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A b str a ct — N o nli n e a r  o pti mi z ati o n  p r o bl e ms  a ri s e  i n  all 
i n d ust ri es.  A c c el e r ati n g  o pti mi z ati o n  s ol v e r s  i s  d esi r a bl e. 
Eff o rts h a v e b e e n m a d e t o a c c el e r at e i nt e ri o r p oi nt m et h o d s 
f o r  l a r g e  s c al e  p r o bl e ms.  H o w e v e r,  si n c e  t h e  i nt e ri o r  p oi nt 
al g o rit h m  us e d  r e q ui r es  m a n y  f u n cti o n  e v al u ati o n s,  t h e 
a c c el e r ati o n  of  t h e  al g o rit h m  b e c o m e s  l ess  b e n efi ci al.  W e 
i nt r o d u c e  a  w a y  t o  a c c el e r at e  t h e  s e q u e nti al  q u a d r ati c 
p r o g r a m mi n g m et h o d, w hi c h is c h a r a ct e ri z e d b y mi ni mi zi n g 
f u n cti o n e v al u ati o ns, o n g r a p hi c al p r o c e ssi n g u nit s. 

K e y w o r d s- n o nli n e a r  o pti mi z ati o n;  S Q P;  G P U;  C U D A; 
li n e a r s ol v ers 

I.  IN T R O D U C TI O N  

A n  o pti mi z ati o n  pr o bl e m  is  a  pr o bl e m  t h at  c a n  b e 
r ef or m e d a s 

mi n x  f(x ) 

s u c h t h at  

g (x )  0 a n d 

h (x ) = 0, 

w h er e x  is t h e v e ct or of v ari a bl es, f(x )  is  t h e  o bj e cti v e 
f u n cti o n,  a n d g (x )  a n d h (x )  ar e  i n e q u alit y  a n d  e q u alit y 
c o nstr ai nts, r e s p e cti v el y.  

W h e n w e ar e tr yi n g t o fi n d a b est s ol uti o n, w e m e et a n 
o pti mi z ati o n  pr o bl e m.  C o m p a ni es  i n  diff er e nt  i n d ustri es 
s ol v e  h u g e  a n d  c o m pli c at e d  n o nli n e ar  n o n c o n v e x 
o pti mi z ati o n pr o bl e ms t o m a k e d e cisi o ns. As t h e gr o wt h of 
c o m p ut ati o n al p o w er a n d t h e d e v el o p m e nt of o pti mi z ati o n 
al g orit h ms,  m or e  a n d  m or e  v ari a bl es  b e c o m e  p o ssi bl e  t o 
b e  c o nsi d er e d,  a n d  t h e  r el ati o ns  b et w e e n  o bj e cti v e  a n d 
v ari a bl es, a n d b et w e e n c o nstr ai nts a n d v ari a bl es, b e c o m es 
i n cr e asi n gl y c o m pl e x. 

S e q u e nti al  q u a dr ati c  pr o gr a m mi n g  ( S Q P)  m et h o d s  ar e 
it er ati v e  n o nli n e ar  o pti mi z ati o n  m et h o d s  t h at  s ol v es  a 
s e q u e n c e  of  q u a dr ati c  pr o gr a m mi n g  ( Q P)  s u b pr o bl e ms  t o 
s ol v e  t h e  pr o bl e m.  T h e y  ar e  pr ef er a bl e  w h e n  t h e 
e v al u ati o n of a n y of f, g , or h  is e x p e nsi v e. I n c o ntr a st t o 

ot h er  n o nli n e ar  o pti mi z ati o n  m et h o d s,  t h e  S Q P  m et h o d 
pl a c es  m or e  eff ort  i n  p at h  fi n di n g  i n  or d er  t o  mi ni mi z e 
f u n cti o n e v al u ati o n ti m e. T h a n ks t o t his f e at ur e, t h e w h ol e 
o v er all a p pli c ati o n c a n e nj o y t h e s p e e d u p pr o vi d e d b y t h e 
S Q P m et h o d. F or ot h er o pti mi z ati o n m et h o d s, e. g., i nt eri or 
p oi nt  m et h o d s,  w hi c h  s p e nt  m o st  of  t h e  ti m e  e v al u ati n g 
f u n cti o ns,  t h e  a c c el er ati o n  of  t h e  m et h o d  its elf  us u all y 
m a k es littl e diff er e n c e [ 1]. 

I n t his p a p er, w e i ntr o d u c e a n S Q P al g orit h m b as e d o n 
Wri g ht [ 2] a n d M e hr otr a [ 3], a n d d es cri b e o ur m et h o d f or 
a c c el er ati n g  t h e  S Q P  wit h  C U D A’s  c u S ol v er  li br ar y.  I n 
S e cti o n  II,  w e  gi v e  a  bri ef  i ntr o d u cti o n  t o  t h e  c u S ol v er 
li br ar y, a hi g h l e v el dir e ct li n e ar s ol v er p a c k a g e. W e als o 
list t h e li miti n g f a ct or s of p ar all el s p ars e s ol v er. I n S e cti o n 
III,  w e  gi v e  a  s h ort  d e s cri pti o n  of  t h e  s p e cifi c  S Q P 
al g orit h m  w e  ar e  tr yi n g  t o  a c c el er at e,  i n cl u di n g  a  li n e 
s e ar c h  S Q P  al g orit h m  a n d  a  pr e di ct or- c orr e ct or  Q P 
al g orit h m. W e o b s er v e t h e p ossi bl e w a y t o t a k e a d v a nt a g e 
of c u S ol v er. I n S e cti o n I V, w e d e s cri b e t h e m o difi c ati o ns 
a n d a dj ust m e nts w e m a d e t o a c hi e v e a g o o d p erf or m a n c e. 
I n S e cti o n V, w e c o m p ar e o ur c o d e wit h K NI T R O's S Q P 
al g orit h m [ 1 5]. I n S e cti o n VI,  w e dr a w s o m e c o n cl usi o ns 
a n d dis c uss f ut ur e w or k.  

II. T H E C U S O L V E R L I B R A R Y 

St arti n g i n C U D A 7, N VI DI A e x p a n d e d its c a p a biliti es 
of c o m p ut ati o n wit h a dir e ct li n e ar s ol v er li br ar y, c u S ol v er 
[ 4]. T his li br ar y pr o vi d es L A P A C K-li k e f e at ur es i n cl u di n g 
m atri x  f a ct ori z ati o n,  tri a n g ul ar  s ol v e  r o uti n es  f or  d e ns e 
m atri c es,  a  s p ar s e  l e ast-s q u ar e s  s ol v er,  a n d  a n  ei g e n v al u e 
s ol v er.  It  h as  t hr e e  m aj or  c o m p o n e nts:  c u S ol v er D N, 
c u S ol v er S P, a n d c u S ol v er R F: 

•  c u S ol v er D N  pr o vi d es  d e ns e  m atri x  f a ct ori z ati o n 
a n d  s ol v e  r o uti n es  s u c h  as  L U,  Q R,  S V D  a n d 
L D L T. 

•  c u S ol v er S P  pr o vi d e s  s p ar s e  r o uti n e s  b a s e d  o n  a 
s p ar s e Q R f a ct ori z ati o n. 

•  c u S ol v er R F is a s p ar s e r ef a ct ori z ati o n p a c k a g e f or 
s ol vi n g  a  s e q u e n c e  of  m atri c es  wit h  t h e  s a m e 
s p ar sit y p att er n. O nl y t h e L U f a ct ori z ati o n m et h o d 
is pr o vi d e d.  

I n o ur c a s e, a s w e s h o w i n S e cti o n III, w e n e e d t o s ol v e 
a s e q u e n c e of s y m m etri c, i n d efi nit e s p ar s e m atri c e s, w hi c h 
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can be numerically singular. Thus, we focus on the sparse 
QR solver in cuSolverSP.  
There are three different QR solver APIs in 

cuSolverSP: 
• csrlsqvqr() is the basic QR solver. It solves one 

single least square problem with one compressed 
sparse row format (CSR) coefficient matrix at a 
time. 

• csrqrBatched() solves a set of least square 
problems to achieve higher concurrency. It 
requires all of the matrices in each batch share to 
have the same sparsity pattern. 

• csrqrFactor() and csrqrSolve() is a pair of low 
level functions that do factorization and solving 
separately. This is useful when the coefficient 
matrix of a least square system is used for multiple 
right hand sides, where these right hand sides 
cannot be provided at once. 

To achieve the best performance, we need to 
understand the factors that affect the process. Solving a 
sparse linear system in parallel needs consideration of 
multiple factors.  

A. Fill-In. 
The “fill-in” are those entries in the sparse matrix that 

change from an zero to a nonzero value during 
factorization. A large number of fill-ins ruins the 
performance. To take advantage of the sparsity, fill-in of 
the sparse matrix must be avoided. Reordering the matrix 
by using the approximate minimum degree (AMD) 
algorithm or the reverse Cuthill-McKee (RMC) ordering 
can dramatically decrease the fill-in, computation, and 
memory required. 

B. Concurrency 
GPUs require a considerable concurrency to achieve 

satisfying performance. A single matrix, especially a small 
or medium one, usually fails to have enough concurrency 
to make  using a GPU preferable. CUDA provides batched 
linear solver approaches. These approaches can solve 
multiple linear systems with the same sparsity patterns at 
the same time (e.g., using the csrqrBatched() function 
mentioned above). This approach can dramatically 
increase the concurrency and achieve far higher occupancy 
on GPU. 

C. The Memory Access Pattern 
In GPU computing, the memory access pattern decides 

the memory efficiency. Since the numerical factorization 
has no regular access pattern, this becomes the bottleneck 
for GPU direct solvers.  

III. PROGRAMMING ALGORITHM 

A. A Line Search Algorithm for SQP 
The basic idea of this SQP method is, in each iteration, 

to approximate the original problem at a given trial point 
xk using a quadratic programming subproblem. The 
solution of this subproblem then becomes the search 
direction and determines a new trial point xk+1 for the next 
iteration. A line search algorithm is applied to find xk+1, 
and a new quadratic subproblem is then constructed. The 
sequence of these trial points will converge to a local 
minimum if the problem is both feasible and well bounded.  

In each iteration of the SQP algorithm, a QP 
subproblem is defined by 

minp F(p) = ∇f Tp + 1/2 pTB p, 

subject to 

Jg p + g � 0, and 

Jh p + h = 0, 

where ∇f is the gradient vector of the objective function f, 
Jg and Jh are Jacobian matrices of g and h at xk, 
respectively, and B approximates the Hessian matrix of f 
and is usually computed by a Quasi-Newton methods. B 
can also be the exact Hessian if the evaluation of the 
Hessian is provided and inexpensive. In our codes, we use 
the damped Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm to approximate B in each iteration. 
Even though multiple line search algorithms can be 

applied for each subproblem, the time to solve all of the 
quadratic subproblems always consumes most of the solve 
time. 

B. A Predictor-Corrector Algorithm for QP 
A quadratic programming problem is a problem with a 

form 

minx q(x) = 1/2 xT G x + xT c, 

subject to 

Ai x + bi � 0, and 

Ae x + be = 0. 

We use the predictor-corrector QP method introduced 
by Mehrotra [3]. This algorithm solves the problem by 
iteratively solving the primal-dual Karush-Kuhn-Tucker 
(KKT) linear system with a coefficient matrix with the 
form 
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where I is the identity matrix and Z and S are diagonal 
matrices that are updated in each iteration. The algorithm 
iteratively updates an initial guess of the solution, xk, using 
Lagrange multipliers y and z, by solving the above 
equation. Notice that in each iteration, only the Z and S 
parts are changed.  
In our algorithm, we reordered the above coefficient 

matrix to gain symmetry. The reformatted matrix is below, 
where the Hessian approximation matrix G is always 
symmetric: 
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The whole SQP algorithm then can be regarded as a 
sequential sparse linear solver. Usually solving these 
systems accounts for more than 90% of the runtime of the 
overall SQP solver. 

C. Concurrency Analysis 
Due to the dependency between each linear system, 

when solving a single SQP problem, there is not much 
concurrency we can expect, especially for small and 
medium size problems, which is a common case for 
nonlinear optimization problems. To achieve reasonable 
concurrency, we must run multiple starting points. 
Since most of the optimization problems in real world 

are not convex, convergence to a global minimum is not 
necessarily guaranteed by the optimization solver. To get a 
relatively optimal solution, running the optimization solver 
with as many as possible different initial points and find 
the best answer of all these local optimum is a trivial but 
common method, usually named as multiple-start 
algorithm.  
Recall from Section II that the cuSolver batched 

approach requires all linear systems to share the same 
sparsity pattern. Section IV illustrates the method we used. 
It also documents some ogher efforts we tried to exploit 
more of the computational power of a GPU. 

IV. GPU ACCELERATED SQP 
According to the SQP algorithm introduced in Section 

III, the sparsity pattern of the linear system in each QP 
subproblem remains untouched. Further, by equation (3), 
each matrix is constructed from the Hessian approximation 
matrix B and Jacobian matrices Jg and Jh. If we fix the 
sparsity pattern of these three matrices throughout the 
entire SQP solution process, then all the matrices we need 
to solve for a specific optimization problem will always 
have the same sparsity pattern.  
The algorithm can be described as follows. 
1. Initialize m optimization problems on the CPU, 

collect all linear systems, and upload to GPU. 
2. Do symbolic analysis and calculate the required 

buffer size on GPU. Then allocate the buffer. 
3. Launch the cuSolver API to solve the batched 

linear systems using QR decomposition. 
4. Copy back the solutions from the GPU to the 

CPU, and generate the next m linear systems based 
on these solutions on CPU. Go back to step 3. 

Before further optimization, the algorithm turns out to 
be much slower on the GPU than a high performance CPU 
only SQP solver.  
Table I shows the performance we achieved before 

further optimization. The optimization problem is the test 
problem largest small polygon from COPS 3.0 [5]. The 
problem size has 38 variables and 265 inequality 
constraints (i.e., it is a polygon with 20 vertices). Now we 
give two main reasons why the GPU solver runs about 3.5 
times slower than the CPU code. 

TABLE I.  GPU SQP PERFORMANCE BEFORE OPTIMIZATION 

Solver Time Objective (max) 
GPU single precision 2.13s 0.7762 
GPU double precision 4.28s 0.7768 
KNITRO 10.3 SQP 1.21s 0.7758 

 
The first reason lies in fixing sparsity pattern. We fixed 

the sparsity pattern by padding zeros into B, Jg and Jf. 
Since we are using a finite difference method to 
approximate Jg and Jf, we can only assume that they are 
both dense. Hence, we unfortunately added considerable 
nonzeroes into our linear system, since in most 
optimization problems, f, g and h will not be related to all 
variables. This slows down the whole optimization 
program, compared to when the sparsity pattern can be 
varied and all zeros can be ignored. We solved this 
problem by supplying exact functions for evaluating the 
Jacobian matrices. This fixes the sparsity pattern problem 
and minimizes the density. After this modification, the 
whole program gains more than a three times speed up. 
The second reason is the fill-in. As illustrated in 

Section II, fill-in can dramatically slow down the solver. 
We then use the AMD algorithm from the csparse library 
[6] along with cuSolver permutation functions to reorder 
our matrices and minimize fill-in before solving them. 
Because all of the matrices have the same sparsity pattern, 
this preordering method need only to be applied to a single 
matrix. The resulting permutation can be used in every 
linear solving process. After this modification, our code 
achieves about a 20 times speed up for both single and 
double precision. 
We also use multiple streams of batched solvers on a 

single CPU thread to run alternately, in order to hide the 
memory transfer time between the CPU and the GPU. 

V. PERFORMANCE 
We tested the performance of our GPU accelerated 

SQP method on the largest small polygon from COPS 3.0. 
The result is compared with KNITRO 10.3. The GPU used 
is a GTX 1080 and the CPU is an Intel Core i7-6950X. 
The CPU solver is KNITRO 10.3.0 written in C++ and the 
algorithm is set to SQP. The GPU accelerated code is 
based on CUDA toolkit 9.0 RC. With the number of 
vertices equal to nv, the number of variables is 2nv – 2, and 
the number of inequality constraints has the order of nv2. 
There is no equality constraint. For details please refer to 
Dolan [5]. 
Table II shows the average time spent for a single start 

point using our GPU accelerated SQP method with 
different batch sizes. It runs in single precision with n = 
50. It can be seen that the batched approach provides 
tremendous performance. 

TABLE II.  GPU SQP PERFORMANCE VERSUS BATCH SIZE 

Batch size GPU time 
1 13.2375 
2 6.1375 
4 2.89375 
8 1.371875 
16 0.7321875 
32 0.407265625 
64 0.279453125 
128 0.314609375 
256 0.315695313 
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Table III compares our GPU SQP algorithm in double 

precision with the KNITRO SQP algorithm [15], where n 
is the number of vertices. It shows that our algorithm runs 
6-20 times faster than the KNITRO SQP code. We 
comment that our solutions are also better than those 
produced by the KNITRO SQP code. 
 

TABLE III.  GPU SQP VERSUS KNITRO 

n 
GPU time 

(s) 
KNITRO 
time (s) 

GPU 
objective 

KNITRO 
objective 

10 0.015 0.133 0.7491 0.7491 
20 0.054 1.209 0.7768 0.7758 
30 0.466 2.549 0.7810 0.7810 
40 1.680 10.132 0.7832 0.7832 

 

VI. CONCLUSION AND FUTURE WORK 
The acceleration of the SQP method can benefit many 

optimization problems. The key is to find a fast sparse 
direct solver. However, because of insufficient parallelism, 
random access patterns, and fill-in of the sparsity pattern, it 
becomes quite a challenge. We illustrated an approach to 
gain concurrency by using multiple start points at the same 
time and forcing the sparsity pattern to be the same. We 
also demonstrated that the preordering is essential to 
achieving performance using cuSolver. By using the AMD 
ordering algorithm, we finally achieved a high quality 
acceleration.  
There is still a lot of room for improvement. First, there 

are two linear system in each iteration of the QP 
subproblem with the same coefficient matrix. If we save 
the factorization information for reuse in the second solve, 
the program can potentially run about twice faster. Second, 
we tested different sparse direct solvers on the CPU with 
Matlab. The LDLT decomposition method (using MA57 
algorithm, see Duff [7]) works much faster than other 
solvers on our test problems. If we can implement the 
multifrontal LDLT method on a GPU, then a potential 
huge speed up can be expected. 
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