
G P U A c c el e r at e d S e q u e nti al Q u a d r ati c P r o g r a m mi n g

Xi u k u n H u
U ni v er sit y of W y o mi n g

D e p art m e nt of M at h e m ati c s
L ar a mi e, W Y 8 2 0 7 1- 3 0 3 6, U S A

x h u 4 @ u w y o. e d u

Cr ai g C. D o u gl as, P h. D., I E E E M e m b er
U ni v er sit y of W y o mi n g

S c h o ol of E n er g y R es o ur c e s a n d D e p art m e nt of
M at h e m ati cs

L ar a mi e, W Y 8 2 0 7 1- 3 0 3 6, U S A
cr ai g. c. d o u gl a s @ g m ail. c o m

R o b ert L u ml e y a n d M o o k w o n S e o
Air L o o m E n er g y, L L C
L ar a mi e, W Y 8 2 0 7 2

r o b ert.l u ml e y @ airl o o m e n er g y. c o m a n d m o o k w o n. s e o @ airl o o m e n er g y. c o m

A b str a ct — N o nli n e a r o pti mi z ati o n p r o bl e ms a ri s e i n all
i n d ust ri es. A c c el e r ati n g o pti mi z ati o n s ol v e r s i s d esi r a bl e.
Eff o rts h a v e b e e n m a d e t o a c c el e r at e i nt e ri o r p oi nt m et h o d s
f o r l a r g e s c al e p r o bl e ms. H o w e v e r, si n c e t h e i nt e ri o r p oi nt
al g o rit h m us e d r e q ui r es m a n y f u n cti o n e v al u ati o n s, t h e
a c c el e r ati o n of t h e al g o rit h m b e c o m e s l ess b e n efi ci al. W e
i nt r o d u c e a w a y t o a c c el e r at e t h e s e q u e nti al q u a d r ati c
p r o g r a m mi n g m et h o d, w hi c h is c h a r a ct e ri z e d b y mi ni mi zi n g
f u n cti o n e v al u ati o ns, o n g r a p hi c al p r o c e ssi n g u nit s.

K e y w o r d s- n o nli n e a r o pti mi z ati o n; S Q P; G P U; C U D A;
li n e a r s ol v ers

I. IN T R O D U C TI O N

A n o pti mi z ati o n pr o bl e m is a pr o bl e m t h at c a n b e
r ef or m e d a s

mi n x f(x)

s u c h t h at

g (x) 0 a n d

h (x) = 0,

w h er e x is t h e v e ct or of v ari a bl es, f(x) is t h e o bj e cti v e
f u n cti o n, a n d g (x) a n d h (x) ar e i n e q u alit y a n d e q u alit y
c o nstr ai nts, r e s p e cti v el y.

W h e n w e ar e tr yi n g t o fi n d a b est s ol uti o n, w e m e et a n
o pti mi z ati o n pr o bl e m. C o m p a ni es i n diff er e nt i n d ustri es
s ol v e h u g e a n d c o m pli c at e d n o nli n e ar n o n c o n v e x
o pti mi z ati o n pr o bl e ms t o m a k e d e cisi o ns. As t h e gr o wt h of
c o m p ut ati o n al p o w er a n d t h e d e v el o p m e nt of o pti mi z ati o n
al g orit h ms, m or e a n d m or e v ari a bl es b e c o m e p o ssi bl e t o
b e c o nsi d er e d, a n d t h e r el ati o ns b et w e e n o bj e cti v e a n d
v ari a bl es, a n d b et w e e n c o nstr ai nts a n d v ari a bl es, b e c o m es
i n cr e asi n gl y c o m pl e x.

S e q u e nti al q u a dr ati c pr o gr a m mi n g (S Q P) m et h o d s ar e
it er ati v e n o nli n e ar o pti mi z ati o n m et h o d s t h at s ol v es a
s e q u e n c e of q u a dr ati c pr o gr a m mi n g (Q P) s u b pr o bl e ms t o
s ol v e t h e pr o bl e m. T h e y ar e pr ef er a bl e w h e n t h e
e v al u ati o n of a n y of f, g , or h is e x p e nsi v e. I n c o ntr a st t o

ot h er n o nli n e ar o pti mi z ati o n m et h o d s, t h e S Q P m et h o d
pl a c es m or e eff ort i n p at h fi n di n g i n or d er t o mi ni mi z e
f u n cti o n e v al u ati o n ti m e. T h a n ks t o t his f e at ur e, t h e w h ol e
o v er all a p pli c ati o n c a n e nj o y t h e s p e e d u p pr o vi d e d b y t h e
S Q P m et h o d. F or ot h er o pti mi z ati o n m et h o d s, e. g., i nt eri or
p oi nt m et h o d s, w hi c h s p e nt m o st of t h e ti m e e v al u ati n g
f u n cti o ns, t h e a c c el er ati o n of t h e m et h o d its elf us u all y
m a k es littl e diff er e n c e [1].

I n t his p a p er, w e i ntr o d u c e a n S Q P al g orit h m b as e d o n
Wri g ht [2] a n d M e hr otr a [3], a n d d es cri b e o ur m et h o d f or
a c c el er ati n g t h e S Q P wit h C U D A’s c u S ol v er li br ar y. I n
S e cti o n II, w e gi v e a bri ef i ntr o d u cti o n t o t h e c u S ol v er
li br ar y, a hi g h l e v el dir e ct li n e ar s ol v er p a c k a g e. W e als o
list t h e li miti n g f a ct or s of p ar all el s p ars e s ol v er. I n S e cti o n
III, w e gi v e a s h ort d e s cri pti o n of t h e s p e cifi c S Q P
al g orit h m w e ar e tr yi n g t o a c c el er at e, i n cl u di n g a li n e
s e ar c h S Q P al g orit h m a n d a pr e di ct or- c orr e ct or Q P
al g orit h m. W e o b s er v e t h e p ossi bl e w a y t o t a k e a d v a nt a g e
of c u S ol v er. I n S e cti o n I V, w e d e s cri b e t h e m o difi c ati o ns
a n d a dj ust m e nts w e m a d e t o a c hi e v e a g o o d p erf or m a n c e.
I n S e cti o n V, w e c o m p ar e o ur c o d e wit h K NI T R O's S Q P
al g orit h m [1 5]. I n S e cti o n VI, w e dr a w s o m e c o n cl usi o ns
a n d dis c uss f ut ur e w or k.

II. T H E C U S O L V E R L I B R A R Y

St arti n g i n C U D A 7, N VI DI A e x p a n d e d its c a p a biliti es
of c o m p ut ati o n wit h a dir e ct li n e ar s ol v er li br ar y, c u S ol v er
[4]. T his li br ar y pr o vi d es L A P A C K-li k e f e at ur es i n cl u di n g
m atri x f a ct ori z ati o n, tri a n g ul ar s ol v e r o uti n es f or d e ns e
m atri c es, a s p ar s e l e ast-s q u ar e s s ol v er, a n d a n ei g e n v al u e
s ol v er. It h as t hr e e m aj or c o m p o n e nts: c u S ol v er D N,
c u S ol v er S P, a n d c u S ol v er R F:

• c u S ol v er D N pr o vi d es d e ns e m atri x f a ct ori z ati o n
a n d s ol v e r o uti n es s u c h as L U, Q R, S V D a n d
L D L T.

• c u S ol v er S P pr o vi d e s s p ar s e r o uti n e s b a s e d o n a
s p ar s e Q R f a ct ori z ati o n.

• c u S ol v er R F is a s p ar s e r ef a ct ori z ati o n p a c k a g e f or
s ol vi n g a s e q u e n c e of m atri c es wit h t h e s a m e
s p ar sit y p att er n. O nl y t h e L U f a ct ori z ati o n m et h o d
is pr o vi d e d.

I n o ur c a s e, a s w e s h o w i n S e cti o n III, w e n e e d t o s ol v e
a s e q u e n c e of s y m m etri c, i n d efi nit e s p ar s e m atri c e s, w hi c h

2 0 1 7 1 6t h I nt er n ati o n al S y m p osi u m o n Distri b ut e d C o m p uti n g a n d A p pli c ati o ns t o B usi n ess, E n gi n e eri n g a n d S ci e n c e

2 4 7 3- 3 6 3 6 / 1 7 $ 3 1. 0 0 © 2 0 1 7 I E E E

D OI 1 0. 1 1 0 9/ D C A B E S. 2 0 1 7. 8

1

2 0 1 7 1 6t h I nt er n ati o n al S y m p osi u m o n Distri b ut e d C o m p uti n g a n d A p pli c ati o ns t o B usi n ess, E n gi n e eri n g a n d S ci e n c e

2 4 7 3- 3 6 3 6/ 1 7 $ 3 1. 0 0 © 2 0 1 7 I E E E

D OI 1 0. 1 1 0 9/ D C A B E S. 2 0 1 7. 8

1

2 0 1 7 1 6t h I nt er n ati o n al S y m p osi u m o n Distri b ut e d C o m p uti n g a n d A p pli c ati o ns t o B usi n ess, E n gi n e eri n g a n d S ci e n c e

2 4 7 3- 3 6 3 6/ 1 7 $ 3 1. 0 0 © 2 0 1 7 I E E E

D OI 1 0. 1 1 0 9/ D C A B E S. 2 0 1 7. 8

3

can be numerically singular. Thus, we focus on the sparse
QR solver in cuSolverSP.
There are three different QR solver APIs in

cuSolverSP:
• csrlsqvqr() is the basic QR solver. It solves one

single least square problem with one compressed
sparse row format (CSR) coefficient matrix at a
time.

• csrqrBatched() solves a set of least square
problems to achieve higher concurrency. It
requires all of the matrices in each batch share to
have the same sparsity pattern.

• csrqrFactor() and csrqrSolve() is a pair of low
level functions that do factorization and solving
separately. This is useful when the coefficient
matrix of a least square system is used for multiple
right hand sides, where these right hand sides
cannot be provided at once.

To achieve the best performance, we need to
understand the factors that affect the process. Solving a
sparse linear system in parallel needs consideration of
multiple factors.

A. Fill-In.
The “fill-in” are those entries in the sparse matrix that

change from an zero to a nonzero value during
factorization. A large number of fill-ins ruins the
performance. To take advantage of the sparsity, fill-in of
the sparse matrix must be avoided. Reordering the matrix
by using the approximate minimum degree (AMD)
algorithm or the reverse Cuthill-McKee (RMC) ordering
can dramatically decrease the fill-in, computation, and
memory required.

B. Concurrency
GPUs require a considerable concurrency to achieve

satisfying performance. A single matrix, especially a small
or medium one, usually fails to have enough concurrency
to make using a GPU preferable. CUDA provides batched
linear solver approaches. These approaches can solve
multiple linear systems with the same sparsity patterns at
the same time (e.g., using the csrqrBatched() function
mentioned above). This approach can dramatically
increase the concurrency and achieve far higher occupancy
on GPU.

C. The Memory Access Pattern
In GPU computing, the memory access pattern decides

the memory efficiency. Since the numerical factorization
has no regular access pattern, this becomes the bottleneck
for GPU direct solvers.

III. PROGRAMMING ALGORITHM

A. A Line Search Algorithm for SQP
The basic idea of this SQP method is, in each iteration,

to approximate the original problem at a given trial point
xk using a quadratic programming subproblem. The
solution of this subproblem then becomes the search
direction and determines a new trial point xk+1 for the next
iteration. A line search algorithm is applied to find xk+1,
and a new quadratic subproblem is then constructed. The
sequence of these trial points will converge to a local
minimum if the problem is both feasible and well bounded.

In each iteration of the SQP algorithm, a QP
subproblem is defined by

minp F(p) = ∇f Tp + 1/2 pTB p,

subject to

Jg p + g � 0, and

Jh p + h = 0,

where ∇f is the gradient vector of the objective function f,
Jg and Jh are Jacobian matrices of g and h at xk,
respectively, and B approximates the Hessian matrix of f
and is usually computed by a Quasi-Newton methods. B
can also be the exact Hessian if the evaluation of the
Hessian is provided and inexpensive. In our codes, we use
the damped Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm to approximate B in each iteration.
Even though multiple line search algorithms can be

applied for each subproblem, the time to solve all of the
quadratic subproblems always consumes most of the solve
time.

B. A Predictor-Corrector Algorithm for QP
A quadratic programming problem is a problem with a

form

minx q(x) = 1/2 xT G x + xT c,

subject to

Ai x + bi � 0, and

Ae x + be = 0.

We use the predictor-corrector QP method introduced
by Mehrotra [3]. This algorithm solves the problem by
iteratively solving the primal-dual Karush-Kuhn-Tucker
(KKT) linear system with a coefficient matrix with the
form

¸
¸
¸
¸
¸

¹

·

¨
¨
¨
¨
¨

©

§

−

−−

S0Z0
00IA
000A
AA0G

i

e

T
i

T
e

where I is the identity matrix and Z and S are diagonal
matrices that are updated in each iteration. The algorithm
iteratively updates an initial guess of the solution, xk, using
Lagrange multipliers y and z, by solving the above
equation. Notice that in each iteration, only the Z and S
parts are changed.
In our algorithm, we reordered the above coefficient

matrix to gain symmetry. The reformatted matrix is below,
where the Hessian approximation matrix G is always
symmetric:

224

¸
¸
¸
¸
¸

¹

·

¨
¨
¨
¨
¨

©

§

−
−

−−
−

00IA
000A
I0ZS0
AA0G

i

e

T
i

T
e

1

The whole SQP algorithm then can be regarded as a
sequential sparse linear solver. Usually solving these
systems accounts for more than 90% of the runtime of the
overall SQP solver.

C. Concurrency Analysis
Due to the dependency between each linear system,

when solving a single SQP problem, there is not much
concurrency we can expect, especially for small and
medium size problems, which is a common case for
nonlinear optimization problems. To achieve reasonable
concurrency, we must run multiple starting points.
Since most of the optimization problems in real world

are not convex, convergence to a global minimum is not
necessarily guaranteed by the optimization solver. To get a
relatively optimal solution, running the optimization solver
with as many as possible different initial points and find
the best answer of all these local optimum is a trivial but
common method, usually named as multiple-start
algorithm.
Recall from Section II that the cuSolver batched

approach requires all linear systems to share the same
sparsity pattern. Section IV illustrates the method we used.
It also documents some ogher efforts we tried to exploit
more of the computational power of a GPU.

IV. GPU ACCELERATED SQP
According to the SQP algorithm introduced in Section

III, the sparsity pattern of the linear system in each QP
subproblem remains untouched. Further, by equation (3),
each matrix is constructed from the Hessian approximation
matrix B and Jacobian matrices Jg and Jh. If we fix the
sparsity pattern of these three matrices throughout the
entire SQP solution process, then all the matrices we need
to solve for a specific optimization problem will always
have the same sparsity pattern.
The algorithm can be described as follows.
1. Initialize m optimization problems on the CPU,

collect all linear systems, and upload to GPU.
2. Do symbolic analysis and calculate the required

buffer size on GPU. Then allocate the buffer.
3. Launch the cuSolver API to solve the batched

linear systems using QR decomposition.
4. Copy back the solutions from the GPU to the

CPU, and generate the next m linear systems based
on these solutions on CPU. Go back to step 3.

Before further optimization, the algorithm turns out to
be much slower on the GPU than a high performance CPU
only SQP solver.
Table I shows the performance we achieved before

further optimization. The optimization problem is the test
problem largest small polygon from COPS 3.0 [5]. The
problem size has 38 variables and 265 inequality
constraints (i.e., it is a polygon with 20 vertices). Now we
give two main reasons why the GPU solver runs about 3.5
times slower than the CPU code.

TABLE I. GPU SQP PERFORMANCE BEFORE OPTIMIZATION

Solver Time Objective (max)
GPU single precision 2.13s 0.7762
GPU double precision 4.28s 0.7768
KNITRO 10.3 SQP 1.21s 0.7758

The first reason lies in fixing sparsity pattern. We fixed

the sparsity pattern by padding zeros into B, Jg and Jf.
Since we are using a finite difference method to
approximate Jg and Jf, we can only assume that they are
both dense. Hence, we unfortunately added considerable
nonzeroes into our linear system, since in most
optimization problems, f, g and h will not be related to all
variables. This slows down the whole optimization
program, compared to when the sparsity pattern can be
varied and all zeros can be ignored. We solved this
problem by supplying exact functions for evaluating the
Jacobian matrices. This fixes the sparsity pattern problem
and minimizes the density. After this modification, the
whole program gains more than a three times speed up.
The second reason is the fill-in. As illustrated in

Section II, fill-in can dramatically slow down the solver.
We then use the AMD algorithm from the csparse library
[6] along with cuSolver permutation functions to reorder
our matrices and minimize fill-in before solving them.
Because all of the matrices have the same sparsity pattern,
this preordering method need only to be applied to a single
matrix. The resulting permutation can be used in every
linear solving process. After this modification, our code
achieves about a 20 times speed up for both single and
double precision.
We also use multiple streams of batched solvers on a

single CPU thread to run alternately, in order to hide the
memory transfer time between the CPU and the GPU.

V. PERFORMANCE
We tested the performance of our GPU accelerated

SQP method on the largest small polygon from COPS 3.0.
The result is compared with KNITRO 10.3. The GPU used
is a GTX 1080 and the CPU is an Intel Core i7-6950X.
The CPU solver is KNITRO 10.3.0 written in C++ and the
algorithm is set to SQP. The GPU accelerated code is
based on CUDA toolkit 9.0 RC. With the number of
vertices equal to nv, the number of variables is 2nv – 2, and
the number of inequality constraints has the order of nv2.
There is no equality constraint. For details please refer to
Dolan [5].
Table II shows the average time spent for a single start

point using our GPU accelerated SQP method with
different batch sizes. It runs in single precision with n =
50. It can be seen that the batched approach provides
tremendous performance.

TABLE II. GPU SQP PERFORMANCE VERSUS BATCH SIZE

Batch size GPU time
1 13.2375
2 6.1375
4 2.89375
8 1.371875
16 0.7321875
32 0.407265625
64 0.279453125
128 0.314609375
256 0.315695313

335

Table III compares our GPU SQP algorithm in double

precision with the KNITRO SQP algorithm [15], where n
is the number of vertices. It shows that our algorithm runs
6-20 times faster than the KNITRO SQP code. We
comment that our solutions are also better than those
produced by the KNITRO SQP code.

TABLE III. GPU SQP VERSUS KNITRO

n
GPU time

(s)
KNITRO
time (s)

GPU
objective

KNITRO
objective

10 0.015 0.133 0.7491 0.7491
20 0.054 1.209 0.7768 0.7758
30 0.466 2.549 0.7810 0.7810
40 1.680 10.132 0.7832 0.7832

VI. CONCLUSION AND FUTURE WORK
The acceleration of the SQP method can benefit many

optimization problems. The key is to find a fast sparse
direct solver. However, because of insufficient parallelism,
random access patterns, and fill-in of the sparsity pattern, it
becomes quite a challenge. We illustrated an approach to
gain concurrency by using multiple start points at the same
time and forcing the sparsity pattern to be the same. We
also demonstrated that the preordering is essential to
achieving performance using cuSolver. By using the AMD
ordering algorithm, we finally achieved a high quality
acceleration.
There is still a lot of room for improvement. First, there

are two linear system in each iteration of the QP
subproblem with the same coefficient matrix. If we save
the factorization information for reuse in the second solve,
the program can potentially run about twice faster. Second,
we tested different sparse direct solvers on the CPU with
Matlab. The LDLT decomposition method (using MA57
algorithm, see Duff [7]) works much faster than other
solvers on our test problems. If we can implement the
multifrontal LDLT method on a GPU, then a potential
huge speed up can be expected.

ACKNOWLEDGMENT

This research originated as a project at Airloom
Energy, LLC that was sponsored by University of
Wyoming and supported in part by the National Science
Foundation.

REFERENCE
[1] Y. Cao, A. Seth, and C. D. Laird, “An augmented Lagrangian

interior-point approach for large-scale NLP problems on graphics
processing units,” Computers & Chemical Engineering, Vol. 85, 2
February 2016, pp. 76-83.

[2] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed.,
Springer New York, 2006.

[3] S. Mehrotra, “On the Implementation of a Primal-Dual Interior
Point Method,” SIAM Journal on Optimization, Vol. 2, 1992, pp.
575-601.

[4] Cuda C. Programming guide, 2012.
[5] E. D. Dolan, J. J. Mor´e and T. S. Munson, “Benchmarking

optimization software with COPS 3.0,” Mathematics and Computer
Science Division, Argonne National Laboratory, Technical Report
ANL/MCS-273, February 2004.

[6] T. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.
[7] I. S. Duff, “MA57 - a code for the solution of sparse symmetric

definite and indefinite systems,” ACM Trans. Math. Softw. 30, 2,
June 2004, pp. 118-144.

[8] T. R. Kruth, “Interior-point algorithms for quadratic
programming,” Master's thesis, Technical University of Denmark,
DTU, DK-2800 Kgs. Lyngby, Denmark, 2008.

[9] A. George and J. W. Liu, “The evolution of the minimum degree
ordering algorithm,” Siam review, 31(1), 1989, pp.1-19.

[10] A. R. Conn, N. I. Gould, and P. L. Toint, “Testing a class of
methods for solving minimization problems with simple bounds on
the variables,” Mathematics of Computation, 50(182), 1988,
pp.399-430.

[11] L. Pólik and T. Terlaky, “Interior point methods for nonlinear
optimization,” Nonlinear optimization, Springer Berlin Heidelberg,
2010, pp. 215-276.

[12] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for
sparse matrices, Oxford University Press, 2017.

[13] S. Axler, Linear algebra done right, 2nd ed., Springer, New York,
1997.

[14] W. H. Press, Numerical Recipes 3rd edition: The art of scientific
computing, Cambridge University Press, 2007.

[15] R. H. Byrd, J. Nocedal, and R.A. Waltz, “KNITRO: An integrated
package for nonlinear optimization”, in G. di Pillo and M. Roma,
editors, Large-Scale Nonlinear Optimization, Nonconvex
optimization and its applications series, vol. 83, Springer, New
York, 2006, pp. 35–59.

446

