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Abstract

There has been substantial work in recent years on
grounded language acquisition, in which a model
is learned that relates linguistic constructs to the
perceivable world. While powerful, this approach
is frequently hindered by ambiguities and omis-
sions found in natural language. One such omis-
sion is the lack of negative descriptions of objects.
We describe an unsupervised system that learns
visual classifiers associated with words, using se-
mantic similarity to automatically choose negative
examples from a corpus of perceptual and linguis-
tic data. We evaluate the effectiveness of each stage
as well as the system’s performance on the overall
learning task.

Introduction

Semantic representations of real-world environ-
ments are a powerful tool for supporting user in-
teraction and action planning. Our goal is to obtain
such representations from conversation with users,
allowing physically situated agents to learn appro-
priate world models “on the fly” for a wide range
of situations. Learning these models from natural
language provides a framework for learning such
semantics at the right granularity in an intuitive,
natural way.

One promising approach is to treat learning lan-
guage about percepts as a joint modeling prob-
lem (Matuszek* et al. 2013; Pillai, Budhraja, and
Matuszek 2016), in which descriptive language
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paired with sensor and actuator data is used to
jointly train visual classifiers in conjunction with
language models. In this approach, descriptions are
treated as labels for visual percepts, making it pos-
sible to learn novel language describing entirely
novel visual concepts.

However, building semantic models from natu-
ral language is challenging. People’s use of lan-
guage is frequently not a good match for statis-
tical learning systems. For example, descriptions
of physical things rarely contain negative data: It
is unusual for people to provide negative exam-
ples without prompting. (Objects are rarely de-
scribed as “not yellow.”) A lack of a positive la-
bel does not imply a negative grounding; some-
thing described as “an apple” is not a good neg-
ative grounding for a “red” classifier. This prob-
lem has an effect on parser learning, (Hastings
and Lytinen 1994), lexical acquisition (Roy 2002),
and human grammar acquisition (Bowerman 1988;
Lasnik 1989).

In this paper, we use statistical language pro-
cessing tools to address two outstanding problems



in grounded language learning. First, we automati-
cally select terms to consider as candidate labels
for visual classifiers; second, we use document
similarity metrics to select appropriate negative ex-
amples from a corpus of training data (see Fig-
ure 1). We evaluate our approach on a new data
set of objects and descriptions, and our initial re-
sults support the idea that purely linguistic tools
can be used to overcome weaknesses in corpora of
perceptual training data.

Related Work

Much of the work on learning to understand
grounded language relies in some part on algo-
rithms that use negative labels as part of learning.
The most straightforward approach is to explicitly
collect negative labels (Tellex et al. 2013; Dindo
and Zambuto 2010), possibly through crowdsourc-
ing (Tellex et al. 2014; Knepper et al. 2015)
or gameplaying (Thomason 2016). However, this
may not be applicable to all mechanisms for gath-
ering language. Another possibility is to associate
randomly chosen groundings with terms that are
not used to describe those images (Silberer, Fer-
rari, and Lapata 2016; Chrupala, Gelderloos, and
Alishahi 2017). Because language is not exhaus-
tive, this approach is noisy and may require man-
ual cleanup (Tellex et al. 2011).

Another practical technique is to design lan-
guage collection trials that either use objects that
have no shared visual characteristics (Matuszek*
et al. 2013), or explicitly design trials that exhibit
negative characteristics (Schenck and Fox 2017).
Our work is most similar to the fully unsupervised
label identification of Roy (2002), but uses docu-
ment similarity metrics, rather than term cluster-
ing.

In order to choose appropriate language terms
for which to train classifiers, we rely on the well-
known tf-idf algorithm, which can be used to de-
termine the descriptive power of terms (Salton and
McGill 1983), their relevance to particular doc-
uments (Zobel and Moffat 1998), or as a docu-
ment similarity metric (Salton and Buckley 1988).
Our selection of negative labels uses the Paragraph
Vector algorithm, which learns representations of
features from varying length documents (Mikolov
et al. 2013a; 2013b). We employ the Distributed
Memory Model of Paragraph Vectors (PV-DM) for
this work (Le and Mikolov 2014).

Notable research exists in generating descrip-
tions from images or videos (Yu and Ballard 2004;
BenAbdallah et al. 2010; Kojima, Tamura, and
Fukunaga 2002a; 2002b; Chen and Lawrence Zit-
nick 2015); for this work we used Amazon Me-
chanical Turk to obtain descriptions. This work
is similar to zero-shot learning for visual classi-
fiers (Elhoseiny, Saleh, and Elgammal 2013), but
we use color/depth images to learn classifiers,
rather than purely textual descriptions. Like Berg,
Berg, and Shih (2010) and Farhadi et al. (2009),
our focus is learning classifiers for object at-
tributes; however, we learn the fixed attributes
color, shape, and object while they infer higher
level attributes.

Linguistic indexing (Li and Wang 2003; 2005)
is a related area, but here we intend to learn one at-
tribute/word association. Visual Question Answer-
ing (VQA) (Antol et al. 2015) learns image at-
tributes and produces answers to open-ended ques-
tions, while we limit ourselves to learning at-
tributes. Previous language representations have
used vector models and multimodal topic models
for image retrieval (Socher et al. 2014; Lienhart,
Romberg, and Horster 2009), whereas we use a
vector model of language to measure the similar-
ity between descriptions of images. We use a sim-
ple bag-of-words model, unlike work on generat-
ing advanced sentences to describe images by pre-
dicting the most likely nouns, verbs, scenes and
prepositions (Yang et al. 2011).

Background

TF-IDF: In order to select relevant terms to learn
the meanings of, we use tf-idf, for term frequency-
inverse document frequency, a well-studied metric
reflecting how important a word is to a document
in a corpus. The tf-idf value increases proportion-
ally to the number of times a term appears in the
document, which reflects the term’s relevance to
that document, and decreases with the number of
documents containing that term, reflecting its dis-
criminative power.

In this work, ¢ f(¢, d) is a raw count of the num-
ber of times a term ¢ appears in a document d. In-
verse document frequency is the inverse logarith-
mic fraction of the number of documents that con-
tain the term from the set of all documents, D. This
gives the tf-idf value of ¢ for a particular descrip-



tive document d:
N
{de D:ted}

Where t f (¢, d) is the number of times a term ¢ ap-
pears in document d, N is the size of the set of
documents N = |D|, and |{d € D : t € d}| is the
number of documents in which the term ¢ appears.

Paragraph Vector: In order to find negative ex-
amples for terms selected by tf-idf, we use a sim-
ilarity metric to maximize the semantic distance
between object descriptions. Paragraph Vector is
an unsupervised learning algorithm that maps doc-
uments into a fixed-length feature vector that is
robust against varying document sizes (Le and
Mikolov 2014). A neural network with one hidden
layer is used to derive the error gradients from the
loss function, which is calculated using the proba-
bility of words in a visual context given the input
terms. We use that model to measure dissimilar-
ity between descriptions. In the Paragraph Vector
model, paragraphs and words in these paragraphs
are mapped to vectors P and W respectively. We
calculate the non-normalized log-probability vec-
tor of P:

tf-idf (t,d, D) = tf(t,d) - log

y=0b+Uh

Here y; is the non-normalized log-probability of a
word in the vector. U and b are softmax parame-
ters, and h is a vector formed by a concatenation
of word vectors W and paragraph vector P. Pre-
diction of the ‘next word’ in the context or ‘topic’
of the paragraph is achieved using a softmax clas-
sifier. A fixed length sliding window is applied to
choose contexts. Here, wy,wo, ...., wr denote the
sequence of words being trained on:
( ‘ ) eYwt
PlW Wt —s - Wit k) ==
Zi eYi
The average log probability is then maximized:
T—k

T Z log p(we|wi—k, ... wtk)
t=k

Training is performed using gradient descent with
backpropagation. The output is a fixed length
dense vector, as in a bag of words model, but re-
tains the predictive power of a more semantically
informed model. The trained paragraph vector rep-
resents the “topic” of a document, and has shown

good performance for predicting other terms that
may be found in that document. Paragraph Vec-
tor maps every document to a point in fixed-
dimensional space irrespective of their varying de-
scription size; empirically, 2000 dimensions gives
sufficient representative power.

Approach

We build on previous work that treats the ground-
ing problem as one in which words are associated
with classifiers, jointly training classifiers and de-
scriptive language to develop semantic understand-
ing of the visual characteristics of objects (Ma-
tuszek* et al. 2013; Pillai, Budhraja, and Matuszek
2016). We use a two-step approach: first, choosing
relevant terms for which to train visual classifiers;
second, using semantic dissimilarity between de-
scriptions of objects to find negative examples of
that term.

Specifically, we treat all of the descriptions of
a particular object, concatenated, as a “document”
associated with that object. We use tf-idf to find
the most discriminative terms for a particular doc-
ument, and use all objects people described using
that term as positive examples for a classifier. We
choose negative examples by learning a paragraph
vector for each document, and using cosine simi-
larity to find the most distant paragraph vectors.

Data Corpus

Our data set contains 72 objects, divided into 18
classes. (Classes included both food objects, such
as ‘banana,’ ‘cabbage, and ‘carrot,” and children’s
blocks in various shapes, such as cylinders and
cuboids.) We took 3-4 RGB-D images of each ob-
ject from a variety of angles (see Figure 2).

To obtain descriptive language, the RGB images
were posted on Amazon Mechanical Turk, and
users provided short descriptions. A total of 3055
descriptions were collected, an average of 42 per
object. All descriptions of a single object are con-
catenated into a “document” describing that object.
Documents range from 200-450 words, and our
corpus contains 19,947 unique words. A short list
of stop words is stripped from the documents, and
the remaining words are lemmatized as “terms.”

Selecting Relevant Terms

In order to select words to learn,we employ tf-idf
to find discriminative terms from the set of descrip-
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Figure 2: Sample RGB images for each class in
the dataset, as taken with a Kinect2 camera and
presented to Mechanical Turk annotators.

tive documents and pass it through an activation
function to learn how important the term is to that
document. This function is currently thresholding;
in future, we plan to experiment with more sophis-
ticated context-aware functions. Important terms
are then used as labels for visual classifiers (see
Figure 3 for examples). Varying this threshold af-
fects the precision of this selection process (see
Experimental Results).

For each term, all images that have been de-
scribed using that term become positive examples
for training a classifier. From the original 19,947
words used to describe 72 objects, 230 words were
selected as tokens for classifier training. This pro-
cess successfully screens out words that are used
frequently when people are asked to describe ob-
jects, but that have poor discriminative or semantic
power (such as ‘picture’, ‘look’, or ‘image’).
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Figure 3: Selected and discarded terms after tf-
idf. Terms above the threshold (green) will name
a classifier that uses this object as a training exam-
ple; terms below the threshold (red) will not.

Finding Negative Examples for Concepts

We are building a world model in which both the
words being used and the concepts they are de-
scribing are initially unknown. Once a set of im-
ages has been selected as positive training exam-
ples, the next step is to find dissimilar objects in
the corpus to serve as negative examples. This
presents a bootstrapping problem: counterexam-
ples are critical to efficient learning of word mean-
ings (Elkan 2001) for a new term, but no classifier
has yet been trained to automatically select neg-
ative examples. However, we expect that the de-
scriptions of similar objects will be semantically
similar.

A Paragraph Vector model is used to find the
semantic distance between descriptions in vector
space, which can then be treated as reflective of
dissimilarity between objects in the world. All de-
scriptions of each object are concatenated into an
unordered “document,” from which a PV is gener-
ated. The cosine similarity of these PVs then serves
as a distance metric (Figure 4). From a matrix of all
cosine similarities, we choose the objects with the
most semantically dissimilar descriptions as nega-
tive training data. Our experimental results validate
this approach.

sim(banana, <objectl>):= cos ¢

yellow banana

green banana

3 Cabbage

plum:~
Igreen triangle
ime

red semicylinder

Figure 4: Cosine similarity of the Paragraph Vec-
tors of descriptive documents for a single banana
in our dataset vs. selected other objects. Each PV
represents an individual object in the dataset.

Classifier Learning

We first select terms for which to create classi-
fiers, as described above. For the perceptual learn-
ing problem, we use RGB and RGB-D images of



objects. We extract RGB features from the color
channel and use kernel descriptors (Bo et al. 2011;
Lai et al. 2013) to extract shape and object fea-
tures from the depth channel. Kernel descriptors
model size, 3D shape, and depth edge from the
depth channel, and experiments show that it signif-
icantly enhances the quality of object classification
results.

To test the effectiveness of our approach, we
use three different types of classifiers: color, shape,
and type of object. The first two are suitable for the
current problem and have been used in previous
work on this topic, (Pillai, Budhraja, and Matuszek
2016) while object type classifiers demonstrate the
possibility of learning more complex concepts. Be-
cause an unsupervised learner has no way of know-
ing which of these categories a word actually refers
to, it is necessary to train multiple classifiers for
each term, one of each type (Matuszek* et al.
2013). All objects that were described with that
term are used as positive examples. Training is per-
formed using logistic regression.

Experimental Results

In this section, we present experiments testing each
stage of the learning pipeline: selecting semanti-
cally meaningful words, finding negative training
data, and the quality of the final trained classifiers.

Selecting Terms

To evaluate our approach to finding semantically
meaningful words, we compared the results to
ground truth provided by human annotators. All
unique words in the data set were given to two an-
notators to categorize as ‘Visually meaningful’ or
‘Not meaningful.’! Figure 5 shows precision and
recall as the tf-idf threshold used for term selection
is adjusted. Our method gives promising results in
determining the significance of words for which to
learn visual groundings.

Discussion: As presented, this method selects
preferentially for precision, i.e., reliably returns se-
mantically meaningful terms at the cost of thor-
oughness. This is appropriate; as classifiers trained
on visually uninformative words will show poor

'For ease of annotation, the choices ‘Hard to say’ and
‘Not a word’ were provided, but were selected too in-
frequently to affect results.

predictive power and can be screened later, the pur-
pose

1
08
0.6
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Precision
Recall

Figure 5: Precision (blue) and recall (orange) of
term selection as the tf-idf threshold is varied.

of the term selection is to focus the learning effort
on the most promising terms.

Negative Example Selection

One of our primary contributions is a distance met-
ric for perceptual training data based entirely on
paired, novel language. Using the Paragraph Vec-
tor model addresses a major failing in the simpler
bag-of-words model: it considers the ordering and
semantics of words, but still allows vector-space-
based comparisons. We treat the cosine distance
between the Paragraph Vectors as an implicit dis-
tance in the grounding space (see Figure 4). Im-
ages of the most distant objects can then be used
as negative samples for training the visual classi-
fier (see Figure 1 for examples).

As the “similarity” of objects is highly contex-
tual, ground truth for this distance metric is not
clearly defined. We approximate ground truth by
using the Amazon Mechanical Turk (AMT) infras-
tructure to ask people for evaluations of object sim-
ilarity. Because asking for a complete ordering of
objects in the dataset is impractical, we tested a
subset of cases, asking five annotators to decide
which of two objects was most similar to another.
We presented 360 comparisons of the 72 objects
in our dataset to five different evaluators for a total
of 1800 comparisons. A simple majority of anno-
tators agree with our similarity metric in 84% of
cases. Figure 6 shows examples of the results.

Discussion: Our paragraph vector model is gener-
ally able to select good negative samples from the
corpus, according to comparison with human eval-
uators. Visual classifiers trained using these nega-
tive samples outperform baseline classifiers trained
using random sampling from the dataset. A more
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Figure 6: Examples of AMT similarity results.
Five participants select which of two choices was
more similar to a target object. In the first row,
most users selected the green arch; the second row
shows a less clear case.

complex evaluation of similarity with better de-
fined parameters might be appropriate in the fu-
ture; for example, some users never considered
color when designating similarity, while others
clearly based their decisions on whether something
was food or not. These are informed and reason-
able aspects of similarity, but did not always align
with the visual classifier training problem.

End-to-End Quality of Trained Classifiers

The quality of the grounded language model—
the learned model of the relationship between lan-
guage and percepts—is a product of the associ-
ation between language tokens and the trained
visual classifiers. Ideally, attribute descriptions
should be associated primarily with a single clas-
sifier with good predictive power.

As a baseline, we compared classification ac-
curacy of the end-to-end system described in this
paper with a model that chooses random neg-
ative samples and all non-overlapping samples
from the data set. We used the same dataset for
evaluating our method, random selection, and all
other samples method. Our evaluation was con-
ducted on our corpus of images and descriptions.
Cross-validation was used for testing. As described
above, we trained color, shape and object classi-
fiers for all selected terms.

Color: Our color classification results show good
results on color labels (see Figure 7). There is some
overfitting resulting from the relatively small set of
objects. For example, objects were frequently de-
scribed as being on a white background, leading to
conflation in the “white.” The “orange” and “red”
classifiers overlap, in part because users described
both tomatoes and carrots using both terms; in ad-

dition, polysemy had a negative impact, as the term
“orange” can refer to the color or object.

One possible solution to the need for exten-
sive annotation is using efficient active learning
techniques. Previous grounded language acquisi-
tion experiments that exercise active learning tech-
niques (Pillai, Budhraja, and Matuszek 2016) have
shown promising outcomes in reducing annotation
efforts without compromising classification accu-
racy.

Shape: Training shape classifiers on small RGB-
D images is significantly more difficult than color,
in part because the shape of an object from differ-
ent angles can vary considerably. While still per-
forming well, the quality of the results is somewhat
less. A few sources of complication included the
tendency of annotators not to describe the shape
of common objects; cucumbers were frequently
referred to as green, but never as cylindrical. In
addition, certain terms, such as rectangular, were
overused. Figure 8 shows the results of some se-
lected shape classifiers.

Object class: Object classifiers, which are in-
tended to determine the class an object belongs

Ground truth

yellow | red green | white | orange

“yellow” 020 037 005 002
“building”| 0.09 | 0.11 0.00 0.00 0.17
“red” 0.00 0.05 0.16 0.35
0.02 0.00

0.00

“tomato”
“white” | 0.06
“orange” | 0.50

Color classifier
denoted by “term”

Figure 7: Performance of color classifiers for
words (y-axis) versus ground truth (x-axis). Only
a small subset of representative classifiers are
shown, since one is created for each keyword in the
corpus. This confusion matrix show the confidence
of trained classifiers when run against objects of
each type; for example, the trained model for the
word “yellow” classifies the first object as posi-
tive with 93% confidence, but is only 20% con-
fident that the second object matches. Classifiers
associated with color words have strong predic-
tive power, as does the color classifier associated
with the token “tomato.” The visually uninforma-
tive word “building,” by contrast, is not strongly
associated with a classifier.



Ground truth

cube | cylinder | sphere | arch | triangle

“cylinder” | 0.32 0.06 0.29 0.29
0.51 0.30

“rectangular” 0.43
“circle” 0.25 0.25
“archshaped”| 0.29 0.27
“triangle” ‘ 0.54

Shape classifier
denoted by “term”

052 | 031

Figure 8: Performance of selected shape classi-
fiers (x-axis) against objects (y-axis). The confu-
sion between rectangles and arches is a product of
the data, as the blocks usually described as arch-
shaped have a rectangular top. This confusion ma-
trix show the confidence of trained classifiers when
run against sample objects of each type.

to, are trained using a combination of color and
shape features. While our object classification has
good results on our data set, this is partly due to
the strong influence of color in classification; both
the toys and the food objects in our data set tended
to be primarily a single strong color.

“tomato” 000 000 | 005 | 000
“wedge” 030 000 [F043° 000
“eggplant” | 0.26 0.24 0.01 0.11
Figure 9: Performance of selected object classifiers
(z-axis) against objects (y-axis). This confusion

matrix show the confidence of trained classifiers
when run against sample objects of each type.

Ground Truth
semi-

5 corm  clinder banana |eggplant tomato
b= “corn” 0.92 0.01 0.77 0.04 0.00
2% “puilding” | 008 002 003
22 banana> | 000 | 0a5 [NEECEN o000 o0
%

(=]

denoted by “term”

Overall: Our system convincingly outperforms
two baseline models, one that randomly selects ob-
jects to serve as negative examples, and one us-
ing all other objects as negative examples (see Fig-
ure 10), demonstrating improvement in the state of
the art on unsupervised grounded language acqui-
sition. A classifier trained with all other samples as
negative data performs well, while random sam-
pling performs almost as well in most cases but
represents a fair comparison in terms of training
time and resource.

The overall goal of this work is to allow agents
to improve their ability to learn semantic represen-
tations of their perceived environments, using nat-

object 0.63 0.82

0.51
shape 0.50

color 074

Figure 10: Average performance of color, shape,
and object classifiers. Negative data is selected ran-
domly (red), by using all non-overlapping objects
(gray), and using our dissimilarity measure. Us-
ing meaningful negative examples improves per-
formance in every category.

ural language as the training signal. While not a
complete metric, one way of considering whether
this work makes progress towards that goal is to
verify that the most obvious terms for the intended
ground truth have been identified as having im-
portant semantic relevance, and how accurately the
classifiers associated with those terms perform on
the complete dataset. By this metric, we find that
all of our ground truth labels have been discovered;
classifier performance is shown in Figure 11.

Conclusion and Future Work

While a number of different approaches have ex-
plored how to acquire semantic representations of
perceptual data, the need for automated selection
of learning targets and, especially, negative natu-
ral language exemplars recurs throughout the liter-
ature. Our results demonstrate that statistical tools
from natural language can be applied to corpora of
mixed language and perceptual data, automatically
identifying terms that should be considered as can-
didates for learning groundings and selecting nega-
tive examples automatically for training classifiers.
This reduces the need for human supervision, al-
lowing language-learning agents to learn end-to-
end in an unsupervised fashion, from collecting
data to fully trained grounded language models.
An evaluation of our process for finding mean-
ingful words and selecting negative examples sug-
gests that these approaches are effective. These re-
sults illustrate the performance and effectiveness
of the classification model by comparing it with
two baselines, either randomly selecting negative
samples or using all non-positive examples as neg-
atives. In future, our intention is to extend this



work to a more varied set of objects, additional
kinds of classifiers, and complex visual classifica-
tion tasks, as well as to apply the identification of
negative grounding examples to ongoing work on
grounded language acquisition for robotics.

We use the word-as-classifier approach because,
while is a simplification of the language problem,
it is an applicable starting point for the robotic
language understanding task applied to noisy per-
ceptual data. This language model is preliminary,
and we intend to extend this to more semantically
driven and context-sensitive model in future. We
also hope to extend this research to a conversa-
tional agent. In a conversation-based interaction,
the system will have the opportunity to ask for
negative examples explicitly, which we hope will
improve results. The approach in this paper would
then be useful to reduce the number of (possibly
repetitive) questions and to enhance the quality of
the dialogue.

blue:  0.995 arch:  0.532
green:  0.947 cube:  0.590
orange: 0.720 cylinder:  0.725
purple:  0.499 rectangle:  0.621

red: 0.844 triangle:  0.649
white:  0.772
yellow: 0918
banana:  0.942 lemon: 0.777
cabbage: 0.879 lime: 0.936
carrot:  0.887 orange: 0.921
corn:  0.922 potato:  0.715
cucumber:  0.615 tomato:  0.926

eggplant:  0.646

Figure 11: Average cross-validation performance
of classifiers for words. In general, color classifiers
(top left) perform best; the outlier, purple, reflects
the color differences between the objects described
as purple (typically eggplants, red cabbage, and
plums). Classifiers for object types (bottom left
and right) perform well in general. Shape classi-
fiers (top right) perform worst, stemming from the
fact that people do not provide a shape description
as often as the other classes.
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