely used in mathematics and
theoretical computer science. Recall that a map f : X — Y is
C-Lipschitz if for any two points x,y € X we have dy (f(x), f(y)) <
C - dx(x,y); the Lipschitz constant of f is the minimum C such
that f is C-Lipschitz. In the Lipschitz extension problem, given a
Lipschitz map f from a subset A of X to Y and a superset A’ D A,
the goal is to find an extension map f’ from A’ to Y such that
the Lipschitz constant of f” is equal to or not significantly larger
than the Lipschitz constant of f. This problem has found numerous
applications in mathematics and theoretical computer science (see
e.g., [11, 29,31, 35,37-39, 41-43]). One of the most important results
in the field is the Kirszbraun theorem, which states that any map
f : A— R™ from a subset A of Euclidean space R" to Euclidean
space R™ can be extended to a map f’ : R" — R™ so that the
Lipschitz constant of f” equals that of f [31] (see Theorem 1.13 in
Section 1.2; see also [4]).

Outer bi-Lipschitz extension. In this paper, we prove several ana-
logues of the Kirszbraun theorem for bi-Lipschitz maps. The bi-
Lipschitz constant of a map f: X — Y is the minimum D such that
for some A > 0 and every x,y € X, A - dx(x,y) < dy(f(x), f(y)) <
A- D -dx(x,y). If there is no such number D, we say that the map
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is not bi-Lipschitz. Bi-Lipschitz maps are also known as embed-
dings with distortion D. Low distortion metric embedding have
numerous applications in approximation and online algorithms (see
e.g. [1, 2, 13-16, 20, 23-25, 36, 40]); hardness of approximation (see
e.g. [30]); computational geometry (see e.g. [27, 40] and references
therein); and sketching, streaming, and similarity search algorithms
(see e.g. [3,9, 10, 12, 17, 19, 21, 28, 44-46)).

Since bi-Lipschitz maps are widely used in mathematics and
theoretical computer science, it is natural to ask whether there is a
counterpart of the Kirszbraun theorem for bi-Lipschitz maps.

Given a bi-Lipschitz map f from a subset of R" to
R™, can we extend it to a bi-Lipschitz map from the
whole space R" to R™?

This question has been extensively studied in the literature (see
e.g. [5, 6, 26,32, 47, 48]). It turns out that the answer to this question
depends on the geometry of the set A. In general, the answer is
“no”. For instance, consider a map that maps points 0, 1, 2 to 0, —1,
2, respectively. There is no continuous one-to-one extension of this
map to R, let alone a bi-Lipschitz extension. The reason is that in
one dimension we cannot connect points 0 and —1 and points —1
and 2 with non-intersecting paths. However, we can easily do this
in R2. This observation suggests the following idea. Let A ¢ R"
and f : A — R™ be a bi-Lipschitz map. Let us allow extension f’ of
f to use additional dimensions or, in other words, allow f” to map
points x € R™ \ A to points in some higher-dimensional (ambient)
space R that contains R™. We get the following definition.

Definition 1.1 (Outer extension). A map f’ : A’ — R™ (where
m’ > m) is an outer extension of f if f(a) = f’(a) for all a € A;
we assume that R™ is the subspace of R™ spanned by the first m
standard basis vectors; that is, we identify points (x1,...,xpy) €
R™ and (x1,...,%Xm,0,...,0) € R™ . We say that the extension is
proper if m = m’.

Note that the exact dimension of the image is not very important
in many applications in computer science, as long as the dimension
is comparable to m and n. Therefore, outer extensions seem to be as
useful as proper (standard) extensions. However, in stark contrast
with proper bi-Lipschitz extensions, outer bi-Lipschitz extensions
always exist — for every bi-Lipschitz map f : A — R™ there exists
an outer bi-Lipschitz extension f’ : R" — R™  as we prove in this

paper.

1.1 Results

Outer bi-Lipschitz Extensions. One of the main results of this
paper is an analogue of the Kirszbraun theorem for bi-Lipschitz
maps.

THEOREM 1.2. Let X ¢ R" and f : X — R™ be a bi-Lipschitz
map with distortion at most D. There exists an outer extension [’
R™ — R™ of f with the distortion at most 3D and m’ = n + m.

The main difference between the outer bi-Lipschitz extension
from Theorem 1.2 and the Lipschitz extension from the Kirszbraun
theorem - aside from the difference we discussed above (that The-
orem 1.2 gives an outer extension and not a proper extension) - is
that while the Lipschitz extension preserves the Lipschitz constant

of the map exactly, the bi-Lipschitz extension preserves the distor-
tion only up to a constant factor. This limitation is unavoidable; it
is easy to see that even in the example we considered - extending
the map f that sends 0, 1, 2 to 0, —1, 2, respectively — the distortion
of any outer extension of f is greater than the distortion of f. Thus,
for arbitrary bi-Lipschitz maps we cannot get a result stronger than
Theorem 1.2 (except that factor 3 in the statement of the theorem
can be potentially replaced with a smaller factor ¢ > 1).

We then focus on an important class of near-isometric maps,
maps with distortion D = 1+ ¢. Observe that if the distortion of f is
exactly 1 (i.e., f is an isometric embedding), it can be extended to an
isometric embedding of the whole space R" into R™ . In this case,
we can extend f without increasing its distortion. What happens if
the distortion of f is close to 1 but not 1? Let ¢(¢) be the smallest
¢’ such that the following holds: for every map f : A — R™
with distortion at most D = 1 + ¢, there exists an outer extension
f’ : R® — R™ with distortion at most D’ = 1 + ¢’. Note that
¢(0) = 0, as discussed above.

OPEN PrOBLEM 1. Find the asymptotic behavior of ¢(¢) as e — 0.
Does p(¢) = 0 ase — 0?

We study this problem and get partial results for it. First, we show
that p(¢) > Q(1/log?(1/e)).

THEOREM 1.3. There exists a map f : X — R, where X C R, with

the distortion 1 + ¢, such that every outer extension f’ : R — R™ of
. . 1

f has distortion at least 1 + Q(—logz(l/g))'
Note that 1/log?(1/e) — 0 as ¢ — 0, but the dependence of
1/ logz(l/ €) on ¢ is not polynomial and, in our opinion, highly un-
usual. This result rules out the possibility that ¢(e) = O(e'/*) for
any k. Further, we provide some evidence that ¢(¢) might, in fact,

be equal to 1 + ©(—1—). Namely, we prove the following result

log?(1/¢)
for 1-dimensional case: for every map from X C R to R, there is an
outer extension with D’ = 1 + O(m). By Theorem 1.3, this
bound is asymptotically optimal.

THEOREM 1.4. Let X C Rand f : X — R be a map with the
distortion at most 1 + ¢. There exists an outer extension f’: R — R?

of f with the distortion at most 1 + O(———).

log?(1/¢)
We also consider a simpler problem of extending a near-isometric
map by one point. We prove the following result.

THEOREM 1.5. Let f be a (1 + ¢)-bi-Lipschitz map from a subset
X of R™ to R™ and u € R". There exists an outer extension f' :
X U {u} — R™L of f with the distortion at most 1 + O(~\/e).

The bound in this theorem is asymptotically tight — there exist a
map f from a subset of R to R and a point u € R such that every
outer extension of f to u has distortion 1 + Q(+/¢).

Computability. Given sets AC A’ Cc R" andamap f: A —» R™,
we can compute an outer extension f’ : A” — R" with the least
possible distortion using semidefinite programming (SDP). The
running time is polynomial in |A’| and log 1/§, where § is the
desired precision. In particular, we can find outer extensions f”,
whose existence is guaranteed by Theorems 1.2 and 1.5.
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Applications. Using our extension results, we obtain prioritized
and terminal dimension reductions [22, 23]. Recall the statement of
the Johnson-Lindenstrauss lemma [29].

THEOREM 1.6 (THE JOHNSON—-LINDENSTRAUSS LEMMA [29]). For
every0 < ¢ < 1/2 and every set X C R4 of size N, there exists an

embedding f : X — R, whered’ = O (IOgN) such that for every

e )

p.geX:llp—qllz < If () - f(@ll2 < (1 + &)llp = gll2.

Prioritized metric structures and embeddings were introduced
and studied by Elkin, Filtser, and Neiman [22]. Among several very
interesting results obtained in [22], one is a construction of priori-
tized embeddings. We give a definition of a prioritized dimension
reduction in the spirit of [22].

Definition 1.7 (Prioritized dimension reduction). Consider a set of
points X C R9 of size N.Let r be a bijection from [N] = {1,..., N}
to X, which defines a priority ranking of X: n(1),. .., n(N). An em-
bedding f : X — R? is an (a, f§)-prioritized dimension reduction,
where a : [N] - Rand f: [N] —» N, if

o for every j € [N], the distortion of f restricted to points
m(1),...,m(j) is at most a(j).

e for every j € [N], z(j) is mapped to a point f(7(j)) in RAU),
that is, all but the first f(j) coordinates of f(x(j)) are equal
to 0.

Note that points f(n(1)),..., f(x(j)) lie in Euclidean space of
dimension f(j) and f(j) may potentially be much smaller than
log N (when j < N). The definition requires that the distortion of
the distance between points (i) and 7(j) be at most a(max(i, j))
(note that this condition is weaker than a similar condition in the
definition of a prioritized embedding in [22], which requires that
the distortion be at most a(min(i, j))).

Ideally, we want to have a dimension reduction with parameters
(1 + ¢, polylog j).

OPEN PROBLEM 2 ([22, TALK AND PERS. COMM.]). Is there a priori-
tized dimension reduction with parameters (1 + ¢, polylog j)?

Very little is known about prioritized dimension reductions. The
only known result follows from Theorem 15 in [22]. (The theorem is
a prioritized variant of Bourgain’s theorem [18] and is more general
than its corollary stated below.)

THEOREM 1.8 ([22]). For every set X C RY and e > 0, there is
a (c1log? j, ¢z log**¢ j)-prioritized dimension reduction f : X —
ROlog” |X) (where c1, ¢z depend only on ¢).

We make further progress towards solving Open Problem 2.

THEOREM 1.9. For every set X C R ¢ >0, and N = |X|, there
exist

e a(cylogylog, j,co log;“ J)-prioritized dimension reduction

f:X—- ROWEN) opere c1=3+¢andcy = O(1/€%),

o a((3+6)k, ¢1log, jlog!/*
f:X—- ROUogN) for every integer parameter k > 1, where
c1 = O(1/€%).

The dimension reductions can be computed in polynomial time.

N)-prioritized dimension reduction
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The first result gives a prioritized dimension reduction with a
reasonably small distortion O(log log j) and desired polylogarithmic
dimension. The second result gives a constant distortion and maps
the first j points to a subspace of dimension O(logzjlogl/k N).

Now we switch to another problem introduced by Elkin, Filtser,
and Neiman [23].

Definition 1.10 (Terminal dimension reduction). Suppose that we
are given a set of points (which we call terminals) X ¢ R?. We say
that amap f : R? — R? is a terminal dimension reduction with
distortion D if for every terminal x € X and point p € R? (p may
be a terminal), we have

llp =l < lf() = fGll < Dlp = xI|.

Elkin, Filtser, and Neiman [23] proved that there exists a ter-
minal dimension reduction with distortion O(1) and dimension
d’ = O(log |X|). We show how to obtain the distortion of 1 + ¢.

THEOREM 1.11. For every set X C R4 of size N and parameter
0 < & < 1/2, there exists a terminal dimension reduction f : X — RY
with distortion 1 + ¢, whered’ = O (IOS#N) The dimension reduction

can be computed in polynomial time.

It is an interesting question if the dimension O (10§4N) can be

lowered. Since f is also a (standard) dimension reduction for X, d’
IOEZN) as was shown by Larsen and Nelson [34]

must be at least Q (
(see also [7, 8, 33]).

OpPEN PROBLEM 3. Is it possible to decrease the dimension to
0o (IOgN) in Theorem 1.11.

2

It is interesting that while most dimension reduction construc-
tions described in the literature are given by linear transformations,
prioritized and terminal dimension reductions must be non-linear
(see the full version of the paper for details). In particular, all di-
mension reductions presented in this paper are non-linear.

In Section 2, we prove Theorem 1.2. In Section 3, we obtain an
optimal bound on one-point outer bi-Lipschitz extensions (prove
Theorem 1.5 and show its optimality). Then, in Section 4, we present
applications of our results. Finally, in Section 5, we present the proof
of Theorem 1.4, as well as a matching lower bound.

1.2 Preliminaries

In this paper, R" denotes n-dimensional Euclidean space, equipped
with the standard Euclidean norm || - ||. For m < m’, we iden-
tify R™ with the m-dimensional subspace of R™ spanned by the
first m standard basis vectors (in other words, we identify vectors
(x1,...,xm) € R™and (x1,...,xm,0,...,0) € Rm/).

Definition 1.12 (Lipschitz constant and distortion). Let (X, dx)

and (Y, dy) be metric spaces, and let f : X — Y be a map. Define

dy(Ff @)
dx(x,y)

say that the map f is Lipschitz if || f{[;, < co. A map f is non-

the Lipschitz constant of f as || flly;p = supy yex

expanding if || flly;, < 1. The distortion or bi-Lipschitz constant
of an injective map f is D = D(f) = ”f”Lip I lILip- If a map
is not injective, its distortion is infinite. A map f is bi-Lipschitz if
D(f) < co.
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THEOREM 1.13 (KIRSZBRAUN EXTENSION THEOREM). Consider
Euclidean spaces R and R™, and an arbitrary non-empty subset X
of R™" Let f : X — R™ be a Lipschitz map. There exists a proper
extension f’' : R™ — R™ of f with the same Lipschitz constant as f:

||f’||Lip = ||f||Lip~

We note that Makarychev and Makarychev [38] previously intro-
duced a notion of external bi-Lipschitz extension, but that notion is
significantly different and less natural from the notion of the outer
bi-Lipschitz extension studied in this paper.

2 OUTER BI-LIPSCHITZ EXTENSION

In this section, we prove Theorem 1.2 that states that any bi-Lipschitz
map f from a subset X of R” to R™ can be extended to a bi-Lipschitz
map f’ : R" — R™ for some m’ > m. The result can be seen as a
counterpart of the Kirszbraun theorem.

Informal overview of the proof idea. For simplicity, let us assume for
now that f is near-isometric (it approximately preserves distances).
We want to construct a map f’ : R” — R™ that satisfies the
following conditions:

(1) f’ is an outer extension of f; thatis, f'(x) = f(x) for every

x € X;

@ NIf'G) = '@l < O(llx - yll) for all x,y € R ;

G If'x) = f'WIl = Q(llx - yl]) for all x,y € R™ .
First, using the Kirszbraun theorem, we find a Lipschitz extension
f : R" — R™. If we were to let f/ = f, then f’ would satisfy
conditions (1) and (2) but not necessarily (3); namely, for some
points x,y € R", the distance between f’(x) and f’(y) would
potentially be considerably smaller than that between x and y; in
fact, it could happen that f(x) = f(y) for some x # y. Instead,
we are going to let f'(x) = f(x) ® h(x) € R™™ for some map
h from R to R". We will choose h which satisfies the following
conditions:

(1") For x € X, h(x) = 0. This condition is necessary to ensure
that f is an outer extension of f.
(2) For all x,y € R", ||h(x) — h(y)|| < O(||x — yl||) and thus
£/ CO=f W < 11f )= fFWII+1TRGx)=h@)I < O(llx=ylD.
(3) Il f(x)— fW)Il < [lx—y]| for some x,y € R™, then ||A(x)—
h@)ll = Q(llx - yll) and thus [|f'(x) - f'WIl > [Ih(x) -
hW)Il = Q(llx = yl).
As we see, if h satisfies conditions (1), (2’), and (3’), then f’ = f@h
satisfies conditions (1), (2), and (3). Now we proceed with a formal
proof. Our main task will be to define h appropriately.

Proor. As above, let f :R" — R™ be a Lipschitz extension of
f with ||j?||LiIJ = || fllLip. Further, let g = f1: f(X) — X be the
inverse map of f and g : R™ — R” be its Lipschitz extension given
by the Kirszbraun theorem. Denote a = ||g|| Lip- Since the distortion
of f is at most D,

I fllLip < D/e, ||f||Lip <Dla,
gy <@ gl < lIgo flluip < D.
Let h(x) = ﬂfiﬁ% and f'(x) = _f(x) ® h(x) = f(x) @ é(f\(éz—x €

R™™M We verify that f’ satisfies conditions (1), (2), and (3) de-
scribed in the proof overview above.

Condition (1). We prove that f is an outer extension of f; i.e., for
every x € X, we have

G(f(x) —x

f'x)=fxe Vo

51%?lf=fwmo=fuy

- fr)e? 7

Condition (2). For every x,y € R", we have

Vaa - |h(x) = k@)l = lGx = G o f(x) = (=G o F)IDII

<llx=yll+lgo f(x)-go fFW
< (1+D)llx - yll.

Thus,
I ) = FWI? < 11f ) = FWI? + I1h(x) — hy)I?
5«9)’+“+Dy)w—yw

a 2a2
3D?
< —.
o2
Therefore, || f/|lLip < \V3D/a.
Condition (3). Finally, we prove that the Lipschitz constant of
the inverse map f’~! is at most V3. Consider two distinct points
x,y € R. Letp = %_yf“(y)”.lfp > 1, then || f'(x) — f'(y)|| =

Ifx) = fFWIl > llx = yll/a. Otherwise, [|§(f(x)) = G(FG)I <
plix = yll < |lx - yll, and

£ = F' @I = 1If ) - F@)II?
+Z%Mx—w—@du»—ﬂﬂwmﬁ

P’ 2, (1=pPllx—yl?
Yt

> ?Hx + a2
_ (=2p+3p")lx -yl
20
o I —yll?
302

Here we used that the minimum of the quadratic polynomial 1-2p+
3p? equals 2/3. In both cases, we have || f'(x)— f'(y)|| = l*x-yl/V3a.
Therefore, || f'~ llip < V3. We conclude that the distortion of f’
is at most 3D. m]

3 ONE-POINT EXTENSION OF
NEAR-ISOMETRIC MAPS

3.1 Upper Bound

In this section, we prove Theorem 1.5. The theorem states that
every near-isometric map can be extended to an extra point so that
the extended map is also near isometric.

Proor oF THEOREM 1.5. Without loss of generality, we can make
several simplifying assumptions. First, it is sufficient to prove the
theorem only for finite subsets X of R”; the statement for infi-
nite subsets follows from a simple compactness argument. We will
assume that ¢ € (0,1), if ¢ > 1, the theorem follows from Theo-
rem 1.2. Further, by rescaling f, if necessary, we may assume that
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lo—w| < ||f(@) = fF(wW)]| < (1 +¢)|lv —w|| for every v,w € X.In
particular,

llo = wl? < [ £(@) = Fw)II* < (1+3e)lo - wll. 1

If u € X then there is nothing to prove, so we assume that u ¢ X.
Let vg be the point closest to u in X (or one of the closest points to
u if there is more than one such point). To simplify notation, we
assume that vyp = 0, f(v9) = 0, and |lvg — u|| = 1. Then [lu|| = 1
and ||u —v|| = 1 for every v € X. The theorem will follow from the
following lemma.

LEMMA 3.1. There exists a vector u’ € R™ such that

(D) llw']l <1,
@) [, f(©)) = (u,v)| < 3ve(|[v]|? + 1) for everyv € X.

ProOF. Let A = {1 € RX : ||A]l; < 1} be the unit £;-ball in the
space of functions A : X — Rand B = {y € R™ : ||y||2 < 1} be the
unit £3-ball in R™. Define

0.2 = ). (AN ) - (@ FO) - @IVl + 1) .

veX

We shall prove that there exists u” € B such that for every A € A,
®(u’, 1) < 0. Observe that this u” will satisfy the statement of
the lemma for the following reason. First, ||u’|| < 1. Second, let
I, € A be the indicator function of v € X; then ®(u’,I,) < 0 and
®(u’, —I,) < 0. Therefore, |(u, v) — (u’, f(0))] < 3ve(|[v]|? + 1), as
required.
To prove that such u” exists, we show that
minmax ®(y, 1) < 0.
YyEB AeA (y )
Note that A and B are compact convex sets, ® is linear in y and
concave in A; thus, by the von Neumann minimax theorem [49],
min max ®(y, 1) = max min ®(y, 1).
YEB AeA (y ) AEA yeB (y )
Let A € A be the A that maximizes the expression on the right. We
need to prove that there is § € B s.t. ®(iJ, 1) < 0. Define the point
P =3, ey A@)vand P’ = Y, cy A(v)f(v). For every y € B, we
have

®(y, 4) = (u, P) = (., P'y =3ve ). IA@)llloll* - 3Velldlls.
veX
Now, (u, P) < ||P|| since ||u]| < 1. Let § = P’/||P’|| € B. We have,
(@, ) < [IP] = IP'll = 3ve " IA@)lllol* - 3velllls.

veX

If |P|] < |IP’]| then &(7, 1) < 0 and we are done. Similarly, if
1Pl < 3ve S pex [A(0)][|v]|?, we are done. We assume below that
Pl > [IP’|| and [[P|| > 3ve Xqex [A(0)][[0]|*. Then,

_np’ _||P||2—||P'||2 PN - (1P|
1Pl = 1IP7|I = T T
zﬁ > A@Aw)(o, w) = (F©), fw)).
v,weX
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Since f satisfies bi-Lipschitz condition (1) and ||v —w]||? < 2(||v||? +
[lw]|?), we have
o, w) = (f(v), f(w)| = %Illf(v) - fWI? - If @17
— IFWI? = llo = wli® + [[ol* + [wll?]

by (1) 3¢ 2 2 2
< 0 max(|[v — wl|%, [[o]]* + ||w]|®)

2 2
< 3e((loll” + [[wll®).

Finally, we use that Y,cy |A(@) = [A|li and ||P| >

3ve Loex A@)[[v]1%, and obtain

3¢ Aoa
1Pl = [IP’|| < TPl Z IA@)AW)|([2]1* + [[wl?)
v, weX
6elldlln < (5 2
= [A@)l[v]]
1P ZX
6el|Allx
< < 2v/e.
3+/e Ve
Therefore, ®(7, /i) <0. o

Now we proceed with the proof of Theorem 1.5. Let u’ € R™ as
in Lemma 3.1 and w’ = /1 — ||u’||%em+1 (Where ej, 41 is a standard
basis vector for R™*1). Note that w’ is orthogonal to all vectors
f(v) € R™. Extend f to f’ by letting f’(u) = u’ + w’. Then,
ILf'@)|1? = ||u’||? + ||w’||> = 1. For every v € X, we have

If"@) = £/ @l? = W'l + I f () - ']

= (WP + 112 + I F @)1 - 2(f (o), u") (2)
=1+ [ f @) - 2(f(v), '), ®3)
o —ull® = 1+ Jo]|® - 2(0, u). 4)

w

From bounds ||v — u||?> > 1 and |lv — u||? = (||v]| — 1)?, it easily
follows that ||v — u||?> > (||v]|? + 1)/5. By (3), (4), and the bound on
[{f(v),u") — (v,u)| from Lemma 3.1, we have

lf' @) = £/ @I* = llo - ull?| < 3ellol|* + 6ve(||o?] + 1)
< 9Ve(|lv?] +1)
< 45ve||v — ul|?.

This implies that f” has distortion 1 + O(v/e). O

3.2 Lower Bound

In this section, we show that the bound in Theorem 1.5 is tight
(up to a constant factor in the O-notation) — extending a map with
distortion 1+¢ by one point might require blowing up the distortion
to 1+ Q(+/e), even when n = m = 1 (the extension f’ may use extra
dimensions).

The construction is as follows. Consider points: A = 0, B = ¢,
B’ = —¢,and C = 1. Let X = {A, B,C}. Consider map f : X —» R
that maps A, B, C to points A, B’, C, respectively. Clearly f has

distortion C:%, = if—i <1+ 3¢ for ¢ < 1/3. Our goal is to extend
f to the fourth point D = +/e. Note that we can assume that the

extension uses at most one additional dimension.
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CLAIM 3.2. Any outer extension of the map f to the point D has
distortion at least (1 + \/¢/2).

PRroOF. Let (D) = (x,y) € R?, and suppose that the distortion
is less than (1 + v/¢/2). Then we must have
. ||f(123) —fAN = (1 =+e/2) 1D - All, so x* + y* = (Ve -
£/2)°.
o [If(D)~ B < (1++e/2)[ID~ Bl 50 (x + £)* + y* <
(1 + Ve/2)(Ve =€) * < (Ve —e/2)%

We get that x? + y? > (x + ¢)> + 4% Thus, x < —¢/2. Then

D) - f(C 1
IAD) = FOI > > 1 + Ve, which is a contradiction. O
D -Cl| 1-+e

4 APPLICATIONS - PRIORITIZED AND
TERMINAL DIMENSION REDUCTIONS

In this section, we prove Theorems 1.9 and 1.11.

Proor oF THEOREM 1.9. First, what we do is to we construct
a (c1 loglog j, ¢z log®*¢ j)-prioritized dimension reduction. Denote
C = 3 +¢. We define an increasing family of T = [log log, log, N
subsets So,S1,...,57 of X C R9: S; consists of the first
min(22cz , N) points according to the priority ranking .

For each set S;, we construct an embedding f; : S; — R% with
distortion at most C! for d; = O(log|S;|) in such a way that each
fi is an outer extension of f;_;. We start with So — we let fy be
an isometric embedding of Sy (which consists of 4 points) into R>.
Then we iteratively construct mapping f;. At iteration i, we take
map fi—1 and extend it to map f; as follows. Using Theorem 1.2,
we find an outer-bi-Lipschitz extension h : § — R? of fi-1t0 S;.
The extension h is not yet what we want:

o while, by Theorem 1.2, its distortion is at most 3 - (3 + s)i_l,
which is less than C? (the desired upper bound on the distor-
tion),

e the dimension d’ is possibly greater than Q(log |S;]).

To reduce the dimension, we write h(x) = hi(x) ® ha(x) € R%-1 @
R4 ~di-1 here h1(x) is the vector consisting of the first d;—; coor-
dinates of h(x) and hy(x) is the vector consisting of the remaining
coordinates of h(x). Since h is an extension of f;_1, we have hy(x) =
fi—1(x) and ha(x) = 0 for x € S;—1. Now, we use the Johnson-
Lindenstrauss lemma to find a dimension reduction g from hy(S;)
toR?” with distortion at most 1+¢/3, where d”’ = cyr log|S;|/€? for
some absolute constant cj;. We assume that g(0) = 0 (if necessary,
we redefine g as g’ (x) = g(x) — g(0)). Finally, we let f; = (id® g) o h;
in other words, fi(x) = hi(x) ® g(ha(x)).

Note that f;(x) is an outer extension of f;_1, since f;(x) = h1(x)®
g(ha(x)) = fi—1(x) ® g(0) = fi—1(x) for x € S;—;. The distortion
of id ® g is at most the distortion of g, which is at most 1 + ¢/3;
therefore, the distortion of f; is at most (1+£/3)x3-(3+¢)"1 = C’.
We bound the dimension

i
di=di+d’ =4+ Zc]L log |S¢ /€
t=1
i-1 ;
<4+ ejr2® et + epplog S|/
t=1
= O(log [Si]).

The constant in the big-O notation is proportional to 1/¢2.

Finally, let f = fr- We verify f is
(c1 loglog j, co log>* j)-prioritized dimension reduction. Fix
some j € {1,...,N}. Let S; be the smallest of the sets Sp, ..., St
that contains 7(j); i.e., i = [logclog,log, jlifj > 4,andi = 0
otherwise. Then f restricted to n(1),...,n(j) coincides with f;.
The distortion of f; is at most (for j > 4)

Cl < cttlosclog,log,J < Clog, log, j = (3 + £) log, log, j.

Further, f(7(j)) = fi(n(j)) € R% . Hence, in the vector f(x(j)) all
but the first d; coordinates are equal to 0; we upper bound d; as
follows (for j > 4):

d; < O(log|Si]) < 0(2€") < O ((zc"")c ) < 0(log j)C,

as required. Note that the image of X under f lies in space RT of
dimension d7 = O(log |St|) = O(log N).

By setting the parameters differently, we can obtain different
trade-offs between the distortion and dimension. Fix a parameter
keN,1 <k <logloglogN.LetT = k and S; be the set consisting

i
of the first 21082 N points in X, according to the priority ordering
7. Construct maps f; as described above. The distortion of f is at
most CT = (3 + £)k. The vector f((j)) lies in the space R4, where

. log, log, j
i= |'k—10g2 Tog, < | and

i i
¢jL k i/k
di < = E log |S¢| = O( E log;/ N) < O(log;/ N)
=0 t=0

1/k

. k
K N) < O(log, j log/* N).

= O(log(zi_l)/k N -log
— ——
less than log, j

We can compute map f in polynomial time, since, at each iteration,
we can compute the outer extension h and dimension reduction g
in polynomial time. O

Now we prove Theorem 1.11.

ProoF oF THEOREM 1.11. First we apply the Johnson-
Lindenstrauss lemma to X with &/ = ¢2. We get an embedding
g: X - R¥ with the distortion at most 1+¢2 and d’ = O(log N/&%);
we rescale it so that A||x — y|| < [lg(x) — g()|l < A1 + £2)|lx -yl
where A = 1 + ce (we will specify c later).

For every point p € RY, we extend gtoamapgy : X U {p} —

R4+ using Theorem 1.5; for p € X, g, = g. The distortion of g is

1+ O(\/e_z) = 1+ O(¢). Finally, we let f(p) = gp(p). The image of
f lies in Rd,ﬂ, as required. For every x € X and p € Rd, we have
gx(x) = g(x) = gp(x) and

£ @) = FEI = llgp(p) — gx Gl = llgp(p) = gp(x)ll

€ [(1 +ce)(1 = O(e)llp — xII, (1 + ce)(1 + O(e))llp — xII].
We choose ¢ so that the (1+ce)(1 - O(¢)) term is 1; then (14 ce)(1+
0O(e)) = 1+ O(e).

Note that we can compute f(x) in polynomial time, since we
can compute each map g, in polynomial time. O
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5 OUTER EXTENSION OF A MAP FROM R
TOR

In this section, we consider the case of map f: X — R with dis-
tortion (1 + ¢), where X c R. We show that such a map is very
structured, which allows us to extend it to f : R — R? with the dis-
tortion 1 + O(1/log?(1/¢)). Here we provide an informal overview
to illustrate the main steps.

First, suppose that X consists of three points 0, ¢, 1 that f maps to
0, —¢, 1, respectively. It turns out that this simple case is in fact very
important. We extend f to the whole segment [0;1] as follows'.
For 0 < x < ¢, we map x to (—x,0), and for ¢ < x < 1, we map x
to point g(x) = (r(x), ¢(x)) in polar coordinates, where the radius

is r(x) = x and the angle is ¢(x) = % see Figure 1 First,
the map is continuous (i.e., g(¢) = —¢ and g(1) = 1). Second, for
every x, ||g(x)|| = |x|, which implies that g is non-contractive. We

refer to this map as the “spiral”. We prove that its distortion is
1+ O(1/In%(1/¢)), and in fact this is the optimal distortion one can
achieve for this specific choice of X and f (see Section 5.3 for the
proof).

For the general case, we decompose f into “flips” and use this
decomposition to assemble the extension from the above spirals on
various distance scales.

For a set X and map f, consider how f changes the relative
ordering of points X; denote the corresponding permutation by
nf € S|x|- For instance, if X = {x1,x2,x3}, where x; < x3 < x3,
and f(x1) < f(x3) < f(x2), we set 7y = (13 2). We show that a
permutation can arise as 7y for some f iff it excludes (31 4 2) and
(2 4 13) as a subpermutation. Furthermore, we show that 7r can
be decomposed into a laminar sequence of flips. We start with the
identity permutation, and then iteratively choose a substring and
reverse its order (this is one flip). We do this so that every two flips
are either disjoint, or the later is strictly contained in the earlier
one. For example, if 7y = (3124 6 5), then the decomposition is as
follows: (123456),(321456),(312456),(312465).

We use this decomposition to build the desired extension. For
each flip, we add two spirals. We show that the points that partici-
pate in a given flip are well-separated from others. For example if
the permutation is (1 3 2), then the distance between 2 and 3 should
be much smaller by a factor of ¢) than the distance from 1 to either
of them — both in the domain and in the image. We show that this
separation is sufficient for these spirals not to interfere much with

each other, and the bound of 1 + O (1 /log?(1/ e)) on the distortion

holds for the overall construction. See Figure 1, for the construction
for the case 7y = (31246 5).

5.1 Extension to the Whole Line
In this section we prove the following theorem.
THEOREM 5.1 (THEOREM 1.4). Let X C R be an arbitrary set.

Suppose that f: X — R is a map such that for every x1,x; € X, we
have:

|f(x1) = fx2)l € (1 £ ) - |1 — x2|. ®)
Then there exists a map h: R — R? such that:
o Forevery x € X, we have h(x) = (f(x),0);

Extending f to the whole R requires a bit more work.
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Figure 1: Top: one possible extension for the map 0 — 0,
£+ —¢, 1 — 1. It has distortion 1 + O(1/log?(1/¢)), which is
tight for this example. Bottom: an extension built from the
spirals recursively for the map f with 7 = (31246 5). The
picture is intentionally out of proportion.

e For everyu,v € R, we have

1
hu)—h@)|| e (120 | ———|]| - lu—1o|.
e = Rl ( (logz(l/e))) | |
By a standard compactness argument, it is enough to handle the
case of a finite X. From now on, we denote n = |X|.

5.1.1 Characterizing near-isometric maps. To prove the main
theorem, we will first prove the necessary conditions f needs to
satisfy in order to be a near-isometric mapping. In the rest, we will
denote the initial point set by X = {x1,x2,...,x,} and without
loss of generality we may assume that x; < x2 < ... < xp. Let
7y € Sp be the permutation defined by our mapping f such that
f(x,rf(l)) < f(xﬂf(z)) <...< f(x,rf(n)). The following lemma
characterizes the properties of 7f.

Definition 5.2 (Sub-permutation). Given a permutation o of [k],
and a permutation 7 of [n], where n > k, we say that & contains ¢
as a sub-permutation iff there exists iy < --- < iy € [n] such that
for any j,j’ € [k], if 0(j) < o(j’), then 7 (ij) < m(ij).

LemMA 5.3. Ife > 0 is sufficiently small, then s does not have
(3142)or(2413) as sub-permutations.
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PRrOOF. Let us prove the statement for (3 1 4 2), the proof for
(2 4 1 3) is the same. Assume the contrary. Then, there exists 1 <
i <j <k <1< nsuchthat

fler) < flxi) < f(xp) < f(x)). (6)
Denote A = x; — x; > 0. Then,

A=xp—x; = (= xg) + (xj — xi)
> (1-0() - ((f(xp) = flxx)) + (f(xj) = f(x0)))
> (2-0() - (f(xp) = f(x1))
2 (2-0(e) - (x; — xi)
=(2-0(e) - A,

where the first step follows from x; < xj < x; < x; (which in turn
follows from i < j < k < I), the second step follows from f having
distortion (1 + ¢) and from (6), and the fourth step again follows
from f being a near-isometry. Thus, if ¢ > 0 is sufficiently small,
we get a contradiction. O

5.1.2  Permutation decomposition.

LemMa 5.4. Ife > 0 is sufficiently small, then ny can be decom-
posed as follows. We start with my which is the identity permutation.
Then, we perform T > 0 flips as follows. Each flip1 < t < T is defined
by two numbers 1 < a; < b; < n, naturally defining a segment in
the permutation. We obtain m; from m;_1 as follows.

otherwise.

mr-1(ar + by — k), ifar <k < by,
(k) =
mp-1(k),

In words, we obtain rt; from m;_1 be reversing the segment [as, b;].
Moreover, the segments form a laminar family: for every1 < t; <
ty < T the segments [ay,, by, ] and [ay,, by, ] are either disjoint or
[at,, b1 D [az,, by,]. The permutation ny is equal to the final per-
mutation nT.

Proor. The proof is by induction over n. If n = 1, the statement
is trivial. Denote 1 < u < n such that rff(u) = 1 (the position where
1 is mapped to), and 1 < v < n such that 7¢(v) = n (the position
where n is mapped to). Suppose that u < v.If u = 1, then the state-
ment follows from using the induction assumption on 7y without
the first element. Assume that u > 1. Then, define A = {r¢(j) | j <
u}, to be the set of numbers that are mapped to the left of 1. Let z < u
be such that 7¢(z) = max A, i.e., the maximum number mapped to
the left of 1. Define w = min{k | z7(k) > max A}. Clearly, w < v.
We claim that the sequence (77(1) 7£(2) ... 7p(w—1)) is a permu-
tation of the numbers from 1 to z. Assume not. Then, there exists
w’ > w such that nf(w’) < z. Then, considering positions z, u, w,
and w’, we obtain a sub-permutation (3 1 4 2), which can not be the
case by Lemma 5.3. Now we can apply the inductive assumption
on the first w — 1 numbers, and on the last n — w + 1 numbers, and
merge the resulting sequences of flips. If u > v, then we add a flip
with a = 1 and b = n and reduce to the case, when u < v. O

It is not hard to show that the above condition is also a sufficient
condition, but we will not need it in our construction.

T Ty Th Ty,

D S

p f(wn,) fzu,)

Figure 2: Illustration to the proof of Lemma 5.8

5.1.3  Well-separateness and the portals. First, for each flip 1 <
t < T, we define the set of points F; that are affected by it, the set
of points to the left of F;, denoted L;, and the points to the right,
R;. Formally, we have the following.

Definition 5.5. For an iteration 1 < t < T, we define

[ Lt = {Il'[(l), ﬂ't(Z), e ,m(a; - 1)};
o Fr={m(as), mear + 1),..., me(br)}s
® Ry = {ﬂt(bt + 1), ﬂt(b[ + 2), A ,nt(n)}.

LEMMA 5.6. F; is the set of |F;| = by — a; + 1 consecutive inte-
gers. Moreover, the sequence 7;(az), i (ar + 1), . .., mw:(by) is either
increasing or decreasing.

Proor. Follows trivially from Lemma 5.4. O

Definition 5.7. For an iteration t < T, we define u; = m;—1(ay)
and vy = m;_1(b;). We also define A; = x, — xy,. It can be either
positive or negative.

The quantity A; can be seen as the signed diameter of the flipped
points. The following lemma is a key to the overall analysis. We
show that the flipped points F; are very well-separated from the
remainder: by the amount Q(|A|/¢).

LEMMA 5.8. For every k € F;, and everyp € Ly U Ry, we have
A
lxg = xp| = Q (Tt)

Proor. Wlog, we can assume that ¢ is the first flip that separates
p and k and for which k € F, but p ¢ F;. Indeed, if T < t is the first
such flip, then |A] > |A;|, and the required statement follows from
that about . Suppose that p € Ly, the case p € R; is similar. Then,
we have f(xp) < f(xy,) < f(xy,) (here we use crucially the fact
that ¢ is the first flip that separates p and k). Indeed, ¢ is the last flip,
which affects the relative order of f(xp), f(xv,) and f(xy,), since
the flips that are not disjoint are nested. At the same time, either
Xp < Xy, < X < Xp, OF Xp > Xy, 2 Xk = Xo,. Let us show how
to handle the first case, the second case is similar. Let us denote
$ = xy, — Xp. See Figure 2 for the clarification. Then,

s(1+¢) > fxu,) = fxp)
= (fCeu,) = fx0,)) + (f(x0,) — f(xp))
2 (1 -&)(xp, —xu,) + (1= &)(xp, —xp)
=(1-¢)(s+2A4).
Thus, Ay = O(e - s). Finally, |xg — xp| 2 s = Q(A¢/e). O

Definition 5.9 (Portals). For every 1 < t < T, we define portals

as follows (see Figure 3). We set:
_ A . _ Ar ., Ar s
o —Xuz—m,ﬁt = Xu, = a5Vt —xv,+m,5t =
A,
+ m,

Xv,
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Figure 3: Portals. Note that the scales of the relative dis-
tances are not correct.

A A &
o a] = flxo,) = 5 Bl = fro)) = Hivl = flu) + 5

A
8 = flxu,) + 55

We will use the portals in our construction to make sure that the
spirals at different levels do not interfere with each other.

5.1.4  Construction of the final map. Now we are ready to define
the final map h: R — R?. First, for every 1 < k < n, we set h(xy) =
(f(xg),0). Second, for every 1 < t < T, we define h between
oy and f; and between y; and §; according to the Corollary 5.19
(note that we only take the part of the map which corresponds to
these two intervals, see Figure 3 for the illustration). In particular,
har) = (@], 0), h(Br) = (v/,0), h(yz) = (B}, 0) and h(5;) = (6},0).
After we are done with constructing the spirals for all iterations
t, on the remaining bounded intervals on the real line, we define
h to be linear and consistent with the values at the endpoints. For
the two unbounded intervals, we define the map to be appropriate
shifts.

Let us now show that for every x,y € R, we have:

1
|h(x) = h(y)|| € (1 io(m)) “lx =yl

For a point ¢ € R, there are two cases: either it is mapped us-
ing the map g from Corollary 5.19, or it is mapped using a linear
extension. In the former case, we say that t is of “type A”, while
in the latter case it is said to be of “type B”. Note that the type A
points are mapped on a spiral curve in R?, and the type B points
are mapped on a segment in R.

Craim 5.10. If we extend the original map f to the portals (such
that oy & aj, By & y;, ye > P; and §; — 8;), then the resulting
map isa (1 + O(€1/3))—isometry.

Proor. It is immediate to check that the worst case is achieved
when we consider distances between portals a; and f; or y; and
5. In this case, the distortion is 1 + ©(¢!/3) (this follows from the
definition of the portals). O

Cramm5.11. Ift € Ristype B, andh is smooth att, then ||Vh(t)||2 =
1+ 0(e!/?).

Proor. This is a direct corollary of Claim 5.10. O

Cramv 5.12. Ifboth x,y € R are type B, then

1) = bl € (120 (1)) - Jx = .

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Proor. If x = y, then there is nothing to prove. If x # y by a
small perturbation we can assume wlog that h is smooth in both x
and y. By Claim 5.11, [|VA(x)|l2, [[VA(x)|l2 € 1+ O(!/3). If the signs
of (Vh(x)); and (VhA(x)), are the same, then the claim follows from
Claim 5.10 and Claim 5.11.

Now consider the case of the different signs of the derivatives.
Then consider an extension of f to the portals as stated in Claim 5.10.
Abusing notation, let us denote this map f as well. Since the ex-
tended map has distortion 1 + O(¢!/3), we decompose it as per
Lemma 5.4, and we get that Lemma 5.8 holds.

Let us denote py < x < gx the portals of elements which are
closest to x, similarly, we denote py <y < qy. Wlog, gx < py.Ifa
decomposition for f has a flip containing p, and gy, but not px and

gx,thenpy—qx 2 Q ( qzl_/fy ) . Similarly, if there is a flip containing

Px and gx, but not px and gx, then py —gqx > Q ( q"_/f" ) . Note that

el
if neither of these two cases hold, then their gradients could not
have different signs. Combining these observations with Claim 5.10
and Claim 5.11, we get the required result. O

Cramm 5.13. Ifboth x,y € R are type A, then

1
IhG) - k)l € (1 :o(m)) -yl

Proor. Define ty to be the flip 1 < t < T, such that x lies
between a; and B; or y; and &;. We define t, similarly.

Ift, = ty, then the claim follows from Corollary 5.19.

First, suppose that [ar,, by, | and [a;,, by, ] are disjoint. Assume
wlog that [A, | > |Ag, |. Then,

lIh(x) = (W)l = lIh(ar, ) = hlar, Il £ O(A, |/e*)
€ (10 P)lar, —ar, | O(Ar,|/62°)
€ (1£0(P))lx -yl £ O(Ar, | /6*/°)
€ (1x 0 *)lx -y,

where the first step follows from Corollary 5.19, the second step
follows from Lemma 5.8, the third step follows from the definition
of the terminals, and the last step follows from Lemma 5.8.

Now assume that [a;, ,b; ] 2 [aty, bty], but tx # ty. Then, we
have |x - y| = QA |/e"/?), |Ar, | = Q(IAy,|/¢) and:

1) = Al = |h(x) = hlar, Il + O(Ay, |/6*)

col— N a 1+ 2/3
E(I_O(logz(l/s)))|x | Ol /)

1
€ (1 +0 (m)) |X—y| io(|Aty|/52/3)

1
€ (1 0 (1og2(1/e>)) =gl

where the first step is due to the definition of the portals and Corol-
lary 5.19, the second step is due to Corollary 5.19, the third step is
again due to the definition of the portals, and the last step is due to
I =yl = QUAL/e'?) 2 QA I/647). o
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Figure 4: Illustration for the proof of Claim 5.14.

Cramv 5.14. Ifx € R is type A and y € R is type B, then

1hx) - k()| € (uo( Jx—yl.

)
log(1/¢)
Proor. Denote 1 < tyx < T to be the flip such that x lies within
at, and f; or between y; and &; . Wlog, let us assume that x
lies between a;_ and B; . Then, y can lie between f; and y; or
outside of the segment connecting a;_ and &;, . Let us assume the

former, and the latter can be handled similarly. By Corollary 5.19,

we have:

IA(y) = k()| €O(1i0( lx -1l ™)

el
log?(1/¢)
where i — f; = y/ — h(y)1 (see Figure 4). By Claim 5.12,
1B = 1 = Ih(Be) — h(y)ll € (1 £ O('/®)) - 1B —yl.
Thus,
ly—gl € 0E?) - 1B =yl < O - Ix — yl. ®)

Combining (7) and (8), we are done. O

5.2 An Auxiliary Map: the Spiral
LEmMMA 5.15. Let € > 0 be a small positive parameter. Let g: R —
R? be the map defined as follows.
(t,0), iflt] > 1,
g(t) = (—t,O), lf|t| <&
(t cos ¢(t), t sin ¢(t)), where ¢(t) = % otherwise.

Where the third term can be viewed in the polar coordinates as

(r(t) =t () = %) Then we have the following properties,

e Distortion: for every t1,t2 € R, one has:

1
llg(t1) — g(t2)ll € (1 +0 (m)) = t2f;

o Total movement: for every t € R, one has:
llg(®) = (&, 0)ll < O(1).
Proor. First of all note that the function is continuous as

g(e) = (ecos @(¢), e sin p(¢)) = (—¢,0),

g(—é‘) = (5’ 0),
g(1) = (cos ¢(1), sin (1)) = (1,0), and
g(=1) = (-1,0).

Next we show that the distortion is bounded as desired. First, we
prove that g does not increase the distance by more than a mul-
tiplicative factor of 1 + O( — (1 T )) and second in Claim 5.17, we
prove that the distances do not decrease by more than the same
factor. These two prove the bound on the distortion as desired.
Finally in Claim 5.18, we show the total movement property.

CrLamM 5.16. Fore < t; < t3 < 1, we have ||g(t1) — g(f2)]| <

(1 + O(log e >)) [t1 — tal.

Proor. The distance between g(t;) and g(t2) is at most the length
of the curve between them which is given by the following formula

2 |{d(tcosp(t)\? (d(tsing(t)))?
[ Hesgr) s e

7 sin (t) ) B 7 cos ¢(t) 2
\/cosq)(t)+ In(1/e) ) (sm(p(t) —ln(l/s) ) dt

\J ln(l/s)
(111(1/8))

2
Zlnz(l/e))

=(tp—t1)

< (tz —t1)(1+
m]

The above claim, together with the fact that the function is
symmetric around the origin, and the definition of the function
for |t| > 1 and |t| < ¢, and triangle inequality, proves that for
any t1,t; € R, the distance between the images, g(t1) and g(t2) is
increased by at most D =1 + O( 2(1/ )) Next we prove that the
distances do not decrease too much either.

CLAM 5.17. Giventy < ta, we have ||g(t1) — g(t2)|| > %

Proor. The claim is trivial if both [t1], |t2] = 1 or [t1], |t2] < e.
Also if tp > 1 and —¢ < t; < ¢, the claim holds as —boh o

9(t2)=g(11)
% < %f—i < 1+ 3¢ for sufficiently small e. Alsoif e < #; < fp <1,
then by triangle inequality, [|g(t2) — g(t1)ll = llg(e2)Il - llg(t)Il =
ty — t1. The remaining cases are discussed bellow or implied by
symmetry.

Case 1.If ¢ < tp < 1and -1 < t; < —¢, by symmetry we
can assume that ¢2 > |t1], and thus suppose that t; = —aty, where
0 < a < 1.First, note thatif @ < 1/In?(1/¢), then since the distances
from the origin to the points remain unchanged, we have that

lg(t) —glt)ll | t2+t1  1-a
|t1 — t2] T -t 1+a
1-0(1/log?(1/¢))

which proves the claim. Therefore, we can assume that ¢ >

1/In%(1/¢). We should show that ||g(t;) — g(t2)||/|t1 — t2] = 1/D >

v

>1-0(a)

\%

-0 m) or equivalently, ||g(t1) — g(t2)||%/]t1 — t2|> = 1 -

1
o In(1/¢) )-
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t2 + 15 — 21113 cos(p(t1) — ¢(12))
(t1 — 12)?
21113 (1 — cos(g(t1) — ¢(t2)))
+
(t1 = t2)?
~ 2t§a(1 = cos(¢(t1) = ¢(t2)))
tg(l + a)?
201 - cos(p(tr) — 9(12)))
(1+a)?
=1-0(a(1 - cos(p(t1) — p(t2))
Therefore, we just need to show that a(1 — cos(¢(t1) — ¢(t2))) =
O(1/1n?(1/¢)). Note that

llg(t1) — g(t2)II? _
[t — 122

rln(1/(atz)) #ln(1/t2) 7ln(l/a)
o) =elt) = — S T /e - In(i/e)

27 Inln(1/¢)

In(1/¢)

and therefore, we can use the Taylor expansion for cosine and get
that

72 lnz(l/a)])
a(1 — cos(e(t1) — (¢ <all- —_—
( (o(t1) = ¢(t2))) ( 212(1/2)
<0 (alnz(l/a))
In%(1/¢)
which is at most O(1/In%(1/¢)) as & In?(1/a) is at most e for 0 <
a < 1. This completes the proof for this case.

Case 2. If t > 1and ¢ < [t1] <
term we need to bound

llg(z2) — g(t)II? _
[ty — 112

1, then let us again write the

(t2 — t1 cos p(t1))? + tl2 sin® g(t7)
(2 — 11)?
~ 12 + 12 = 21113 cos (1)
(t1 — 12)?

Now if t; is positive, i.e., ¢ < #; < 1, then clearly, since cos ¢(#1) < 1,
we have that —2t1t3 cos ¢(t1) > —2t1t2, and therefore the above
fraction is at least 1. Thus, we now consider the case where —1 <
t; < —e, and need to show that —2t1£5(1 — cos ¢(t1))/(t — )% <
O(1/In(1/¢)). Again, we let t; = —at; where 0 < a < 1, and we
get that

—2t112(1 — cos ¢(t1))
(tz — 11)?
Again, if @ < 1/In?(1/¢), we have that a(1 — cos¢(t;)) <
0(1/In%(1/¢)) as (1 — cosg(t)) < 2. Otherwise, as t; > 1, we
have |t;| > 1/In?(1/¢), and therefore, ¢(t;) < %r;(gl)/f) Thus,
similar to Case 1, we can write that

|

= O(a(1 = cos ¢(11)))

7% In%(1/a)

a(l-cosg(t1)) < a (1 B [l  2In2(1/e)

aln®(1/a)
In?(1/¢)
= 0(1/In%(1/¢))

where the above holds for similar reasons as Case 1.

STOC’18, June 25-29, 2018, Los Angeles, CA, USA

Case 3. If e <ty < 1and —¢ < t; < ¢, then we have

llg(t2) — g(t1)II* _
|ty — t1]2

tl2 + tg + 2t1tp cos @(t2)
(2 —11)?
2t1t2(1 + cos ¢(t2))
(g — 11)?

Now, if ; > 0, then the above term is at least 1 > 1—O(1/In?(1/¢))
and the claim holds. So we assume that —¢ < t; < 0, and let

t; = —aty where 0 < a < 1. Our goal is to prove that —2t;#2(1 +
cos (t2))/(t2 — t1)* < O(1/In%(1/¢)). Again we can write
—2t112(1 + cos ¢(t2))
(tz = t1)?
Now if & < 1/In%(1/¢), we are done as 1+ cos ¢(t2) < 2. But then if

a > 1/In®(1/¢), we have that t; = —t; /a < ¢/a < e(In?(1/¢)), and
therefore,

= O(a(1 + cos ¢(t2)))

t)s " In(1/(eln*(1/¢))) _  2xlnln(1/e)
Piiz) = In(1/¢) - In(1/¢)
Since % is small, we can write the Taylor expansion and
get that
a(l+cosg(ty)) =a (l + cos (7r - lznﬂ(i%))
- 2rlna
- \n(1/0)
271 Ina)?
ln(l /€)
( aln®a )
lnz(l/e)
- (1n2(1 "
as desired. This completes the proof of this case. O

Finally, we need to prove the total movement condition as fol-
lows?.

CraM 5.18. For every point t € R, one has ||g(t) — (t,0)]| < O (1).

ProoF. The claim is clearly true for || > 1. Also for —¢ < t < ¢,
the claim holds since those points move by at most 2¢. Finally
for points that are on the curve, i.e, ¢ < |t| < 1, we know that
their distances to the origin is preserved. Therefore, by triangle
inequality, ||g(t) — (t,0)|| < 2[t| = O (1). m]

This concludes the proof of the lemma. O

COROLLARY 5.19. Let ¢ be a sufficiently small constant and let
0,009 € R, such that p’ — ¢’ € (1 = ¢)A, where A=gq- p
which can be positive or negative. Denote o = p — g/; B=p- 1/3)

A A A
y=q+ 1/3,5 =q+ 52/3’a, = q/—gz/sjﬁ, = —1—/3,)/ = q + == ~i
8 =q + 2/5, Then, there exists a map g: R — R? such that:

e g(a) = (’,0);9(B) = (y',0); g(y) = (', 0); g() = (8", 0).

2We remark that a stronger bound for the total movement can be achieved but for our
purposes the above bound suffices.
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* Vit € R, one has [lg(t) - g(to)]| € (1+
[t1 — ta].

(tem))

Proor. Without loss of generality, we will assume that A is
positive. Thus we have thata < f <p < qg<y < §,anda’ <

B <q <p’ <y’ <8 The other case is symmetric Letm = p+q

which is also equal to 0”6 ﬁery ,and letm’ = qT which is also
L2204 ﬁ’+y’

equal to = =

Letn = ”“IDC; Z”” which clearly lies in € (1 + ¢). First we define
the map h: R — R as follows:

a +t—a ift € (—o0; 8],
h(t) =1y +t -y, ift € [y, o),
m’ +n(t —m), otherwise,

which trivially maps the points from (—oo; f] to (—o0; #’], and the
points from [y; o) to [y’; o) by translation, and linearly maps [£, y]
to [, y’] by scaling and translating the points. It is clear that the
map is continuous and its distortion is at most max{#, 1/n} which
is at most 1 + O(e).

Now let go: R — R? be the map of Lemma 5.15 with ¢’ =

r_pr r_t A 241 1/3
mr_g/ = g'—Z' = AEZZLZW; < 0(¢1/3) which has distortion
1+ O(1/log?(1/¢")) = 1 + O(1/log%(1/¢)), and define the scale
parameter A = (m’ — o) = (5' — m’). Our final map is just defined
h(t)

as g(t) = m’ + Ago(—==5—

Dy - Dy, < (1+ 6‘)(1 +0(1/log?(1/e))) <

This proves the second property. For the first property we have the
following.

e g(a): We have that h(a) = @’ and thus g(a) = m’ + (m’ -

/)go( a —m

e g(B): We have that A(f) = B’ and thus g(f) = m’ + (8’ —

')go(m — D= m (! Of')go( —e')=m'+(¢'-

® g(y): We have that h(y) = y’ and thus g(y) =m'+(m -

a )90(5/

e g(5): We have that h(8) = 8’ and thus g(6) = m’ + (8§’ —

m’)go(%) =m'+ (" —m')go(1) =m’ + (8’ —m’) =§".

O

) and it is clear that its distortion Dy <

5.3 Lower Bound
In this section, we show that there exist maps with distortion 1 + ¢
such that every outer extension of it has distortion at least 1 +
Q (1/log,(1/6)) .

THEOREM 5.20 (THEOREM 1.3). There exist X C R and a map
f : X — R with distortion 1+ O(¢) such that every outer bi-Lipschitz
extension f’ : R — R™ has distortion at least 1 + Q (1/10g2(1/6))).

Proor. Consider a map f that maps three points —¢, 0, and 1 to
points ¢, 0, and 1, respectively. The map has distortion }+§ =1+42¢+
O(e?). We show that any bi-Lipschitz extension f” : [-¢, 1] — R"

of f has distortion at least

x 2
+ —
2logy(1/e)
asymptotically.

(1 + O(1/log?(1/¢))).

’)—m’+(m’—a’)go( 1) = m’—(m’—a’)—a’.
m')e’ =y,

)—m +(m' —a)go(e') =m'—e'(m"—a’) = f'.

. . . ’ ’
Figure 5: Points Xgs oo X

and angles a3, . . ., af.

Consider a bi-Lipschitz extension f’ : [—¢, 1] — R" of f. With-
out loss of generality, we assume that ¢ = 1/2%. Let x; = 1/2! for
i€{0,1,...,k},and x] = f'(x;). We will need the following claim.

Craim 5.21. Consider three points a, b, c on a line such that b lies
exactly in the middle between a and c; i.e, b = (a + c)/2. Assume
that they are mapped to points a’, b’, ¢’ in R™. Let a be the angle
between segments [a’,b’] and [a’,c’]. Then the distortion D of the
map is at least 1/cos a if & < 7 /4 and V2, otherwise. In particular,

D > min(1/cos a, V2).

Proor. First, assume that @ < 7/4. We now show that |la” —

bl 2 M or |6 - o'l = Lol Let p = fla” — b7} /l]a” - /]l
Ifp > m, we are done. Otherwise,

16" = ¢'lI* = lla” = b'|1% + [la’ = ¢’|?

—2cosa-|a’ —b'|||la’ - ||

=|la’ = ¢'||2(p? — 2cosa - p + 1).
Now, the polynomial t? — 2cosa - t + 1 attains its minimum on
[0,1/(2 cos @)] at point ¢ = 1/(2 cos a), where it equals 1/(2 cos a)?
(here we use that @ < 7/4 and hence 1/(2 cos @) < cos @). There-
fore, ||[b" — ¢’|| = |la’ — ¢’||/(2 cos @), as required. Note that the
distortion is at least

||a’—b’||/ la=bll ||b’—c’||/ b —cll

lla” =¢lIl | lla—cll lla" =c’ll [ lla—cll’

One of these two ratios is at least 1/cos a.

Now, assume that a € (/4, 7/2). The distance from ¢’ to the
line passing through a’ and b’ is sina|la’ — ¢’|| = |la’ - ¢’||/V2;
in particular, ||b” — ¢’|| > |la’ = ¢’||/ V2. As in the previous case,
this implies that the distortion is at least V2. Finally, assume that
a > /2, then the angle at vertex a’ in the triangle a’b’c’ is obtuse,
therefore b’c’ is the longest side of a’b’c’. In particular, ||b" —¢’|| >
[la” = ¢’||. We get that the distortion is at least 2. O

Now we are ready to prove Theorem 5.20. Let «; be the angle
between segments [0, x]_, ] and [0, x/] (see Figure 5). Consider point
z = (&,0) = f’(—¢). Let f be the largest among the following angles:
k’ 0],

k] and [z, 0].
Finally, let y be the angle between [0, x]'c] and [0, z].
First, we apply Claim 5.21 to points 0, x;, x;—1. We get that

1
D> min( , \/5) .
cos a;

o the angle between [xk z] and [x]
o the angle between [z, x
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Second, we apply Claim 5.21 to points x, 0, —¢ and to —e¢, 0, x
(see Figure 6). We get that

D> min(ﬁ,\@) .

Now, we write an upper bound for y (which follows from the

Figure 6: Points —¢, 0, x; and their images z = f’(—¢),0 = f/(0),
xp = f(xg).

triangle inequality in spherical geometry)

k
Yy < Zai.
i=1
’

Consider the triangle with vertices 0, z, x; . One of the angles of this
triangle is y and the largest of the other two angles is . Therefore,
Y +2f > m and thus,

k
2ﬁ+20{i > T,
i=1

Consequently, either § > 7 /(k + 2) or some a; > 7 /(k + 2) (or
both). We conclude that the distortion is at least
2
V2| =1+ (1-o(1)———
( ( ))Zlog%(l/s)

when ¢ — 0. O

D > min —
COS o1 77742
og,(1/€)+2
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