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Bacterial global post-transcriptional regulators execute hundreds of interactions with targets that
display varying molecular features while retaining specificity. Herein, we develop, validate, and apply
a biophysical, statistical thermodynamic model of canonical target mRNA interactions with the CsrA
global post-transcriptional regulator to understand the molecular features that contribute to target
regulation. Altogether, we model interactions of CsrA with a pool of 236 mRNA: 107 are experimentally
regulated by CsrA and 129 are suspected interaction partners. Guided by current understanding of CsrA-
mRNA interactions, we incorporate (i) mMRNA nucleotide sequence, (ii) cooperativity of CsrA-mRNA
binding, and (iii) minimization of mRNA structural changes to identify an ensemble of likely binding

. sites and their free energies. The regulatory impact of bound CsrA on mRNA translation is determined

. with the RBS calculator. Predicted regulation of 66 experimentally regulated mRNAs adheres to the

. principles of canonical CsrA-mRNA interactions; the remainder implies that other, diverse mechanisms
may underlie CsrA-mRNA interaction and regulation. Importantly, results suggest that this global
regulator may bind targets in multiple conformations, via flexible stretches of overlapping predicted
binding sites. This novel observation expands the notion that CsrA always binds to its targets at specific
consensus sequences.

. Large-scale omics techniques have been applied with increasing frequency to the study of bacterial
: post-transcriptional global regulators (e.g., E. coli Hfq, ProQ, and CsrA), aiming to elucidate the scope of their
© targets and regulatory effects!~®. Results have established that these global regulators can act upon over hundreds
of targets. For example, the Hfq global regulator has been implicated as a chaperone for nearly all characterized
. small RNA (sRNA)-messenger RNA (mRNA) interactions in E. coli’®. Hfq-RNA interactions are characterized
© by Hfq binding U-rich sequences in the 3/ portions of sSRNAs*>*"!! and A-rich sequences in the 5’ untranslated
- regions (UTRs) of mRNAs*!?!3. These motifs are considered specific to the proximal and distal binding faces,
respectively, of the Hfq hexamer'>!*. However, interaction-specific variation is observed, in which sRNAs contact
© both faces, like ChiX and McaS'>'¢, The impact of such variation in binding on target control and network regu-
* lation is still unfolding.
: For the case of CsrA, approximately 800 mRNA have been identified across multiple environmental condi-
: tions as potentially interacting with CsrA*®: this total approaches 20% of the E. coli genome. Generally, the CsrA
: homodimer binds a target mRNA at two copies'” of a consensus sequence (ANGGA)', preferentially located in
* theloop of a hairpin structure'®!°. However substantial variation in these traits is observed. For example, among
. the 31 classical and well-characterized targets of CsrA (defined in Table 1), mRNAs like pgaA may hold to the
general pattern®, but clpB, dps, patA, and purM do not present the consensus ANGGA binding motif®. Similarly,
hfq and ycdT present only a single copy of the consensus sequence?*-?* and cstA*! presents footprinted binding
sites outside of the typical stem loop structures that have been shown favorable to CsrA binding.
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Classical Yes Yes Yes Multiple Studies?®?!:23253942-47 10 8
Well-characterized | No Yes Yes Multiple Studies®®** 21 13
Sequence-Search model***! 30 23
. Multi-Omics study® 28 17
Functional No No Yes
Co-IP?, HITS-CLIP®, or mRNA 18 5
stability* study
Total 107 66

Table 1. mRNAs experimentally regulated by CsrA.

(i) NT
sequence

. (iv) Ribosome
binding interference l

Regulation of
mRNA translation

(iii) mRNA structure change

Figure 1. Biophysical considerations for modeling the CsrA post-transcriptional regulator. (A) The CsrA
protein regulator binds mRNA, preferentially with a stoichiometry of one CsrA homodimer to two binding sites
within an mRNA. (B) Zooming in on the CsrA-mRNA interaction highlights the biophysical factors that affect
it. CsrA preferentially binds (i) ANGGA nucleotide sequences (ii) spaced approximately 10-55 nucleotides
apart to support cooperative dual-site binding. The (iii) structure of the mRNA determines how accessible these
sequences may be and the energetic cost of CsrA-mRNA binding. Lastly, CsrA bound to the mRNA may (iv)
interfere with ribosome binding to regulate mRNA translation.

The question thus arises of how post-transcriptional global regulators execute hundreds of interactions with
targets of variable sequence and structural features while retaining specificity. Although mutation followed by
biochemical footprinting, gel shift, and reporter assays are typically used to assess how such features may con-
tribute to regulator-target interactions**=?’, these are low throughput. For this reason, omics techniques and, in
particular, co-immunoprecipitation studies have proven helpful for establishing pools of a post-transcriptional
regulator’s potential targets>>?®. These studies, however, cannot assess how specific molecular features of a target
mRNA may influence its recognition and control by the regulator.

Thermodynamic modeling approaches offer higher-throughput opportunities to test the impact of specific
molecular features hypothesized to be important on regulator-target interactions. For instance, thermody-
namic models have been used to characterize the energetics of single post-transcriptional regulator-target, e.g.,
sRNA-mRNA, interactions and predict energetically likely mRNA targets from bacterial genomes?. These models
have also begun to incorporate estimation of a regulator’s effect on RNA target expression®**-*? and to predict local
RNA accessibility patterns that indicate potential areas for RNA interactions®. Recent advances in thermody-
namic modeling of translation initiation**-*” have further expanded the ability to calculate a regulator’s impact on
the expression of its mRNA targets by bridging molecular interactions with cellular translation.

In this work, we develop, validate, and apply a biophysical, statistical thermodynamic model of CsrA-mRNA
targets to investigate how the molecular features of a target mRNA may impact its binding and regulation by CsrA.
We employ the E. coli CsrA protein (Fig. 1A) as a model post-transcriptional regulator given that its binding and
regulation of several mRNA targets has been well-characterized. Moreover, we investigate this system because,
as described above, its well-characterized mRNA targets demonstrate variance in the sequence and structural
features typically considered as hallmarks of CsrA regulatory interactions. This experimentally-demonstrated
flexibility in mRNA recognition!'”'>38 raises questions as to how molecular diversity of target interactions could
enable diverse control schemes to support the large proposed scope and known complexity of the CsrA target
network?>.

Previous models of CsrA-mRNA interactions have focused on genome-wide identification of potential
mRNAs bound by CsrA with variations of the ANGGA consensus binding site sequence!®#4!. Specifically, work
by McKee et al. identified E. coli genes with a [A/C/U]JA[A/G/U]GGA[A/G/U][A/C/U] version of the CsrA bind-
ing motif within a 22 nucleotide window upstream of their translation start site*’. Similarly, Kulkarni et al. pub-
lished an algorithm that identified genes containing an A(N)GGA sequence (where N is any or a gap nucleotide)
in a window 30 nucleotides upstream to 5 nucleotides downstream of their translation start sites. Additionally, the
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number and spacing of total available A(N)GGA-like binding sites were considered. It was required that within
a window from its transcription start site to the 30th nucleotide of coding sequence, the gene must include at
least 3 total A(N)GGA sequences within 10-60 nucleotides of each other or 2A(N)GGA sequences, each with a
degenerate GGA-like sequence within a 10 nucleotide distance*!.

Given the detailed, mechanistic characterizations of several CsrA-mRNA interactions, termed “classical” tar-
gets?021:2325:3942-47 (defined in Table 1), and the recent expansion of the well-characterized CsrA mRNA target
repertoire>®, we expand the previous sequence-based approaches to build a model with greater molecular-level
resolution. Specifically, we build a model of canonical CsrA-mRNA binding and regulation by incorporating the
biophysical factors characteristic of these known regulatory interactions: mRNA nucleotide sequence'®, poten-
tial cooperativity of two-site binding'”®, and minimization of mRNA structural changes. We use these factors
to identify and estimate the free energies of an ensemble of CsrA-bound conformations of an mRNA of interest
(Fig. 1B, part i-iii). Importantly, these calculations are performed in the context of translation initiation rate cal-
culations*** to capture the impact of bound CsrA on translation of the mRNA (Fig. 1B, part iv). In this way, our
model is able to capture mRNAs expected to be activated, bound but not regulated, or repressed by CsrA binding
outside of the Shine-Dalgarno region. Moreover, the current approach enables observation of the effects molec-
ular variations in mRNA features can have on CsrA-mRNA regulation; these variations include mRNA structure
and the number, location, spacing, and sequence of potential binding sites.

We employ this model to assess in detail molecular traits that contribute to CsrA regulation of
experimentally-verified CsrA-regulated mRNAs that can be described by the canonical model. For this pur-
pose, we analyze probable CsrA-target interactions captured within ensembles of CsrA-bound target conforma-
tions. Specifically, we model 236 mRNA: 107 are experimentally-confirmed CsrA-regulated mRNAs (includes
the 31 classical and well-characterized targets) that are either repressed or activated in the presence of CsrA
(Supplementary Table S1). We conduct detailed molecular analysis of resulting ensembles of CsrA-bound con-
formations for 66 of these mRNA targets given that their regulation is well-captured by our canonical biophysical
model. The model is also applied to 129 mRNAs for which regulation by CsrA is suspected based on results of an
integrated omics analysis of the Csr system® or prior literature evidence (summarized in Supplementary Table S1),
but has not been experimentally confirmed. Importantly, results suggest that CsrA may bind targets in multiple
conformations, allowing use of flexible “binding pockets” that contain a continuous stretch of potential binding
sites; this is a novel observation that expands the notion that CsrA always binds to its targets rigidly at a specific
five-nucleotide consensus sequence. As such, this work provides insights into molecular features that can be
important in understanding ways by which a global post-transcriptional regulator can bind and affect a large pool
of cellular mRNAs.

Results

Biophysics of CsrA-mRNA Interactions Guide Canonical Model of CsrA Binding and
Regulation. To develop a thermodynamic model of CsrA-mRNA interaction, we considered four biophysi-
cal factors understood to govern CsrA binding and regulation, as inferred from studies of classical mRNA targets:
consensus sequence (the best-studied aspect of CsrA-mRNA binding), cooperativity, structural change, and ribo-
some binding ability (Fig. 1B). As such, we term it the “canonical biophysical model”. With respect to nucleotide
sequence, we identified plausible five-nucleotide CsrA binding sites in an mRNA of interest based on sequence
similarity to the optimal AAGGA binding site sequence previously identified experimentally'”!%. To do this quan-
titatively, we derived and employed a position-specific mono-nucleotide free energy model (FEM) that quantifies
the energetic contribution of each nucleotide of a five-nucleotide sequence to CsrA-mRNA binding (Fig. 2A)
(Methods). Thus the likelihood of CsrA binding to a five-nucleotide sequence, quantified as AGy,, is the sum of
the energetic contributions of each nucleotide. Five-nucleotide sequences with AGy,, < 0 are identified as poten-
tial CsrA binding sites.

To address cooperativity in CsrA binding, we quantified the likelihood of two sites within an mRNA being
bound by a single CsrA homodimer after identifying all unique pairs of identified potential binding sites. In
our model, the cooperativity term (AGqqperaivity) Creates a distance-dependent negative free energy for site pairs
spaced 10 to 55 nucleotides apart, as this distance was observed to support cooperative binding'”!? and has been
used in a prior model to represent two-site binding*' (Fig. 2B). The AG_ggperariviey term has the greatest energetic
contribution when the binding sites are 10 nucleotides apart and decreases to no contribution for sites greater
than 55 nucleotides apart (Methods).

All of the unique combinations of two potential binding sites identified in an mRNA of interest constitute an
ensemble of the possible conformations in which the CsrA can bind the mRNA at two sites. For each member of
this ensemble, we quantified the energetic cost of unfolding the mRNA structure to accommodate CsrA binding
(Fig. 2C). The change in free energy, AAG, 4> between the unbound mRNA and the mRNA bound to CsrA (as
predicted by the ViennaRNA RNA folding package®®) is determined for each member of the ensemble (Methods).

The sum of the contributions of each individual term described above results in the ability to calculate the total
free energy of CsrA-mRNA binding (AG,, gna.cea) for each CsrA-bound mRNA conformation (Fig. 2D):

AGmRNA:CsrA = AGsitel + AGsiteZ + AG(:oopera'rivity + AAGunfold (1)

In this model, each CsrA-bound mRNA conformation represents varying optimality of binding site sequence,
cooperativity, and structural unfolding. We quantified the probability of CsrA binding to the mRNA of interest in
a given conformation as the Boltzmann probability of the system existing in that particular energy state, described
by AG, rna:csra» compared to the energy states of all the other possible conformations (Methods).

To predict the effects of CsrA binding on mRNA translation, we selected the 15 most-likely (lowest energy
AGpnaccsra) CsrA-bound mRNA conformations and modeled the regulatory impact of CsrA on their translation
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Figure 2. Biophysical, statistical thermodynamic model of CsrA-mRNA interaction and impact on translation.
(A) Potential CsrA binding sites are identified within an mRNA sequence. A position weight matrix, which
quantifies the energy of CsrA binding (AGg;) to 5 nucleotide-long sequence segments, is used to identify
favorable binding sites (AGg;, < 0). (B) To account for cooperativity in CsrA binding to two sites in an mRNA,
potential CsrA binding sites are paired and AG,peranviey Calculated as a function of their distance apart. Sites
10-55 nucleotides apart are rewarded (AGqgperaivity < 0), and sites less than or equal to 9 nucleotides apart
penalized. (C) The free energy change due to CsrA binding and altering mRNA structure (AAG,;z1q > 0) is
estimated for each pair of sites. (D) The AG terms calculated in panels A-C are summed for each pair of sites
and (E) translation initiation modeled for the top 15 most energetically-favorable bound conformations to
determine CsrA-mRNA regulation.

initiation rates, the rate-limiting step of translation, using the RBS Calculator**** (Fig. 2E). We selected the top 15
conformations, as ranked by high to low Boltzman probability, because this portion represents the majority of the
most likely conformations in the distribution of possible CsrA-mRNA interactions. As a point of reference, the
15% most-likely conformation is, on average, 6.0 = 4.6 fold less likely than the most-likely bound conformation for
an mRNA. The fold change in translation for each mRNA target was calculated for each of the 15 lowest energy
CsrA-bound conformations relative to the unbound/reference state (Methods). Three possible outcomes result
from this calculation: (1) repression of translation (e.g., if CsrA binding directly or indirectly blocks the RBS or
start codon), (2) activation of translation (e.g., if CsrA binding leads to increased accessibility of the RBS or start
codon), or (3) no impact on translation (e.g., if CsrA binding does not alter translation initiation rate relative to
the unbound conformation). It is worth noting that the model-calculated fold change in translation and the type
of regulation predicted for each of the top 15 energetically-favorable CsrA-bound conformations of an mRNA
can vary in magnitude and in direction given that unique binding site pairs comprise each conformation. Overall,
the complete model has only 8 free parameters; 5 parameters quantifying CsrA’s binding affinity to mRNA sites
and 3 parameters quantifying the free energy of dimeric CsrA cooperativity. Importantly, free model parameters
were fit to experimental measurements prior to performing predictions on full-length mRNA sequences, and no
attempt was made to optimize model parameter values.

Selection of 236 CsrA-mRNA Interactions.  We identified a set of 236 mRNAs with known or suspected
CsrA interaction and/or regulation and applied the canonical biophysical model to predict how CsrA regulates
their translation rates. Specifically, 10 mRNA are classical CsrA targets whose binding sites have been footprinted
in vitro, direct binding demonstrated in vitro or in vivo, and regulation demonstrated in vivo in prior stud-
ieg?0:21:23:25:3942-47 31 mRNASs represent well-characterized CsrA targets, whose direct binding has been demon-
strated in vivo or in vitro (without footprinting data) and regulation demonstrated in vivo>>?*, Lastly, 76 mRNAs
are functional targets, as their regulation by CsrA has been shown in vivo, but their direct binding with CsrA has
not been confirmed or footprinted. These three types of CsrA targets comprise a set of 107 mRNA that are regu-
lated by CsrA experimentally (Tables 1 and S1).
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Figure 3. Fluorescent translational reporter assay determines 5’ UTRs repressed and activated in the presence
of CsrA. (A) Schematic of the fluorescent translational reporter assay. A two plasmid system, one that contains
an inducible CsrA and the other that constitutively expresses the 5 UTR of an mRNA of interest fused to

GFP, is used to determine the regulatory relationship of CsrA to the target 5 UTR. The assay compares 5/
UTR-controlled GFP fluorescence under two conditions: CsrA present (induced condition) and CsrA absent
(uninduced condition). (B) Significant down- or up-shift in fluorescence upon induction indicates CsrA
regulates the 5 UTR-GEFP reporter. (C) Bars indicate number of 5/ UTRs which display repression (downshift,
P-value < 0.1), or activation (upshift, P-value < 0.1). Bar shading indicates the study the reporter assay results
are published in: Sowa et al. (lower, light gray) (ref.”) or the current work (upper, dark gray).

The majority of the well-characterized and functional CsrA targets were previously tested for CsrA regulation
using an in vivo fluorescent translational reporter assay (Supplementary Table S1)°. This study performed an
integrated omics analysis of the Csr system in E. coli and identified mRNAs likely to be regulated by CsrA; many
were tested for CsrA regulation with the in vivo assay as follow-up. In the current work, additional mRNAs were
tested for CsrA regulation using the same fluorescent translational reporter assay (Fig. 3A,B) (Supplementary
Methods, Supplementary Table S2). It is worth acknowledging that for 23 functional targets showing activation
or repression by CsrA in the current work, this is their first specific evidence of CsrA regulation. Figure 3 C sum-
marizes results of the fluorescent translational reporter assay across both the initial (Sowa et al.)® and the current
works. A total of 91 mRNAs showed repression and 11 showed activation by CsrA. It should be noted that the
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Experi L Model-Calculated Regulation

Regulation Repression Activation No Impact | Heterogeneous Total
Repression 65 3 11 16 95
Activation 5 1 0 6 12
Total 70 4 11 22 107

Table 2. Experimentally-measured and model-calculated regulation of mRNAs.

remaining 5 mRNA targets of the 107 experimentally CsrA-regulated mRNAs are classical or well-characterized
targets extensively studied in other works?*3%454¢ (Supplementary Table S1).

The remaining 129 of the 236 modeled mRNAs were initially identified as potential CsrA-controlled mRNAs
in a prior integrated omics study®, other transcriptomics-based experimental studies**, or sequence-search
based computational studies*®*! (more detail in Supplementary Table S1). We tested the vast majority of these
mRNAs (124) for CsrA regulation by fluorescent translational reporter assay (Supplementary Table S2 or in ref.%).
However, fluorescence results of the 5 UTR-GFP constructs were inconclusive for various reasons, largely attrib-
uted to noise in the fluorescence data, inconsistencies amongst the biological replicas, or low signal indistinguish-
able from fluorescence background (Supplementary Methods). These are tabulated and regulation indicated as
undetermined in Supplementary Table S1.

Canonical Biophysical Model Captures CsrA Regulation of 66 mRNA Targets. For each of the
236 mRNAs, we extracted its 5’ untranslated region and the first 100 nucleotides of protein coding sequence,
and inputted this sequence into the canonical biophysical model to calculate: (i) the locations where CsrA binds,
(ii) the predicted CsrA-bound mRNA structures, (iii) the calculated CsrA-mRNA binding free energies for all
ensemble conformations (Supplementary Data 1), and (iv) the predicted changes in translation rate for the top
(i.e. lowest-energy) fifteen ensemble conformations (Supplementary Table S3). For analysis, we then classified
each mRNA as being repressed, activated, or not impacted by CsrA-mediated translation regulation. In most
cases, the top fifteen ensemble conformations had similar modes of translation regulation; however, when the
most probable ensemble conformations had different equally-likely regulatory modes, we classified these model
predictions as heterogeneous (Methods).

To assess model performance, we used the subset of 107 mRNAs known to be regulated by CsrA (10 clas-
sical, 21 well-characterized, and 76 functional targets) (Tables 1 and S1). Across the set of 107 mRNAs with
known experimental CsrA-mediated regulation, the canonical biophysical model correctly predicted the regu-
latory modes of 66 mRNAs: 65 of these mRNA have repressed expression, while one is activated (Table 2). It is
unsurprising that the canonical biophysical model lacks robust capability for predicting activating CsrA-mRNA
interactions given that the biophysical principles used to “train” the model represent the canonical understand-
ing of CsrA interactions with its classical targets. Only one classical target is activated by CsrA, while nine are
repressed. This pattern holds for the well-characterized targets (19 repressed and 2 activated) and in Fig. 3C; it is
also supported by the understanding that CsrA typically binds in the Shine-Dalgarno region of an mRNA, due
to similarities of the consensus CsrA binding site and Shine-Dalgarno sequences, and likely represses translation
through direct occlusion of the RBS. The model was best able to correctly classify how CsrA regulates translation
when the mRNA contained consensus or near-consensus CsrA binding sites, as in the classical and functional
targets identified by sequence search studies (Table 1). Notably here, the model’s formula for calculating AGg,
was parameterized by using binding affinity measurements to consensus CsrA sites with only single nucleotide
mutations's. Therefore, the model does not account for any non-additive energetic contributions to CsrA’s bind-
ing affinity, which could play a role when mRNAs contain non-consensus CsrA sites.

Remarkably, for the 41 mRNAs where the model incorrectly predicted regulation, regulation of 22 mRNAs
was predicted as heterogeneous: in 21 of 22 cases, regulation of at least 3 of the top 15 most-likely ensemble
conformations was correct, but predicted regulation of the ensemble was heterogeneous overall. For 14 mRNAs,
repression was missed (3 were predicted as activated and 11 as non-impacted) and for the remaining 5 mRNAs
repression was falsely predicted (experimental data showed activation) (Table 2). These results indicate that rather
than over-predicting repression, the model does not as readily capture activation mechanisms. More broadly, the
41 mRNAs not captured by the canonical biophysical model might be regulated by CsrA through mechanisms not
yet fully described in the literature. Targets for which the model does not clearly predict one regulatory outcome
(i.e. heterogeneous regulation) or predicts regulation that does not match experimental results constitute excel-
lent candidates for further exploration of potentially new mechanisms of CsrA post-transcriptional regulation.

Comparison to Prior CsrA-mRNA Interaction Models. The canonical biophysical model is unique
from prior models of CsrA-mRNA interactions in that it (i) calculates a predicted free energy of CsrA-mRNA
binding that (ii) incorporates changes in predicted mRNA structure upon CsrA binding. It also (iii) estimates a
regulatory outcome of CsrA binding on mRNA translation by calculating a change in estimated translation rate
and (iv) predicts an ensemble of potential CsrA-bound mRNA conformations and their translation rates. Previous
models focused on using consensus binding site sequences to predict high affinity interactions between CsrA and
mRNAs across the genome. Importantly, when attempting to predict whether CsrA plays a role in repressing an
mRNA’s translation rate, the canonical biophysical model’s accuracy is greater than published sequence-based
models***! (Supplementary Table $4). The difference in accuracy is mainly due to an increased number of correct
repression predictions by the canonical biophysical model (65 mRNAs) compared to the McKee and Kulkarni
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Figure 4. Model binding site predictions capture known CsrA-mRNA footprints. (A-E) Vienna-RNA
predicted structures of eight canonical CsrA-mRNA targets (unbound by CsrA). Model-identified CsrA binding
sites of the fifteen most-likely CsrA-bound conformations of each target are shown as colored outlines. Number
in parentheses adjacent to the outline indicates the number of times that particular 5-nucleotide binding site

is identified in the fifteen most-likely CsrA-bound mRNA conformations. Overlapping or adjacent mRNA
binding sites form pockets, indicated by the color of the outline. Start codon nucleotides are shown with green
fill. Nucleotides within experimentally-determined in vitro footprints are marked with red circular outlines.
Red fill wedges indicate 3’ edges of binding sites identified by in vitro 3’ boundary analyses; red-outlined
wedges indicate 3’ edges of binding sites identified by in vitro toeprint analyses. In vitro-identified binding sites,
regardless of method, are labeled from 5’ to 3/, starting with “FP 1”. In vitro binding assays were performed in,
(A) refs'”?; (B) ref.3; (C) ref.*; (D) ref.?'; and (E) ref.. (B and E) FP 3 of sdiA and FP 1 and FP 3 of hfg are
marked with an “*” to indicate weaker in vitro signals newly interpreted as binding sites. (D) Toeprint signals
within pocket 3 of cstA did not indicate a clear binding site, and thus was not labelled with an “FP”.
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Figure 5. Model binding site predictions capture known CsrA-mRNA footprints. (A-C) Vienna-RNA predicted
structures of eight canonical CsrA-mRNA targets (unbound by CsrA). Model-identified CsrA binding sites of the
fifteen most-likely CsrA-bound conformations of each target are shown as colored outlines. Number in parentheses
adjacent to the outline indicates the number of times that particular 5-nucleotide binding site is identified in

the fifteen most-likely CsrA-bound mRNA conformations. Overlapping or adjacent mRNA binding sites form
pockets, indicated by the color of the outline. Start codon nucleotides are shown with green fill. Nucleotides within
experimentally-determined in vitro footprints are marked with red circular outlines. Red fill wedges indicate 3’ edges
of binding sites identified by in vitro 3’ boundary analyses; red-outlined wedges indicate 3’ edges of binding sites
identified by in vitro toeprint analyses. In vitro-identified binding sites, regardless of method, are labeled from 5’ to 3/,
starting with “FP 1”. In vitro binding assays were performed in, (A) ref.*’; (B) ref.*>; and (C) ref?.

sequence-search approaches (17 and 40 mRNAs, respectively) (Supplementary Table S4 and Supplementary
Fig. S1). While the high stringency of the sequence-search approaches is useful for identifying potential targets
with a low false positive rate on a genome scale (and avoiding heterogeneous predictions), the greater number of
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Figure 6. Relative in vivo CsrA-mRNA affinity correlates with calculated free energies. (A) Using the RBS
calculator, multiple RBSs were designed to vary CsrA expression. These RBS-CsrA constructs were paired with
target 5’ UTR-GFP reporter plasmids to titrate expression of the reporter and (B) fluorescence was measured.
(C) Titration of glgC, maeB, and aidB 5’ UTRs. Symbols used for each RBS construct are indicated in (A).
Normalized repression (minimum and maximum repression ratios scaled linearly from 0 to 1) is plotted as
function of CsrA expression, as determined by the RBS calculator, on a log scale. Dotted lines represent fit

to titration curve (Methods). Induced 200x and 750x RBS-CsrA constructs (open diamond and pentagon
symbols, respectively) offer best resolution of differences between 5/ UTRs. 1000x and 2000x RBS constructs
produced inconsistent results and were excluded from analysis in some cases. (D) Titration, as described for
(C), of mutated glgC sequences. Induced 200x and 750x RBS-CsrA constructs offer best resolution of mutations’
effects. (E) The fluorescent translational reporter assay performed with the 200x (upper panel) and 750x (lower
panel) RBS-CsrA constructs for the wild type (ACGGA, black outlined bar) and eight mutant glgC 5" UTR-GFP
reporters. Asterisks indicate results of heteroscedastic one-tailed T-tests, comparing average fold repression
(Uninduced/Induced) of mutants to wild type glgC: *P-value < 0.05; **P-value < 0.01; ***P-value < 0.001.
(lower panel) Daggers indicate results of heteroscedastic one-tailed T-tests, comparing average fold repression
(Uninduced/Induced) of ACTGA, ACAGA, ACGAA, ACGCA and ACCGA constructs to the ACGTA mutant:
TP-value < 0.05.

repression predictions provided by the canonical biophysical model is useful for studying mRNAs expected to
be canonically regulated by CsrA and for identifying those that could be regulated by alternative mechanisms.

Validation of Model Binding Site Predictions and Free Energy Calculations. Model-identified
Binding Sites Align with Known CsrA-mRNA Footprints. ~ After establishing that the model correctly predicted
CsrA regulatory effects on 66 mRNAs, we assessed if the model captured specific experimentally-determined
CsrA-mRNA binding sites. We aimed to validate model predictions by comparing model-identified binding sites
with experimentally-determined CsrA footprints in eight classical CsrA targets: glgC, sdiA, fIhD, cstA, hfq, csrA,
nhaR, and pgaA (Figs 4 and 5). For most of the classical mnRNA targets, the model-identified binding sites of the
15 lowest-energy CsrA-bound conformations align well with at least one of the known footprints (Figs 4A-E and
5A). For this subset of classical targets (Figs 4A-E and 5A), the model identifies binding sites within one of its
known footprints at least 9 times among the top 15 ensemble conformations. It is important to note that (i) the
same binding site can be identified multiple times, as long as it is paired with a second site that makes the bind-
ing site pair unique. Additionally, it is noteworthy that (ii) binding sites identified multiple times within the 15
most-likely CsrA-bound conformations of an mRNA adhere more strictly to the ANGGA consensus sequence.
Model-predicted binding sites in the nhaR and pgaA mRNAs (Fig. 5B,C) present exceptions.

Given that overlapping binding sites are commonly identified by the model in the top fifteen CsrA-bound
conformations of the classical mRNA targets, we grouped these identified neighboring binding sites into “pock-
ets”. A pocket is defined as a set of contiguous predicted binding sites that overlap, are adjacent, or have, at max-
imum, one nucleotide between them. Importantly, analysis of predicted binding site pockets within the classical
CsrA-mRNA targets indicated that the model can capture CsrA-mRNA interactions of a wide range of in vivo
affinities. For example, just upstream of the glgC Shine-Dalgarno sequence, binding site pocket 2, which contains
7 overlapping binding sites, aligns with a weaker, non-consensus sequence CsrA-mRNA binding site!” (FP 3 in
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AGrya:csra (RT) (most Ensemble Average
5/UTR | likely conformation) AG,pnaccsra (RT)
glgC —24.77 —21.38
maeB —23.06 —19.35
aidB —19.51 —16.66

Table 3. Model-calculated free energies of CsrA-mRNA binding, where the ensemble includes the 15 most
likely CsrA-bound mRNA conformations.

Strong Inter-site
Large Structural Cooperativity
Total | Change (AG>3RT) | (AG< —4RT)
All Conformations 990 258 518
Conformations with 2 High Affinity Sites | 75 492 25°
Conformations with 1 High Affinity Site 539 151°¢ 286¢

Table 4. Frequency of types of CsrA-mRNA binding predicted across ensembles. *Hypergeometric test relative
to condition in all conformations. P-value = 8 E-14, significantly enriched (P-value < 0.01); "Hypergeometric
test P-value = 3 E-4, significantly depleted (P-value < 0.01); “Hypergeometric test P-value =2 E-2, not
significant (P-value >0.01); “Hypergeometric test P-value =4 E-2, not significant (P-value >0.01).

Fig. 4A). Similarly, we suspect the presence of weaker, non-consensus sequence binding sites within pocket 4
of sdiA (Fig. 4B) and pocket 1 of hfq (Fig. 4E), given that these pockets contain 8-9 overlapping non-consensus
binding sites. Earlier results from published in vitro experiments support this possibility. First, G residues in
pocket 4 of sdiA may be weakly protected, based on footprint analysis*}; second, CsrA may bind in pocket 1 of
hfg, based on toeprint analysis®>. In any of these cases, consideration of individual binding sites would not have
substantially indicated a preference for CsrA to bind in the region. These results indicate that collective analysis
of overlapping binding sites as pockets can suggest mRNA regions that bind CsrA. Biophysically, this represents a
different concept in that CsrA-mRNA binding may not be strictly defined by rigid consensus sequences, as mostly
used in the literature***!. Instead, by capturing binding sites of differential affinities, our model suggests that CsrA
binding may be influenced by extended sequences with weak binding affinity (as calculated by the FEM) that col-
lectively contribute to CsrA-mRNA binding. In this way, numerous weak, non-consensus sites in close proximity
may enhance the strength of the CsrA-RNA interaction at that region by allowing CsrA many opportunities to
bind and slide along the stretch of RNA.

Calculated AG of CsrA-mRNA Binding is Indicative of Relative Affinities Observed In Vivo. Physiological rel-
evance of the model’s calculated free energy values was assessed by a series of in vivo fluorescence assays. As
a proxy for measuring CsrA-mRNA binding affinity, we measured extent of CsrA-mRNA regulation using a
variation of the fluorescent translational reporter assay. Here, fluorescent expression of a 5 UTR-GFP reporter
is measured in the presence of varying CsrA expression levels, induced by a series of plasmids with varying RBS
strength (Supplementary Methods) (Fig. 6A,B). Testing three representative targets, glgC, aidB, and maeB, reveals
that CsrA shows increased regulation of glgC, relative to maeB and aidB (Fig. 6C). This is in agreement with the
model’s predicted relative binding affinities: glgC has the lowest AGegp.mrna @8 compared to the other targets
(Table 3). This variation of the fluorescent translational reporter assay was also used to test a versions of the glgC
5’ UTR with single nucleotide mutations to a footprinted binding site (Supplementary Methods) (Fig. 6D,E).
Results are in general agreement with the FEM used in AGy, calculations as well as conclusions drawn in pre-
vious works'®. Most importantly, these results collectively support the relevance of predicted free energies, both
AGrnaccsra and AGy,, to observable differences in in vivo CsrA-mRNA binding and regulation at consensus or
near-consensus sites.

Predicted CsrA-Bound mRNA Conformations Highlight Molecular mRNA Features Expected to
Contribute to Regulation. To obtain insights into predicted molecular features of CsrA-mRNA interac-
tions at a large scale, we analyzed modeling results obtained for the pool of 66 targets well captured by the canon-
ical biophysical model. Importantly, we make three major observations that provide insights as to how different
molecular features of mRNAs impact CsrA binding and regulation. First, we observe the frequent identification of
CsrA binding sites within the Shine-Dalgarno region of the mRNAs: 61% of the 66 mRNA targets contain at least
one predicted CsrA binding site overlapping the Shine-Dalgarno region (5-15 nucleotides upstream of the start
codon) in their most-likely CsrA-bound conformation (Supplementary Table S3). Notably, 24% of the 66 mRNAs
contain a predicted binding site that overlaps its start codon by at least one nucleotide; 14% of the 66 mRNAs
fit both criteria (i.e., paired sites that overlap both the Shine-Dalgarno and the start codon are predicted in the
most-likely CsrA-bound conformation). The remaining 29% of the 66 mRNAs contain predicted binding sites
in other portions of the 5 UTR in their most-likely bound conformations. The high frequency of binding to the
Sine-Dalgarno is expected, given the similarity of the CsrA consensus sequence to the Shine-Dalgarno consensus
sequence. While start codons have been identified as a major CsrA binding location in Salmonella®, they have
only recently been implicated in a CsrA-mRNA interaction in E. coli®.
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Second, we observed that the model identifies two high affinity binding sites (ANGGN sequences) for binding
of a CsrA homodimer in only 13 (20%) of the 66 mRNAs” most-likely CsrA-bound conformations. Instead, 38
members (58%) present a single high affinity binding site and 15 mRNAs (23%) present no high affinity binding
sites (Supplementary Table S3). Given the importance placed on sequence of CsrA binding sites in the literature,
the apparent preference towards a single high affinity binding site was unexpected. Counting the number of
unique high affinity binding sites identified throughout mRNASs’ ensembles of CsrA-bound conformations reveals
that this pattern is not due to a lack of ANGGN sites. 24 (~63%) of the 38 mRNA with a single high affinity site in
their most-likely conformation have at least two unique high affinity sites in the modeled sequence that could be
identified as a pair (Supplementary Table S3). This suggests that CsrA dimers may preferentially recognize (but
not always) two binding sites of varying affinity (i.e. one high, one low), even in the presence of multiple possible
high affinity binding sites along the target.

A third observation we made is that 46 mRNAs (70% of the 66 well-captured mRNA) are predicted to
have strong cooperativity (AGc,operativiy < —4.0 RT, <25 nt apart) between the identified binding sites in their
most-likely CsrA-bound conformation, while only 16 (24%) are predicted to have large structural changes
(AAGgycture > 3.0 RT) (Supplementary Table S3). Considered alongside our second observation, these results
suggest that many mRNAs display a single high affinity site in its most-likely CsrA-bound conformation to (i)
minimize free energy changes from structural unfolding and (ii) maximize free energy changes from inter-site
cooperativity. Table 4 quantifies this pattern for the 15 lowest-energy CsrA-bound ensemble conformations of
each of the 66 well-captured mRNA. CsrA-bound mRNA conformations that present two high affinity ANGGN
sequences are significantly depleted for strong inter-site cooperativity and enriched in large structural changes
(P-value < 0.01 by hypergeometric test). It should be noted that seven mRNAs present most-likely CsrA-bound
conformations that are exceptions to this pattern: hfq, pgaA, relA, dgcZ, deoD, tnaA, and yfgM. These targets
exhibit two high affinity ANGGN sequences that are a short length apart (strong cooperativity) and require min-
imal unfolding of mRNA structure to be bound.

Patterns in Predicted Binding Site Pockets Suggest Flexibility in CsrA-mRNA Recognition. We
next analyzed in detail the fifteen most-likely CsrA-bound conformations predicted for each of the 66 mRNAs
captured by the canonical model. Specifically, we looked to determine mRNAs in which CsrA binding could
be influenced by extended sequences of weak binding affinity that may collectively contribute to CsrA-mRNA
binding as calculated for glgC, sdiA, and hfq above. This was executed by identifying and analyzing pockets of
predicted binding sites in each mRNA (Supplementary Table S3) and mapping predicted free energy terms across
their most-likely fifteen CsrA-bound conformations (Supplementary Fig. S2). We counted pockets with 7-10
predicted non-consensus binding sites (i.e., not ANGGN sequences) as potential extended regions of low affinity
CsrA interactions given that this number of overlapping weak binding sites was predicted in glgC, sdiA and hfg.
Importantly, 17 of the 66 mRNA well-captured by the canonical biophysical model (26%) contain a pocket of
7-10 predicted non-consensus binding sites; we propose that these extended regions of low affinity may collec-
tively contribute to CsrA binding and regulation. Some mRNAs in this category, like rseA, sucC and sdhA, contain
predicted extended sequences of weak CsrA binding affinity in addition to predicted high affinity binding sites
(Fig. 7A-C). Overall, the analysis suggests that a model where CsrA does not always immediately recognize the
highest affinity binding site(s) within an mRNA, but sometimes recognizes extended sequences of lower affinity
that collectively contribute to binding and regulation, may be relevant to a portion of modeled targets beyond the
examples of glgC, sdiA, and hfq (Fig. 4). We term this conceptual model as “flexible” CsrA-mRNA binding and
propose that mRNAs exhibiting one or more low frequency pockets of binding sites may be regulated in part by
such a mechanism.

This interpretation is especially interesting for the c[pB mRNA, in which only extended sequences of weak
CsrA binding affinity are predicted (i.e., no ANGGNS are identified) (Fig. 7D). Perhaps an ability of CsrA to
recognize and bind multiple weak sites in the absence of a strong one may contribute to the observed scope and
diversity among CsrA targets. These results suggest that predicted pockets of overlapping low affinity binding sites
may be useful for identifying non-traditional CsrA-mRNA binding sites within mRNAs of known CsrA regula-
tion that contribute to flexible binding and regulation.

Analysis of Remaining Modeled mRNA Targets. To elucidate potential molecular diversity within
the CsrA targets modeled, we extended our binding site pocket analysis to the 41 mRNAs (out of 107 known
to be regulated by CsrA) for which the canonical biophysical model did not correctly predict the mode
of regulation. It was expected that predicted binding sites in these targets could still provide insight into
CsrA-mRNA interactions because differences between model-predicted and experimental regulation could
arise (i) within the translation initiation rate prediction step (as for flhD) or (ii) via CsrA regulating trans-
lation by destabilizing the transcript?’, a mechanism of CsrA regulation beyond the scope of the canoni-
cal biophysical model. Among their most-likely CsrA-bound conformations, the most notable difference
between these 41 mRNAs and the 66 for which the model correctly predicted regulation is the relative deple-
tion of pairs of high affinity ANGGN binding sites in the top conformations of the incorrectly predicted
mRNAs. Additionally, 44% (18 of 41) of these mRNAs yield a pocket of 7-10 predicted, non-consensus CsrA
binding sites, suggestive of an extended non-traditional binding site that may contribute to flexible binding
and regulation (Supplementary Table S3 and Supplementary Fig. S2).

Lastly, we analyzed model results for 129 mRNAs that are suspected to be regulated by CsrA (Supplementary
Table S3 and Supplementary Fig. S2). The majority of this pool (78 mRNAs) did not show regulation in our fluo-
rescent translational reporter assays (presumed due to improper expression of GFP) while the others fluoresced,
but an impact of CsrA on translation could not be determined (46 mRNAs) or were not tested (5 mRNAs).
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Figure 7. Patterns of binding site frequency within pockets suggest probable strong and weak in vivo
CsrA-mRNA binding sites. (A, left panel) Free energy terms calculated for the most-likely fifteen members
of the ensemble of CsrA-bound rseA conformations. Data labels mark the Boltzmann probability of each
conformation, scaled such that the total probability of the fifteen most-likely conformations is one hundred
percent. Total scaled Boltzmann probabilities of the repressed, not impacted, or activated conformations are
noted, as well as the most-likely regulatory outcome as “rseA- Repressed”. Regulation observed in fluorescent
translational reporter assay is noted in parentheses as “Repressed in experiment”. (A, right panel) Distribution
of binding sites (by location) predicted in rseA. Gray panels highlight pockets of binding sites. Seven pockets
are identified, one of which, pocket 4, contains 7-10 non-consensus low affinity predicted binding sites. (B)

5 pockets, one of extended low CsrA affinity are predicted for sucC. (C) 7 pockets, one of extended low CsrA
affinity, are predicted for sdhA. (D) 6 pockets, two of extended low CsrA affinity are predicted for clpB in the
absence of any high affinity binding sites.

Analysis of predicted binding site pockets in these 5 UTRs (Supplementary Table S3) presents excellent starting
points for designing mutations in likely binding sites for testing CsrA regulation (and elimination thereof) in
alternative assays.
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Figure 8. The evgA mRNA demonstrates potential co-translational repression mechanism. Two upstream open
reading frames are present in the 5 UTR of evgA, both of which are predicted to be translated more quickly
than the evgA start codon by the RBS calculator (default parameters). The stop codon of ORF, overlaps with

the start codon of evgA, a signature of co-translation. Notably, CsrA is predicted to bind the Shine-Dalgarno
region of ORF,, rather than the shine-Dalgarno of evgA. While these conformations are predicted to not impact
or activate translation, CsrA binding here likely represses evgA co-translationally with ORF,, a mechanism not
incorporated into design of the biophysical model.

Discussion

In this work, we developed a biophysical model of canonical CsrA binding and regulation to investigate how
the molecular features of a target mRNA can influence its regulation (Figs 1 and 2). We considered a set of 107
mRNAs known to be regulated by CsrA (Tables 1 and S1 and Fig. 3) and 129 mRNAs suspected to interact with
CsrA (Supplementary Table S1). After establishing that the model correctly predicted the regulatory modes of
66 of 107 mRNA targets with known CsrA regulation (Table 2), we demonstrated the ability of the model to (i)
correctly predict CsrA binding site locations across a range of binding affinities (Figs 4 and 5). Importantly, when
examining ensembles of CsrA-mRNA complexes collectively, the model can differentiate between rigidly defined
binding pockets with a single high affinity site and loosely defined low affinity binding pockets containing several
overlapping sites (Fig. 7 and Supplementary Fig. S2). In Supplementary Table S3, we include all model calcula-
tions, including the locations of potential weak, non-consensus sequence CsrA-mRNA interactions across all 236
mRNAs considered in this study.

For a fraction of the 107 mRNA known to be regulated by CsrA, the model either does not clearly predict a
single regulatory outcome (22 mRNAs) or clearly predicts a wrong regulatory outcome (19 mRNAs) across the
most-likely fifteen members of their ensemble of CsrA-bound conformations (Table 1). Given that the biophysi-
cal model was built from our current understanding of CsrA-mRNA regulatory mechanisms, these CsrA targets
offer opportunities to explore unusual or as-of-yet unknown CsrA regulatory mechanisms. Specifically, we were
inspired by a recent study of the CsrA-iraD mRNA interaction®® to look for mRNAs that could be repressed indi-
rectly via a translational coupling mechanism. Here, CsrA indirectly represses iraD translation by binding and
repressing translation of the idIP open reading frame, which is located in the same operon and within the 5 UTR
of iraD (as defined by iraD’s annotated promoters). The canonical biophysical model does predict a CsrA binding
site in the Shine-Dalgarno region of idIP (which also overlaps an in vitro CsrA footprint*), but it does not predict
repression because translational coupling and thus potential co-regulation between coding sequences is not cur-
rently accounted for (Supplementary Table S3). The evgA mRNA, a well-characterized CsrA target not captured
by the model, presents a similar case of potentially complex CsrA interaction and regulation that falls outside the
canonical model. Employing the RBS Calculator indicates that the translation rates of two upstream start codons
are substantial compared to the translation rate of the annotated evgA start codon (Fig. 8). Furthermore, the first
upstream start codon reveals an open reading frame (ORF, in Fig. 8) that contains a stop codon overlapping with
the annotated evgA start codon (5'-ATGA-3’). The biophysical model identifies a predicted binding site within
the SD of ORF,, but predicts this conformation to inconsistently impact evgA translation. Importantly, features
exhibited by the evgA mRNA are commonly associated with the ribosome re-initiation mode of translational
coupling®®, a mechanistic feature not currently accounted for in the biophysical model. Biophysical models of
translational coupling have previously been developed*’, and could be leveraged in the future to further extend
and improve the model predictions here. We anticipate that further investigation of all 41 mRNAs whose regula-
tion is not well-predicted by the canonical biophysical model will uncover similar insights into poorly understood
CsrA-mRNA regulatory mechanisms.
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More broadly, our results suggest that CsrA participates in more flexible binding interactions than previously
discussed in the literature. The presence of many low affinity CsrA binding sites nearby a single high affinity
site suggests that CsrA may be initially recruited to mRNAs at one of the low affinity sites, followed by sliding
into a high affinity site, which often appear within Shine-Dalgarno sequences with a clear regulatory outcome.
Analogously, transcription factors have been proposed to hop or slide across low-specificity DNA sites to accel-
erate their search for high affinity sites’>*!. Similarly, RNA-binding proteins like CsrA may utilize similar mech-
anisms of facilitated diffusion to accelerate their search for consensus, high affinity sites, which become all the
more important as mRNAs are more well-mixed inside the cytoplasm, compared to genomic DNA.

This perspective adds an interesting biophysical possibility for mRNA in which CsrA-bound conformations
in the ensemble lead to different types of regulation, where multiple modes of binding (using different bind-
ing site combinations) could lead to opposing regulatory outcomes. In this sense, it is possible that the specific
CsrA-mRNA binding modes that take place in vivo are biased by additional factors, such as other regulators, small
molecules, or environmental stresses, shifting the preference of one regulatory outcome or the other. For instance,
CsrA-bound conformations 1-5 and 7-10 identified in the rseA mRNA are predicted to repress translation, while
CsrA-bound conformations 6, 11-13, and 15 are predicted to activate translation (Fig. 7A). Although the con-
formations that lead to activation represent an energetic minority (21%) considering only CsrA-mRNA interac-
tions, it is possible that the binding of other RNA-binding proteins or small molecules may increase the chance
that CsrA visits these conformations, activating translation of rseA. Dual regulatory modes may also exist for the
mRNAs iscR, nnr, and dkgA (Supplementary Fig. S2). It is therefore conceivable that translation of such mRNAs
could be controlled by several factors hierarchically; in the absence of the external factor, CsrA may repress the
mRNAS translation, but in its presence, the mRNA's translation may be activated.

Future developments in understanding CsrA binding across its broad target pool will continue to provide
other valuable insights about CsrA regulation. One important factor to consider about the model described in
this work is that it was derived from thermodynamic first principles and parameterization using only canonical
CsrA binding sites!”1#2, The fact that the model has accuracy with only a minimal amount of input suggests
that similar models of regulators could be generated and analyzed in a comparable manner. We envision that the
model principles described here may be valuable for other systems of protein-based mRNA translation control,
such as the trp RNA-binding attenuation protein (TRAP) of B. subtilis>>>*. More broadly, the concept of thermo-
dynamic models elucidating affinity-based target hierarchies is readily extendable to other types of regulators,
including those involved in transcriptional control where target hierarchies have already been experimentally
implicated®~*". Overall, we anticipate that this work will provide a generalizable strategy as a starting point to
model post-transcriptional regulation in a variety of contexts.

Materials and Methods

Development of Model. Identifying Potential CsrA Binding Sites. Given an arbitrary mRNA sequence,
the model first calculates CsrA’s binding free energy to all possible binding sites. To do this, we assign a thermo-
dynamic binding free energy to each nucleotide within a 5-nucleotide binding site, determined by converting
the EMSA-determined binding affinities for mutated CsrA binding sites into free energy changes'®. The resulting
position-specific mono-nucleotide free energy model (FEM) is:

N, |A (AG; inRT) C (AG;inRT) G (AG;in RT) U (AG; in RT)

N, —2.63 0 0 0

Nucleotide Position N —2.20 0 0 0
N 0 0 —3.14 0

4 0 0 —3.14 0

N5 —1.65 0 0 0

All energy units are RT, which is the gas constant multiplied by system temperature. The binding free energy
of CsrA to a 5-nucleotide site is then calculated by summing the contributions:

Ns
AGgy, = ZAGi
i=N, (2)

Position score matrices have been used previously for the identification of CsrA targets®**>>%°. Here, we quan-
tify changes in binding occupancy in terms of free energies to develop a more comprehensive multi-term free
energy model that incorporates CsrA binding, inter-site cooperativity, mRNA structural changes, and regulation
of translation rate.

Calculating Cooperative Binding Effects. The model next quantifies the cooperative effects of a CsrA homodimer
binding to two sites in an mRNA. Previous studies have indicated that the dimeric CsrA protein will bind to two
adjacent sites in an mRNA, separated by 10 to 46 nucleotides!”!*, with the potential for cooperative binding'®-?2.
We quantify the energy of the cooperative effect of a CsrA homodimer binding two adjacent sites, denoted by

Geooperativity 1 terms of the inter-site distance d, according to the following formulas:
For 10 < d < 55, AG

cooperativity

=0.001(d — 5)* + 0.05(d — 5) — 5.0 RT units 3)

For d < 10, Steric penalty of AG gqperarivity = 20 RT units (4)

SCIENTIFICREPORTS | (2018) 8:9892 | DOI:10.1038/s41598-018-27474-2 14



www.nature.com/scientificreports/

Here, if the inter-site distance is too small, then two adjacent sites will sterically clash, resulting in a large, repul-
sive free energy contribution. If the inter-site distance is 10 nucleotides, the cooperative interaction is strong-
est (AG ooperaiivity = —4:725 RT). The strength of the cooperative interaction is then proposed to decrease as the
inter-site distance increases, reaching zero at 55 nucleotides. These formula fit previous observations of coopera-
tive CsrA binding across relatively long inter-site distances!”.

Calculating CsrA-induced mRNA Structural Changes. When CsrA binds to an mRNA, it has the potential to
induce changes in the mRNA's structure. When these changes take place nearby the start codon of a protein cod-
ing sequence, it can alter the ribosome’s ability to bind the mRNA and initiate translation, changing the mRNA’s
translation rate. To determine where and when this takes place, we determine the free energy needed to remodel
the mRNASs structure by calculating the difference in mRNA folding free energy with and without accessible CsrA
binding sites (AGg versus AGpound mrna)- We perform these calculations for each unique pair of the identified
CsrA binding sites. For a pair of sites, we first calculate the most stable mRNA structure in the absence of CsrA,
using ViennaRNA’s dynamic programming algorithm* and the Turner 1999 RNA free energy parameters®. The
default temperature of 37 °C is used. Dangling nucleotide energies are not used. We then repeat the same calcula-
tion with the addition of a structural constraint that prevents the two 5-nucleotide CsrA binding sites from partic-
ipating in any mRNA structure. The CsrA binding sites in the resulting mRNA structure must be single-stranded,
but they can be located anywhere within the mRNA, including within a hairpin loop. We then take the difference
between these two folding free energies to determine the amount of energy needed to induce this structural
change, which must be positive:

AAC}unfold = AG§ - AGunbound mRNA (5)

An Overall Free Energy Model for CsrA-mRNA Interactions. ~ Given an arbitrary mRNA sequence, we enumerate
all possible CsrA binding sites, evaluate each free energy term, and sum them together to calculate the total free
energy change when a CsrA homodimer binds the mRNA at two sites, according to the following formula:

AGmRNA:CsrA = AC}sitel + AC}siteZ + AGc:ooperativity + AAC;unfold

where AGy, is the binding free energy of a CsrA to an upstream site (negative), AGy, is the binding free energy
of a CsrA to a downstream site (negative), AG,operaviy is the cooperative free energy whenever CsrA is bound
to two sites at most 55 nucleotides apart (positive or negative), and AAG 4 is the free energy needed to unfold
one or both CsrA binding sites (positive). Together, the total binding free energy (AG,rna.csra) for a particular
pair of sites may be positive or negative. For the mRNAs in this study, each has between 1800 to 14,000 possible
pairs of CsrA binding sites, comprising an ensemble of possible CsrA-bound mRNA states with varying binding
free energies. Formally, the probability of CsrA binding to one of these CsrA binding site conformations can be
expressed in terms in a Boltzmann distribution:

—BAGpRNA:CorA_a

pla) =

wae*ﬂAGmRNA:CsrA_i (6)

where a is a particular CsrA-bound mRNA conformation and AGega.mra.a IS the total free energy change in
that conformation. M is the total number of possible CsrA-bound mRNA conformations for a particular mRNA
sequence.

Predicting CsrA-induced Translation Regulation. 'When CsrA binds an mRNA and induces structural changes,
the mRNA’s translation initiation rate can increase or decrease, depending on where the CsrA binding site is
located and the structures that form after CsrA is bound. To predict these effects, we calculate the ribosome’s
binding free energy to mRNAs that are either unbound or bound twice by a CsrA protein, employing a previously
developed free energy model, called the RBS Calculator**. For a free mRNA without CsrA bound, the RBS
Calculator’s free energy model has the following five terms:

AGtotal,free = (AGmRNA:rRNA + AGslart + AGspacing + AGstandby) - AGunboundmRNA (7)

where the first four terms quantify the free energy of the ribosome-mRNA complex in its final state, and the last term
quantifies the folding free energy of the mRNA by itself in the initial state. The AGyyy g calculation is performed by
identifying the most stable initial and final states with their lowest respective free energies, and then computing their
difference in free energy. The mRNA' translation initiation rate r is then determined according to:

rfree X exp( - BAGtotal,free) (8)

where (3 is an empirically measured Boltzmann constant for E. coli (3= 0.45 mol/kcal)*”°.

When a CsrA protein binds to an mRNA, the AG,,rya.zna a0d AGginasy terms will change whenever there is
a CsrA-induced mRNA structural change that overlaps with an upstream standby site or the ribosome’s footprint,
which includes the Shine-Dalgarno sequence, the start codon, and the first 13 nucleotides of the protein coding
sequence®. For any change in mRNA structure, we recalculate these free energy model terms to determine the
change in the ribosome’s binding free energy, AGiy, csra» annd the corresponding change in the mRNA's transla-
tion rate, rcga, using the free energy model:
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AGtolal,(lsrA = (AGmRNA:CsrA:rRNA + AC;start + AGspacing + AGstam:lby:CsrA) - AGmRNA:CsrA (9)

Calculating the free energy terms AG gna.coraxina 30 AGgnapy:cora follows the same procedure as for a free
mRNA, except with two structural constraints: first, the mRNA region overlapping with the ribosomal footprint
may neither have a bound CsrA nor a folded inhibitory mRNA structure, and second, a CsrA-bound site outside the
ribosomal footprint must be single-stranded. In this way, if CsrA is predicted to bind to a site overlapping the riboso-
mal footprint, the energy required to remove bound CsrA is included in AGy,pya.csrarna- Calculating AG pyaccora
is as described in the previous section. Importantly, an mRNA will often contain thousands of potential pairs of
sites where CsrA can bind; each CsrA-bound mRNA conformation can have different AG,gna.cora free energies. In
practice, we consider the most probable 15 double-site CsrA-bound mRNA conformations, i.e., those with the most
negative AGgga.mrna free energies, and apply the RBS Calculator’s free energy model to calculate their respective
translation initiation rates. For each of these i conformations, we calculate their translation initiation rates using:

rCsrA,i & exp( - 6AGt0tal,CsrA,i) (10)

Finally, for each ith CsrA-bound mRNA conformation, we determine whether the mRNA’s translation rate was
activated or repressed by calculating the ratio:

Ri = rfree/rCsrA,i (11)

Metric for evaluating predictions of CsrA targets. We label each CsrA-bound mRNA conformation’s translation
rate as “repressed” if R;> 1.2, as “activated” if R; < 0.8, and as “not impacted” otherwise. We then determine
the most likely mode of translation regulation by comparing the 15 conformations’ calculated AGgga.mrna free
energies and ensuring that the most frequent states, energetically weighted, all had the same regulatory label. If
predictions yielded CsrA-bound conformations with different regulatory labels with approximately equal fre-
quency, then the mRNA was labeled as having a “heterogeneous” mode of translation regulation. Specifically, we
summed the probabilities (p(«c), defined above) of all of the repressed, activated or not impacted CsrA-bound
conformations of an mRNA; the most likely mode of regulation was taken to represent the ensemble only if it was
at least 1.8-fold more likely than the other two possible types of regulation (threshold determined from inspection
of classical CsrA target model results). This qualitative analysis is valid across a wide range of CsrA concentrations
inside the cell. Using an ensemble-based collective regulation prediction allows us to account more thoroughly for
mRNAs with multiple pairs of equally likely CsrA binding sites. However, a higher-energy conformation within
an mRNA’s most likely 15 CsrA-bound conformations may only be occupied in in vivo under conditions of excess
CsrA and after the more likely bind site pairs are bound. By weighting regulation predictions with Boltzmann
distribution-derived probabilities we aim to account for this discrepancy while still incorporating the diversity of
the binding sites predicted by the model within a given mRNA.

Fluorescent Translational Reporter Assay. Fluorescent translational reporter assays were performed as
described in the Supplementary Methods.

Titration of CsrA targets. To test whether AGgga.mrna Was indicative of the thermodynamics of CsrA binding
to transcripts in vivo, we constructed variants of pHL 600 that produce a range of CsrA expression (Supplementary
Tables S5 and S6). Specifically, the RBS calculator® was used to design RBSs with an anticipated 50-fold range of
translation rates, including variants that were predicted to yield CsrA expression with putative levels of translation,
as calculated by the RBS Calculator, of 2000, 1000, 800, 750, 350, and 200 AU (original plasmid, used in the fluores-
cent translational reporter assay, was 9000 AU). In order to estimate the level of CsrA produced from each plasmid in
the uninduced condition, i.e. from promoter “leakiness’, the putative translation level of the RBS was multiplied by
0.000645, a value of promoter expression in the undinduced condition determined in a prior work®. Additionally, the
putative CsrA translation levels are expected to have error between 50% and 200%.

We then paired this set of seven RBS-CsrA variants with three 5’ UTRs-GFP reporters (glgC, aidB, and maeB),
each with 5 UTRs predicted to (1) be repressed by CsrA, (2) have a range of AG¢,p.mrna Values (glgC, —24.77
RT units; aidB, —19.53 RT units; and maeB, —23.06 RT units), and (3) contain one identified binding site of the
most likely CsrA-bound conformation in the Shine-Dalgarno region. These 5/ UTRs were cloned into pHL 1756
plasmids previously (Supplementary Table S5). Eight mutations to the glgC 5 UTR-GFP reporter plasmid were
also constructed via site directed mutagenesis (Quickchange II protocol for Agilent Technologies) to vary the
middle three nucleotides of the footprinted non-Shine Dalgarno CsrA binding site (wild type sequence: ACGGA)
(Supplementary Tables S5 and S6). In this way, the mutated sequences created a range of AGg;, values. Pairing a
single 5 UTR-GFP reporter with the set of RBS-CsrA variants at a time, we took fluorescence measurements in
biological triplicates as described in the fluorescent translational reporter assay section above. However, analysis
of titration experiment data differs; in these tests, rather than comparing corresponding uninduced and induced
conditions, a repression ratio due to CsrA was calculated for each RBS in each condition, with respect to the max-
imum average mean fluorescence of all of the samples:

Maximum of all average mean sample fluorescences

Repression Ratio =
Average mean sample fluorescence (12)

For example, in the case of glgC, the maximum of all average mean sample fluorescences corresponded to the
average mean fluorescence of the weakest RBS-CsrA variant (200x) in the uninduced condition. In this way, 14
repression ratios, each corresponding to a different level of CsrA expression (uninduced 200x, induced 200x,
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uninduced 350x, induced 350x, etc.), are determined with the minimum repression ratio always equal to 1. To
compare results of the titrated 5/ UTR-GFP reporters, the repression ratios measured for each were scaled from 0
to 1, where 0 represents the minimum repression ratio and 1 the maximum repression ratio:

. . . Repression Ratio — minimum Repression Ratio
Normalized Repression Ratio = (Rep P )

(maximum Repression Ratio — minimum Repression Ratio) (13)

Lastly, dissociation constants (K) for the glgC, maeB, and aidB titration datasets were approximated as a
means to generate fits for their titration curves®. Assuming a near constant pool of each 5 UTR-GFP reporter
transcript, K4 can be approximated with,

_ [CsrA]
K; + [CsrA] (14)

where 0 indicates the fractional extent of CsrA-5' UTR binding (i.e. normalized repression ratio) and [CsrA]
indicates CsrA expression levels (i.e. putative RBS translation levels). The R Package for Statistical Computing
non-linear least squares equation fitting function, nls, was employed to fit each titration dataset with the above
equation and approximate a K, for the CsrA-5’ UTR interaction.

Data availability. All data generated or analyzed during the current study are included in this published
article (and its Supplementary Information files). Fluorescent translational reporter assay results analyzed in this
work but published previously are available as Supplementary Information files at https://doi.org/10.1093/nar/
gkx048. Original scripts are available from the corresponding author upon request.
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