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A Canonical Biophysical Model 
of the CsrA Global Regulator 
Suggests Flexible Regulator-Target 
Interactions
A. N. Leistra1, G. Gelderman   1, S. W. Sowa2, A. Moon-Walker3, H. M. Salis4 & L. M. Contreras1

Bacterial global post-transcriptional regulators execute hundreds of interactions with targets that 
display varying molecular features while retaining specificity. Herein, we develop, validate, and apply 
a biophysical, statistical thermodynamic model of canonical target mRNA interactions with the CsrA 
global post-transcriptional regulator to understand the molecular features that contribute to target 
regulation. Altogether, we model interactions of CsrA with a pool of 236 mRNA: 107 are experimentally 
regulated by CsrA and 129 are suspected interaction partners. Guided by current understanding of CsrA-
mRNA interactions, we incorporate (i) mRNA nucleotide sequence, (ii) cooperativity of CsrA-mRNA 
binding, and (iii) minimization of mRNA structural changes to identify an ensemble of likely binding 
sites and their free energies. The regulatory impact of bound CsrA on mRNA translation is determined 
with the RBS calculator. Predicted regulation of 66 experimentally regulated mRNAs adheres to the 
principles of canonical CsrA-mRNA interactions; the remainder implies that other, diverse mechanisms 
may underlie CsrA-mRNA interaction and regulation. Importantly, results suggest that this global 
regulator may bind targets in multiple conformations, via flexible stretches of overlapping predicted 
binding sites. This novel observation expands the notion that CsrA always binds to its targets at specific 
consensus sequences.

Large-scale omics techniques have been applied with increasing frequency to the study of bacterial 
post-transcriptional global regulators (e.g., E. coli Hfq, ProQ, and CsrA), aiming to elucidate the scope of their 
targets and regulatory effects1–6. Results have established that these global regulators can act upon over hundreds 
of targets. For example, the Hfq global regulator has been implicated as a chaperone for nearly all characterized 
small RNA (sRNA)-messenger RNA (mRNA) interactions in E. coli7,8. Hfq-RNA interactions are characterized 
by Hfq binding U-rich sequences in the 3′ portions of sRNAs3,9–11 and A-rich sequences in the 5′ untranslated 
regions (UTRs) of mRNAs3,12,13. These motifs are considered specific to the proximal and distal binding faces, 
respectively, of the Hfq hexamer12,14. However, interaction-specific variation is observed, in which sRNAs contact 
both faces, like ChiX and McaS15,16. The impact of such variation in binding on target control and network regu-
lation is still unfolding.

For the case of CsrA, approximately 800 mRNA have been identified across multiple environmental condi-
tions as potentially interacting with CsrA2,5: this total approaches 20% of the E. coli genome. Generally, the CsrA 
homodimer binds a target mRNA at two copies17 of a consensus sequence (ANGGA)18, preferentially located in 
the loop of a hairpin structure18,19. However substantial variation in these traits is observed. For example, among 
the 31 classical and well-characterized targets of CsrA (defined in Table 1), mRNAs like pgaA may hold to the 
general pattern20, but clpB, dps, patA, and purM do not present the consensus ANGGA binding motif5. Similarly, 
hfq and ycdT present only a single copy of the consensus sequence20–24 and cstA21 presents footprinted binding 
sites outside of the typical stem loop structures that have been shown favorable to CsrA binding.
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The question thus arises of how post-transcriptional global regulators execute hundreds of interactions with 
targets of variable sequence and structural features while retaining specificity. Although mutation followed by 
biochemical footprinting, gel shift, and reporter assays are typically used to assess how such features may con-
tribute to regulator-target interactions25–27, these are low throughput. For this reason, omics techniques and, in 
particular, co-immunoprecipitation studies have proven helpful for establishing pools of a post-transcriptional 
regulator’s potential targets3,5,28. These studies, however, cannot assess how specific molecular features of a target 
mRNA may influence its recognition and control by the regulator.

Thermodynamic modeling approaches offer higher-throughput opportunities to test the impact of specific 
molecular features hypothesized to be important on regulator-target interactions. For instance, thermody-
namic models have been used to characterize the energetics of single post-transcriptional regulator-target, e.g., 
sRNA-mRNA, interactions and predict energetically likely mRNA targets from bacterial genomes29. These models 
have also begun to incorporate estimation of a regulator’s effect on RNA target expression30–32 and to predict local 
RNA accessibility patterns that indicate potential areas for RNA interactions33. Recent advances in thermody-
namic modeling of translation initiation34–37 have further expanded the ability to calculate a regulator’s impact on 
the expression of its mRNA targets by bridging molecular interactions with cellular translation.

In this work, we develop, validate, and apply a biophysical, statistical thermodynamic model of CsrA-mRNA 
targets to investigate how the molecular features of a target mRNA may impact its binding and regulation by CsrA. 
We employ the E. coli CsrA protein (Fig. 1A) as a model post-transcriptional regulator given that its binding and 
regulation of several mRNA targets has been well-characterized. Moreover, we investigate this system because, 
as described above, its well-characterized mRNA targets demonstrate variance in the sequence and structural 
features typically considered as hallmarks of CsrA regulatory interactions. This experimentally-demonstrated 
flexibility in mRNA recognition17,19,38 raises questions as to how molecular diversity of target interactions could 
enable diverse control schemes to support the large proposed scope and known complexity of the CsrA target 
network2,5,39.

Previous models of CsrA-mRNA interactions have focused on genome-wide identification of potential 
mRNAs bound by CsrA with variations of the ANGGA consensus binding site sequence18,40,41. Specifically, work 
by McKee et al. identified E. coli genes with a [A/C/U]A[A/G/U]GGA[A/G/U][A/C/U] version of the CsrA bind-
ing motif within a 22 nucleotide window upstream of their translation start site40. Similarly, Kulkarni et al. pub-
lished an algorithm that identified genes containing an A(N)GGA sequence (where N is any or a gap nucleotide) 
in a window 30 nucleotides upstream to 5 nucleotides downstream of their translation start sites. Additionally, the 

mRNA Target Type
Foot-
printed?

Direct 
Binding?

Regulation of 
translation?

Literature of mRNA association 
with CsrA

Number 
of mRNA 
modeled

Number of mRNA with 
Correctly-Predicted 
Regulation (rep or act)

Classical Yes Yes Yes Multiple Studies20,21,23,25,39,42–47 10 8

Well-characterized No Yes Yes Multiple Studies5,6,24 21 13

Functional No No Yes

Sequence-Search model40,41 30 23

Multi-Omics study5 28 17

Co-IP2, HITS-CLIP5, or mRNA 
stability4 study

18 5

Total 107 66

Table 1.  mRNAs experimentally regulated by CsrA.

Figure 1.  Biophysical considerations for modeling the CsrA post-transcriptional regulator. (A) The CsrA 
protein regulator binds mRNA, preferentially with a stoichiometry of one CsrA homodimer to two binding sites 
within an mRNA. (B) Zooming in on the CsrA-mRNA interaction highlights the biophysical factors that affect 
it. CsrA preferentially binds (i) ANGGA nucleotide sequences (ii) spaced approximately 10–55 nucleotides 
apart to support cooperative dual-site binding. The (iii) structure of the mRNA determines how accessible these 
sequences may be and the energetic cost of CsrA-mRNA binding. Lastly, CsrA bound to the mRNA may (iv) 
interfere with ribosome binding to regulate mRNA translation.
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number and spacing of total available A(N)GGA-like binding sites were considered. It was required that within 
a window from its transcription start site to the 30th nucleotide of coding sequence, the gene must include at 
least 3 total A(N)GGA sequences within 10–60 nucleotides of each other or 2A(N)GGA sequences, each with a 
degenerate GGA-like sequence within a 10 nucleotide distance41.

Given the detailed, mechanistic characterizations of several CsrA-mRNA interactions, termed “classical” tar-
gets20,21,23,25,39,42–47 (defined in Table 1), and the recent expansion of the well-characterized CsrA mRNA target 
repertoire5,6, we expand the previous sequence-based approaches to build a model with greater molecular-level 
resolution. Specifically, we build a model of canonical CsrA-mRNA binding and regulation by incorporating the 
biophysical factors characteristic of these known regulatory interactions: mRNA nucleotide sequence18, poten-
tial cooperativity of two-site binding17,19, and minimization of mRNA structural changes. We use these factors 
to identify and estimate the free energies of an ensemble of CsrA-bound conformations of an mRNA of interest 
(Fig. 1B, part i–iii). Importantly, these calculations are performed in the context of translation initiation rate cal-
culations34,35 to capture the impact of bound CsrA on translation of the mRNA (Fig. 1B, part iv). In this way, our 
model is able to capture mRNAs expected to be activated, bound but not regulated, or repressed by CsrA binding 
outside of the Shine-Dalgarno region. Moreover, the current approach enables observation of the effects molec-
ular variations in mRNA features can have on CsrA-mRNA regulation; these variations include mRNA structure 
and the number, location, spacing, and sequence of potential binding sites.

We employ this model to assess in detail molecular traits that contribute to CsrA regulation of 
experimentally-verified CsrA-regulated mRNAs that can be described by the canonical model. For this pur-
pose, we analyze probable CsrA-target interactions captured within ensembles of CsrA-bound target conforma-
tions. Specifically, we model 236 mRNA: 107 are experimentally-confirmed CsrA-regulated mRNAs (includes 
the 31 classical and well-characterized targets) that are either repressed or activated in the presence of CsrA 
(Supplementary Table S1). We conduct detailed molecular analysis of resulting ensembles of CsrA-bound con-
formations for 66 of these mRNA targets given that their regulation is well-captured by our canonical biophysical 
model. The model is also applied to 129 mRNAs for which regulation by CsrA is suspected based on results of an 
integrated omics analysis of the Csr system5 or prior literature evidence (summarized in Supplementary Table S1), 
but has not been experimentally confirmed. Importantly, results suggest that CsrA may bind targets in multiple 
conformations, allowing use of flexible “binding pockets” that contain a continuous stretch of potential binding 
sites; this is a novel observation that expands the notion that CsrA always binds to its targets rigidly at a specific 
five-nucleotide consensus sequence. As such, this work provides insights into molecular features that can be 
important in understanding ways by which a global post-transcriptional regulator can bind and affect a large pool 
of cellular mRNAs.

Results
Biophysics of CsrA-mRNA Interactions Guide Canonical Model of CsrA Binding and 
Regulation.  To develop a thermodynamic model of CsrA-mRNA interaction, we considered four biophysi-
cal factors understood to govern CsrA binding and regulation, as inferred from studies of classical mRNA targets: 
consensus sequence (the best-studied aspect of CsrA-mRNA binding), cooperativity, structural change, and ribo-
some binding ability (Fig. 1B). As such, we term it the “canonical biophysical model”. With respect to nucleotide 
sequence, we identified plausible five-nucleotide CsrA binding sites in an mRNA of interest based on sequence 
similarity to the optimal AAGGA binding site sequence previously identified experimentally17,18. To do this quan-
titatively, we derived and employed a position-specific mono-nucleotide free energy model (FEM) that quantifies 
the energetic contribution of each nucleotide of a five-nucleotide sequence to CsrA-mRNA binding (Fig. 2A) 
(Methods). Thus the likelihood of CsrA binding to a five-nucleotide sequence, quantified as ΔGsite, is the sum of 
the energetic contributions of each nucleotide. Five-nucleotide sequences with ΔGsite < 0 are identified as poten-
tial CsrA binding sites.

To address cooperativity in CsrA binding, we quantified the likelihood of two sites within an mRNA being 
bound by a single CsrA homodimer after identifying all unique pairs of identified potential binding sites. In 
our model, the cooperativity term (ΔGcooperativity) creates a distance-dependent negative free energy for site pairs 
spaced 10 to 55 nucleotides apart, as this distance was observed to support cooperative binding17,19 and has been 
used in a prior model to represent two-site binding41 (Fig. 2B). The ΔGcooperativity term has the greatest energetic 
contribution when the binding sites are 10 nucleotides apart and decreases to no contribution for sites greater 
than 55 nucleotides apart (Methods).

All of the unique combinations of two potential binding sites identified in an mRNA of interest constitute an 
ensemble of the possible conformations in which the CsrA can bind the mRNA at two sites. For each member of 
this ensemble, we quantified the energetic cost of unfolding the mRNA structure to accommodate CsrA binding 
(Fig. 2C). The change in free energy, ΔΔGunfold, between the unbound mRNA and the mRNA bound to CsrA (as 
predicted by the ViennaRNA RNA folding package48) is determined for each member of the ensemble (Methods).

The sum of the contributions of each individual term described above results in the ability to calculate the total 
free energy of CsrA-mRNA binding (ΔGmRNA:CsrA) for each CsrA-bound mRNA conformation (Fig. 2D):

Δ = Δ + Δ + Δ + ΔΔG G G G G (1)mRNA:CsrA site1 site2 cooperativity unfold

In this model, each CsrA-bound mRNA conformation represents varying optimality of binding site sequence, 
cooperativity, and structural unfolding. We quantified the probability of CsrA binding to the mRNA of interest in 
a given conformation as the Boltzmann probability of the system existing in that particular energy state, described 
by ΔGmRNA:CsrA, compared to the energy states of all the other possible conformations (Methods).

To predict the effects of CsrA binding on mRNA translation, we selected the 15 most-likely (lowest energy 
ΔGmRNA:CsrA) CsrA-bound mRNA conformations and modeled the regulatory impact of CsrA on their translation 
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initiation rates, the rate-limiting step of translation, using the RBS Calculator34,35 (Fig. 2E). We selected the top 15 
conformations, as ranked by high to low Boltzman probability, because this portion represents the majority of the 
most likely conformations in the distribution of possible CsrA-mRNA interactions. As a point of reference, the 
15th most-likely conformation is, on average, 6.0 ± 4.6 fold less likely than the most-likely bound conformation for 
an mRNA. The fold change in translation for each mRNA target was calculated for each of the 15 lowest energy 
CsrA-bound conformations relative to the unbound/reference state (Methods). Three possible outcomes result 
from this calculation: (1) repression of translation (e.g., if CsrA binding directly or indirectly blocks the RBS or 
start codon), (2) activation of translation (e.g., if CsrA binding leads to increased accessibility of the RBS or start 
codon), or (3) no impact on translation (e.g., if CsrA binding does not alter translation initiation rate relative to 
the unbound conformation). It is worth noting that the model-calculated fold change in translation and the type 
of regulation predicted for each of the top 15 energetically-favorable CsrA-bound conformations of an mRNA 
can vary in magnitude and in direction given that unique binding site pairs comprise each conformation. Overall, 
the complete model has only 8 free parameters; 5 parameters quantifying CsrA’s binding affinity to mRNA sites 
and 3 parameters quantifying the free energy of dimeric CsrA cooperativity. Importantly, free model parameters 
were fit to experimental measurements prior to performing predictions on full-length mRNA sequences, and no 
attempt was made to optimize model parameter values.

Selection of 236 CsrA-mRNA Interactions.  We identified a set of 236 mRNAs with known or suspected 
CsrA interaction and/or regulation and applied the canonical biophysical model to predict how CsrA regulates 
their translation rates. Specifically, 10 mRNA are classical CsrA targets whose binding sites have been footprinted 
in vitro, direct binding demonstrated in vitro or in vivo, and regulation demonstrated in vivo in prior stud-
ies20,21,23,25,39,42–47. 21 mRNAs represent well-characterized CsrA targets, whose direct binding has been demon-
strated in vivo or in vitro (without footprinting data) and regulation demonstrated in vivo5,6,24. Lastly, 76 mRNAs 
are functional targets, as their regulation by CsrA has been shown in vivo, but their direct binding with CsrA has 
not been confirmed or footprinted. These three types of CsrA targets comprise a set of 107 mRNA that are regu-
lated by CsrA experimentally (Tables 1 and S1).

Figure 2.  Biophysical, statistical thermodynamic model of CsrA-mRNA interaction and impact on translation. 
(A) Potential CsrA binding sites are identified within an mRNA sequence. A position weight matrix, which 
quantifies the energy of CsrA binding (ΔGSite) to 5 nucleotide-long sequence segments, is used to identify 
favorable binding sites (ΔGSite < 0). (B) To account for cooperativity in CsrA binding to two sites in an mRNA, 
potential CsrA binding sites are paired and ΔGcooperativity calculated as a function of their distance apart. Sites 
10–55 nucleotides apart are rewarded (ΔGcooperativity < 0), and sites less than or equal to 9 nucleotides apart 
penalized. (C) The free energy change due to CsrA binding and altering mRNA structure (ΔΔGunfold ≥ 0) is 
estimated for each pair of sites. (D) The ΔG terms calculated in panels A–C are summed for each pair of sites 
and (E) translation initiation modeled for the top 15 most energetically-favorable bound conformations to 
determine CsrA-mRNA regulation.
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The majority of the well-characterized and functional CsrA targets were previously tested for CsrA regulation 
using an in vivo fluorescent translational reporter assay (Supplementary Table S1)5. This study performed an 
integrated omics analysis of the Csr system in E. coli and identified mRNAs likely to be regulated by CsrA; many 
were tested for CsrA regulation with the in vivo assay as follow-up. In the current work, additional mRNAs were 
tested for CsrA regulation using the same fluorescent translational reporter assay (Fig. 3A,B) (Supplementary 
Methods, Supplementary Table S2). It is worth acknowledging that for 23 functional targets showing activation 
or repression by CsrA in the current work, this is their first specific evidence of CsrA regulation. Figure 3 C sum-
marizes results of the fluorescent translational reporter assay across both the initial (Sowa et al.)5 and the current 
works. A total of 91 mRNAs showed repression and 11 showed activation by CsrA. It should be noted that the 

Figure 3.  Fluorescent translational reporter assay determines 5′ UTRs repressed and activated in the presence 
of CsrA. (A) Schematic of the fluorescent translational reporter assay. A two plasmid system, one that contains 
an inducible CsrA and the other that constitutively expresses the 5′ UTR of an mRNA of interest fused to 
GFP, is used to determine the regulatory relationship of CsrA to the target 5′ UTR. The assay compares 5′ 
UTR-controlled GFP fluorescence under two conditions: CsrA present (induced condition) and CsrA absent 
(uninduced condition). (B) Significant down- or up-shift in fluorescence upon induction indicates CsrA 
regulates the 5′ UTR-GFP reporter. (C) Bars indicate number of 5′ UTRs which display repression (downshift, 
P-value < 0.1), or activation (upshift, P-value < 0.1). Bar shading indicates the study the reporter assay results 
are published in: Sowa et al. (lower, light gray) (ref.5) or the current work (upper, dark gray).
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remaining 5 mRNA targets of the 107 experimentally CsrA-regulated mRNAs are classical or well-characterized 
targets extensively studied in other works24,39,45,46 (Supplementary Table S1).

The remaining 129 of the 236 modeled mRNAs were initially identified as potential CsrA-controlled mRNAs 
in a prior integrated omics study5, other transcriptomics-based experimental studies2,4, or sequence-search 
based computational studies40,41 (more detail in Supplementary Table S1). We tested the vast majority of these 
mRNAs (124) for CsrA regulation by fluorescent translational reporter assay (Supplementary Table S2 or in ref.5). 
However, fluorescence results of the 5′ UTR-GFP constructs were inconclusive for various reasons, largely attrib-
uted to noise in the fluorescence data, inconsistencies amongst the biological replicas, or low signal indistinguish-
able from fluorescence background (Supplementary Methods). These are tabulated and regulation indicated as 
undetermined in Supplementary Table S1.

Canonical Biophysical Model Captures CsrA Regulation of 66 mRNA Targets.  For each of the 
236 mRNAs, we extracted its 5′ untranslated region and the first 100 nucleotides of protein coding sequence, 
and inputted this sequence into the canonical biophysical model to calculate: (i) the locations where CsrA binds, 
(ii) the predicted CsrA-bound mRNA structures, (iii) the calculated CsrA-mRNA binding free energies for all 
ensemble conformations (Supplementary Data 1), and (iv) the predicted changes in translation rate for the top 
(i.e. lowest-energy) fifteen ensemble conformations (Supplementary Table S3). For analysis, we then classified 
each mRNA as being repressed, activated, or not impacted by CsrA-mediated translation regulation. In most 
cases, the top fifteen ensemble conformations had similar modes of translation regulation; however, when the 
most probable ensemble conformations had different equally-likely regulatory modes, we classified these model 
predictions as heterogeneous (Methods).

To assess model performance, we used the subset of 107 mRNAs known to be regulated by CsrA (10 clas-
sical, 21 well-characterized, and 76 functional targets) (Tables 1 and S1). Across the set of 107 mRNAs with 
known experimental CsrA-mediated regulation, the canonical biophysical model correctly predicted the regu-
latory modes of 66 mRNAs: 65 of these mRNA have repressed expression, while one is activated (Table 2). It is 
unsurprising that the canonical biophysical model lacks robust capability for predicting activating CsrA-mRNA 
interactions given that the biophysical principles used to “train” the model represent the canonical understand-
ing of CsrA interactions with its classical targets. Only one classical target is activated by CsrA, while nine are 
repressed. This pattern holds for the well-characterized targets (19 repressed and 2 activated) and in Fig. 3C; it is 
also supported by the understanding that CsrA typically binds in the Shine-Dalgarno region of an mRNA, due 
to similarities of the consensus CsrA binding site and Shine-Dalgarno sequences, and likely represses translation 
through direct occlusion of the RBS. The model was best able to correctly classify how CsrA regulates translation 
when the mRNA contained consensus or near-consensus CsrA binding sites, as in the classical and functional 
targets identified by sequence search studies (Table 1). Notably here, the model’s formula for calculating ΔGsite 
was parameterized by using binding affinity measurements to consensus CsrA sites with only single nucleotide 
mutations18. Therefore, the model does not account for any non-additive energetic contributions to CsrA’s bind-
ing affinity, which could play a role when mRNAs contain non-consensus CsrA sites.

Remarkably, for the 41 mRNAs where the model incorrectly predicted regulation, regulation of 22 mRNAs 
was predicted as heterogeneous: in 21 of 22 cases, regulation of at least 3 of the top 15 most-likely ensemble 
conformations was correct, but predicted regulation of the ensemble was heterogeneous overall. For 14 mRNAs, 
repression was missed (3 were predicted as activated and 11 as non-impacted) and for the remaining 5 mRNAs 
repression was falsely predicted (experimental data showed activation) (Table 2). These results indicate that rather 
than over-predicting repression, the model does not as readily capture activation mechanisms. More broadly, the 
41 mRNAs not captured by the canonical biophysical model might be regulated by CsrA through mechanisms not 
yet fully described in the literature. Targets for which the model does not clearly predict one regulatory outcome 
(i.e. heterogeneous regulation) or predicts regulation that does not match experimental results constitute excel-
lent candidates for further exploration of potentially new mechanisms of CsrA post-transcriptional regulation.

Comparison to Prior CsrA-mRNA Interaction Models.  The canonical biophysical model is unique 
from prior models of CsrA-mRNA interactions in that it (i) calculates a predicted free energy of CsrA-mRNA 
binding that (ii) incorporates changes in predicted mRNA structure upon CsrA binding. It also (iii) estimates a 
regulatory outcome of CsrA binding on mRNA translation by calculating a change in estimated translation rate 
and (iv) predicts an ensemble of potential CsrA-bound mRNA conformations and their translation rates. Previous 
models focused on using consensus binding site sequences to predict high affinity interactions between CsrA and 
mRNAs across the genome. Importantly, when attempting to predict whether CsrA plays a role in repressing an 
mRNA’s translation rate, the canonical biophysical model’s accuracy is greater than published sequence-based 
models40,41 (Supplementary Table S4). The difference in accuracy is mainly due to an increased number of correct 
repression predictions by the canonical biophysical model (65 mRNAs) compared to the McKee and Kulkarni 

Experimental 
Regulation

Model-Calculated Regulation

TotalRepression Activation No Impact Heterogeneous

Repression 65 3 11 16 95

Activation 5 1 0 6 12

Total 70 4 11 22 107

Table 2.  Experimentally-measured and model-calculated regulation of mRNAs.
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Figure 4.  Model binding site predictions capture known CsrA-mRNA footprints. (A–E) Vienna-RNA 
predicted structures of eight canonical CsrA-mRNA targets (unbound by CsrA). Model-identified CsrA binding 
sites of the fifteen most-likely CsrA-bound conformations of each target are shown as colored outlines. Number 
in parentheses adjacent to the outline indicates the number of times that particular 5-nucleotide binding site 
is identified in the fifteen most-likely CsrA-bound mRNA conformations. Overlapping or adjacent mRNA 
binding sites form pockets, indicated by the color of the outline. Start codon nucleotides are shown with green 
fill. Nucleotides within experimentally-determined in vitro footprints are marked with red circular outlines. 
Red fill wedges indicate 3′ edges of binding sites identified by in vitro 3′ boundary analyses; red-outlined 
wedges indicate 3′ edges of binding sites identified by in vitro toeprint analyses. In vitro-identified binding sites, 
regardless of method, are labeled from 5′ to 3′, starting with “FP 1”. In vitro binding assays were performed in, 
(A) refs17,25; (B) ref.43; (C) ref.44; (D) ref.21; and (E) ref.23. (B and E) FP 3 of sdiA and FP 1 and FP 3 of hfq are 
marked with an “*” to indicate weaker in vitro signals newly interpreted as binding sites. (D) Toeprint signals 
within pocket 3 of cstA did not indicate a clear binding site, and thus was not labelled with an “FP”.
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sequence-search approaches (17 and 40 mRNAs, respectively) (Supplementary Table S4 and Supplementary 
Fig. S1). While the high stringency of the sequence-search approaches is useful for identifying potential targets 
with a low false positive rate on a genome scale (and avoiding heterogeneous predictions), the greater number of 

Figure 5.  Model binding site predictions capture known CsrA-mRNA footprints. (A–C) Vienna-RNA predicted 
structures of eight canonical CsrA-mRNA targets (unbound by CsrA). Model-identified CsrA binding sites of the 
fifteen most-likely CsrA-bound conformations of each target are shown as colored outlines. Number in parentheses 
adjacent to the outline indicates the number of times that particular 5-nucleotide binding site is identified in 
the fifteen most-likely CsrA-bound mRNA conformations. Overlapping or adjacent mRNA binding sites form 
pockets, indicated by the color of the outline. Start codon nucleotides are shown with green fill. Nucleotides within 
experimentally-determined in vitro footprints are marked with red circular outlines. Red fill wedges indicate 3′ edges 
of binding sites identified by in vitro 3′ boundary analyses; red-outlined wedges indicate 3′ edges of binding sites 
identified by in vitro toeprint analyses. In vitro-identified binding sites, regardless of method, are labeled from 5′ to 3′, 
starting with “FP 1”. In vitro binding assays were performed in, (A) ref.47; (B) ref.42; and (C) ref.20.
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repression predictions provided by the canonical biophysical model is useful for studying mRNAs expected to 
be canonically regulated by CsrA and for identifying those that could be regulated by alternative mechanisms.

Validation of Model Binding Site Predictions and Free Energy Calculations.  Model-identified 
Binding Sites Align with Known CsrA-mRNA Footprints.  After establishing that the model correctly predicted 
CsrA regulatory effects on 66 mRNAs, we assessed if the model captured specific experimentally-determined 
CsrA-mRNA binding sites. We aimed to validate model predictions by comparing model-identified binding sites 
with experimentally-determined CsrA footprints in eight classical CsrA targets: glgC, sdiA, flhD, cstA, hfq, csrA, 
nhaR, and pgaA (Figs 4 and 5). For most of the classical mRNA targets, the model-identified binding sites of the 
15 lowest-energy CsrA-bound conformations align well with at least one of the known footprints (Figs 4A–E and 
5A). For this subset of classical targets (Figs 4A–E and 5A), the model identifies binding sites within one of its 
known footprints at least 9 times among the top 15 ensemble conformations. It is important to note that (i) the 
same binding site can be identified multiple times, as long as it is paired with a second site that makes the bind-
ing site pair unique. Additionally, it is noteworthy that (ii) binding sites identified multiple times within the 15 
most-likely CsrA-bound conformations of an mRNA adhere more strictly to the ANGGA consensus sequence. 
Model-predicted binding sites in the nhaR and pgaA mRNAs (Fig. 5B,C) present exceptions.

Given that overlapping binding sites are commonly identified by the model in the top fifteen CsrA-bound 
conformations of the classical mRNA targets, we grouped these identified neighboring binding sites into “pock-
ets”. A pocket is defined as a set of contiguous predicted binding sites that overlap, are adjacent, or have, at max-
imum, one nucleotide between them. Importantly, analysis of predicted binding site pockets within the classical 
CsrA-mRNA targets indicated that the model can capture CsrA-mRNA interactions of a wide range of in vivo 
affinities. For example, just upstream of the glgC Shine-Dalgarno sequence, binding site pocket 2, which contains 
7 overlapping binding sites, aligns with a weaker, non-consensus sequence CsrA-mRNA binding site17 (FP 3 in 

Figure 6.  Relative in vivo CsrA-mRNA affinity correlates with calculated free energies. (A) Using the RBS 
calculator, multiple RBSs were designed to vary CsrA expression. These RBS-CsrA constructs were paired with 
target 5′ UTR-GFP reporter plasmids to titrate expression of the reporter and (B) fluorescence was measured. 
(C) Titration of glgC, maeB, and aidB 5′ UTRs. Symbols used for each RBS construct are indicated in (A). 
Normalized repression (minimum and maximum repression ratios scaled linearly from 0 to 1) is plotted as 
function of CsrA expression, as determined by the RBS calculator, on a log scale. Dotted lines represent fit 
to titration curve (Methods). Induced 200x and 750x RBS-CsrA constructs (open diamond and pentagon 
symbols, respectively) offer best resolution of differences between 5′ UTRs. 1000x and 2000x RBS constructs 
produced inconsistent results and were excluded from analysis in some cases. (D) Titration, as described for 
(C), of mutated glgC sequences. Induced 200x and 750x RBS-CsrA constructs offer best resolution of mutations’ 
effects. (E) The fluorescent translational reporter assay performed with the 200x (upper panel) and 750x (lower 
panel) RBS-CsrA constructs for the wild type (ACGGA, black outlined bar) and eight mutant glgC 5′ UTR-GFP 
reporters. Asterisks indicate results of heteroscedastic one-tailed T-tests, comparing average fold repression 
(Uninduced/Induced) of mutants to wild type glgC: *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001. 
(lower panel) Daggers indicate results of heteroscedastic one-tailed T-tests, comparing average fold repression 
(Uninduced/Induced) of ACTGA, ACAGA, ACGAA, ACGCA and ACCGA constructs to the ACGTA mutant: 
†P-value < 0.05.
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Fig. 4A). Similarly, we suspect the presence of weaker, non-consensus sequence binding sites within pocket 4 
of sdiA (Fig. 4B) and pocket 1 of hfq (Fig. 4E), given that these pockets contain 8–9 overlapping non-consensus 
binding sites. Earlier results from published in vitro experiments support this possibility. First, G residues in 
pocket 4 of sdiA may be weakly protected, based on footprint analysis43; second, CsrA may bind in pocket 1 of 
hfq, based on toeprint analysis23. In any of these cases, consideration of individual binding sites would not have 
substantially indicated a preference for CsrA to bind in the region. These results indicate that collective analysis 
of overlapping binding sites as pockets can suggest mRNA regions that bind CsrA. Biophysically, this represents a 
different concept in that CsrA-mRNA binding may not be strictly defined by rigid consensus sequences, as mostly 
used in the literature40,41. Instead, by capturing binding sites of differential affinities, our model suggests that CsrA 
binding may be influenced by extended sequences with weak binding affinity (as calculated by the FEM) that col-
lectively contribute to CsrA-mRNA binding. In this way, numerous weak, non-consensus sites in close proximity 
may enhance the strength of the CsrA-RNA interaction at that region by allowing CsrA many opportunities to 
bind and slide along the stretch of RNA.

Calculated ΔG of CsrA-mRNA Binding is Indicative of Relative Affinities Observed In Vivo.  Physiological rel-
evance of the model’s calculated free energy values was assessed by a series of in vivo fluorescence assays. As 
a proxy for measuring CsrA-mRNA binding affinity, we measured extent of CsrA-mRNA regulation using a 
variation of the fluorescent translational reporter assay. Here, fluorescent expression of a 5′ UTR-GFP reporter 
is measured in the presence of varying CsrA expression levels, induced by a series of plasmids with varying RBS 
strength (Supplementary Methods) (Fig. 6A,B). Testing three representative targets, glgC, aidB, and maeB, reveals 
that CsrA shows increased regulation of glgC, relative to maeB and aidB (Fig. 6C). This is in agreement with the 
model’s predicted relative binding affinities: glgC has the lowest ΔGCsrA:mRNA as compared to the other targets 
(Table 3). This variation of the fluorescent translational reporter assay was also used to test a versions of the glgC 
5′ UTR with single nucleotide mutations to a footprinted binding site (Supplementary Methods) (Fig. 6D,E). 
Results are in general agreement with the FEM used in ΔGsite calculations as well as conclusions drawn in pre-
vious works18. Most importantly, these results collectively support the relevance of predicted free energies, both 
ΔGmRNA:CsrA and ΔGsite, to observable differences in in vivo CsrA-mRNA binding and regulation at consensus or 
near-consensus sites.

Predicted CsrA-Bound mRNA Conformations Highlight Molecular mRNA Features Expected to 
Contribute to Regulation.  To obtain insights into predicted molecular features of CsrA-mRNA interac-
tions at a large scale, we analyzed modeling results obtained for the pool of 66 targets well captured by the canon-
ical biophysical model. Importantly, we make three major observations that provide insights as to how different 
molecular features of mRNAs impact CsrA binding and regulation. First, we observe the frequent identification of 
CsrA binding sites within the Shine-Dalgarno region of the mRNAs: 61% of the 66 mRNA targets contain at least 
one predicted CsrA binding site overlapping the Shine-Dalgarno region (5–15 nucleotides upstream of the start 
codon) in their most-likely CsrA-bound conformation (Supplementary Table S3). Notably, 24% of the 66 mRNAs 
contain a predicted binding site that overlaps its start codon by at least one nucleotide; 14% of the 66 mRNAs 
fit both criteria (i.e., paired sites that overlap both the Shine-Dalgarno and the start codon are predicted in the 
most-likely CsrA-bound conformation). The remaining 29% of the 66 mRNAs contain predicted binding sites 
in other portions of the 5′ UTR in their most-likely bound conformations. The high frequency of binding to the 
Sine-Dalgarno is expected, given the similarity of the CsrA consensus sequence to the Shine-Dalgarno consensus 
sequence. While start codons have been identified as a major CsrA binding location in Salmonella3, they have 
only recently been implicated in a CsrA-mRNA interaction in E. coli39.

5′ UTR
ΔGmRNA:CsrA (RT) (most 
likely conformation)

Ensemble Average 
ΔGmRNA:CsrA (RT)

glgC −24.77 −21.38

maeB −23.06 −19.35

aidB −19.51 −16.66

Table 3.  Model-calculated free energies of CsrA-mRNA binding, where the ensemble includes the 15 most 
likely CsrA-bound mRNA conformations.

Total
Large Structural 
Change (ΔG ≥ 3 RT)

Strong Inter-site 
Cooperativity 
(ΔG ≤ −4 RT)

All Conformations 990 258 518

Conformations with 2 High Affinity Sites 75 49a 25b

Conformations with 1 High Affinity Site 539 151c 286d

Table 4.  Frequency of types of CsrA-mRNA binding predicted across ensembles. aHypergeometric test relative 
to condition in all conformations. P-value = 8 E-14, significantly enriched (P-value < 0.01); bHypergeometric 
test P-value = 3 E-4, significantly depleted (P-value < 0.01); cHypergeometric test P-value = 2 E-2, not 
significant (P-value ≥ 0.01); dHypergeometric test P-value = 4 E-2, not significant (P-value ≥ 0.01).
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Second, we observed that the model identifies two high affinity binding sites (ANGGN sequences) for binding 
of a CsrA homodimer in only 13 (20%) of the 66 mRNAs’ most-likely CsrA-bound conformations. Instead, 38 
members (58%) present a single high affinity binding site and 15 mRNAs (23%) present no high affinity binding 
sites (Supplementary Table S3). Given the importance placed on sequence of CsrA binding sites in the literature, 
the apparent preference towards a single high affinity binding site was unexpected. Counting the number of 
unique high affinity binding sites identified throughout mRNAs’ ensembles of CsrA-bound conformations reveals 
that this pattern is not due to a lack of ANGGN sites. 24 (~63%) of the 38 mRNA with a single high affinity site in 
their most-likely conformation have at least two unique high affinity sites in the modeled sequence that could be 
identified as a pair (Supplementary Table S3). This suggests that CsrA dimers may preferentially recognize (but 
not always) two binding sites of varying affinity (i.e. one high, one low), even in the presence of multiple possible 
high affinity binding sites along the target.

A third observation we made is that 46 mRNAs (70% of the 66 well-captured mRNA) are predicted to 
have strong cooperativity (ΔGCooperativity ≤ −4.0 RT, <25 nt apart) between the identified binding sites in their 
most-likely CsrA-bound conformation, while only 16 (24%) are predicted to have large structural changes 
(ΔΔGStructure ≥ 3.0 RT) (Supplementary Table S3). Considered alongside our second observation, these results 
suggest that many mRNAs display a single high affinity site in its most-likely CsrA-bound conformation to (i) 
minimize free energy changes from structural unfolding and (ii) maximize free energy changes from inter-site 
cooperativity. Table 4 quantifies this pattern for the 15 lowest-energy CsrA-bound ensemble conformations of 
each of the 66 well-captured mRNA. CsrA-bound mRNA conformations that present two high affinity ANGGN 
sequences are significantly depleted for strong inter-site cooperativity and enriched in large structural changes 
(P-value < 0.01 by hypergeometric test). It should be noted that seven mRNAs present most-likely CsrA-bound 
conformations that are exceptions to this pattern: hfq, pgaA, relA, dgcZ, deoD, tnaA, and yfgM. These targets 
exhibit two high affinity ANGGN sequences that are a short length apart (strong cooperativity) and require min-
imal unfolding of mRNA structure to be bound.

Patterns in Predicted Binding Site Pockets Suggest Flexibility in CsrA-mRNA Recognition.  We 
next analyzed in detail the fifteen most-likely CsrA-bound conformations predicted for each of the 66 mRNAs 
captured by the canonical model. Specifically, we looked to determine mRNAs in which CsrA binding could 
be influenced by extended sequences of weak binding affinity that may collectively contribute to CsrA-mRNA 
binding as calculated for glgC, sdiA, and hfq above. This was executed by identifying and analyzing pockets of 
predicted binding sites in each mRNA (Supplementary Table S3) and mapping predicted free energy terms across 
their most-likely fifteen CsrA-bound conformations (Supplementary Fig. S2). We counted pockets with 7–10 
predicted non-consensus binding sites (i.e., not ANGGN sequences) as potential extended regions of low affinity 
CsrA interactions given that this number of overlapping weak binding sites was predicted in glgC, sdiA and hfq. 
Importantly, 17 of the 66 mRNA well-captured by the canonical biophysical model (26%) contain a pocket of 
7–10 predicted non-consensus binding sites; we propose that these extended regions of low affinity may collec-
tively contribute to CsrA binding and regulation. Some mRNAs in this category, like rseA, sucC and sdhA, contain 
predicted extended sequences of weak CsrA binding affinity in addition to predicted high affinity binding sites 
(Fig. 7A–C). Overall, the analysis suggests that a model where CsrA does not always immediately recognize the 
highest affinity binding site(s) within an mRNA, but sometimes recognizes extended sequences of lower affinity 
that collectively contribute to binding and regulation, may be relevant to a portion of modeled targets beyond the 
examples of glgC, sdiA, and hfq (Fig. 4). We term this conceptual model as “flexible” CsrA-mRNA binding and 
propose that mRNAs exhibiting one or more low frequency pockets of binding sites may be regulated in part by 
such a mechanism.

This interpretation is especially interesting for the clpB mRNA, in which only extended sequences of weak 
CsrA binding affinity are predicted (i.e., no ANGGNs are identified) (Fig. 7D). Perhaps an ability of CsrA to 
recognize and bind multiple weak sites in the absence of a strong one may contribute to the observed scope and 
diversity among CsrA targets. These results suggest that predicted pockets of overlapping low affinity binding sites 
may be useful for identifying non-traditional CsrA-mRNA binding sites within mRNAs of known CsrA regula-
tion that contribute to flexible binding and regulation.

Analysis of Remaining Modeled mRNA Targets.  To elucidate potential molecular diversity within 
the CsrA targets modeled, we extended our binding site pocket analysis to the 41 mRNAs (out of 107 known 
to be regulated by CsrA) for which the canonical biophysical model did not correctly predict the mode 
of regulation. It was expected that predicted binding sites in these targets could still provide insight into 
CsrA-mRNA interactions because differences between model-predicted and experimental regulation could 
arise (i) within the translation initiation rate prediction step (as for flhD) or (ii) via CsrA regulating trans-
lation by destabilizing the transcript20, a mechanism of CsrA regulation beyond the scope of the canoni-
cal biophysical model. Among their most-likely CsrA-bound conformations, the most notable difference 
between these 41 mRNAs and the 66 for which the model correctly predicted regulation is the relative deple-
tion of pairs of high affinity ANGGN binding sites in the top conformations of the incorrectly predicted 
mRNAs. Additionally, 44% (18 of 41) of these mRNAs yield a pocket of 7–10 predicted, non-consensus CsrA 
binding sites, suggestive of an extended non-traditional binding site that may contribute to flexible binding 
and regulation (Supplementary Table S3 and Supplementary Fig. S2).

Lastly, we analyzed model results for 129 mRNAs that are suspected to be regulated by CsrA (Supplementary 
Table S3 and Supplementary Fig. S2). The majority of this pool (78 mRNAs) did not show regulation in our fluo-
rescent translational reporter assays (presumed due to improper expression of GFP) while the others fluoresced, 
but an impact of CsrA on translation could not be determined (46 mRNAs) or were not tested (5 mRNAs). 
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Analysis of predicted binding site pockets in these 5′ UTRs (Supplementary Table S3) presents excellent starting 
points for designing mutations in likely binding sites for testing CsrA regulation (and elimination thereof) in 
alternative assays.

Figure 7.  Patterns of binding site frequency within pockets suggest probable strong and weak in vivo 
CsrA-mRNA binding sites. (A, left panel) Free energy terms calculated for the most-likely fifteen members 
of the ensemble of CsrA-bound rseA conformations. Data labels mark the Boltzmann probability of each 
conformation, scaled such that the total probability of the fifteen most-likely conformations is one hundred 
percent. Total scaled Boltzmann probabilities of the repressed, not impacted, or activated conformations are 
noted, as well as the most-likely regulatory outcome as “rseA- Repressed”. Regulation observed in fluorescent 
translational reporter assay is noted in parentheses as “Repressed in experiment”. (A, right panel) Distribution 
of binding sites (by location) predicted in rseA. Gray panels highlight pockets of binding sites. Seven pockets 
are identified, one of which, pocket 4, contains 7–10 non-consensus low affinity predicted binding sites. (B) 
5 pockets, one of extended low CsrA affinity are predicted for sucC. (C) 7 pockets, one of extended low CsrA 
affinity, are predicted for sdhA. (D) 6 pockets, two of extended low CsrA affinity are predicted for clpB in the 
absence of any high affinity binding sites.
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Discussion
In this work, we developed a biophysical model of canonical CsrA binding and regulation to investigate how 
the molecular features of a target mRNA can influence its regulation (Figs 1 and 2). We considered a set of 107 
mRNAs known to be regulated by CsrA (Tables 1 and S1 and Fig. 3) and 129 mRNAs suspected to interact with 
CsrA (Supplementary Table S1). After establishing that the model correctly predicted the regulatory modes of 
66 of 107 mRNA targets with known CsrA regulation (Table 2), we demonstrated the ability of the model to (i) 
correctly predict CsrA binding site locations across a range of binding affinities (Figs 4 and 5). Importantly, when 
examining ensembles of CsrA-mRNA complexes collectively, the model can differentiate between rigidly defined 
binding pockets with a single high affinity site and loosely defined low affinity binding pockets containing several 
overlapping sites (Fig. 7 and Supplementary Fig. S2). In Supplementary Table S3, we include all model calcula-
tions, including the locations of potential weak, non-consensus sequence CsrA-mRNA interactions across all 236 
mRNAs considered in this study.

For a fraction of the 107 mRNA known to be regulated by CsrA, the model either does not clearly predict a 
single regulatory outcome (22 mRNAs) or clearly predicts a wrong regulatory outcome (19 mRNAs) across the 
most-likely fifteen members of their ensemble of CsrA-bound conformations (Table 1). Given that the biophysi-
cal model was built from our current understanding of CsrA-mRNA regulatory mechanisms, these CsrA targets 
offer opportunities to explore unusual or as-of-yet unknown CsrA regulatory mechanisms. Specifically, we were 
inspired by a recent study of the CsrA-iraD mRNA interaction45 to look for mRNAs that could be repressed indi-
rectly via a translational coupling mechanism. Here, CsrA indirectly represses iraD translation by binding and 
repressing translation of the idlP open reading frame, which is located in the same operon and within the 5′ UTR 
of iraD (as defined by iraD’s annotated promoters). The canonical biophysical model does predict a CsrA binding 
site in the Shine-Dalgarno region of idlP (which also overlaps an in vitro CsrA footprint45), but it does not predict 
repression because translational coupling and thus potential co-regulation between coding sequences is not cur-
rently accounted for (Supplementary Table S3). The evgA mRNA, a well-characterized CsrA target not captured 
by the model, presents a similar case of potentially complex CsrA interaction and regulation that falls outside the 
canonical model. Employing the RBS Calculator indicates that the translation rates of two upstream start codons 
are substantial compared to the translation rate of the annotated evgA start codon (Fig. 8). Furthermore, the first 
upstream start codon reveals an open reading frame (ORFA in Fig. 8) that contains a stop codon overlapping with 
the annotated evgA start codon (5′-ATGA-3′). The biophysical model identifies a predicted binding site within 
the SD of ORFA, but predicts this conformation to inconsistently impact evgA translation. Importantly, features 
exhibited by the evgA mRNA are commonly associated with the ribosome re-initiation mode of translational 
coupling49, a mechanistic feature not currently accounted for in the biophysical model. Biophysical models of 
translational coupling have previously been developed49, and could be leveraged in the future to further extend 
and improve the model predictions here. We anticipate that further investigation of all 41 mRNAs whose regula-
tion is not well-predicted by the canonical biophysical model will uncover similar insights into poorly understood 
CsrA-mRNA regulatory mechanisms.

Figure 8.  The evgA mRNA demonstrates potential co-translational repression mechanism. Two upstream open 
reading frames are present in the 5′ UTR of evgA, both of which are predicted to be translated more quickly 
than the evgA start codon by the RBS calculator (default parameters). The stop codon of ORFA overlaps with 
the start codon of evgA, a signature of co-translation. Notably, CsrA is predicted to bind the Shine-Dalgarno 
region of ORFA, rather than the shine-Dalgarno of evgA. While these conformations are predicted to not impact 
or activate translation, CsrA binding here likely represses evgA co-translationally with ORFA, a mechanism not 
incorporated into design of the biophysical model.
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More broadly, our results suggest that CsrA participates in more flexible binding interactions than previously 
discussed in the literature. The presence of many low affinity CsrA binding sites nearby a single high affinity 
site suggests that CsrA may be initially recruited to mRNAs at one of the low affinity sites, followed by sliding 
into a high affinity site, which often appear within Shine-Dalgarno sequences with a clear regulatory outcome. 
Analogously, transcription factors have been proposed to hop or slide across low-specificity DNA sites to accel-
erate their search for high affinity sites50,51. Similarly, RNA-binding proteins like CsrA may utilize similar mech-
anisms of facilitated diffusion to accelerate their search for consensus, high affinity sites, which become all the 
more important as mRNAs are more well-mixed inside the cytoplasm, compared to genomic DNA.

This perspective adds an interesting biophysical possibility for mRNA in which CsrA-bound conformations 
in the ensemble lead to different types of regulation, where multiple modes of binding (using different bind-
ing site combinations) could lead to opposing regulatory outcomes. In this sense, it is possible that the specific 
CsrA-mRNA binding modes that take place in vivo are biased by additional factors, such as other regulators, small 
molecules, or environmental stresses, shifting the preference of one regulatory outcome or the other. For instance, 
CsrA-bound conformations 1–5 and 7–10 identified in the rseA mRNA are predicted to repress translation, while 
CsrA-bound conformations 6, 11–13, and 15 are predicted to activate translation (Fig. 7A). Although the con-
formations that lead to activation represent an energetic minority (21%) considering only CsrA-mRNA interac-
tions, it is possible that the binding of other RNA-binding proteins or small molecules may increase the chance 
that CsrA visits these conformations, activating translation of rseA. Dual regulatory modes may also exist for the 
mRNAs iscR, nnr, and dkgA (Supplementary Fig. S2). It is therefore conceivable that translation of such mRNAs 
could be controlled by several factors hierarchically; in the absence of the external factor, CsrA may repress the 
mRNA’s translation, but in its presence, the mRNA’s translation may be activated.

Future developments in understanding CsrA binding across its broad target pool will continue to provide 
other valuable insights about CsrA regulation. One important factor to consider about the model described in 
this work is that it was derived from thermodynamic first principles and parameterization using only canonical 
CsrA binding sites17,18,52. The fact that the model has accuracy with only a minimal amount of input suggests 
that similar models of regulators could be generated and analyzed in a comparable manner. We envision that the 
model principles described here may be valuable for other systems of protein-based mRNA translation control, 
such as the trp RNA-binding attenuation protein (TRAP) of B. subtilis53,54. More broadly, the concept of thermo-
dynamic models elucidating affinity-based target hierarchies is readily extendable to other types of regulators, 
including those involved in transcriptional control where target hierarchies have already been experimentally 
implicated55–57. Overall, we anticipate that this work will provide a generalizable strategy as a starting point to 
model post-transcriptional regulation in a variety of contexts.

Materials and Methods
Development of Model.  Identifying Potential CsrA Binding Sites.  Given an arbitrary mRNA sequence, 
the model first calculates CsrA’s binding free energy to all possible binding sites. To do this, we assign a thermo-
dynamic binding free energy to each nucleotide within a 5-nucleotide binding site, determined by converting 
the EMSA-determined binding affinities for mutated CsrA binding sites into free energy changes18. The resulting 
position-specific mono-nucleotide free energy model (FEM) is:
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All energy units are RT, which is the gas constant multiplied by system temperature. The binding free energy 
of CsrA to a 5-nucleotide site is then calculated by summing the contributions:
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Position score matrices have been used previously for the identification of CsrA targets23,43,58,59. Here, we quan-
tify changes in binding occupancy in terms of free energies to develop a more comprehensive multi-term free 
energy model that incorporates CsrA binding, inter-site cooperativity, mRNA structural changes, and regulation 
of translation rate.

Calculating Cooperative Binding Effects.  The model next quantifies the cooperative effects of a CsrA homodimer 
binding to two sites in an mRNA. Previous studies have indicated that the dimeric CsrA protein will bind to two 
adjacent sites in an mRNA, separated by 10 to 46 nucleotides17,19, with the potential for cooperative binding19–22. 
We quantify the energy of the cooperative effect of a CsrA homodimer binding two adjacent sites, denoted by 
ΔGcooperativity, in terms of the inter-site distance d, according to the following formulas:

≤ ≤ Δ = . − + . − − .For 10 d 55, G 0 001(d 5) 0 05(d 5) 5 0 RT units (3)cooperativity
2

< Δ =For d 10, Steric penalty of G 20 RT units (4)cooperativity
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Here, if the inter-site distance is too small, then two adjacent sites will sterically clash, resulting in a large, repul-
sive free energy contribution. If the inter-site distance is 10 nucleotides, the cooperative interaction is strong-
est (ΔGcooperativity = −4.725 RT). The strength of the cooperative interaction is then proposed to decrease as the 
inter-site distance increases, reaching zero at 55 nucleotides. These formula fit previous observations of coopera-
tive CsrA binding across relatively long inter-site distances17.

Calculating CsrA-induced mRNA Structural Changes.  When CsrA binds to an mRNA, it has the potential to 
induce changes in the mRNA’s structure. When these changes take place nearby the start codon of a protein cod-
ing sequence, it can alter the ribosome’s ability to bind the mRNA and initiate translation, changing the mRNA’s 
translation rate. To determine where and when this takes place, we determine the free energy needed to remodel 
the mRNA’s structure by calculating the difference in mRNA folding free energy with and without accessible CsrA 
binding sites (ΔG§ versus ΔGunbound mRNA). We perform these calculations for each unique pair of the identified 
CsrA binding sites. For a pair of sites, we first calculate the most stable mRNA structure in the absence of CsrA, 
using ViennaRNA’s dynamic programming algorithm48 and the Turner 1999 RNA free energy parameters60. The 
default temperature of 37 °C is used. Dangling nucleotide energies are not used. We then repeat the same calcula-
tion with the addition of a structural constraint that prevents the two 5-nucleotide CsrA binding sites from partic-
ipating in any mRNA structure. The CsrA binding sites in the resulting mRNA structure must be single-stranded, 
but they can be located anywhere within the mRNA, including within a hairpin loop. We then take the difference 
between these two folding free energies to determine the amount of energy needed to induce this structural 
change, which must be positive:

ΔΔ = Δ − Δ§G G G (5)unfold unbound mRNA

An Overall Free Energy Model for CsrA-mRNA Interactions.  Given an arbitrary mRNA sequence, we enumerate 
all possible CsrA binding sites, evaluate each free energy term, and sum them together to calculate the total free 
energy change when a CsrA homodimer binds the mRNA at two sites, according to the following formula:

Δ = Δ + Δ + Δ + ΔΔG G G G GmRNA:CsrA site1 site2 cooperativity unfold

where ΔGsite1 is the binding free energy of a CsrA to an upstream site (negative), ΔGsite2 is the binding free energy 
of a CsrA to a downstream site (negative), ΔGcooperativity is the cooperative free energy whenever CsrA is bound 
to two sites at most 55 nucleotides apart (positive or negative), and ΔΔGunfold is the free energy needed to unfold 
one or both CsrA binding sites (positive). Together, the total binding free energy (ΔGmRNA:CsrA) for a particular 
pair of sites may be positive or negative. For the mRNAs in this study, each has between 1800 to 14,000 possible 
pairs of CsrA binding sites, comprising an ensemble of possible CsrA-bound mRNA states with varying binding 
free energies. Formally, the probability of CsrA binding to one of these CsrA binding site conformations can be 
expressed in terms in a Boltzmann distribution:
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where α is a particular CsrA-bound mRNA conformation and ΔGCsrA:mRNA,α is the total free energy change in 
that conformation. M is the total number of possible CsrA-bound mRNA conformations for a particular mRNA 
sequence.

Predicting CsrA-induced Translation Regulation.  When CsrA binds an mRNA and induces structural changes, 
the mRNA’s translation initiation rate can increase or decrease, depending on where the CsrA binding site is 
located and the structures that form after CsrA is bound. To predict these effects, we calculate the ribosome’s 
binding free energy to mRNAs that are either unbound or bound twice by a CsrA protein, employing a previously 
developed free energy model, called the RBS Calculator34,35. For a free mRNA without CsrA bound, the RBS 
Calculator’s free energy model has the following five terms:

Δ = Δ + Δ + Δ + Δ − ΔG G G G G G( ) (7)total,free mRNA:rRNA start spacing standby unboundmRNA

where the first four terms quantify the free energy of the ribosome-mRNA complex in its final state, and the last term 
quantifies the folding free energy of the mRNA by itself in the initial state. The ΔGtotal,free calculation is performed by 
identifying the most stable initial and final states with their lowest respective free energies, and then computing their 
difference in free energy. The mRNA’s translation initiation rate r is then determined according to:

β∝ − Δr exp( G ) (8)free total,free

where β is an empirically measured Boltzmann constant for E. coli (β = 0.45 mol/kcal)37,61.
When a CsrA protein binds to an mRNA, the ΔGmRNA:rRNA and ΔGstandby terms will change whenever there is 

a CsrA-induced mRNA structural change that overlaps with an upstream standby site or the ribosome’s footprint, 
which includes the Shine-Dalgarno sequence, the start codon, and the first 13 nucleotides of the protein coding 
sequence62. For any change in mRNA structure, we recalculate these free energy model terms to determine the 
change in the ribosome’s binding free energy, ΔGtotal,CsrA, and the corresponding change in the mRNA’s transla-
tion rate, rCsrA, using the free energy model:
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Δ = Δ + Δ + Δ + Δ − ΔG ( G G G G ) G (9)total,CsrA mRNA:CsrA:rRNA start spacing standby:CsrA mRNA:CsrA

Calculating the free energy terms ΔGmRNA:CsrA:rRNA and ΔGstandby:CsrA follows the same procedure as for a free 
mRNA, except with two structural constraints: first, the mRNA region overlapping with the ribosomal footprint 
may neither have a bound CsrA nor a folded inhibitory mRNA structure, and second, a CsrA-bound site outside the 
ribosomal footprint must be single-stranded. In this way, if CsrA is predicted to bind to a site overlapping the riboso-
mal footprint, the energy required to remove bound CsrA is included in ΔGmRNA:CsrA:rRNA. Calculating ΔGmRNA:CsrA 
is as described in the previous section. Importantly, an mRNA will often contain thousands of potential pairs of 
sites where CsrA can bind; each CsrA-bound mRNA conformation can have different ΔGmRNA:CsrA free energies. In 
practice, we consider the most probable 15 double-site CsrA-bound mRNA conformations, i.e., those with the most 
negative ΔGCsrA:mRNA free energies, and apply the RBS Calculator’s free energy model to calculate their respective 
translation initiation rates. For each of these ith conformations, we calculate their translation initiation rates using:

β∝ − Δr exp( G ) (10)CsrA i, total,CsrA,i

Finally, for each ith CsrA-bound mRNA conformation, we determine whether the mRNA’s translation rate was 
activated or repressed by calculating the ratio:

=R r r/ (11)i CsrA ifree ,

Metric for evaluating predictions of CsrA targets.  We label each CsrA-bound mRNA conformation’s translation 
rate as “repressed” if Ri > 1.2, as “activated” if Ri < 0.8, and as “not impacted” otherwise. We then determine 
the most likely mode of translation regulation by comparing the 15 conformations’ calculated ΔGCsrA:mRNA free 
energies and ensuring that the most frequent states, energetically weighted, all had the same regulatory label. If 
predictions yielded CsrA-bound conformations with different regulatory labels with approximately equal fre-
quency, then the mRNA was labeled as having a “heterogeneous” mode of translation regulation. Specifically, we 
summed the probabilities (p(α), defined above) of all of the repressed, activated or not impacted CsrA-bound 
conformations of an mRNA; the most likely mode of regulation was taken to represent the ensemble only if it was 
at least 1.8-fold more likely than the other two possible types of regulation (threshold determined from inspection 
of classical CsrA target model results). This qualitative analysis is valid across a wide range of CsrA concentrations 
inside the cell. Using an ensemble-based collective regulation prediction allows us to account more thoroughly for 
mRNAs with multiple pairs of equally likely CsrA binding sites. However, a higher-energy conformation within 
an mRNA’s most likely 15 CsrA-bound conformations may only be occupied in in vivo under conditions of excess 
CsrA and after the more likely bind site pairs are bound. By weighting regulation predictions with Boltzmann 
distribution-derived probabilities we aim to account for this discrepancy while still incorporating the diversity of 
the binding sites predicted by the model within a given mRNA.

Fluorescent Translational Reporter Assay.  Fluorescent translational reporter assays were performed as 
described in the Supplementary Methods.

Titration of CsrA targets.  To test whether ΔGCsrA:mRNA was indicative of the thermodynamics of CsrA binding 
to transcripts in vivo, we constructed variants of pHL 600 that produce a range of CsrA expression (Supplementary 
Tables S5 and S6). Specifically, the RBS calculator35 was used to design RBSs with an anticipated 50-fold range of 
translation rates, including variants that were predicted to yield CsrA expression with putative levels of translation, 
as calculated by the RBS Calculator, of 2000, 1000, 800, 750, 350, and 200 AU (original plasmid, used in the fluores-
cent translational reporter assay, was 9000 AU). In order to estimate the level of CsrA produced from each plasmid in 
the uninduced condition, i.e. from promoter “leakiness”, the putative translation level of the RBS was multiplied by 
0.000645, a value of promoter expression in the undinduced condition determined in a prior work63. Additionally, the 
putative CsrA translation levels are expected to have error between 50% and 200%37.

We then paired this set of seven RBS-CsrA variants with three 5′ UTRs-GFP reporters (glgC, aidB, and maeB), 
each with 5′ UTRs predicted to (1) be repressed by CsrA, (2) have a range of ΔGCsrA:mRNA values (glgC, −24.77 
RT units; aidB, −19.53 RT units; and maeB, −23.06 RT units), and (3) contain one identified binding site of the 
most likely CsrA-bound conformation in the Shine-Dalgarno region. These 5′ UTRs were cloned into pHL 1756 
plasmids previously (Supplementary Table S5). Eight mutations to the glgC 5′ UTR-GFP reporter plasmid were 
also constructed via site directed mutagenesis (Quickchange II protocol for Agilent Technologies) to vary the 
middle three nucleotides of the footprinted non-Shine Dalgarno CsrA binding site (wild type sequence: ACGGA) 
(Supplementary Tables S5 and S6). In this way, the mutated sequences created a range of ΔGSite values. Pairing a 
single 5′ UTR-GFP reporter with the set of RBS-CsrA variants at a time, we took fluorescence measurements in 
biological triplicates as described in the fluorescent translational reporter assay section above. However, analysis 
of titration experiment data differs; in these tests, rather than comparing corresponding uninduced and induced 
conditions, a repression ratio due to CsrA was calculated for each RBS in each condition, with respect to the max-
imum average mean fluorescence of all of the samples:

= .Repression Ratio Maximum of all average mean sample fluorescences
Average mean sample fluorescence (12)

For example, in the case of glgC, the maximum of all average mean sample fluorescences corresponded to the 
average mean fluorescence of the weakest RBS-CsrA variant (200x) in the uninduced condition. In this way, 14 
repression ratios, each corresponding to a different level of CsrA expression (uninduced 200x, induced 200x, 
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uninduced 350x, induced 350x, etc.), are determined with the minimum repression ratio always equal to 1. To 
compare results of the titrated 5′ UTR-GFP reporters, the repression ratios measured for each were scaled from 0 
to 1, where 0 represents the minimum repression ratio and 1 the maximum repression ratio:

=
−

−
.Normalized Repression Ratio Repression Ratio minimum Repression Ratio

maximum Repression Ratio minimum Repression Ratio
( )

( ) (13)

Lastly, dissociation constants (Kd) for the glgC, maeB, and aidB titration datasets were approximated as a 
means to generate fits for their titration curves64. Assuming a near constant pool of each 5′ UTR-GFP reporter 
transcript, Kd can be approximated with,

θ =
+
CsrA

K CsrA
[ ]

[ ]
,

(14)d

where θ indicates the fractional extent of CsrA-5′ UTR binding (i.e. normalized repression ratio) and [CsrA] 
indicates CsrA expression levels (i.e. putative RBS translation levels). The R Package for Statistical Computing 
non-linear least squares equation fitting function, nls, was employed to fit each titration dataset with the above 
equation and approximate a Kd for the CsrA-5′ UTR interaction.

Data availability.  All data generated or analyzed during the current study are included in this published 
article (and its Supplementary Information files). Fluorescent translational reporter assay results analyzed in this 
work but published previously are available as Supplementary Information files at https://doi.org/10.1093/nar/
gkx048. Original scripts are available from the corresponding author upon request.
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