


in grounded language learning. First, we automati-
cally select terms to consider as candidate labels
for visual classifiers; second, we use document
similarity metrics to select appropriate negative ex-
amples from a corpus of training data (see Fig-
ure 1). We evaluate our approach on a new data
set of objects and descriptions, and our initial re-
sults support the idea that purely linguistic tools
can be used to overcome weaknesses in corpora of
perceptual training data.

Related Work

Much of the work on learning to understand
grounded language relies in some part on algo-
rithms that use negative labels as part of learning.
The most straightforward approach is to explicitly
collect negative labels (Tellex et al. 2013; Dindo
and Zambuto 2010), possibly through crowdsourc-
ing (Tellex et al. 2014; Knepper et al. 2015)
or gameplaying (Thomason 2016). However, this
may not be applicable to all mechanisms for gath-
ering language. Another possibility is to associate
randomly chosen groundings with terms that are
not used to describe those images (Silberer, Fer-
rari, and Lapata 2016; Chrupala, Gelderloos, and
Alishahi 2017). Because language is not exhaus-
tive, this approach is noisy and may require man-
ual cleanup (Tellex et al. 2011).

Another practical technique is to design lan-
guage collection trials that either use objects that
have no shared visual characteristics (Matuszek*
et al. 2013), or explicitly design trials that exhibit
negative characteristics (Schenck and Fox 2017).
Our work is most similar to the fully unsupervised
label identification of Roy (2002), but uses docu-
ment similarity metrics, rather than term cluster-
ing.

In order to choose appropriate language terms
for which to train classifiers, we rely on the well-
known tf-idf algorithm, which can be used to de-
termine the descriptive power of terms (Salton and
McGill 1983), their relevance to particular doc-
uments (Zobel and Moffat 1998), or as a docu-
ment similarity metric (Salton and Buckley 1988).
Our selection of negative labels uses the Paragraph
Vector algorithm, which learns representations of
features from varying length documents (Mikolov
et al. 2013a; 2013b). We employ the Distributed
Memory Model of Paragraph Vectors (PV-DM) for
this work (Le and Mikolov 2014).

Notable research exists in generating descrip-
tions from images or videos (Yu and Ballard 2004;
BenAbdallah et al. 2010; Kojima, Tamura, and
Fukunaga 2002a; 2002b; Chen and Lawrence Zit-
nick 2015); for this work we used Amazon Me-
chanical Turk to obtain descriptions. This work
is similar to zero-shot learning for visual classi-
fiers (Elhoseiny, Saleh, and Elgammal 2013), but
we use color/depth images to learn classifiers,
rather than purely textual descriptions. Like Berg,
Berg, and Shih (2010) and Farhadi et al. (2009),
our focus is learning classifiers for object at-
tributes; however, we learn the fixed attributes
color, shape, and object while they infer higher
level attributes.

Linguistic indexing (Li and Wang 2003; 2005)
is a related area, but here we intend to learn one at-
tribute/word association. Visual Question Answer-
ing (VQA) (Antol et al. 2015) learns image at-
tributes and produces answers to open-ended ques-
tions, while we limit ourselves to learning at-
tributes. Previous language representations have
used vector models and multimodal topic models
for image retrieval (Socher et al. 2014; Lienhart,
Romberg, and Hörster 2009), whereas we use a
vector model of language to measure the similar-
ity between descriptions of images. We use a sim-
ple bag-of-words model, unlike work on generat-
ing advanced sentences to describe images by pre-
dicting the most likely nouns, verbs, scenes and
prepositions (Yang et al. 2011).

Background

TF-IDF: In order to select relevant terms to learn
the meanings of, we use tf-idf, for term frequency-
inverse document frequency, a well-studied metric
reflecting how important a word is to a document
in a corpus. The tf-idf value increases proportion-
ally to the number of times a term appears in the
document, which reflects the term’s relevance to
that document, and decreases with the number of
documents containing that term, reflecting its dis-
criminative power.

In this work, tf(t, d) is a raw count of the num-
ber of times a term t appears in a document d. In-
verse document frequency is the inverse logarith-
mic fraction of the number of documents that con-
tain the term from the set of all documents, D. This
gives the tf-idf value of t for a particular descrip-



tive document d:

tf-idf(t, d,D) = tf(t, d) · log
N

|{d ∈ D : t ∈ d}|

Where tf(t, d) is the number of times a term t ap-
pears in document d, N is the size of the set of
documents N = |D|, and |{d ∈ D : t ∈ d}| is the
number of documents in which the term t appears.

Paragraph Vector: In order to find negative ex-
amples for terms selected by tf-idf, we use a sim-
ilarity metric to maximize the semantic distance
between object descriptions. Paragraph Vector is
an unsupervised learning algorithm that maps doc-
uments into a fixed-length feature vector that is
robust against varying document sizes (Le and
Mikolov 2014). A neural network with one hidden
layer is used to derive the error gradients from the
loss function, which is calculated using the proba-
bility of words in a visual context given the input
terms. We use that model to measure dissimilar-
ity between descriptions. In the Paragraph Vector
model, paragraphs and words in these paragraphs
are mapped to vectors P and W respectively. We
calculate the non-normalized log-probability vec-
tor of P :

y = b+ Uh

Here yi is the non-normalized log-probability of a
word in the vector. U and b are softmax parame-
ters, and h is a vector formed by a concatenation
of word vectors W and paragraph vector P . Pre-
diction of the ‘next word’ in the context or ‘topic’
of the paragraph is achieved using a softmax clas-
sifier. A fixed length sliding window is applied to
choose contexts. Here, w1,w2, ...., wT denote the
sequence of words being trained on:

p(wt|wt−k, ...wt+k) =
eywt

∑
i e

yi

The average log probability is then maximized:

1

T

T−k∑

t=k

log p(wt|wt−k, ...wt+k)

Training is performed using gradient descent with
backpropagation. The output is a fixed length
dense vector, as in a bag of words model, but re-
tains the predictive power of a more semantically
informed model. The trained paragraph vector rep-
resents the “topic” of a document, and has shown

good performance for predicting other terms that
may be found in that document. Paragraph Vec-
tor maps every document to a point in fixed-
dimensional space irrespective of their varying de-
scription size; empirically, 2000 dimensions gives
sufficient representative power.

Approach

We build on previous work that treats the ground-
ing problem as one in which words are associated
with classifiers, jointly training classifiers and de-
scriptive language to develop semantic understand-
ing of the visual characteristics of objects (Ma-
tuszek* et al. 2013; Pillai, Budhraja, and Matuszek
2016). We use a two-step approach: first, choosing
relevant terms for which to train visual classifiers;
second, using semantic dissimilarity between de-
scriptions of objects to find negative examples of
that term.

Specifically, we treat all of the descriptions of
a particular object, concatenated, as a “document”
associated with that object. We use tf-idf to find
the most discriminative terms for a particular doc-
ument, and use all objects people described using
that term as positive examples for a classifier. We
choose negative examples by learning a paragraph
vector for each document, and using cosine simi-
larity to find the most distant paragraph vectors.

Data Corpus

Our data set contains 72 objects, divided into 18
classes. (Classes included both food objects, such
as ‘banana,’ ‘cabbage,’ and ‘carrot,’ and children’s
blocks in various shapes, such as cylinders and
cuboids.) We took 3-4 RGB-D images of each ob-
ject from a variety of angles (see Figure 2).

To obtain descriptive language, the RGB images
were posted on Amazon Mechanical Turk, and
users provided short descriptions. A total of 3055
descriptions were collected, an average of 42 per
object. All descriptions of a single object are con-
catenated into a “document” describing that object.
Documents range from 200–450 words, and our
corpus contains 19,947 unique words. A short list
of stop words is stripped from the documents, and
the remaining words are lemmatized as “terms.”

Selecting Relevant Terms

In order to select words to learn,we employ tf-idf
to find discriminative terms from the set of descrip-











work to a more varied set of objects, additional
kinds of classifiers, and complex visual classifica-
tion tasks, as well as to apply the identification of
negative grounding examples to ongoing work on
grounded language acquisition for robotics.

We use the word-as-classifier approach because,
while is a simplification of the language problem,
it is an applicable starting point for the robotic
language understanding task applied to noisy per-
ceptual data. This language model is preliminary,
and we intend to extend this to more semantically
driven and context-sensitive model in future. We
also hope to extend this research to a conversa-
tional agent. In a conversation-based interaction,
the system will have the opportunity to ask for
negative examples explicitly, which we hope will
improve results. The approach in this paper would
then be useful to reduce the number of (possibly
repetitive) questions and to enhance the quality of
the dialogue.
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Figure 11: Average cross-validation performance
of classifiers for words. In general, color classifiers
(top left) perform best; the outlier, purple, reflects
the color differences between the objects described
as purple (typically eggplants, red cabbage, and
plums). Classifiers for object types (bottom left
and right) perform well in general. Shape classi-
fiers (top right) perform worst, stemming from the
fact that people do not provide a shape description
as often as the other classes.
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