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ABSTRACT
We introduce and study the notion of an outer bi-Lipschitz exten-
sion of a map between Euclidean spaces. The notion is a natural

analogue of the notion of a Lipschitz extension of a Lipschitz map.

We show that for every map f there exists an outer bi-Lipschitz

extension f ′ whose distortion is greater than that of f by at most

a constant factor. This result can be seen as a counterpart of the

classic Kirszbraun theorem for outer bi-Lipschitz extensions. We

also study outer bi-Lipschitz extensions of near-isometric maps and

show upper and lower bounds for them. Then, we present applica-

tions of our results to prioritized and terminal dimension reduction

problems, described next.

We prove a prioritized variant of the Johnson–Lindenstrauss

lemma: given a set of points X ⊂ Rd of size N and a permutation

(“priority ranking”) of X , there exists an embedding f of X into

RO (logN )
with distortionO(log logN ) such that the point of rank j

has only O(log3+ε j) non-zero coordinates – more specifically, all

but the first O(log3+ε j) coordinates are equal to 0; the distortion

of f restricted to the first j points (according to the ranking) is at

most O(log log j). The result makes a progress towards answering

an open question by Elkin, Filtser, and Neiman about prioritized

dimension reductions.

We prove that given a set X of N points in Rd , there exists a

terminal dimension reduction embedding of Rd into Rd
′

, where

d ′ = O(
logN
ε4 ), which preserves distances ∥x − y∥ between points

x ∈ X and y ∈ Rd , up to a multiplicative factor of 1 ± ε . This
improves a recent result by Elkin, Filtser, and Neiman.

The dimension reductions that we obtain are nonlinear, and this

nonlinearity is necessary.
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1 INTRODUCTION
In this paper, we introduce and study the notion of an outer bi-
Lipschitz extension. The notion is a natural analogue of the notion

of a Lipschitz extension, which is widely used in mathematics and

theoretical computer science. Recall that a map f : X → Y is

C-Lipschitz if for any two points x ,y ∈ X we have dY (f (x), f (y)) ≤
C · dX (x ,y); the Lipschitz constant of f is the minimum C such

that f is C-Lipschitz. In the Lipschitz extension problem, given a

Lipschitz map f from a subset A of X to Y and a superset A′ ⊃ A,
the goal is to find an extension map f ′ from A′

to Y such that

the Lipschitz constant of f ′ is equal to or not significantly larger

than the Lipschitz constant of f . This problem has found numerous

applications in mathematics and theoretical computer science (see

e.g., [11, 29, 31, 35, 37–39, 41–43]). One of themost important results

in the field is the Kirszbraun theorem, which states that any map

f : A → Rm from a subset A of Euclidean space Rn to Euclidean

space Rm can be extended to a map f ′ : Rn → Rm so that the

Lipschitz constant of f ′ equals that of f [31] (see Theorem 1.13 in

Section 1.2; see also [4]).

Outer bi-Lipschitz extension. In this paper, we prove several ana-

logues of the Kirszbraun theorem for bi-Lipschitz maps. The bi-

Lipschitz constant of a map f : X → Y is the minimum D such that

for some λ > 0 and every x ,y ∈ X , λ · dX (x ,y) ≤ dY (f (x), f (y)) ≤
λ · D · dX (x ,y). If there is no such number D, we say that the map

https://doi.org/10.1145/3188745.3188828
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is not bi-Lipschitz. Bi-Lipschitz maps are also known as embed-

dings with distortion D. Low distortion metric embedding have

numerous applications in approximation and online algorithms (see

e.g. [1, 2, 13–16, 20, 23–25, 36, 40]); hardness of approximation (see

e.g. [30]); computational geometry (see e.g. [27, 40] and references

therein); and sketching, streaming, and similarity search algorithms

(see e.g. [3, 9, 10, 12, 17, 19, 21, 28, 44–46]).

Since bi-Lipschitz maps are widely used in mathematics and

theoretical computer science, it is natural to ask whether there is a

counterpart of the Kirszbraun theorem for bi-Lipschitz maps.

Given a bi-Lipschitz map f from a subset of Rn to

Rm , can we extend it to a bi-Lipschitz map from the

whole space Rn to Rm?

This question has been extensively studied in the literature (see

e.g. [5, 6, 26, 32, 47, 48]). It turns out that the answer to this question

depends on the geometry of the set A. In general, the answer is

“no”. For instance, consider a map that maps points 0, 1, 2 to 0, −1,

2, respectively. There is no continuous one-to-one extension of this

map to R, let alone a bi-Lipschitz extension. The reason is that in

one dimension we cannot connect points 0 and −1 and points −1

and 2 with non-intersecting paths. However, we can easily do this

in R2. This observation suggests the following idea. Let A ⊂ Rn

and f : A → Rm be a bi-Lipschitz map. Let us allow extension f ′ of
f to use additional dimensions or, in other words, allow f ′ to map

points x ∈ Rn \A to points in some higher-dimensional (ambient)

space Rm
′

that contains Rm . We get the following definition.

Definition 1.1 (Outer extension). A map f ′ : A′ → Rm
′

(where

m′ ≥ m) is an outer extension of f if f (a) = f ′(a) for all a ∈ A;

we assume that Rm is the subspace of Rm
′

spanned by the firstm
standard basis vectors; that is, we identify points (x1, . . . ,xm ) ∈

Rm and (x1, . . . ,xm , 0, . . . , 0) ∈ R
m′

. We say that the extension is

proper ifm =m′
.

Note that the exact dimension of the image is not very important

in many applications in computer science, as long as the dimension

is comparable tom and n. Therefore, outer extensions seem to be as

useful as proper (standard) extensions. However, in stark contrast

with proper bi-Lipschitz extensions, outer bi-Lipschitz extensions

always exist – for every bi-Lipschitz map f : A → Rm there exists

an outer bi-Lipschitz extension f ′ : Rn → Rm
′

, as we prove in this

paper.

1.1 Results
Outer bi-Lipschitz Extensions. One of the main results of this

paper is an analogue of the Kirszbraun theorem for bi-Lipschitz

maps.

Theorem 1.2. Let X ⊂ Rn and f : X → Rm be a bi-Lipschitz
map with distortion at most D. There exists an outer extension f ′ :

Rn → Rm
′

of f with the distortion at most 3D andm′ = n +m.

The main difference between the outer bi-Lipschitz extension

from Theorem 1.2 and the Lipschitz extension from the Kirszbraun

theorem – aside from the difference we discussed above (that The-

orem 1.2 gives an outer extension and not a proper extension) – is

that while the Lipschitz extension preserves the Lipschitz constant

of the map exactly, the bi-Lipschitz extension preserves the distor-

tion only up to a constant factor. This limitation is unavoidable; it

is easy to see that even in the example we considered – extending

the map f that sends 0, 1, 2 to 0, −1, 2, respectively – the distortion

of any outer extension of f is greater than the distortion of f . Thus,
for arbitrary bi-Lipschitz maps we cannot get a result stronger than

Theorem 1.2 (except that factor 3 in the statement of the theorem

can be potentially replaced with a smaller factor c > 1).

We then focus on an important class of near-isometric maps,

maps with distortion D = 1+ε . Observe that if the distortion of f is

exactly 1 (i.e., f is an isometric embedding), it can be extended to an

isometric embedding of the whole space Rn into Rm
′

. In this case,

we can extend f without increasing its distortion. What happens if

the distortion of f is close to 1 but not 1? Let φ(ε) be the smallest

ε ′ such that the following holds: for every map f : A → Rm

with distortion at most D = 1 + ε , there exists an outer extension

f ′ : Rn → Rm
′

with distortion at most D ′ = 1 + ε ′. Note that

φ(0) = 0, as discussed above.

Open Problem 1. Find the asymptotic behavior of φ(ε) as ε → 0.
Does φ(ε) → 0 as ε → 0?

We study this problem and get partial results for it. First, we show

that φ(ε) ≥ Ω(1/log2(1/ε)).

Theorem 1.3. There exists a map f : X → R, where X ⊂ R, with
the distortion 1 + ε , such that every outer extension f ′ : R→ Rm of
f has distortion at least 1 + Ω( 1

log
2(1/ε )

).

Note that 1/log2(1/ε) → 0 as ε → 0, but the dependence of

1/log2(1/ε) on ε is not polynomial and, in our opinion, highly un-

usual. This result rules out the possibility that φ(ε) = O(ε1/k ) for
any k . Further, we provide some evidence that φ(ε) might, in fact,

be equal to 1 + Θ( 1

log
2(1/ε )

). Namely, we prove the following result

for 1-dimensional case: for every map from X ⊂ R to R, there is an

outer extension with D ′ = 1 +O( 1

log
2(1/ε )

). By Theorem 1.3, this

bound is asymptotically optimal.

Theorem 1.4. Let X ⊂ R and f : X → R be a map with the
distortion at most 1 + ε . There exists an outer extension f ′ : R→ R2

of f with the distortion at most 1 +O( 1

log
2(1/ε )

).

We also consider a simpler problem of extending a near-isometric

map by one point. We prove the following result.

Theorem 1.5. Let f be a (1 + ε)-bi-Lipschitz map from a subset
X of Rn to Rm and u ∈ Rn . There exists an outer extension f ′ :

X ∪ {u} → Rm+1 of f with the distortion at most 1 +O(
√
ε).

The bound in this theorem is asymptotically tight – there exist a

map f from a subset of R to R and a point u ∈ R such that every

outer extension of f to u has distortion 1 + Ω(
√
ε).

Computability. Given sets A ⊂ A′ ⊂ Rn and a map f : A → Rm ,

we can compute an outer extension f ′ : A′ → Rn with the least

possible distortion using semidefinite programming (SDP). The

running time is polynomial in |A′ | and log 1/δ , where δ is the

desired precision. In particular, we can find outer extensions f ′,
whose existence is guaranteed by Theorems 1.2 and 1.5.
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Applications. Using our extension results, we obtain prioritized
and terminal dimension reductions [22, 23]. Recall the statement of

the Johnson–Lindenstrauss lemma [29].

Theorem 1.6 (The Johnson–Lindenstrauss Lemma [29]). For
every 0 < ε < 1/2 and every set X ⊂ Rd of size N , there exists an

embedding f : X → Rd
′

, where d ′ = O
(
logN
ε2

)
, such that for every

p,q ∈ X : ∥p − q∥2 ≤ ∥ f (p) − f (q)∥2 ≤ (1 + ε)∥p − q∥2.

Prioritized metric structures and embeddings were introduced

and studied by Elkin, Filtser, and Neiman [22]. Among several very

interesting results obtained in [22], one is a construction of priori-

tized embeddings. We give a definition of a prioritized dimension

reduction in the spirit of [22].

Definition 1.7 (Prioritized dimension reduction). Consider a set of
pointsX ⊂ Rd of sizeN . Let π be a bijection from [N ] = {1, . . . ,N }

to X , which defines a priority ranking of X : π (1), . . . ,π (N ). An em-

bedding f : X → Rd
′

is an (α , β)-prioritized dimension reduction,

where α : [N ] → R and β : [N ] → N, if

• for every j ∈ [N ], the distortion of f restricted to points

π (1), . . . ,π (j) is at most α(j).
• for every j ∈ [N ], π (j) is mapped to a point f (π (j)) in Rβ (j);
that is, all but the first β(j) coordinates of f (π (j)) are equal
to 0.

Note that points f (π (1)), . . . , f (π (j)) lie in Euclidean space of

dimension β(j) and β(j) may potentially be much smaller than

logN (when j ≪ N ). The definition requires that the distortion of

the distance between points π (i) and π (j) be at most α(max(i, j))
(note that this condition is weaker than a similar condition in the

definition of a prioritized embedding in [22], which requires that

the distortion be at most α(min(i, j))).
Ideally, we want to have a dimension reduction with parameters

(1 + ε, polylog j).

Open Problem 2 ([22, talk and pers. comm.]). Is there a priori-
tized dimension reduction with parameters (1 + ε, polylog j)?

Very little is known about prioritized dimension reductions. The

only known result follows from Theorem 15 in [22]. (The theorem is

a prioritized variant of Bourgain’s theorem [18] and is more general

than its corollary stated below.)

Theorem 1.8 ([22]). For every set X ⊂ Rd and ε > 0, there is
a (c1 log

4 j, c2 log
4+ε j)-prioritized dimension reduction f : X →

RO (log2 |X |) (where c1, c2 depend only on ε).

We make further progress towards solving Open Problem 2.

Theorem 1.9. For every set X ⊂ Rd , ε > 0, and N = |X |, there
exist

• a (c1 log2 log2 j, c2 log
3+ε
2

j)-prioritized dimension reduction
f : X → RO (logN ), where c1 = 3 + ε and c2 = O(1/ε2),

• a ((3+ ε)k , c1 log2 j log
1/k N )-prioritized dimension reduction

f : X → RO (logN ) for every integer parameter k > 1, where
c1 = O(1/ε

2).

The dimension reductions can be computed in polynomial time.

The first result gives a prioritized dimension reduction with a

reasonably small distortionO(log log j) and desired polylogarithmic

dimension. The second result gives a constant distortion and maps

the first j points to a subspace of dimension O(log
2
j log1/k N ).

Now we switch to another problem introduced by Elkin, Filtser,

and Neiman [23].

Definition 1.10 (Terminal dimension reduction). Suppose that we
are given a set of points (which we call terminals) X ⊂ Rd . We say

that a map f : Rd → Rd
′

is a terminal dimension reduction with

distortion D if for every terminal x ∈ X and point p ∈ Rd (p may

be a terminal), we have

∥p − x ∥ ≤ ∥ f (p) − f (x)∥ ≤ D ∥p − x ∥.

Elkin, Filtser, and Neiman [23] proved that there exists a ter-

minal dimension reduction with distortion O(1) and dimension

d ′ = O(log |X |). We show how to obtain the distortion of 1 + ε .

Theorem 1.11. For every set X ⊂ Rd of size N and parameter
0 < ε < 1/2, there exists a terminal dimension reduction f : X → Rd

′

with distortion 1+ ε , where d ′ = O
(
logN
ε4

)
. The dimension reduction

can be computed in polynomial time.

It is an interesting question if the dimension O
(
logN
ε4

)
can be

lowered. Since f is also a (standard) dimension reduction for X , d ′

must be at least Ω
(
logN
ε2

)
as was shown by Larsen and Nelson [34]

(see also [7, 8, 33]).

Open Problem 3. Is it possible to decrease the dimension to

O
(
logN
ε2

)
in Theorem 1.11.

It is interesting that while most dimension reduction construc-

tions described in the literature are given by linear transformations,

prioritized and terminal dimension reductions must be non-linear

(see the full version of the paper for details). In particular, all di-

mension reductions presented in this paper are non-linear.

In Section 2, we prove Theorem 1.2. In Section 3, we obtain an

optimal bound on one-point outer bi-Lipschitz extensions (prove

Theorem 1.5 and show its optimality). Then, in Section 4, we present

applications of our results. Finally, in Section 5, we present the proof

of Theorem 1.4, as well as a matching lower bound.

1.2 Preliminaries
In this paper, Rn denotes n-dimensional Euclidean space, equipped

with the standard Euclidean norm ∥ · ∥. For m < m′
, we iden-

tify Rm with them-dimensional subspace of Rm
′

spanned by the

firstm standard basis vectors (in other words, we identify vectors

(x1, . . . ,xm ) ∈ Rm and (x1, . . . ,xm , 0, . . . , 0) ∈ R
m′

).

Definition 1.12 (Lipschitz constant and distortion). Let (X ,dX )
and (Y ,dY ) be metric spaces, and let f : X → Y be a map. Define

the Lipschitz constant of f as ∥ f ∥
Lip
= supx,y∈X

dY (f (x ),f (y))
dX (x,y) . We

say that the map f is Lipschitz if ∥ f ∥
Lip
< ∞. A map f is non-

expanding if ∥ f ∥
Lip

≤ 1. The distortion or bi-Lipschitz constant

of an injective map f is D = D(f ) = ∥ f ∥
Lip

· ∥ f −1∥Lip. If a map

is not injective, its distortion is infinite. A map f is bi-Lipschitz if

D(f ) < ∞.
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Theorem 1.13 (Kirszbraun Extension Theorem). Consider
Euclidean spaces Rn and Rm , and an arbitrary non-empty subset X
of Rn Let f : X → Rm be a Lipschitz map. There exists a proper
extension f ′ : Rn → Rm of f with the same Lipschitz constant as f :
∥ f ′∥

Lip
= ∥ f ∥

Lip
.

We note that Makarychev and Makarychev [38] previously intro-

duced a notion of external bi-Lipschitz extension, but that notion is

significantly different and less natural from the notion of the outer

bi-Lipschitz extension studied in this paper.

2 OUTER BI-LIPSCHITZ EXTENSION
In this section, we prove Theorem 1.2 that states that any bi-Lipschitz

map f from a subsetX ofRn toRm can be extended to a bi-Lipschitz

map f ′ : Rn → Rm
′

for somem′ > m. The result can be seen as a

counterpart of the Kirszbraun theorem.

Informal overview of the proof idea. For simplicity, let us assume for

now that f is near-isometric (it approximately preserves distances).

We want to construct a map f ′ : Rn → Rm
′

that satisfies the

following conditions:

(1) f ′ is an outer extension of f ; that is, f ′(x) = f (x) for every
x ∈ X ;

(2) ∥ f ′(x) − f ′(y)∥ ≤ O(∥x − y∥) for all x ,y ∈ Rn ;

(3) ∥ f ′(x) − f ′(y)∥ ≥ Ω(∥x − y∥) for all x ,y ∈ Rn .

First, using the Kirszbraun theorem, we find a Lipschitz extension

˜f : Rn → Rm . If we were to let f ′ = ˜f , then f ′ would satisfy

conditions (1) and (2) but not necessarily (3); namely, for some

points x ,y ∈ Rn , the distance between f ′(x) and f ′(y) would
potentially be considerably smaller than that between x and y; in

fact, it could happen that
˜f (x) = ˜f (y) for some x , y. Instead,

we are going to let f ′(x) = ˜f (x) ⊕ h(x) ∈ Rn+m for some map

h from Rn to Rn . We will choose h which satisfies the following

conditions:

(1
′
) For x ∈ X , h(x) = 0. This condition is necessary to ensure

that f ′ is an outer extension of f .
(2
′
) For all x ,y ∈ Rn , ∥h(x) − h(y)∥ ≤ O(∥x − y∥) and thus

∥ f ′(x)− f ′(y)∥ ≤ ∥ ˜f (x)− ˜f (y)∥+∥h(x)−h(y)∥ ≤ O(∥x−y∥).

(3
′
) If ∥ ˜f (x) − ˜f (y)∥ ≪ ∥x −y∥ for some x ,y ∈ Rn , then ∥h(x) −
h(y)∥ = Ω(∥x − y∥) and thus ∥ f ′(x) − f ′(y)∥ ≥ ∥h(x) −
h(y)∥ ≥ Ω(∥x − y∥).

As we see, if h satisfies conditions (1
′
), (2

′
), and (3

′
), then f ′ = ˜f ⊕h

satisfies conditions (1), (2), and (3). Now we proceed with a formal

proof. Our main task will be to define h appropriately.

Proof. As above, let
˜f : Rn → Rm be a Lipschitz extension of

f with ∥ ˜f ∥Lip = ∥ f ∥Lip. Further, let д = f −1 : f (X ) → X be the

inverse map of f and д̃ : Rm → Rn be its Lipschitz extension given

by the Kirszbraun theorem. Denote α = ∥д∥
Lip

. Since the distortion

of f is at most D,

∥ f ∥Lip ≤ D/α , ∥ ˜f ∥Lip ≤ D/α ,

∥д∥
Lip

≤ α , ∥д̃∥
Lip

≤ α , ∥д̃ ◦ ˜f ∥Lip ≤ D.

Let h(x) =
д̃( ˜f (x ))−x

√
2α

and f ′(x) = ˜f (x) ⊕h(x) = ˜f (x) ⊕
д̃( ˜f (x ))−x

√
2α

∈

Rn+m . We verify that f ′ satisfies conditions (1), (2), and (3) de-

scribed in the proof overview above.

Condition (1).We prove that f ′ is an outer extension of f ; i.e., for
every x ∈ X , we have

f ′(x) = f (x)⊕
д̃( ˜f (x)) − x

√
2α

= f (x)⊕
д(f (x)) − x

√
2α

= f (x)⊕0 = f (x).

Condition (2). For every x ,y ∈ Rn , we have
√
2α · ∥h(x) − h(y)∥ = ∥(x − д̃ ◦ ˜f (x)) − (y − д̃ ◦ ˜f (y))∥)∥

≤ ∥x − y∥ + ∥д̃ ◦ ˜f (x) − д̃ ◦ ˜f (y)∥

≤ (1 + D)∥x − y∥.

Thus,

∥ f ′(x) − f ′(y)∥2 ≤ ∥ ˜f (x) − ˜f (y)∥2 + ∥h(x) − h(y)∥2

≤

( (D
α

)
2

+
(1 + D)2

2α2

)
∥x − y∥2

≤
3D2

α2
.

Therefore, ∥ f ′∥Lip ≤
√
3D/α .

Condition (3). Finally, we prove that the Lipschitz constant of

the inverse map f ′−1 is at most

√
3α . Consider two distinct points

x ,y ∈ R. Let ρ =
α ∥ ˜f (x )− ˜f (y) ∥

∥x−y ∥ . If ρ ≥ 1, then ∥ f ′(x) − f ′(y)∥ ≥

∥ ˜f (x) − ˜f (y)∥ ≥ ∥x − y∥/α . Otherwise, ∥д̃( ˜f (x)) − д̃( ˜f (x))∥ ≤

ρ∥x − y∥ < ∥x − y∥, and

∥ f ′(x) − f ′(y)∥2 = ∥ ˜f (x) − ˜f (y)∥2

+
1

2α2
∥(x − y) − (д̃( ˜f (x)) − д̃( ˜f (y)))∥2

≥
ρ2

α2
∥x − y∥2 +

(1 − ρ)2∥x − y∥2

2α2

=
(1 − 2ρ + 3ρ2)∥x − y∥2

2α2

≥
∥x − y∥2

3α2
.

Here we used that the minimum of the quadratic polynomial 1−2ρ+
3ρ2 equals 2/3. In both cases, we have ∥ f ′(x)− f ′(y)∥ ≥ ∥x−y ∥/

√
3α .

Therefore, ∥ f ′−1∥Lip ≤
√
3α . We conclude that the distortion of f ′

is at most 3D. �

3 ONE-POINT EXTENSION OF
NEAR-ISOMETRIC MAPS

3.1 Upper Bound
In this section, we prove Theorem 1.5. The theorem states that

every near-isometric map can be extended to an extra point so that

the extended map is also near isometric.

Proof of Theorem 1.5. Without loss of generality, we canmake

several simplifying assumptions. First, it is sufficient to prove the

theorem only for finite subsets X of Rn ; the statement for infi-

nite subsets follows from a simple compactness argument. We will

assume that ε ∈ (0, 1), if ε > 1, the theorem follows from Theo-

rem 1.2. Further, by rescaling f , if necessary, we may assume that
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∥v −w ∥ ≤ ∥ f (v) − f (w)∥ ≤ (1 + ε)∥v −w ∥ for every v,w ∈ X . In

particular,

∥v −w ∥2 ≤ ∥ f (v) − f (w)∥2 ≤ (1 + 3ε)∥v −w ∥2. (1)

If u ∈ X then there is nothing to prove, so we assume that u < X .
Let v0 be the point closest to u in X (or one of the closest points to

u if there is more than one such point). To simplify notation, we

assume that v0 = 0, f (v0) = 0, and ∥v0 − u∥ = 1. Then ∥u∥ = 1

and ∥u −v ∥ ≥ 1 for every v ∈ X . The theorem will follow from the

following lemma.

Lemma 3.1. There exists a vector u ′ ∈ Rm such that

(1) ∥u ′∥ ≤ 1,
(2) |⟨u ′, f (v)⟩ − ⟨u,v⟩| ≤ 3

√
ε (∥v ∥2 + 1) for every v ∈ X .

Proof. Let Λ = {λ ∈ RX : ∥λ∥1 ≤ 1} be the unit ℓ1-ball in the

space of functions λ : X → R and B = {y ∈ Rm : ∥y∥2 ≤ 1} be the

unit ℓ2-ball in R
m
. Define

Φ(y, λ) =
∑
v ∈X

(
λ(v)(⟨u,v⟩ − ⟨y, f (v)⟩) − 3|λ(v)|

√
ε(∥v ∥2 + 1)

)
.

We shall prove that there exists u ′ ∈ B such that for every λ ∈ Λ,
Φ(u ′, λ) ≤ 0. Observe that this u ′ will satisfy the statement of

the lemma for the following reason. First, ∥u ′∥ ≤ 1. Second, let

Iv ∈ Λ be the indicator function of v ∈ X ; then Φ(u ′, Iv ) ≤ 0 and

Φ(u ′,−Iv ) ≤ 0. Therefore, |⟨u,v⟩ − ⟨u ′, f (v)⟩| ≤ 3

√
ε(∥v ∥2 + 1), as

required.

To prove that such u ′ exists, we show that

min

y∈B
max

λ∈Λ
Φ(y, λ) ≤ 0.

Note that Λ and B are compact convex sets, Φ is linear in y and

concave in λ; thus, by the von Neumann minimax theorem [49],

min

y∈B
max

λ∈Λ
Φ(y, λ) = max

λ∈Λ
min

y∈B
Φ(y, λ).

Let
ˆλ ∈ Λ be the λ that maximizes the expression on the right. We

need to prove that there is ŷ ∈ B s.t. Φ(ŷ, ˆλ) ≤ 0. Define the point

P =
∑
v ∈V

ˆλ(v)v and P ′ =
∑
v ∈V

ˆλ(v)f (v). For every y ∈ B, we
have

Φ(y, ˆλ) = ⟨u, P⟩ − ⟨y, P ′⟩ − 3

√
ε

∑
v ∈X

| ˆλ(v)|∥v ∥2 − 3

√
ε ∥ ˆλ∥1.

Now, ⟨u, P⟩ ≤ ∥P ∥ since ∥u∥ ≤ 1. Let ŷ = P ′/∥P ′∥ ∈ B. We have,

Φ(ŷ, ˆλ) ≤ ∥P ∥ − ∥P ′∥ − 3

√
ε

∑
v ∈X

| ˆλ(v)|∥v ∥2 − 3

√
ε ∥ ˆλ∥1.

If ∥P ∥ ≤ ∥P ′∥ then Φ(ŷ, ˆλ) ≤ 0 and we are done. Similarly, if

∥P ∥ ≤ 3

√
ε
∑
v ∈X | ˆλ(v)|∥v ∥2, we are done. We assume below that

∥P ∥ > ∥P ′∥ and ∥P ∥ > 3

√
ε
∑
v ∈X | ˆλ(v)|∥v ∥2. Then,

∥P ∥ − ∥P ′∥ =
∥P ∥2 − ∥P ′∥2

∥P ∥ + ∥P ′∥
≤

∥P ∥2 − ∥P ′∥2

∥P ∥

=
1

∥P ∥

∑
v,w ∈X

ˆλ(v) ˆλ(w)(⟨v,w⟩ − ⟨f (v), f (w)⟩).

Since f satisfies bi-Lipschitz condition (1) and ∥v −w ∥2 ≤ 2(∥v ∥2+
∥w ∥2), we have

|⟨v,w⟩ − ⟨f (v), f (w)⟩| =
1

2

|∥ f (v) − f (w)∥2 − ∥ f (v)∥2

− ∥ f (w)∥2 − ∥v −w ∥2 + ∥v ∥2 + ∥w ∥2 |
by (1)

≤
3ε

2

max(∥v −w ∥2, ∥v ∥2 + ∥w ∥2)

≤ 3ε(∥v ∥2 + ∥w ∥2).

Finally, we use that

∑
v ∈V | ˆλ(v)| = ∥ ˆλ∥1 and ∥P ∥ >

3

√
ε
∑
v ∈X | ˆλ(v)|∥v ∥2, and obtain

∥P ∥ − ∥P ′∥ ≤
3ε

∥P ∥

∑
v,w ∈X

| ˆλ(v) ˆλ(w)|(∥v ∥2 + ∥w ∥2
)

=
6ε ∥ ˆλ∥1
∥P ∥

∑
v ∈X

| ˆλ(v)|∥v ∥2

≤
6ε ∥ ˆλ∥1

3

√
ε

≤ 2

√
ε .

Therefore, Φ(ŷ, ˆλ) < 0. �

Now we proceed with the proof of Theorem 1.5. Let u ′ ∈ Rm as

in Lemma 3.1 andw ′ =
√
1 − ∥u ′∥2em+1 (where em+1 is a standard

basis vector for Rm+1). Note that w ′
is orthogonal to all vectors

f (v) ∈ Rm . Extend f to f ′ by letting f ′(u) = u ′ + w ′
. Then,

∥ f ′(u)∥2 = ∥u ′∥2 + ∥w ′∥2 = 1. For every v ∈ X , we have

∥ f ′(v) − f ′(u)∥2 = ∥w ′∥2 + ∥ f (v) − u ′∥2

= (∥w ′ |2 + ∥u ′∥2) + ∥ f (v)∥2 − 2⟨f (v),u ′⟩ (2)

= 1 + ∥ f (v)∥2 − 2⟨f (v),u ′⟩, (3)

∥v − u∥2 = 1 + ∥v ∥2 − 2⟨v,u⟩. (4)

From bounds ∥v − u∥2 ≥ 1 and ∥v − u∥2 ≥ (∥v ∥ − 1)2, it easily

follows that ∥v − u∥2 ≥ (∥v ∥2 + 1)/5. By (3), (4), and the bound on

|⟨f (v),u ′⟩ − ⟨v,u⟩| from Lemma 3.1, we have��∥ f ′(v) − f ′(u)∥2 − ∥v − u∥2
�� ≤ 3ε ∥v ∥2 + 6

√
ε(∥v2∥ + 1)

≤ 9

√
ε(∥v2∥ + 1)

≤ 45

√
ε ∥v − u∥2.

This implies that f ′ has distortion 1 +O(
√
ε). �

3.2 Lower Bound
In this section, we show that the bound in Theorem 1.5 is tight

(up to a constant factor in the O-notation) – extending a map with

distortion 1+ε by one point might require blowing up the distortion

to 1+Ω(
√
ε), even when n =m = 1 (the extension f ′ may use extra

dimensions).

The construction is as follows. Consider points: A = 0, B = ε ,
B′ = −ε , and C = 1. Let X = {A,B,C}. Consider map f : X → R
that maps A, B, C to points A, B′

, C , respectively. Clearly f has

distortion
C−B′

C−B =
1+ε
1−ε ≤ 1 + 3ε for ε ≤ 1/3. Our goal is to extend

f to the fourth point D =
√
ε . Note that we can assume that the

extension uses at most one additional dimension.
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Claim 3.2. Any outer extension of the map f to the point D has
distortion at least (1 +

√
ε/2).

Proof. Let f (D) = (x ,y) ∈ R2, and suppose that the distortion

is less than (1 +
√
ε/2). Then we must have

• ∥ f (D) − f (A)∥ ≥ (1 −
√
ε/2) ∥D −A∥ , so x2 + y2 ≥ (

√
ε −

ε/2)2.
• ∥ f (D) − f (B)∥ ≤ (1 +

√
ε/2) ∥D − B∥ , so (x + ε)2 + y2 ≤(

(1 +
√
ε/2)(

√
ε − ε)

)
2

≤ (
√
ε − ε/2)2.

We get that x2 + y2 ≥ (x + ε)2 + y2. Thus, x ≤ −ε/2. Then
∥ f (D) − f (C)∥

∥D −C∥
≥

1

1 −
√
ε
≥ 1 +

√
ε, which is a contradiction. �

4 APPLICATIONS – PRIORITIZED AND
TERMINAL DIMENSION REDUCTIONS

In this section, we prove Theorems 1.9 and 1.11.

Proof of Theorem 1.9. First, what we do is to we construct

a (c1 log log j, c2 log
3+ε j)-prioritized dimension reduction. Denote

C = 3+ε . We define an increasing family ofT = ⌈logC log
2
log

2
N ⌉

subsets S0, S1, . . . , ST of X ⊂ Rd : Si consists of the first

min(22
Ci
,N ) points according to the priority ranking π .

For each set Si , we construct an embedding fi : Si → R
di

with

distortion at most Ci for di = O(log |Si |) in such a way that each

fi is an outer extension of fi−1. We start with S0 – we let f0 be

an isometric embedding of S0 (which consists of 4 points) into R3.
Then we iteratively construct mapping fi . At iteration i , we take
map fi−1 and extend it to map fi as follows. Using Theorem 1.2,

we find an outer-bi-Lipschitz extension h : S → Rd
′

of fi−1 to Si .
The extension h is not yet what we want:

• while, by Theorem 1.2, its distortion is at most 3 · (3 + ε)i−1,
which is less thanCi (the desired upper bound on the distor-

tion),

• the dimension d ′ is possibly greater than Ω(log |Si |).

To reduce the dimension, we write h(x) = h1(x) ⊕ h2(x) ∈ R
di−1 ⊕

Rd
′−di−1

, here h1(x) is the vector consisting of the first di−1 coor-
dinates of h(x) and h2(x) is the vector consisting of the remaining

coordinates of h(x). Since h is an extension of fi−1, we have h1(x) =
fi−1(x) and h2(x) = 0 for x ∈ Si−1. Now, we use the Johnson–

Lindenstrauss lemma to find a dimension reduction д from h2(Si )

toRd
′′

with distortion atmost 1+ε/3, whered ′′ = c J L log |Si |/ε
2
for

some absolute constant c J L . We assume that д(0) = 0 (if necessary,

we redefine д as д′(x) = д(x)−д(0)). Finally, we let fi = (id ⊕д) ◦h;
in other words, fi (x) = h1(x) ⊕ д(h2(x)).

Note that fi (x) is an outer extension of fi−1, since fi (x) = h1(x)⊕
д(h2(x)) = fi−1(x) ⊕ д(0) = fi−1(x) for x ∈ Si−1. The distortion
of id ⊕ д is at most the distortion of д, which is at most 1 + ε/3;
therefore, the distortion of fi is at most (1+ε/3)×3 · (3+ε)i−1 = Ci .
We bound the dimension

di = di−1 + d
′′ = 4 +

i∑
t=1

c J L log |St |/ε
2

≤ 4 +

i−1∑
t=1

c J L2
C t

/ε2 + c J L log |Si |/ε
2

= O(log |Si |).

The constant in the big-O notation is proportional to 1/ε2.
Finally, let f = fT . We verify f is

(c1 log log j, c2 log
3+ε j)-prioritized dimension reduction. Fix

some j ∈ {1, . . . ,N }. Let Si be the smallest of the sets S0, . . . , ST
that contains π (j); i.e., i = ⌈logC log

2
log

2
j⌉ if j > 4, and i = 0

otherwise. Then f restricted to π (1), . . . ,π (j) coincides with fi .
The distortion of fi is at most (for j ≥ 4)

Ci ≤ C1+logC log
2
log

2
j ≤ C log

2
log

2
j = (3 + ε) log

2
log

2
j .

Further, f (π (j)) = fi (π (j)) ∈ R
di
. Hence, in the vector f (π (j)) all

but the first di coordinates are equal to 0; we upper bound di as
follows (for j ≥ 4):

di ≤ O(log |Si |) ≤ O(2C
i
) ≤ O

(
(2C

i−1
)C

)
≤ O(log j)C ,

as required. Note that the image of X under f lies in space RdT of

dimension dT = O(log |ST |) = O(logN ).

By setting the parameters differently, we can obtain different

trade-offs between the distortion and dimension. Fix a parameter

k ∈ N, 1 < k < log log logN . LetT = k and Si be the set consisting

of the first 2
log

i/k
2

N
points in X , according to the priority ordering

π . Construct maps fi as described above. The distortion of f is at

mostCT = (3+ ε)k . The vector f (π (j)) lies in the space Rdi , where

i = ⌈k
log

2
log

2
j

log
2
log

2
N ⌉ and

di ≤
c J L

ε2

i∑
t=0

log |St | = O
( i∑
t=0

log
t/k
2

N
)
≤ O(log

i/k
2

N )

= O
(
log

(i−1)/k
2

N                  
less than log

2
j

· log
1/k
2

N
)
≤ O(log

2
j log

1/k
2

N ).

We can compute map f in polynomial time, since, at each iteration,

we can compute the outer extension h and dimension reduction д
in polynomial time. �

Now we prove Theorem 1.11.

Proof of Theorem 1.11. First we apply the Johnson–

Lindenstrauss lemma to X with ε ′ = ε2. We get an embedding

д : X → Rd
′

with the distortion at most 1+ε2 andd ′ = O(logN /ε4);
we rescale it so that λ∥x − y∥ ≤ ∥д(x) − д(y)∥ ≤ λ(1 + ε2)∥x − y∥,
where λ = 1 + cε (we will specify c later).

For every point p ∈ Rd , we extend д to a map дp : X ∪ {p} →

Rd
′+1

using Theorem 1.5; for p ∈ X , дp = д. The distortion of дp is

1 +O(
√
ε2) = 1 +O(ε). Finally, we let f (p) = дp (p). The image of

f lies in Rd
′+1

, as required. For every x ∈ X and p ∈ Rd , we have
дx (x) = д(x) = дp (x) and

∥ f (p) − f (x)∥ = ∥дp (p) − дx (x)∥ = ∥дp (p) − дp (x)∥

∈ [(1 + cε)(1 −O(ε))∥p − x ∥, (1 + cε)(1 +O(ε))∥p − x ∥].

We choose c so that the (1+cε)(1−O(ε)) term is 1; then (1+cε)(1+
O(ε)) = 1 +O(ε).

Note that we can compute f (x) in polynomial time, since we

can compute each map дp in polynomial time. �
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5 OUTER EXTENSION OF A MAP FROM R
TO R

In this section, we consider the case of map f : X → R with dis-

tortion (1 + ε), where X ⊂ R. We show that such a map is very

structured, which allows us to extend it to
˜f : R→ R2 with the dis-

tortion 1 +O(1/log2(1/ε)). Here we provide an informal overview

to illustrate the main steps.

First, suppose thatX consists of three points 0, ε, 1 that f maps to

0,−ε, 1, respectively. It turns out that this simple case is in fact very

important. We extend f to the whole segment [0; 1] as follows1.

For 0 ≤ x ≤ ε , we map x to (−x , 0), and for ε ≤ x ≤ 1, we map x
to point д(x) = (r (x),φ(x)) in polar coordinates, where the radius

is r (x) = x and the angle is φ(x) = π ln(1/x )
ln(1/ε ) , see Figure 1 First,

the map is continuous (i.e., д(ε) = −ε and д(1) = 1). Second, for

every x , ∥д(x)∥ = |x |, which implies that д is non-contractive. We

refer to this map as the “spiral”. We prove that its distortion is

1 +O(1/ln2(1/ε)), and in fact this is the optimal distortion one can

achieve for this specific choice of X and f (see Section 5.3 for the

proof).

For the general case, we decompose f into “flips” and use this

decomposition to assemble the extension from the above spirals on

various distance scales.

For a set X and map f , consider how f changes the relative

ordering of points X ; denote the corresponding permutation by

πf ∈ S |X | . For instance, if X = {x1,x2,x3}, where x1 < x2 < x3,
and f (x1) < f (x3) < f (x2), we set πf = (1 3 2). We show that a

permutation can arise as πf for some f iff it excludes (3 1 4 2) and

(2 4 1 3) as a subpermutation. Furthermore, we show that πf can

be decomposed into a laminar sequence of flips. We start with the

identity permutation, and then iteratively choose a substring and

reverse its order (this is one flip). We do this so that every two flips

are either disjoint, or the later is strictly contained in the earlier

one. For example, if πf = (3 1 2 4 6 5), then the decomposition is as

follows: (1 2 3 4 5 6), (3 2 1 4 5 6), (3 1 2 4 5 6), (3 1 2 4 6 5).

We use this decomposition to build the desired extension. For

each flip, we add two spirals. We show that the points that partici-

pate in a given flip are well-separated from others. For example if

the permutation is (1 3 2), then the distance between 2 and 3 should

be much smaller by a factor of ε) than the distance from 1 to either

of them – both in the domain and in the image. We show that this

separation is sufficient for these spirals not to interfere much with

each other, and the bound of 1 +O
(
1/log2(1/ε)

)
on the distortion

holds for the overall construction. See Figure 1, for the construction

for the case πf = (3 1 2 4 6 5).

5.1 Extension to the Whole Line
In this section we prove the following theorem.

Theorem 5.1 (Theorem 1.4). Let X ⊂ R be an arbitrary set.
Suppose that f : X → R is a map such that for every x1,x2 ∈ X , we
have:

| f (x1) − f (x2)| ∈ (1 ± ε) · |x1 − x2 |. (5)

Then there exists a map h : R→ R2 such that:
• For every x ∈ X , we have h(x) = (f (x), 0);

1
Extending f to the whole R requires a bit more work.

0e - e 1-1

3 1

2

4 6

5

Figure 1: Top: one possible extension for the map 0 ↦→ 0,
ε ↦→ −ε , 1 ↦→ 1. It has distortion 1 + O(1/log2(1/ε)), which is
tight for this example. Bottom: an extension built from the
spirals recursively for the map f with πf = (3 1 2 4 6 5). The
picture is intentionally out of proportion.

• For every u,v ∈ R, we have

∥h(u) − h(v)∥ ∈

(
1 ±O

(
1

log
2(1/ε)

) )
· |u −v |.

By a standard compactness argument, it is enough to handle the

case of a finite X . From now on, we denote n = |X |.

5.1.1 Characterizing near-isometric maps. To prove the main

theorem, we will first prove the necessary conditions f needs to

satisfy in order to be a near-isometric mapping. In the rest, we will

denote the initial point set by X = {x1,x2, . . . ,xn } and without

loss of generality we may assume that x1 < x2 < . . . < xn . Let
πf ∈ Sn be the permutation defined by our mapping f such that

f (xπf (1)) < f (xπf (2)) < . . . < f (xπf (n)). The following lemma

characterizes the properties of πf .

Definition 5.2 (Sub-permutation). Given a permutation σ of [k],
and a permutation π of [n], where n ≥ k , we say that π contains σ
as a sub-permutation iff there exists i1 < · · · < ik ∈ [n] such that

for any j, j ′ ∈ [k], if σ (j) < σ (j ′), then π (i j ) < π (i j′).

Lemma 5.3. If ε > 0 is sufficiently small, then πf does not have
(3 1 4 2) or (2 4 1 3) as sub-permutations.
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Proof. Let us prove the statement for (3 1 4 2), the proof for

(2 4 1 3) is the same. Assume the contrary. Then, there exists 1 ≤

i < j < k < l ≤ n such that

f (xk ) < f (xi ) < f (xl ) < f (x j ). (6)

Denote ∆ = xl − xi > 0. Then,

∆ = xl − xi ≥ (xl − xk ) + (x j − xi )

≥ (1 −O(ε)) · ((f (xl ) − f (xk )) + (f (x j ) − f (xi )))

≥ (2 −O(ε)) · (f (xl ) − f (xi ))

≥ (2 −O(ε)) · (xl − xi )

= (2 −O(ε)) · ∆,

where the first step follows from xi < x j < xk < xl (which in turn

follows from i < j < k < l ), the second step follows from f having

distortion (1 + ε) and from (6), and the fourth step again follows

from f being a near-isometry. Thus, if ε > 0 is sufficiently small,

we get a contradiction. �

5.1.2 Permutation decomposition.

Lemma 5.4. If ε > 0 is sufficiently small, then πf can be decom-
posed as follows. We start with π0 which is the identity permutation.
Then, we performT ≥ 0 flips as follows. Each flip 1 ≤ t ≤ T is defined
by two numbers 1 ≤ at < bt ≤ n, naturally defining a segment in
the permutation. We obtain πt from πt−1 as follows.

πt (k) =

{
πt−1(at + bt − k), if at ≤ k ≤ bt ,
πt−1(k), otherwise.

In words, we obtain πt from πt−1 be reversing the segment [at ,bt ].
Moreover, the segments form a laminar family: for every 1 ≤ t1 <
t2 ≤ T the segments [at1 ,bt1 ] and [at2 ,bt2 ] are either disjoint or
[at1 ,bt1 ] ⊃ [at2 ,bt2 ]. The permutation πf is equal to the final per-
mutation πT .

Proof. The proof is by induction over n. If n = 1, the statement

is trivial. Denote 1 ≤ u ≤ n such that πf (u) = 1 (the position where

1 is mapped to), and 1 ≤ v ≤ n such that πf (v) = n (the position

where n is mapped to). Suppose that u < v . If u = 1, then the state-

ment follows from using the induction assumption on πf without

the first element. Assume that u > 1. Then, define A = {πf (j) | j ≤
u}, to be the set of numbers that aremapped to the left of 1. Let z < u
be such that πf (z) = maxA, i.e., the maximum number mapped to

the left of 1. Define w = min{k | πf (k) > maxA}. Clearly, w ≤ v .
We claim that the sequence (πf (1) πf (2) . . . πf (w − 1)) is a permu-

tation of the numbers from 1 to z. Assume not. Then, there exists

w ′ > w such that πf (w
′) < z. Then, considering positions z, u,w ,

andw ′
, we obtain a sub-permutation (3 1 4 2), which can not be the

case by Lemma 5.3. Now we can apply the inductive assumption

on the firstw − 1 numbers, and on the last n −w + 1 numbers, and

merge the resulting sequences of flips. If u > v , then we add a flip

with a = 1 and b = n and reduce to the case, when u < v . �

It is not hard to show that the above condition is also a sufficient

condition, but we will not need it in our construction.

xp xut xvtxk

xp f(xut)f(xvt)

s

Figure 2: Illustration to the proof of Lemma 5.8

5.1.3 Well-separateness and the portals. First, for each flip 1 ≤

t ≤ T , we define the set of points Ft that are affected by it, the set

of points to the left of Ft , denoted Lt , and the points to the right,

Rt . Formally, we have the following.

Definition 5.5. For an iteration 1 ≤ t ≤ T , we define

• Lt = {πt (1),πt (2), . . . ,πt (at − 1)};

• Ft = {πt (at ),πt (at + 1), . . . ,πt (bt )};
• Rt = {πt (bt + 1),πt (bt + 2), . . . ,πt (n)}.

Lemma 5.6. Ft is the set of |Ft | = bt − at + 1 consecutive inte-
gers. Moreover, the sequence πt (at ),πt (at + 1), . . . ,πt (bt ) is either
increasing or decreasing.

Proof. Follows trivially from Lemma 5.4. �

Definition 5.7. For an iteration t ≤ T , we define ut = πt−1(at )
and vt = πt−1(bt ). We also define ∆t = xvt − xut . It can be either

positive or negative.

The quantity ∆t can be seen as the signed diameter of the flipped

points. The following lemma is a key to the overall analysis. We

show that the flipped points Ft are very well-separated from the

remainder: by the amount Ω(|∆t |/ε).

Lemma 5.8. For every k ∈ Ft , and every p ∈ Lt ∪ Rt , we have

|xk − xp | ≥ Ω
(
|∆t |
ε

)
.

Proof. Wlog, we can assume that t is the first flip that separates
p and k and for which k ∈ Ft , but p < Ft . Indeed, if t̃ < t is the first
such flip, then |∆t̃ | > |∆t |, and the required statement follows from

that about t̃ . Suppose that p ∈ Lt , the case p ∈ Rt is similar. Then,

we have f (xp ) < f (xvt ) < f (xut ) (here we use crucially the fact

that t is the first flip that separates p and k). Indeed, t is the last flip,
which affects the relative order of f (xp ), f (xvt ) and f (xut ), since
the flips that are not disjoint are nested. At the same time, either

xp < xut ≤ xk ≤ xvt or xp > xut ≥ xk ≥ xvt . Let us show how

to handle the first case, the second case is similar. Let us denote

s = xut − xp . See Figure 2 for the clarification. Then,

s(1 + ε) ≥ f (xut ) − f (xp )

= (f (xut ) − f (xvt )) + (f (xvt ) − f (xp ))

≥ (1 − ε)(xvt − xut ) + (1 − ε)(xvt − xp )

= (1 − ε)(s + 2∆t ).

Thus, ∆t = O(ε · s). Finally, |xk − xp | ≥ s = Ω(∆t /ε). �

Definition 5.9 (Portals). For every 1 ≤ t ≤ T , we define portals
as follows (see Figure 3). We set:

• αt = xut −
∆t
ε2/3

; βt = xut −
∆t
ε1/3

; γt = xvt +
∆t
ε1/3

; δt =

xvt +
∆t
ε2/3

;
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xut xvt

f(xvt) f(xut)

αt βt γt δt

α′
t

β′
t

γ′t
δ′t

Figure 3: Portals. Note that the scales of the relative dis-
tances are not correct.

• α ′
t = f (xvt ) −

∆t
ε2/3

; β ′t = f (xvt ) −
∆t
ε1/3

; γ ′t = f (xut ) +
∆t
ε1/3

;

δ ′t = f (xut ) +
∆t
ε2/3

.

We will use the portals in our construction to make sure that the

spirals at different levels do not interfere with each other.

5.1.4 Construction of the final map. Now we are ready to define

the final map h : R→ R2. First, for every 1 ≤ k ≤ n, we set h(xk ) =
(f (xk ), 0). Second, for every 1 ≤ t ≤ T , we define h between

αt and βt and between γt and δt according to the Corollary 5.19

(note that we only take the part of the map which corresponds to

these two intervals, see Figure 3 for the illustration). In particular,

h(αt ) = (α ′
t , 0), h(βt ) = (γ ′t , 0), h(γt ) = (β ′t , 0) and h(δt ) = (δ ′t , 0).

After we are done with constructing the spirals for all iterations

t , on the remaining bounded intervals on the real line, we define

h to be linear and consistent with the values at the endpoints. For

the two unbounded intervals, we define the map to be appropriate

shifts.

Let us now show that for every x ,y ∈ R, we have:

∥h(x) − h(y)∥ ∈

(
1 ±O

(
1

log
2(1/ε)

) )
· |x − y |.

For a point t ∈ R, there are two cases: either it is mapped us-

ing the map д from Corollary 5.19, or it is mapped using a linear

extension. In the former case, we say that t is of “type A”, while
in the latter case it is said to be of “type B”. Note that the type A

points are mapped on a spiral curve in R2, and the type B points

are mapped on a segment in R.

Claim 5.10. If we extend the original map f to the portals (such
that αt ↦→ α ′

t , βt ↦→ γ ′t , γt ↦→ β ′t and δt ↦→ δ ′t ), then the resulting
map is a (1 ±O(ε1/3))-isometry.

Proof. It is immediate to check that the worst case is achieved

when we consider distances between portals αt and βt or γt and

δt . In this case, the distortion is 1 + Θ(ε1/3) (this follows from the

definition of the portals). �

Claim 5.11. If t ∈ R is type B, andh is smooth at t , then ∥∇h(t)∥2 =
1 ±O(ε1/3).

Proof. This is a direct corollary of Claim 5.10. �

Claim 5.12. If both x ,y ∈ R are type B, then

∥h(x) − h(y)∥ ∈
(
1 ±O

(
ε1/3

) )
· |x − y |.

Proof. If x = y, then there is nothing to prove. If x , y by a

small perturbation we can assume wlog that h is smooth in both x

and y. By Claim 5.11, ∥∇h(x)∥2, ∥∇h(x)∥2 ∈ 1±O(ε1/3). If the signs
of (∇h(x))1 and (∇h(x))2 are the same, then the claim follows from

Claim 5.10 and Claim 5.11.

Now consider the case of the different signs of the derivatives.

Then consider an extension of f to the portals as stated in Claim 5.10.

Abusing notation, let us denote this map f as well. Since the ex-

tended map has distortion 1 ± O(ε1/3), we decompose it as per

Lemma 5.4, and we get that Lemma 5.8 holds.

Let us denote px < x < qx the portals of elements which are

closest to x , similarly, we denote py < y < qy . Wlog, qx ≤ py . If a
decomposition for f has a flip containing py and qy , but not px and

qx , then py −qx ≥ Ω
(
qy−py
ε1/3

)
. Similarly, if there is a flip containing

px and qx , but not px and qx , then py −qx ≥ Ω
(
qx−px
ε1/3

)
. Note that

if neither of these two cases hold, then their gradients could not

have different signs. Combining these observations with Claim 5.10

and Claim 5.11, we get the required result. �

Claim 5.13. If both x ,y ∈ R are type A, then

∥h(x) − h(y)∥ ∈

(
1 ±O

(
1

log
2(1/ε)

) )
· |x − y |.

Proof. Define tx to be the flip 1 ≤ t ≤ T , such that x lies

between αt and βt or γt and δt . We define ty similarly.

If tx = ty , then the claim follows from Corollary 5.19.

First, suppose that [atx ,btx ] and [aty ,bty ] are disjoint. Assume

wlog that |∆tx | ≥ |∆ty |. Then,

∥h(x) − h(y)∥ = ∥h(αtx ) − h(αty )∥ ±O(|∆tx |/ε
2/3)

∈ (1 ±O(ε1/3))|αtx − αty | ±O(|∆tx |/ε
2/3)

∈ (1 ±O(ε1/3))|x − y | ±O(|∆tx |/ε
2/3)

∈ (1 ±O(ε1/3))|x − y |,

where the first step follows from Corollary 5.19, the second step

follows from Lemma 5.8, the third step follows from the definition

of the terminals, and the last step follows from Lemma 5.8.

Now assume that [atx ,btx ] ⊇ [aty ,bty ], but tx , ty . Then, we

have |x − y | ≥ Ω(|∆tx |/ε
1/3), |∆tx | = Ω(|∆ty |/ε) and:

∥h(x) − h(y)∥ = |h(x) − h(αty )∥ ±O(|∆ty |/ε
2/3)

∈

(
1 ±O

(
1

log
2(1/ε)

) )
|x − αty | ±O(|∆ty |/ε

2/3)

∈

(
1 ±O

(
1

log
2(1/ε)

) )
|x − y | ±O(|∆ty |/ε

2/3)

∈

(
1 ±O

(
1

log
2(1/ε)

) )
|x − y |,

where the first step is due to the definition of the portals and Corol-

lary 5.19, the second step is due to Corollary 5.19, the third step is

again due to the definition of the portals, and the last step is due to

|x − y | ≥ Ω(|∆tx |/ε
1/3) ≥ Ω(|∆ty |/ε

4/3). �
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h(ỹ) h(y)

α′
t

β′
t

γ′t
δ′t

h(x)

Figure 4: Illustration for the proof of Claim 5.14.

Claim 5.14. If x ∈ R is type A and y ∈ R is type B, then

∥h(x) − h(y)∥ ∈

(
1 ±O

(
1

log
2(1/ε)

) )
· |x − y |.

Proof. Denote 1 ≤ tx ≤ T to be the flip such that x lies within

αtx and βtx or between γtx and δtx . Wlog, let us assume that x
lies between αtx and βtx . Then, y can lie between βtx and γtx or

outside of the segment connecting αtx and δtx . Let us assume the

former, and the latter can be handled similarly. By Corollary 5.19,

we have:

∥h(y) − h(x)∥ ∈ O

(
1 ±O

(
1

log
2(1/ε)

) )
· |x − ỹ |, (7)

where ỹ − βt = γ
′
t − h(y)1 (see Figure 4). By Claim 5.12,

|βt − ỹ | = ∥h(βt ) − h(y)∥ ∈ (1 ±O(ε1/3)) · |βt − y |.

Thus,

|y − ỹ | ∈ O(ε1/3) · |βt − y | ≤ O(ε1/3) · |x − y |. (8)

Combining (7) and (8), we are done. �

5.2 An Auxiliary Map: the Spiral
Lemma 5.15. Let ε > 0 be a small positive parameter. Let д : R→

R2 be the map defined as follows.

д(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(t , 0), if |t | > 1,
(−t , 0), if |t | < ε

(t cosφ(t), t sinφ(t)),where φ(t) = π ln(1/ |t |)
ln(1/ε ) otherwise.

Where the third term can be viewed in the polar coordinates as(
r (t) = t ,φ(t) = π ln(1/ |t |)

ln(1/ε )

)
. Then we have the following properties,

• Distortion: for every t1, t2 ∈ R, one has:

∥д(t1) − д(t2)∥ ∈

(
1 +O

(
1

log
2(1/ε)

) )
· |t1 − t2 |;

• Total movement: for every t ∈ R, one has:

∥д(t) − (t , 0)∥ ≤ O (1) .

Proof. First of all note that the function is continuous as

д(ε) = (ε cosφ(ε), ε sinφ(ε)) = (−ε, 0),

д(−ε) = (ε, 0),

д(1) = (cosφ(1), sinφ(1)) = (1, 0), and

д(−1) = (−1, 0).

Next we show that the distortion is bounded as desired. First, we

prove that д does not increase the distance by more than a mul-

tiplicative factor of 1 +O( 1

ln
2(1/ε )

), and second in Claim 5.17, we

prove that the distances do not decrease by more than the same

factor. These two prove the bound on the distortion as desired.

Finally in Claim 5.18, we show the total movement property.

Claim 5.16. For ε ≤ t1 < t2 ≤ 1, we have ∥д(t1) − д(t2)∥ ≤(
1 +O( 1

log
2(1/ε )

)

)
· |t1 − t2 |.

Proof. The distance betweenд(t1) andд(t2) is at most the length

of the curve between them which is given by the following formula∫ t2

t=t1

√(
d(t cosφ(t))

dt

)
2

+

(
d(t sinφ(t))

dt

)
2

dt =∫ t2

t=t1

√(
cosφ(t) +

π sinφ(t)

ln(1/ε)

)
2

+

(
sinφ(t) −

π cosφ(t)

ln(1/ε)

)
2

dt

=

∫ t2

t=t1

√
1 +

(
π

ln(1/ε)

)
2

dt

= (t2 − t1)

√
1 +

(
π

ln(1/ε)

)
2

≤ (t2 − t1)

(
1 +

π 2

2 ln
2(1/ε)

)
�

The above claim, together with the fact that the function is

symmetric around the origin, and the definition of the function

for |t | ≥ 1 and |t | ≤ ε , and triangle inequality, proves that for

any t1, t2 ∈ R, the distance between the images, д(t1) and д(t2) is
increased by at most D = 1 +O( 1

ln
2(1/ε )

). Next we prove that the

distances do not decrease too much either.

Claim 5.17. Given t1 < t2, we have ∥д(t1) − д(t2)∥ ≥
|t1−t2 |
D

.

Proof. The claim is trivial if both |t1 |, |t2 | ≥ 1 or |t1 |, |t2 | ≤ ε .
Also if t2 ≥ 1 and −ε ≤ t1 ≤ ε , the claim holds as

t2−t1
д(t2)−д(t1)

≤

t2+ε
t2−ε ≤ 1+ε

1−ε ≤ 1+ 3ε for sufficiently small ε . Also if ε ≤ t1 < t2 ≤ 1,

then by triangle inequality, ∥д(t2) − д(t1)∥ ≥ ∥д(t2)∥ − ∥д(t1)∥ =
t2 − t1. The remaining cases are discussed bellow or implied by

symmetry.

Case 1. If ε ≤ t2 ≤ 1 and −1 ≤ t1 ≤ −ε , by symmetry we

can assume that t2 ≥ |t1 |, and thus suppose that t1 = −αt2, where
0 ≤ α ≤ 1. First, note that ifα ≤ 1/ln2(1/ε), then since the distances
from the origin to the points remain unchanged, we have that

∥д(t1) − д(t2)∥

|t1 − t2 |
≥

t2 + t1
t2 − t1

≥
1 − α

1 + α
≥ 1 −O(α)

≥ 1 −O(1/log2(1/ε))

which proves the claim. Therefore, we can assume that α ≥

1/ln2(1/ε). We should show that ∥д(t1) − д(t2)∥/|t1 − t2 | ≥ 1/D ≥

1 − O
(

1

ln
2(1/ε )

)
, or equivalently, ∥д(t1) − д(t2)∥

2/|t1 − t2 |
2 ≥ 1 −

O( 1

ln
2(1/ε )

).
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∥д(t1) − д(t2)∥
2

|t1 − t2 |2
=

t2
1
+ t2

2
− 2t1t2 cos(φ(t1) − φ(t2))

(t1 − t2)2

= 1 +
2t1t2 (1 − cos(φ(t1) − φ(t2)))

(t1 − t2)2

= 1 −
2t2
2
α(1 − cos(φ(t1) − φ(t2)))

t2
2
(1 + α)2

= 1 −
2α(1 − cos(φ(t1) − φ(t2)))

(1 + α)2

= 1 −O(α(1 − cos(φ(t1) − φ(t2))

Therefore, we just need to show that α(1 − cos(φ(t1) − φ(t2))) =
O(1/ln2(1/ε)). Note that

φ(t1) − φ(t2) =
π ln(1/(αt2))

ln(1/ε)
−
π ln(1/t2)

ln(1/ε)
=

π ln(1/α)

ln(1/ε)

≤
2π ln ln(1/ε)

ln(1/ε)
,

and therefore, we can use the Taylor expansion for cosine and get

that

α(1 − cos(φ(t1) − φ(t2))) ≤ α

(
1 −

[
1 −

π 2
ln
2(1/α)

2 ln
2(1/ε)

] )
≤ O

(
α ln

2(1/α)

ln
2(1/ε)

)
which is at most O(1/ln2(1/ε)) as α ln

2(1/α) is at most e for 0 ≤

α ≤ 1. This completes the proof for this case.

Case 2. If t2 ≥ 1 and ε ≤ |t1 | ≤ 1, then let us again write the

term we need to bound

∥д(t2) − д(t1)∥
2

|t2 − t1 |2
=

(t2 − t1 cosφ(t1))
2 + t2

1
sin

2 φ(t1)

(t2 − t1)2

=
t2
1
+ t2

2
− 2t1t2 cosφ(t1)

(t1 − t2)2

Now if t1 is positive, i.e., ε ≤ t1 ≤ 1, then clearly, since cosφ(t1) ≤ 1,

we have that −2t1t2 cosφ(t1) ≥ −2t1t2, and therefore the above

fraction is at least 1. Thus, we now consider the case where −1 ≤

t1 ≤ −ε , and need to show that −2t1t2(1 − cosφ(t1))/(t2 − t1)
2 ≤

O(1/ln2(1/ε)). Again, we let t1 = −αt2 where 0 < α ≤ 1, and we

get that

−2t1t2(1 − cosφ(t1))

(t2 − t1)2
= O(α(1 − cosφ(t1)))

Again, if α ≤ 1/ln2(1/ε), we have that α(1 − cosφ(t1)) ≤

O(1/ln2(1/ε)) as (1 − cosφ(t1)) ≤ 2. Otherwise, as t2 ≥ 1, we

have |t1 | ≥ 1/ln2(1/ε), and therefore, φ(t1) ≤
2π ln ln(1/ε )

ln(1/ε ) . Thus,

similar to Case 1, we can write that

α(1 − cosφ(t1)) ≤ α

(
1 −

[
1 −

π 2
ln
2(1/α)

2 ln
2(1/ε)

] )
= O(

α ln
2(1/α)

ln
2(1/ε)

)

= O(1/ln2(1/ε))

where the above holds for similar reasons as Case 1.

Case 3. If ε ≤ t2 ≤ 1 and −ε ≤ t1 ≤ ε , then we have

∥д(t2) − д(t1)∥
2

|t2 − t1 |2
=

t2
1
+ t2

2
+ 2t1t2 cosφ(t2)

(t2 − t1)2

= 1 +
2t1t2(1 + cosφ(t2))

(t2 − t1)2

Now, if t1 > 0, then the above term is at least 1 ≥ 1−O(1/ln2(1/ε))
and the claim holds. So we assume that −ε ≤ t1 ≤ 0, and let

t1 = −αt2 where 0 ≤ α ≤ 1. Our goal is to prove that −2t1t2(1 +
cosφ(t2))/(t2 − t1)

2 ≤ O(1/ln2(1/ε)). Again we can write

−2t1t2(1 + cosφ(t2))

(t2 − t1)2
= O(α(1 + cosφ(t2)))

Now if α ≤ 1/ln2(1/ε), we are done as 1+ cosφ(t2) ≤ 2. But then if

α ≥ 1/ln2(1/ε), we have that t2 = −t1/α ≤ ε/α ≤ ε(ln2(1/ε)), and
therefore,

φ(t2) ≥
π ln(1/(ε ln2(1/ε)))

ln(1/ε)
= π −

2π ln ln(1/ε)

ln(1/ε)
.

Since
2π ln ln(1/ε )

ln(1/ε ) is small, we can write the Taylor expansion and

get that

α(1 + cosφ(t2)) = α

(
1 + cos

(
π −

2π lnα

ln(1/ε)

) )
= α

(
1 − cos

(
2π lnα

ln(1/ε)

) )
≤ α

(
1 −

[
1 −

(
2π lnα

ln(1/ε)

)
2

] )
≤ O

(
α ln

2 α

ln
2(1/ε)

)
= O(

1

ln
2(1/ε)

),

as desired. This completes the proof of this case. �

Finally, we need to prove the total movement condition as fol-

lows
2
.

Claim 5.18. For every point t ∈ R, one has ∥д(t) − (t , 0)∥ ≤ O (1).

Proof. The claim is clearly true for |t | ≥ 1. Also for −ε ≤ t ≤ ε ,
the claim holds since those points move by at most 2ε . Finally
for points that are on the curve, i.e., ε ≤ |t | ≤ 1, we know that

their distances to the origin is preserved. Therefore, by triangle

inequality, ∥д(t) − (t , 0)∥ ≤ 2|t | = O (1). �

This concludes the proof of the lemma. �

Corollary 5.19. Let ε be a sufficiently small constant and let
p,q,p′,q′ ∈ R, such that p′ − q′ ∈ (1 ± ε)∆, where ∆ = q − p

which can be positive or negative. Denote α = p − ∆
ε2/3

, β = p − ∆
ε1/3

,

γ = q+ ∆
ε1/3

, δ = q+ ∆
ε2/3

, α ′ = q′− ∆
ε2/3

, β ′ = q′− ∆
ε1/3

,γ ′ = q′+ ∆
ε1/3

,

δ ′ = q′ + ∆
ε2/3

, Then, there exists a map д : R→ R2 such that:

• д(α) = (α ′, 0); д(β) = (γ ′, 0); д(γ ) = (β ′, 0); д(δ ) = (δ ′, 0).

2
We remark that a stronger bound for the total movement can be achieved but for our

purposes the above bound suffices.
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• ∀t1, t2 ∈ R, one has ∥д(t1) − д(t2)∥ ∈

(
1 +O

(
1

log
2(1/ε )

) )
·

|t1 − t2 |.

Proof. Without loss of generality, we will assume that ∆ is

positive. Thus we have that α ≤ β ≤ p ≤ q ≤ γ ≤ δ , and α ′ ≤

β ′ ≤ q′ ≤ p′ ≤ γ ′ ≤ δ ′. The other case is symmetric. Letm =
p+q
2

which is also equal to
α+δ
2
=

β+γ
2

, and letm′ =
q′+p′
2

which is also

equal to
α ′+δ ′

2
=

β ′+γ ′

2
.

Let η =
∥p′−q′ ∥
∥q−p ∥ which clearly lies in ∈ (1 ± ε). First we define

the map h : R→ R as follows:

h(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α ′ + t − α , if t ∈ (−∞; β],

γ ′ + t − γ , if t ∈ [γ ,∞),

m′ + η(t −m), otherwise,

which trivially maps the points from (−∞; β] to (−∞; β ′], and the

points from [γ ;∞) to [γ ′;∞) by translation, and linearly maps [β ,γ ]
to [β ′,γ ′] by scaling and translating the points. It is clear that the

map is continuous and its distortion is at most max{η, 1/η} which
is at most 1 +O(ε).

Now let д0 : R → R2 be the map of Lemma 5.15 with ε ′ =
m′−β ′

m′−α ′ =
γ ′−m′

δ ′−m′ =
∆(η/2+1/ε1/3)
∆(η/2+1/ε2/3)

≤ O(ε1/3) which has distortion

1 + O(1/log2(1/ε ′)) = 1 + O(1/log2(1/ε)), and define the scale

parameter λ = (m′ − α ′) = (δ ′ −m′). Our final map is just defined

as д(t) =m′ + λд0(
h(t )−m′

λ ) and it is clear that its distortion Dд ≤

Dh · Dд0 ≤ (1 + ε)(1 + O(1/log2(1/ε))) ≤ (1 + O(1/log2(1/ε))).
This proves the second property. For the first property we have the

following.

• д(α): We have that h(α) = α ′
and thus д(α) = m′ + (m′ −

α ′)д0(
α ′−m′

m′−α ′ ) =m′ + (m′ −α ′)д0(−1) =m
′ − (m′ −α ′) = α ′

.

• д(β): We have that h(β) = β ′ and thus д(β) = m′ + (δ ′ −

m′)д0(
β ′−m′

m′−α ′ ) =m′+(m′−α ′)д0(−ε
′) =m′+(δ ′−m′)ε ′ = γ ′.

• д(γ ): We have that h(γ ) = γ ′ and thus д(γ ) = m′ + (m′ −

α ′)д0(
γ ′−m′

δ ′−m′ ) =m
′+ (m′−α ′)д0(ε

′) =m′−ε ′(m′−α ′) = β ′.
• д(δ ): We have that h(δ ) = δ ′ and thus д(δ ) = m′ + (δ ′ −

m′)д0(
δ ′−m′

δ ′−m′ ) =m
′ + (δ ′ −m′)д0(1) =m

′ + (δ ′ −m′) = δ ′.

�

5.3 Lower Bound
In this section, we show that there exist maps with distortion 1 + ε
such that every outer extension of it has distortion at least 1 +

Ω
(
1/log

2
(1/ε)

)
2

.

Theorem 5.20 (Theorem 1.3). There exist X ⊂ R and a map
f : X → R with distortion 1+O(ε) such that every outer bi-Lipschitz

extension f ′ : R→ Rm has distortion at least 1 + Ω
(
1/log2(1/ε))

)
.

Proof. Consider a map f that maps three points −ε , 0, and 1 to

points ε , 0, and 1, respectively. Themap has distortion
1+ε
1−ε = 1+2ε+

O(ε2). We show that any bi-Lipschitz extension f ′ : [−ε, 1] → Rn

of f has distortion at least

1 +

(
π

2 log
2
(1/ε)

)
2

asymptotically.

0 1

𝛼1

𝛼2

𝛼3

𝑥0
′

𝑥1
′𝑥2

′

𝑥3
′

𝑧

Figure 5: Points x ′
0
, . . . ,x ′k and angles α1, . . . ,αk .

Consider a bi-Lipschitz extension f ′ : [−ε, 1] → Rn of f . With-

out loss of generality, we assume that ε = 1/2k . Let xi = 1/2i for

i ∈ {0, 1, . . . ,k}, and x ′i = f ′(xi ). We will need the following claim.

Claim 5.21. Consider three points a, b, c on a line such that b lies
exactly in the middle between a and c ; i.e., b = (a + c)/2. Assume
that they are mapped to points a′, b ′, c ′ in Rm . Let α be the angle
between segments [a′,b ′] and [a′, c ′]. Then the distortion D of the
map is at least 1/cosα if α ≤ π/4 and

√
2, otherwise. In particular,

D ≥ min(1/cosα ,
√
2).

Proof. First, assume that α ≤ π/4. We now show that ∥a′ −

b ′∥ ≥
∥a′−c ′ ∥
2 cosα or ∥b ′ − c ′∥ ≥

∥a′−c ′ ∥
2 cosα . Let ρ = ∥a′ − b ′∥/∥a′ − c ′∥.

If ρ ≥ 1

2 cosα , we are done. Otherwise,

∥b ′ − c ′∥2 = ∥a′ − b ′∥2 + ∥a′ − c ′∥2

− 2 cosα · ∥a′ − b ′∥∥a′ − c ′∥

= ∥a′ − c ′∥2(ρ2 − 2 cosα · ρ + 1).

Now, the polynomial t2 − 2 cosα · t + 1 attains its minimum on

[0, 1/(2 cosα)] at point t = 1/(2 cosα), where it equals 1/(2 cosα)2

(here we use that α ≤ π/4 and hence 1/(2 cosα) < cosα ). There-
fore, ∥b ′ − c ′∥ ≥ ∥a′ − c ′∥/(2 cosα), as required. Note that the

distortion is at least

∥a′ − b ′∥

∥a′ − c ′∥

/
∥a − b∥

∥a − c ∥
and

∥b ′ − c ′∥

∥a′ − c ′∥

/
∥b − c ∥

∥a − c ∥
.

One of these two ratios is at least 1/cosα .
Now, assume that α ∈ (π/4,π/2). The distance from c ′ to the

line passing through a′ and b ′ is sinα ∥a′ − c ′∥ ≥ ∥a′ − c ′∥/
√
2;

in particular, ∥b ′ − c ′∥ ≥ ∥a′ − c ′∥/
√
2. As in the previous case,

this implies that the distortion is at least

√
2. Finally, assume that

α ≥ π/2, then the angle at vertex a′ in the triangle a′b ′c ′ is obtuse,
therefore b ′c ′ is the longest side of a′b ′c ′. In particular, ∥b ′ − c ′∥ ≥

∥a′ − c ′∥. We get that the distortion is at least 2. �

Now we are ready to prove Theorem 5.20. Let αi be the angle
between segments [0,x ′i−1] and [0,x

′
i ] (see Figure 5). Consider point

z = (ε, 0̄) = f ′(−ε). Let β be the largest among the following angles:

• the angle between [x ′k , z] and [x ′k , 0],

• the angle between [z,x ′k ] and [z, 0].

Finally, let γ be the angle between [0,x ′k ] and [0, z].
First, we apply Claim 5.21 to points 0, xi , xi−1. We get that

D ≥ min

(
1

cosαi
,
√
2

)
.
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Second, we apply Claim 5.21 to points xk , 0, −ε and to −ε , 0, xk
(see Figure 6). We get that

D ≥ min

(
1

cos β
,
√
2

)
.

Now, we write an upper bound for γ (which follows from the

𝑥𝑘0−𝜀

2−𝑘 2−𝑘

𝑧0

𝑥𝑘
′

𝛾

⟹
𝑓′

Figure 6: Points−ε , 0,xk and their images z = f ′(−ε), 0 = f ′(0),
x ′k = f ′(xk ).

triangle inequality in spherical geometry)

γ ≤

k∑
i=1

αi .

Consider the triangle with vertices 0, z, x ′k . One of the angles of this
triangle is γ and the largest of the other two angles is β . Therefore,
γ + 2β ≥ π and thus,

2β +
k∑
i=1

αi ≥ π .

Consequently, either β ≥ π/(k + 2) or some αi ≥ π/(k + 2) (or

both). We conclude that the distortion is at least

D ≥ min

(
1

cos
π

log
2
(1/ε )+2

,
√
2

)
= 1 + (1 − o(1))

π 2

2 log
2

2
(1/ε)

when ε → 0. �
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