2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science

GPU Accelerated Sequential Quadratic Programming

Xiukun Hu
University of Wyoming
Department of Mathematics
Laramie, WY 82071-3036, USA
xhud @uwyo.edu

Craig C. Douglas, Ph.D., IEEE Member

University of Wyoming
School of Energy Resources and Department of
Mathematics
Laramie, WY 82071-3036, USA
craig.c.douglas(@gmail.com

Robert Lumley and Mookwon Seo
AirLoom Energy, LLC
Laramie, WY 82072
robert.lumley(@airloomenergy.com and mookwon.seo(@airloomenergy.com

Abstract—Nonlinear optimization problems arise in all
industries. Accelerating optimization solvers is desirable.
Efforts have been made to accelerate interior point methods
for large scale problems. However, since the interior point
algorithm used requires many function evaluations, the
acceleration of the algorithm becomes less beneficial. We
introduce a way to accelerate the sequential quadratic
programming method, which is characterized by minimizing
function evaluations, on graphical processing units.

Keywords-nonlinear optimization; SQP; GPU; CUDA;
linear solvers

L INTRODUCTION

An optimization problem is a problem that can be
reformed as

mine fx)
such that

£(x)=0and

hix)=0,

where x is the vector of variables, fix) is the objective
function, and g(x) and A(x) are inequality and equality
constraints, respectively.

When we are trying to find a best solution, we meet an
optimization problem. Companies in different industries
solve huge and complicated nonlinear nonconvex
optimization problems to make decisions. As the growth of
computational power and the development of optimization
algorithms, more and more variables become possible to
be considered, and the relations between objective and
variables, and between constraints and variables, becomes
increasingly complex.

Sequential quadratic programming (SQP) methods are
iterative nonlinear optimization methods that solves a
sequence of quadratic programming (QP) subproblems to
solve the problem. They are preferable when the
evaluation of any of £, g, or & is expensive. In contrast to

2473-3636/17 $31.00 © 2017 IEEE
DOI10.1109/DCABES.2017.8

other nonlinear optimization methods, the SQP method
places more effort in path finding in order to minimize
function evaluation time. Thanks to this feature, the whole
overall application can enjoy the speed up provided by the
SQP method. For other optimization methods, e.g., interior
point methods, which spent most of the time evaluating
functions, the acceleration of the method itself usually
makes little difference [1].

In this paper, we introduce an SQP algorithm based on
Wright [2] and Mehrotra [3], and describe our method for
accelerating the SQP with CUDA’s cuSolver library. In
Section II, we give a brief introduction to the cuSolver
library, a high level direct linear solver package. We also
list the limiting factors of parallel sparse solver. In Section
IlI, we give a short description of the specific SQP
algorithm we are trying to accelerate, including a line
search SQP algorithm and a predictor-corrector QP
algorithm. We observe the possible way to take advantage
of cuSolver. In Section 1V, we describe the modifications
and adjustments we made to achieve a good performance.
In Section V, we compare our code with KNITRO's SQP
algorithm [15]. In Section VI, we draw some conclusions
and discuss future work.

1. THE CUSOLVER LIBRARY

Starting in CUDA 7, NVIDIA expanded its capabilities
of computation with a direct linear solver library, cuSolver
[4]. This library provides LAPACK-like features including
matrix factorization, triangular solve routines for dense
matrices, a sparse least-squares solver, and an eigenvalue
solver. It has three major components: cuSolverDN,
cuSolverSP, and cuSolverRF:

e cuSolverDN provides dense matrix factorization
and solve routines such as LU, QR, SVD and
LDLT.

e cuSolverSP provides sparse routines based on a
sparse QR factorization.

» cuSolverRF is a sparse refactorization package for
solving a sequence of matrices with the same
sparsity pattern. Only the LU factorization method
is provided.

In our case, as we show in Section III, we need to solve

a sequence of symmetric, indefinite sparse matrices, which

can be numerically singular. Thus, we focus on the sparse
QR solver in cuSolverSP.

There are three different QR
cuSolverSP:

e csrlsqvqr() is the basic QR solver. It solves one

single least square problem with one compressed
sparse row format (CSR) coefficient matrix at a
time.

e csrqrBatched() solves a set of least square
problems to achieve higher concurrency. It
requires all of the matrices in each batch share to
have the same sparsity pattern.

e csrqrFactor() and csrqrSolve() is a pair of low
level functions that do factorization and solving
separately. This is useful when the coefficient
matrix of a least square system is used for multiple
right hand sides, where these right hand sides
cannot be provided at once.

To achieve the best performance, we need to
understand the factors that affect the process. Solving a
sparse linear system in parallel needs consideration of
multiple factors.

A. Fill-In.

The “fill-in” are those entries in the sparse matrix that
change from an zero to a nonzero value during
factorization. A large number of fill-ins ruins the
performance. To take advantage of the sparsity, fill-in of
the sparse matrix must be avoided. Reordering the matrix
by using the approximate minimum degree (AMD)
algorithm or the reverse Cuthill-McKee (RMC) ordering
can dramatically decrease the fill-in, computation, and
memory required.

solver APIs in

B. Concurrency

GPUs require a considerable concurrency to achieve
satisfying performance. A single matrix, especially a small
or medium one, usually fails to have enough concurrency
to make using a GPU preferable. CUDA provides batched
linear solver approaches. These approaches can solve
multiple linear systems with the same sparsity patterns at
the same time (e.g., using the csrqrBatched() function
mentioned above). This approach can dramatically
increase the concurrency and achieve far higher occupancy
on GPU.

C. The Memory Access Pattern

In GPU computing, the memory access pattern decides
the memory efficiency. Since the numerical factorization
has no regular access pattern, this becomes the bottleneck
for GPU direct solvers.

[II. PROGRAMMING ALGORITHM

A. A Line Search Algorithm for SOP

The basic idea of this SQP method is, in each iteration,
to approximate the original problem at a given trial point
X using a quadratic programming subproblem. The
solution of this subproblem then becomes the search
direction and determines a new trial point x;+ for the next
iteration. A line search algorithm is applied to find x+1,
and a new quadratic subproblem is then constructed. The
sequence of these trial points will converge to a local
minimum if the problem is both feasible and well bounded.

In each iteration of the SQP algorithm, a QP
subproblem is defined by

min, F(p)=VfTp+1/2p"B p,
subject to

Jep+g>0,and

Jrp+h=0,

where Vf'is the gradient vector of the objective function £,
Je and Jr are Jacobian matrices of g and h at x
respectively, and B approximates the Hessian matrix of f
and is usually computed by a Quasi-Newton methods. B
can also be the exact Hessian if the evaluation of the
Hessian is provided and inexpensive. In our codes, we use
the damped Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm to approximate B in each iteration.

Even though multiple line search algorithms can be
applied for each subproblem, the time to solve all of the
quadratic subproblems always consumes most of the solve
time.

B. A Predictor-Corrector Algorithm for QP

A quadratic programming problem is a problem with a
form

miny g(x) = 12x"Gx +x"c,
subject to

Aix+b;>0, and

A.x+b.=0.

We use the predictor-corrector QP method introduced
by Mehrotra [3]. This algorithm solves the problem by
iteratively solving the primal-dual Karush-Kuhn-Tucker
(KKT) linear system with a coefficient matrix with the
form

where I is the identity matrix and Z and .S are diagonal
matrices that are updated in each iteration. The algorithm
iteratively updates an initial guess of the solution, x;, using
Lagrange multipliers y and z, by solving the above
equation. Notice that in each iteration, only the Z and S
parts are changed.

In our algorithm, we reordered the above coefficient
matrix to gain symmetry. The reformatted matrix is below,
where the Hessian approximation matrix G is always
symmetric:

-4, 0 0 0
-4 I 0 0

The whole SQP algorithm then can be regarded as a
sequential sparse linear solver. Usually solving these
systems accounts for more than 90% of the runtime of the
overall SQP solver.

C. Concurrency Analysis

Due to the dependency between each linear system,
when solving a single SQP problem, there is not much
concurrency we can expect, especially for small and
medium size problems, which is a common case for
nonlinear optimization problems. To achieve reasonable
concurrency, we must run multiple starting points.

Since most of the optimization problems in real world
are not convex, convergence to a global minimum is not
necessarily guaranteed by the optimization solver. To get a
relatively optimal solution, running the optimization solver
with as many as possible different initial points and find
the best answer of all these local optimum is a trivial but
common method, usually named as multiple-start
algorithm.

Recall from Section II that the cuSolver batched
approach requires all linear systems to share the same
sparsity pattern. Section IV illustrates the method we used.
It also documents some ogher efforts we tried to exploit
more of the computational power of a GPU.

IV. GPU ACCELERATED SQP

According to the SQP algorithm introduced in Section
III, the sparsity pattern of the linear system in each QP
subproblem remains untouched. Further, by equation (3),
each matrix is constructed from the Hessian approximation
matrix B and Jacobian matrices Jg and Ji. If we fix the
sparsity pattern of these three matrices throughout the
entire SQP solution process, then all the matrices we need
to solve for a specific optimization problem will always
have the same sparsity pattern.

The algorithm can be described as follows.

1. [Initialize m optimization problems on the CPU,

collect all linear systems, and upload to GPU.

2. Do symbolic analysis and calculate the required

buffer size on GPU. Then allocate the buffer.

3. Launch the cuSolver API to solve the batched

linear systems using QR decomposition.

4. Copy back the solutions from the GPU to the

CPU, and generate the next m linear systems based
on these solutions on CPU. Go back to step 3.

Before further optimization, the algorithm turns out to
be much slower on the GPU than a high performance CPU
only SQP solver.

Table I shows the performance we achieved before
further optimization. The optimization problem is the test
problem largest small polygon from COPS 3.0 [5]. The
problem size has 38 variables and 265 inequality
constraints (i.e., it is a polygon with 20 vertices). Now we
give two main reasons why the GPU solver runs about 3.5
times slower than the CPU code.

TABLE L GPU SQP PERFORMANCE BEFORE OPTIMIZATION

Solver Time Objective (max)
GPU single precision 2.13s 0.7762
GPU double precision 4.28s 0.7768
KNITRO 10.3 SQP 1.21s 0.7758

The first reason lies in fixing sparsity pattern. We fixed
the sparsity pattern by padding zeros into B, J; and Jy.
Since we are using a finite difference method to
approximate Jy and Jy, we can only assume that they are
both dense. Hence, we unfortunately added considerable
nonzeroes into our linear system, since in most
optimization problems, f, g and 4 will not be related to all
variables. This slows down the whole optimization
program, compared to when the sparsity pattern can be
varied and all zeros can be ignored. We solved this
problem by supplying exact functions for evaluating the
Jacobian matrices. This fixes the sparsity pattern problem
and minimizes the density. After this modification, the
whole program gains more than a three times speed up.

The second reason is the fill-in. As illustrated in
Section II, fill-in can dramatically slow down the solver.
We then use the AMD algorithm from the csparse library
[6] along with cuSolver permutation functions to reorder
our matrices and minimize fill-in before solving them.
Because all of the matrices have the same sparsity pattern,
this preordering method need only to be applied to a single
matrix. The resulting permutation can be used in every
linear solving process. After this modification, our code
achieves about a 20 times speed up for both single and
double precision.

We also use multiple streams of batched solvers on a
single CPU thread to run alternately, in order to hide the
memory transfer time between the CPU and the GPU.

V. PERFORMANCE

We tested the performance of our GPU accelerated
SQP method on the largest small polygon from COPS 3.0.
The result is compared with KNITRO 10.3. The GPU used
is a GTX 1080 and the CPU is an Intel Core i7-6950X.
The CPU solver is KNITRO 10.3.0 written in C++ and the
algorithm is set to SQP. The GPU accelerated code is
based on CUDA toolkit 9.0 RC. With the number of
vertices equal to n,, the number of variables is 2n,— 2, and
the number of inequality constraints has the order of ..
There is no equality constraint. For details please refer to
Dolan [5].

Table II shows the average time spent for a single start
point using our GPU accelerated SQP method with
different batch sizes. It runs in single precision with n =
50. It can be seen that the batched approach provides
tremendous performance.

TABLE II. GPU SQP PERFORMANCE VERSUS BATCH SIZE
Batch size GPU time
1 13.2375
2 6.1375
4 2.89375
8 1.371875
16 0.7321875
32 0.407265625
64 0.279453125
128 0.314609375
256 0.315695313

Table III compares our GPU SQP algorithm in double
precision with the KNITRO SQP algorithm [15], where n
is the number of vertices. It shows that our algorithm runs
6-20 times faster than the KNITRO SQP code. We
comment that our solutions are also better than those
produced by the KNITRO SQP code.

TABLE IIL GPU SQP VERSUS KNITRO
GPU time KNITRO GPU KNITRO
n (s) time (s) objective objective
10 0.015 0.133 0.7491 0.7491
20 0.054 1.209 0.7768 0.7758
30 0.466 2.549 0.7810 0.7810
40 1.680 10.132 0.7832 0.7832

VI. CONCLUSION AND FUTURE WORK

The acceleration of the SQP method can benefit many
optimization problems. The key is to find a fast sparse
direct solver. However, because of insufficient parallelism,
random access patterns, and fill-in of the sparsity pattern, it
becomes quite a challenge. We illustrated an approach to
gain concurrency by using multiple start points at the same
time and forcing the sparsity pattern to be the same. We
also demonstrated that the preordering is essential to
achieving performance using cuSolver. By using the AMD
ordering algorithm, we finally achieved a high quality
acceleration.

There is still a lot of room for improvement. First, there
are two linear system in each iteration of the QP
subproblem with the same coefficient matrix. If we save
the factorization information for reuse in the second solve,
the program can potentially run about twice faster. Second,
we tested different sparse direct solvers on the CPU with
Matlab. The LDLT decomposition method (using MA57
algorithm, see Duff [7]) works much faster than other
solvers on our test problems. If we can implement the
multifrontal LDLT method on a GPU, then a potential
huge speed up can be expected.

ACKNOWLEDGMENT

This research originated as a project at Airloom
Energy, LLC that was sponsored by University of
Wyoming and supported in part by the National Science
Foundation.

REFERENCE

[1] Y. Cao, A. Seth, and C. D. Laird, “An augmented Lagrangian
interior-point approach for large-scale NLP problems on graphics
processing units,” Computers & Chemical Engineering, Vol. 85, 2
February 2016, pp. 76-83.

[2] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.,
Springer New York, 2006.

[3] S. Mehrotra, “On the Implementation of a Primal-Dual Interior
Point Method,” SIAM Journal on Optimization, Vol. 2, 1992, pp.
575-601.

[4] Cuda C. Programming guide, 2012.

[5] E. D. Dolan, J. J. Mor’e and T. S. Munson, “Benchmarking
optimization software with COPS 3.0,” Mathematics and Computer
Science Division, Argonne National Laboratory, Technical Report
ANL/MCS-273, February 2004.

[6] T. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[7] L S. Duff, “MAS57 - a code for the solution of sparse symmetric
definite and indefinite systems,” ACM Trans. Math. Softw. 30, 2,
June 2004, pp. 118-144.

[8] T. R. Kruth, “Interior-point algorithms for quadratic
programming,” Master's thesis, Technical University of Denmark,
DTU, DK-2800 Kgs. Lyngby, Denmark, 2008.

[9] A. George and J. W. Liu, “The evolution of the minimum degree
ordering algorithm,” Siam review, 31(1), 1989, pp.1-19.

[10] A. R. Conn, N. L. Gould, and P. L. Toint, “Testing a class of
methods for solving minimization problems with simple bounds on
the variables,” Mathematics of Computation, 50(182), 1988,
pp-399-430.

[11] L. Polik and T. Terlaky, “Interior point methods for nonlinear
optimization,” Nonlinear optimization, Springer Berlin Heidelberg,
2010, pp. 215-276.

[12] L S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for
sparse matrices, Oxford University Press, 2017.

[13] S. Axler, Linear algebra done right, 2" ed., Springer, New York,
1997.

[14] W. H. Press, Numerical Recipes 3rd edition: The art of scientific
computing, Cambridge University Press, 2007.

[15] R. H. Byrd, J. Nocedal, and R.A. Waltz, “KNITRO: An integrated
package for nonlinear optimization”, in G. di Pillo and M. Roma,
editors, Large-Scale Nonlinear ~ Optimization, Nonconvex
optimization and its applications series, vol. 83, Springer, New
York, 2006, pp. 35-59.

