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Abstract

In this paper, we study a fitness gradient system for two populations interacting via a symmetric game.
The population dynamics are governed by a conservation law, with a spatial migration flux determined
by the fitness. By applying the Galerkin method, we establish the existence, regularity and uniqueness of
global solutions to an approximate system, which retains most of the interesting mathematical properties of
the original fitness gradient system. Furthermore, we show that a Turing instability occurs for equilibrium
states of the fitness gradient system, and its approximations.
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1. Introduction

The ability of living things to move spatially during their struggle to survive is an inherent
aspect of most biological systems, with implicit connections to evolution [8]. The fact that multi-
ple species are moving simultaneously, some in pursuit of others, brings an additional richness to
ecological dynamics. The particular mechanisms of this motion manifest themselves at the popu-
lation level as dispersal or migration relations, written as a spatial flux which depends on various
effects, including heterogeneous environmental conditions, spatial distribution of resources, and
mutually attractive or repulsive interactions between individuals, among many other consider-
ations [2,8]. The challenge for mathematical modeling is to realistically capture the relevant
aspects of these effects, while nonetheless producing a set of equations which are both tractable
and provide insight into the phenomena [10].

Partial differential equations have been developed to model populations interacting in a spa-
tially extended region. Among such models, one of the first (called SKT model for short)
determined by species fitness appeared in Shigesada et al. [29], who studied a Lotka—Volterra
system of interacting species in a homogeneous environment. For the SKT model, Lou and
Ni [14,15] showed the existence and nonexistence of nonconstant steady states, and obtained
the limit of nonconstant steady states. The global existence of smooth solutions was proved by
Kim [11] and Shim [26] in one dimension, Lou et al. [16] in two dimensions, and Lou and Win-
kler [18] in three dimensions. When the environment itself is spatially inhomogeneous, the case
of one species moving up a resource gradient while the other disperses randomly was modeled
by Cantrell et al. [4] based on an earlier single equation approach by Belgacem and Cosner [1];
Kareiva and Odell proposed a cross-diffusion model for predator—prey interaction [13]. We also
refer to [3,10,19,21,22,28,20] and references therein.

Evolutionary game theory provides a specific form of the fitness for each population, based on
the payoff matrix of the game which defines their mutual interactions [30]. Consider a population
of individuals who are playing a game in competition. Every individual has a choice of m possible
pure strategies available, and at each instant every individual is using one of these strategies. For
each strategy i, p; denotes the proportion of individuals who are, at that moment, using strategy i.
In a symmetric evolutionary game, the fitness of strategy i is the expected payoff for an individual
playing strategy i, written as f;, where the payoff matrix is defined by

ar Alm
A=

am1 ot Amm

We adopt the fitness function as defined by Taylor & Jonker [32] and Vickers [34], where the
fitness for an individual playing strategy i is defined as the expected per capita payoff: f; =
(Ap)i’ where P= (pl’ s Pm)-

In this paper we consider two populations, described by density functions # and v, who choose
one from two strategies (m = 2). The local fitness for each population defined above is written as

anu +ajppv axiu + axv
fiu,v) = ————, fu,v) =———".

1.1
u-+v u-+v .1

‘We assume that

ajp —ap >0, ax —ax >0, (1.2)
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an assumption which implies that the u population gains most by playing against itself, whereas
the v population does better playing against the u population than against itself [7]. We consider
each species to migrate along its fitness gradient, moving towards a more favorable environment.
If we take the continuous limit of the discrete model [7], the population fluxes at the position x
and time ¢ are given by

Ji=-puV fi, Jo=—povV 2,

where B; are the proportionality constants determining each population’s sensitivity to its fitness

gradient. Then the population dynamics is described by the equation of continuity
uy = —divJy = —g1div(uV f1), (13)
v, = —divJy = —odiv(vV fr). '

For the choice of fitness functions f; in (1.1), one can show that V f, = kA V f1 [7], where
kA = (a21 — ax)/(a11 — ajp) is a constant. By dividing equations (1.3) by 81 and rescaling the
time, this system becomes

{ut = —div(uV f1), (1.4)

v = —Pradiv(vV f1),

where 8 = B>/f1. We make the assumption Sxa > 1 and define the positive parameter y =
Bra — 1 [7]. Using the functional form of fi(u, v), System (1.4) can be expressed as

2

uv u
= (a11 — ap)di (— v v )
u; = (ar; — ap)div PERSY u+ w2 v

(1.5)

. U2 uv
v = (an —a12)(1+y)dlv(— (u+v)2Vu+ ('H_v)ZVv).

The resulting generalized diffusion system includes cross-diffusion effects, for which steady state
solutions and numerical examples of solutions were investigated by [7]. In a related work [12],
the authors proved existence of global non-negative weak solutions under the assumption that
A is a symmetric positive—definite matrix with the uniform ellipticity structure, and the fitness
is determined by the difference between the available resources and the animal’s consumption,
represented by Ap.

Due to the condition aj; — a2 > 0, the usual energy method is not applicable to the first equa-
tion of (1.5), so the cross-diffusion term can lead to serious problems. In order to overcome the
mathematical difficulties, we regularize problem (1.5) and utilize a specific change of dependent
variables [6,7]. The first aim of this paper is to prove the existence of strong solutions to the
regularized problem shown in (2.1) for a bounded domain © C R?.

When we consider the additional possibility of local increases or decreases of the two popula-
tions, the fitness of each population manifests itself as a growth rate (see [12,7]). The population
dynamics can be modeled by the following system

u; = fru — prdiv(uV f),

. (1.6)
vr = fov — Bodiv(vV f2).
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For the main results of this paper, we neglect the growth rates terms, as they do not cause any
technical difficulty for the existence of strong solutions to (1.4); this allows us to focus on the
intrinsic difficulties of the fitness gradient terms. However, these growth rates terms do play
an important role in the instabilities of (1.6), which can destabilize the equilibrium solution.
Later in this paper we address the effect of growth rates and cross-diffusion on the instability
in any dimensions. Through a linear stability analysis, we analytically derive a set of sufficient
conditions which guarantee that the system generates a Turing instability, as first indicated in [7].

The rest of the paper is arranged as follows. We shall regularize the problem and give our
existence result in Section 2. In Section 3, we first adopt the Galerkin approximation scheme
and then construct a sequence of approximate solutions (u,, 6,,). In Section 4, we derive some
a priori estimates for the approximate solutions. We then prove the main result theorem by the
convergence of the approximate solutions in Section 5. In Section 6, the uniqueness of global
strong solutions is obtained. The instability of the equilibrium for (1.6) and its approximate
systems is discussed in Section 7.

2. Regularization the problem and existence result

Without loss of generality, we take aj; — ajp = 1 throughout this paper. We regularize Sys-
tem (1.5) with small parameter € > 0 as follows

. uv l/l2
u; =div| eVu — Vu + Vv,
(u + v)? (u+v)?
2.1)
div (—(1 49— Va1 —"vo)+ela
vV =dAdlv| — ——= VU ——= VU € — u.
' Y ¥ 02 Y+ 02 2

Remark 2.1. It can be proved that u is a strictly positive function with lower bound, given the
initial data uo with positive lower bound. Then the regularizing term Au is mathematically
well-defined. Further comments on the form of this term are given below.

We study the initial boundary value problem for (2.1) in a bounded domain with smooth
boundary  C R?, along with the following initial and boundary conditions

u(x,0) =up(x), v(x,0)=vp(x) x €L, 2.2)
Vu-n=0, Vu-n=0 x €9Q, '
where the initial densities uo(x) and vo(x) are strictly positive functions and satisfy
0 < inf up(x) < supup(x) < oo,
xeQ xeQ
2.3)

0 < inf —0&  _ o)
xeQ uo(x) +vo(x) ~ xeq uo(x) + vo(x)

Before stating our main result, we explain the notations and conventions that will be used
throughout the paper. We set Q7 = [0, T'] x . Let us denote the usual Sobolev spaces by
W4 (Q7) with the norm || - | wm.a(g;). For simplicity, the norm of the Sobolev space W4 (%)
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is written as || - ||wmq. When ¢ =2 or m = 0, we will set H™(Q) = W"2(Q) and L4 (Q) =
W04 (Q), respectively. As usual, (-, -) stands for the scalar L?(£2)-inner product. For any Banach
space B and any T > 0, we will denote by L" (0, T'; B) the Banach space of the B-valued (classes
of) functions defined a.e. in [0, T'] that are L"-integrable in the sense of Bochner. Frequently, we
will consider Banach spaces L" (0, T; B) with B = W"™4(<).

Our main result is the following:

Theorem 2.1. Let Q C R? be a bounded domain with smooth boundary and q > 2, and the

initial value ug(x) € HZ(Q), MO’:(‘)U() x) € W24(Q) satisfy (2.3). Then the initial boundary value

problem (2.1)—(2.3) has a unique global in time strong solution.

In order to prove Theorem 2.1, we utilize the proportionate variable 6 = u/(u + v) defined
in [6], which transforms System (2.1) into the equivalent form

u; — e Au+div(uvo) =0,

1 2.4)
0, —y0(1 —0)A0 =y0(1 —0)—VuVeo — (1 + y)|V9|2.
u
The initial and boundary conditions can be rewritten as
u(x,0)=up(x), 6(x,0)=0(x) x e, 2.5)
Vu-n=0, VO-n=0 x €09, '
and the initial values uo(x) and 6y(x) are strictly positive functions satisfying
0 < inf up(x) < supug(x) < oo, 0 < inf Op(x) < supbp(x) < 1. (2.6)
xe xeQ

xe xeR

Remark 2.2. Mathematically, System (2.4) bears some similarity to the viscous homogeneous
Hamilton—Jacobi equation for 6 and its relation to fluid system as [5].

Remark 2.3. It is worth mentioning that the inclusion of two regularization terms in System (2.1)
aims to make the transformed system (2.4), with the new variable 0, into a parabolic system,
by which we can obtain the W' estimate of u for some g > 2. Otherwise, System (2.4) is
hyperbolic—parabolic, which can also be regarded as a variation model of the Navier—Stokes
equations. Then due to the appearance of the higher order term Vu in the second equation of
(2.4), we cannot close a priori estimates.

Next we have

Proposition 2.1. Let 2 C R? be a bounded domain with smooth boundary, assume that ||ug)| g2 <
Co < 00, [|6plly2.q < Co < oo for some q > 2 and (2.6) holds. Then, for any T, the initial bound-
ary problem (2.4)—(2.5) has a unique strong solution (u,0)(x,t) defined on the time interval
[0, T'), satisfying the following properties

0 < inf ug(x) <u(x,t) <supug(x) <oo for xe€, te[0,T];
xe xeQ
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0< insf26’059(x,t)§sup90<l for xeQ, tel0,T],
xXe

xeQ

and there exists a positive constant C depending on T, 2, Co, € such that

Nl oo, 7. wiay + IVUullL200,7; 51 (@)) + el Loo0,7: 2220, 7: 1 (@) = €

IVOllwiacory + 16l oo o, 7; 12 @) nL20,7: 11 (2)) = C-

3. The Galerkin approximation
We start by defining the operator
A: HX @ N {ue H(Q): Vu-n=0} — L*(Q)
as
Au=—Au+u.

Let 1; be the eigenvalues of .4 and ¢; be the corresponding eigenfunction which is an element
of C®(Q) N H*(RQ), that is, for j =1,2,---,

—Apj+@j=Ajp; inQ,
Ve;j-n=0 on 0L2.

Then {¢ j}?oz] form an orthonormal basis of L%(2). We set a sequence of finite dimensional
spaces

Vim=span{gp;:j<m}, m=12,---
For any fixed integer m > 0, we consider the following Galerkin type approximation of (2.4)
Oty — €Ay, +div(u,, V6,,) =0,

1
atem - Vem(l - Qm)Ae = ng(l - em)_vumvem - (1 + V)|V9m|2, (31)
Um
(Um, Om)(0) = (uo, 6o)-

3.1. The Cauchy problem for the density u,,

In this subsection, our aim is to look for approximate solutions u,, of (3.1); in V,, for any
integer m > 0.

Lemma 3.1. For any integer m > 0, there exists a Ty, > 0, if 6,, € C([0, Ty, 1; H' (), such that
the Cauchy problem (3.1)1 has a unique solution u,, € C([0, T,,1; Vin).
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Proof. We may set u,, = ZT:ldj (t)@;j. Taking the inner product of (3.1); and ¢ (k =
1,2,---,m), we find that dj (¢) satisfies

d m
—di () + ) _d, (t)/ (eVo;Vor — Ve Vi) dx =0,
dt J (3.2)

=1
di (0) = (uo, r)-

Clearly, problem (3.2) is an initial value problem for an ordinary differential equation. Thus, by
standard theory and using the assumption on 6,,, it follows that (3.2) possesses a unique local
solution u,, € C([0, T;,]; V). O

Next, we derive an energy inequality for u,,. Multiplying (3.1); by u,, and —Au,, respec-
tively, we integrate by parts to have

1d
EE/ufndx—i—e/|Vum|2dx:/umV9mVumdx
Q Q Q
€ 3.3
< SV Py + COlltm 1241V 112, -3
€ 2 2
= —||Vum||Lz + C(e, ”Vem||L°°(0,Tm;H1(Q)))”um”Hls
1d
S |Vum|2dx+e/|Aum|2dx
Q Q
= / Vit VO Aty dx + / U AOpy At dx (3.4)
Q Q
€ 2 2
= EHAMm”Lz + Cl(e, ||V9m||L0<>(0,T,,,;H2(Q)))||um||H1-
Summing (3.3) and (3.4), it follows that
L 2 Vi |2, < Cle, ||V, 2 3.5
51+ €l Van G < Ce V0l w01, 2000l 51 (3.5)
By Gronwall inequality, (3.6) implies
t
lumll g1 + € / N A e e T
. (3.6)

< Cl(e, ”Vem”LOO(O,Tm;HZ(Q))’ ug)

fort € [0, T}, ].

Now, we assume that u,ln, u,zn are two solutions with the same initial value of (3.1); cor-
responding to 6,, = 9,1,, O = 9,%1 respectively. Multiplying the difference of the equations by
—A(u}n - ui), we integrate by parts to obtain



4028 Q. Xu et al. / J. Differential Equations 262 (2017) 4021-4051

1d
o V@) —u2)?dx —i—e/ |AGu) —u2)dx
Q Q

= /V(u,‘n —u2)VOL Al —u?)dx + f(u}n —u2)AOL AGu), — u2)dx
Q

Q 3.7

+ / Vui Vel —02)Aw! —u?)dx +/u51A(9,}1 —02)A! —u?)dx
Q Q

€
< C@lltty, = 311V 0 W2 + CO N 131 1V O = O 2 + S 18ty — 1311

Note that fQ (u ,1" — ui)dx = 0 for all #, which allows us to use Poincaré inequality. By Gronwall
and Poincaré inequalities, taking (3.6) and (3.7) into account, we conclude that

1 2
sup |y, (1) — uz, (O || g1
0<1<T,,

< TuC (e M1VOn Il o072y VOl Lo 0.7, H2(52)) HO) | Sup IV @, () — O ()| 2
Moreover, denoting Lu := u; — € Au + div(uV6), we calculate
L(eJo 180mlioodty — oo 180n122d1 (1| A, (1) | oo + AB) > 0, Lityy, =0,
L(e™ Jo 180 loedty — o= Jy 180 Lioedt (| AG,, (1)]| L + AGy) <O.
By virtue of the comparison principle, we have

t 1
0O<e” f() | A6y, || oo dt < um(x, t) < ef() [1AOm |l oo dt

forall x € 2,1t € [0, T,].
The results just obtained can be summarized in the following statement:

Lemma 3.2. Let the initial value ug(x) € H*(S2). Then, for any integer m > 0, there exists a
T, > 0 and a mapping S = S(6y,),

S :0m € C([0, Tyul; H'(R)) —> C([0, Tn]; Vin)

such that u,, = S(6y,) is the unique solution to (3.1);.
In addition to the above assumption, if 6,, € C([0, T),1; W2°°(Q)), we have

e~ Jo1A0mlioedt <y (1) < fo 1AOmIlocdt (3.8)
forallx € 2,1t €[0,T], and if VO,, € C([0, T, 1; HZ(Q)), we have

1S©Bn) — SOl cqo.z,1. 11 ) < TnC €.k, u) IV @y, — 0l 0. 7,1. 11 @) (3.9)
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for any 9,111, 93, belonging to set
My, = {V6y € C([0, Tu; HX))| V6mllco, 1,120 < L}
3.2. The approximate solutions 6,
By substituting the above solution u,, (x, ¢) into (3.1),, we obtain the integral equation

/um(t)em(t)gadx —/uoeo(pdx

Q Q

t
= [ [ p1ennt = 0020, + 1001 = 0,0V V8, — 14 prsnivEn P PO
0 Q

+ € Attyy0y) — div (1t VOy,)0 }(pdxdt
for all ¢ € [0, T;,,] and any function ¢ € V,,,. Now, we proceed to look for approximate solutions

O0m € C([0, T 1; Vi) satisfying (3.10).
To this end, we introduce a family of operators M[u]: V,,, — V%,

(Mlulo, ) =/uwwdx.

Q

Clearly, these operators are bounded if u € L'(2), that is

IMLulll £v,,, v = Cm)llull 1,

m

and invertible provided u is strictly positive on €2, so we have

1M il £vg, vy < Cinf ()~

xeQ
Notice that the identity
M= M = MU IMT W] = M DM ]

for any ul, u? from the set

My ={uec L (Q) inf u>n> 0},

xeQ

leads to

IM™ ' T = M P 2 vz v, < Con M1 = Ml 2y, ve) Gy
<C(m,n)|uy —uzllp1.
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Now, the integral identity (3.10) can be rephrased in the mild form

t
O = M ] [ g0+ f Nt (), 0 (5)1ds (3.12)
0

where for all ¢ € V,,,,
(q0.¢) = / uobopdx
Q

and

(NTum(s), Om ()], @)= / [)/qum(l — Om) NGy + Y0 (1 — 0,) VU, VO,
Q

— (14 1)t | VO | + € At Oy — div(umVQm)Gm}wdx.

Taking u,, = S(6),), (3.12) can be rewritten as

t
O = M S (Om)] qo+fN[S(9m)(S),9m(S)]ds . (3.13)
0

By means of the contraction mapping principle on the Banach space C ([0, T;,]; V},,), taking (3.9)
and (3.11) into account, we obtain a local solution 6,, of (3.13) on a short time interval [0, 7},],
Tn<T.

3.3. Approximate solutions in a time interval [0, T']

Our remaining task is to show that 7;, = T'. Let us suppose that 7;,, < T. The a priori estimates
established in Section 4 prove that u,, and 6,, stay uniformly bounded in V,,, on the whole interval
[0, T;,]. We take

p (Try) = tgnTl up (1), O (Ti) = tlir;l O (1)

m

as the initial values to solve (3.1). Repeating the argument for the above two functions, after a
finite number of steps, we finally get 7, = T .
From the above argument, we have the following existence result.

Lemma 3.3. Let g > 2, and assume initial values uo(x) € H*(2), 6o(x) € W24 (), then for any
integer m, the Cauchy problem (3.1) admits a unique solution (u,,, 6,)(x,t) in C([0, T], V,).
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4. A priori estimates

This section is devoted to deriving some a priori estimates for the approximate solutions
(U, 6,) by iteration. For the sake of simplicity, we drop the index m, using u,, = u and 6,, =6
in this section. Let us assume that

Wix, ) =uo(x),  0°(x.1)=00(x),
and u"(x, 1), 0" (x, t) for any integer n > 1, satisfy the problem

ul —eAu" +div(u" V@"*I) =0,

n_ n—1,1 _ pn—1 n__ n—1 n—1 n—1 n n—1 n .1
e (O T (e B ACA (AR RS D)

with the initial and boundary value conditions

", 0")(x,0) = (up(x), 6o(x)) in L,
Vu" -n=0, V6"-n=0 onodQ.

For each n > 1, the linear problem (4.1) is solvable in C([0, T']; V;;;) from the argument in the
previous section.

We recall the well-known interpolation inequality for Sobolev functions on bounded domains
(see [17]).

Lemma 4.1 (Gagliardo-Nirenberg’s inequality). Suppose that u € WP ()N L™ (). Then there
exists a constant C = C(2, N, p, r) such that

K 1-
o =< € (I Duly, lull - + ||u||u),

where 37 = s(— — —) + (1 - s)— Then range of q is [r, 5 ] when p < N, is [r, 00) when
p=N, andls[r oo] when p > N.

We will often use the following version of the Gagliardo—Nirenberg’s inequality for aniso-
tropic spaces, which is a simple consequence of Lemma 4.1. We refer to [5] for the proof.

Lemma 4.2. Suppose that u € L™(t,1 +§; L%(Q)) and Du € L*>([t,t + 8] x Q) fort,t + 8 €
[O T). Then u € Lzr (t,t + 8; L% (R)), for all pairs (r',q’) with the conjugates (r,q) (i.e.,
1 _ 1_
q— +,= 1, 4 7 + = 1) satisfying
2 2
1000 5oa0 = €670 D8 (102120 + 1 DU 1))

where
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and
1 . N 1 .
—+-<1 ifN=2; —+-=<1 ifN=3.
r 2g r

Next, we will derive some estimates of #” and 8" uniformly in m. In the following lemma, we
first obtain the bounds of u” and 6" by the maximum principle. The key point is that, following
the idea of [5], we can get the L° estimate of V6”. In [5], Chen and Su established the existence
and regularity of global solutions of a viscous approximation for an unsteady Euler flow potential
flow, which can be regarded as a variation model of the Navier-Stokes equations. By using Moser
iteration and adopting a new transformation, they mainly derived the global a priori estimates
with large initial data.

Lemma 4.3. Under the assumption (2.6), let |lug|l g2 < Co < o0, [|60lly2¢ < Co < 00 for some
q > 2. Then, for any T > 0, there exists C = C(T, 2, Co, €) such that (u",0™)(x, t) satisfies the
following estimates

0< mf uo(x) <u"(x,t) <supug(x) < oo, “4.2)
xeN

0< 1nf Bo(x) <0™(x,t) <supbp(x) <1, “4.3)
xe

”M ||LOO(0 T: Wl q(Q)) + ”VunnwlZ(QT) S C7 (44)

2

Proof. Let us begin with the case n = 1. We first find the bounds of u! and 6'. Set
(ul — inf uo(x)) :min{ul — inf uo(x),Ol.
xe2 — xeQ2

Multiplying (4.1); forn =1 by (ul — insf? uo(x)) , integrating over €2, we find
xe -

1 1. 1 1_ s
/ut (u xlgsfzuo(x))_dx—FE/Vu V(u xlgguo(x))_dx

¢ ¢ (4.6)
/u vy (u — 1nf uo(x)>
Q
Using Sobolev’s and Young’s inequalities, (4.6) yields
2
2dtf‘ u — 1nfu0(x)) ‘ dx—i—e/‘v u — mfuo(x)) ‘ dx
4.7

=C| 1V6° 3.

(' = int o)) |,
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By Gronwall inequality, we get

2 012 2
1 o ClIVO I oot 1 — i =
(v 0= fngwoe0) [ =i (', 0 — o) |, =0

This implies
ul(x, 1) > inf ug(x) > 0. (4.8)
xe
On the other hand, we set

(ul — sup MO(X)>+ = max {ul — sup up(x), O}.

xe xe
In the same way, we have

2
=0,

L2

2
( (x,1) — sup uo(x)> HL2 < (CIVO It

xeQ

(ul(x, 0) — sup uo(x))

xe

which gives

ul(x, 1) < supug(x). (4.9)

xe

Having proved (4.2), we in turn prove that 0! has a lower and upper bound. Multiplying (4.1),
forn=1by (9] — in}“2 Qo(x)> , integrating over €2, we obtain
Xe —

i 10"~ ingooeo) [axey [0 [e(0! ~ o) o

Q

= —7//(1 —29°)v9°ve1(91 — inf Qo(x)> dx
xeR -

+y/9 a1 —90) viu've! ( — inf 90(x))
Q

—(1+y)/V@0V0 ( — inf 90(x)>

Since 0 < 1nf 0p(x), sup p(x) < 1, there exists @ > 0 such that
xeR

d L 2 L 2
i [ 100"~ o) [axa [ 19(6' - ganco) ['as
Q Q

2
<im0 o) [

+CIVul3,

(0"~ o)

— L4
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2
< CIVe*3| (01 = inf 6o)) |, +CIvaCl, x
xeQ — 1Lz

(o' = ingavco) [ .[v(e" - inoco) |,

= C (196 13 + 19601, + 1961, ) | (6! = inf 60()) |

S (G IO

2
—1r2

2

L2

Here, we have used Lemma 4.1 and Young’s inequality. Then Gronwall inequality gives

0'(x, 1) > inf 6y(x) > 0. (4.10)
xe
Similarly, we have
6'(x, 1) < supfo(x) < 1. (4.11)
xeQ

Next, we proceed to derive the L™ estimate for VO!. Multiplying (4.1), for n =1 by ! and
—AG', respectively, we integrate by parts to obtain

/|9 |2dx+y/90(1 0NVl [2dx
Q

2dt

=—y/(1 —290)V9°ve191dx+y/9 a —90) vu'veo'leldx

Q Q
—(1+y)/v9°v0191dx
and
1d 2 01 — g0 2
S (Vo' 2dx +y | 6°(1 —60%)|A0" 2dx
Q Q

:—yf@o(l —90)—0vu°ve1A91dx+(1 +y)/V60V91A01dx.
u
Q

By Sobolev’s and Young’s inequalities, we have

1d
55/|91|2dx+a/|ve1|2dx <CIVUCZ4 10" 13 + CIVE T 10117,
(4.12)
<C (||vu0||§,1 + ||V6°||ioo) oM,

and
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1d
Mfwewzdxw/me‘ﬁdxsc||w0||i4||ve1ni4+C||ve°||%oo||ve‘||iz

< CIVAOIZ, (190 1219260 12 +1V6'12%:) 4 p3)
+ CIIVE° 17 1VO' 17,
< € (IVu®12 + 196l + 196° 13 ) 196112
Adding up (4.12) and (4.13) gives
d 1,2 1,2 12
S 10N +all VoI, < Clo 1,

by Gronwall inequality, which yields
16" 12, +a/||ve 1, 1dt < e 1613, < C 4.14)

fort [0, T].
Now, differentiating (4.1),, we get

vo! —y6°(1 —6%vag! = y(l —26%Vve°A6!

(4.15)
+yv(0°a - )= L vuove! ) = 1 +7)V(v6°Vo").
Setting w = VO! — V6|l = VO — M, (4.15) becomes
—y0°(1 - 0%A0w =y (1 —20% Ve divew
(4.16)

+ yv(eo(l — eo)ﬁwo(w + M)) — (1 +)V(Ve%w + M)).

Define @ = max{0, w} + k with k > 1. Multiplying (4.16) by w? — k? with p > 1 and then
integrating over [0, t] x 2 for t € (0, T'), we have

+1/(w1’+‘ (p + D@k? + pkPTydx|} + 1)2//90(1—e°)|w) 2 | dxdr
p

t

=—y / / (1 —=20Vve'Va(wP — kP)dxdt +y / / (1 —20°ve divo(@” — kP)dxdt
0 Q

—py//@o(l 0%) OVuO(a)+M)V oP ldxdr 4.17)
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t
+p(1+ y)//veo(w+ M)VoaP 'dxdr.

Notice that the fact @+ — (p + 1)@k? + pkP*! > 0 and &(x, 0) = k as well as the inequality
&P — (p+ Dak? 4 pkPT > (1 —27P)oP+! — pkPt! > %J)”“ — pkP+!

by Young’s inequality. Then, we deduce from (4.17) that, for any ¢ € (0, T],

1
/J)P“dx—L/k”“dx 2//9 (1— 0)|Va) 2 | dxdt
2(p+1) p+1Q (p+1)

0 ptl _ pt+l
<C— ‘VG Vo' 2 @ 2
p+1

+C/f)(|w |+|V90|)(1+ ) o' % |dxdr.
(4.18)
. _ptl
Setting A =@ 2, since
| T
/kP“dx < 7//@P+‘dxdr,
Q 0

it follows from (4.18) that

/ /f [VA[*dxdt
2(p +1) 1)2

T
(p+1)? (p+1)?
<CIAIZ . + C——1V o 1Al 2, + C——— [ IVUOI341IA N3, dT

< Cp+DIAI 207140

This implies that

”A”io"((),T;LZ(Q)) = C(P + 1) ||A”L2(0 T; L4(Q))’ (419)

”VA”LZ(O T: LZ(Q)) —= C(P + 1) ”A”LZ(O T; L4(Q)) (420)
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Making use of Lemma 4.2 and (4.19)—(4.20), we have, for 1 <« < %,

||A||L2K(O T; L4K(Q)) ”AK ”LZ(O T; L4(Q)) = C(p + 1) ”A”LZ(O T: L4(Q)) (421)
Fori=0,1,2---,let
P+1 i Kt 5
T =K, ||C!) ||L2(0 T; L4(Q))
so that i — oo when p — oo. Then (4.21) can be rewritten as
Loai
Oi41 < Cwi k™ oj.
By iteration, this gives
Oit1 < CTb i 2T 00.
Since
Y -2
oi=|llo ”l’i;(O,T;L“(Q)) = ||w||Lp+l(()’T;LZ(IH’I)(Q))a
let i — o0, we obtain
=12
”a)”LOO(QT) <Cop <C.
Here we have used the fact that og = ||a)||L2(0 riLh@) = < C from (4.14). Thus, we get
||V9 ”LOO(Q y= <C. 4.22)
By the L7 estimate of (4.1), we have
1V6 oo < C (||9°||Wz,q + VUl o VO ||Loo(QT)) <C (4.23)
IV w120, < CIul g2 + "l Lo 186°] 21)) < € (4.24)

Applying V to (4.1), and then multiplying the resulting equation by |Vu'|[7=2Vu! for g > 2,
we integrate over €2 and obtain

d
E/|Vul|qu+e(q—1)/|Au1|2|Vu1|"_2dx
Q
=(q— 1)/(Vulveo+u1A9°)Au1|vu1|q—2dx

€ _
55<q—1)/|Au1|2|w1|‘f 2dx + C(q — DIV 12 IVu' |14,
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-2
+Cg = Dl 7o 1007 IV |12,

=

NS HQ}

(q— 1)/ |Au' PIVu' 1972dx 4+ C(q — DIVO° I3 lIVu' |14,
Q

+C(q@ = Dl gy (186°18, + 194 14,).
together with Gronwall inequality and (4.8)—(4.9) again, which implies that

IVl L 0.7:129() < C.

(4.25)

Then, in view of (4.8)—(4.9), (4.10)—(4.11), (4.14) and (4.22)—(4.25), we finish the proof of

(4.2)~(4.5) forn = 1.

Suppose (1”1, 0" 1) (x,t) forn = 2,3, --- satisfies (4.2)—(4.5). The proof is similar to the
above argument that dealt with the case n = 1. Due to V21| 12 € L2([0, T1), we control the

term || Vu" 1| 14 by inequality
19"~ 12 = € (196~ 21920 2+ Va2, )
It is also worth noting that, since Vu"~! € L>(0, T; L1(R2)),

2 2 2
”A”LOO(O,T;LZ(Q)) = C(P + 1) ”A” 2q )
L2(0,T:L 172 ()

<C(p+DAIAN? 2

||VA||i2 0,T:L2(Q
0,T;L%(Q)) L2(0,T; L7172 ()

Then,f0r1<K<2—§,

2

2 K 2 2

IA]l we =AY 2 =Cp+ DAl 0 -
L2%(0.T:L4-2 () L2(0.T:L7-2 () L2(0.T:L9-2 ()

Therefore, we can conclude that (4.2)—(4.5) hold for any T by repeating our procedure.

Lemma 4.4. Under the assumptions in Lemma 4.3, it holds that

2 2
||I/t;1 ||LOO(0’T;L2(Q)) + Ellvult/l ”LZ(QT) S C7

2 2
167 W oo 0,7 2202 T 2NV 120,y < €

for any T. Here C is a positive constant dependent on T, 2, Co and €.

d

(4.26)

4.27)
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Proof. For n =1, applying 9; to (4.1), multiplying utl and th by the first and second resulting

equation, we integrate them over 2 to obtain

1d
EE/lqudx+6/|Vu,l|2dx=/u,lV00Vu,1dx
Q Q Q (4.28)

< CIVO B llnf I3 + 51V} 12

/ 6, |2dx+y/9°(1—90)|ve,1|2dx

N =
&.|Q~

Q
1
/(1 —200)V90V019,1dx+y/00(1 —GO)FVMOV@lQ}dx
Q Q
0 151
—(l—l—)/)/V@ Vo0 dx

o
< CIIVO Iz + CIVEC I3 (16, 12196, iz + 16, 172) + CIVEC I 7o 16, 172 + 4 1V6/ 17

(07
< CIIVO' Iz + CUIVU Iz + IVl + 1V 1716 172 + S 1V6, 172

(4.29)
By using (4.5) in Lemma 4.3, it follows from Gronwall inequality that
luf 13, + € / IV} 12,d7 < e |lu} 02, (4.30)
4.31)

1617, + / Vo 12,dT < <116} (0)]3,.

Taking t =0 in (4.1), we find that

I} )]l 2 < Clell Au™ () 12 + [V (O) || 4 IVO" O) | 4 + 1™ (O) || oo | AO" 1 (O) ] 12)
<C 4.32)

and

16 (0]l 12 < C(@llAO" )| 2 + V" "1 O) | L4 IVO™ (O 14 + VO™ (O] 14 VO™ (0)[| 14)
<c. (4.33)

In view of (4.30)—(4.33), we conclude that (4.26) and (4.27) hold when n = 1.
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Moreover, we assume that (4.26) and (4.27) hold for the case n — 1. Similar to (4.28)—(4.29),
we have

1d
EE'/|u:'|2dx+6/|Vuf|2dx=/u:'V9”_1Vutldx+/u”V9t"_1Vu,1dx
Q Q Q Q (4.34)
— _ €
< CIVO" Mol 172 + CUVO ™ 2 " 70 + S V0] 172,

1d 2 -1 -1 2
55/'9”” dx+y/9" (1— 0" H|ve"2dx
Q Q

=y /(1 —20""Hor AG 0! dx — /(1 — 20" HYyverIvererdx
Q Q

1
+y/8, (9"—1(1 —en—l)mvu"—lven> 6,"dx—(1+7/)/8, (V@"‘1V9"> 0" dx
Q

= C (IVa" = 20+ 18612, ) 167 134 + CIVa ™12,
+ CIVa 12, (= 12+ 1 13 ) + CloP 1
— o
+C (||ve” i + ||ve"||im) 167172 + IV 12

= C (V"™ 2y + 196" g + 1V 2192012, + 186713, ) 16712

1,1
+ ClIVa 2, + IV 220 2 + Cllug = 1 (19 12 + 196 1 )
+ CIVu = 12, = 1+ Cler 12, (190~ 12 + 1V, )

+ IV 210 5, + CleF G+ C (nve”” 7o + ||v0"||%oo) 167117

o n2
+ EIIV@ 72 (4.35)

where we have used Lemma 4.1 in the last inequality. The Gronwall inequality then implies
t
luf 2, + € f IVull3,dt
0

(4.36)

t
c|ver1? t _
<e I o007y ||u§‘(0)||i2+C/||V9t" 1||i2||u"||%oodf ,
0
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t
1613, + / Vo117 ,dz
0

‘ —1)2 —14 —12 2,.n—1)2 2 —1)2 2
el (e PR | e e Y e P P P A R A T P
- (4.37)

T

x (||9,"<0)||2;2 +C / (Ve =M1, + )16 1%, + 1V~ Hi2,
0

IV 1) d ).
In view of (4.36)—(4.37) and Lemma 4.3, we get (4.26)—(4.27). O
5. Existence of strong solutions

In this section, we shall establish the existence of the global strong solution by applying the
convergence method and a priori estimates obtained in the previous section.

5.1. The limit passage n — o0

The task of this section is to employ the estimates obtained in Lemmas 4.3—4.4 to get the limit
of the sequence (u!,, 6) as n — oo.

By virtue of the estimates (4.4)—(4.5) and (4.26)—(4.27), and applying the compactness results
of Sell and You (see Lemma 63.2 in [27]), we can find a subsequence of (u, 6" ), relabeled as
(uy,,0y,), so that

u' (x,1) = uy weakly-* in L0, T; W4 (Q)),
Vu® (x,1) = Vu,, weakly in L*(0, T; H' (%),
V6" (x,1) — V6, weakly in W9(Qr), (5.1)
(Bu", 30" (x, 1) = (iim, Op) weakly in L0, T; L*(R2)) N L*(0, T; H' (),
", 0")(x, 1) = (i, Op) strongly in L2(0, T; H' () x WH4(Q7),

m>-m

and for almost every ¢ € [0, T'],
", 0™ (x,t) — (u, 0) strongly in H'(Q). 5.2)

Standard arguments can then be used to show that iu,, = d;u,, and ém = 0:0,,. Then, by the
compactness property of L2-space, we have

", 0™ (x, 1) = (uy, ;) strongly in L>(0, T; L*(2)). (5.3)

Lemma 5.1. If the initial conditions of Lemma 4.3 hold, then the couple (up,,0y)(x,t) is the
solution of (3.1), and has the following properties: for any T,
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0 <supug(x) <um(x,1) <supup(x) <oo, t€l0,T], (5.4)
xe xeQ2
0 < inf Op(x) <6, (x,1) <supBp(x) <1, re[0,T], (5.5)
xeQ xeQ
”un“ioo(o’T;Wl,q(Q)) + ”Vun ”%’VI*Z(QT) S Cv (56)
ny2 ny2
13etum 17 o 0.7 12052y + €NV OUmlI72 0, < C (5.8)
196 1 e 0.7 1252y + NV 172, < C- (5.9)

Here, o, C are positive constants given in Lemmas 4.3—4.4.
Proof. Due to the above convergence, one can see easily that the couple (u,,, 6,,)(x, t) is the
solution of (3.1). Applying the lower semicontinuity of the norms, and using the estimates in
Lemmas 4.3-4.4, we deduce the estimates (5.4)—(5.9). O
5.2. Proof of existence

By using Lemma 5.1 and repeating the same procedure in Subsection 3.2 to pass to the limit
for m — oo, we prove that the limit function (i, ) of the approximate solutions (u,, 6,,) is a
global strong solution of (2.4)—(2.5).
6. Uniqueness of the strong solution

In this section, we consider the uniqueness of the strong solution. Let (u1,01) and (u2, 6»)
be two strong solutions of (2.4)—(2.5) with the same initial value and satisfy the regularities
furnished by Theorem 2.1. We introduce (5, &) with

n=u;—uy, &=061—06s.

Then these functions satisfy the following equations:

N —€An=—div(nV0y) — div(uaV§),

1
& —yOi(1 —0)AE =yEAOy +yE(01 +62) A0 + y0i (1 — 91)M—IVM1V$
6.1)

1 1
+y6i1(1— 91)M—V77V92 —y6i(1 -6 Vuy Vo, + J/UM—VM2V92
1 2

uy+us

1
—yn +92)M—2Vu2V92 —(1+y)VOVE — (1 +y)VO VE.

Proof of uniqueness. Multiplying the first equation in (6.1) by n and —An, and then integrating
over 2, we obtain

1d
5 77 Iz + €IVnliz, < CllIL V61 7 + Cluallo I VE N7, (6.2)
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1d
2dt

2 2 2 2 ~ 2 2
< ClIVnll72IVOilizeo + Clinlig 1AO 1L r + Clluzllz o A2

IVll2, +ellan]?,

+C (IVuall 2Vl 2+ V213 ) (IVE N2 192 02 + IVEIS,)  (63)
< CIVal72 V017 + Clinll 3 14601 (17

+ ClIVu I3 19812, + € (lualF + 1 Vil NAEIE,.

In a similar way, from the second equation in (6.1), we find that

1d
5 77 €022 + @l VEIL, < CUVOIT + V0270 + A0 1 ) IE N2 + CUIVaL 17 1 17

+ Clnl3 IVu2llz, + ClVall.,

(6.4)
1d
5 77 IVEIL: + @l A&7 < CUVOITx + 1AGIL, + V0217 11E N7 + CIVulI L IVEIIZs

+ CIVHIT VO + 1115 Va2l V0217
<CUIVOi % + 18020175 + IV62lI 7 + IVur]l7
VUL 121V 12D 11E113,

+ CIVHITNIVOIT~ + 103 VU217, 11 V02 oo
(6.5)

‘We can choose a small constant d such that
- 5 5 1
dC(luzllzee + IVuzll;2) < 7%

Multiplying (6.3) by d, combining it with (6.2) and (6.4)—(6.5), we get

d
- (||n||i,1 + ||$||§,1) +elVal3, +al V&N < Ch@) (||n||§,1 + ||sn§,l),
where

h(t)=C(1+[IVOil|7 + 18017, + VOl 70 + 1AONIT, + [ Vur 3,
Va2, + VUt 21V url17 5 + 1 Va3, 1V 02117 )

Observe that 4 is an integrable function in [0, T'], in view of the regularity of (11, 61) and (u>, 6>).
Consequently, we can apply Gronwall inequality, which gives

19113, + 1§13, =0,

that is, u; = up and 61 = 6, a.e. in Q7. This ends the proof of uniqueness. O
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7. Turing instability in a bounded domain

The Turing instability was proposed by A.M. Turing in 1952 [31] as an explanation for pattern
formation in reaction—diffusion systems. It is the phenomenon that an initially stable steady state
of a dynamical system can become unstable if diffusion is additionally taken into account. This
is both surprising and unexpected, because diffusion usually makes things more smooth and
uniform. This loss of stability due to diffusion is what is known as the Turing instability [24].
For this issue, there are many works made on population dynamics of biological systems [9,25,
23,33]. In this section, we present a stability analysis of the nonlinear cross-diffusion system
(1.6) for two interacting populations in a bounded domain  c RV

Suppose that (u*, v*) is a constant equilibrium solution, i.e.

f1w*, v)Hu* =0, and fr(u*,v)v* =0, (7.1)

where the fitness f;(u,v), i =1, 2, are defined by (1.1). Clearly, («*, v*) is also constant equi-
librium solution of a system of ordinary differential equations:

u= f1(u,v)u, t>0,
v = fo(u, v)v, t>0.

(7.2)
If a positive equilibrium solution exists, a sufficient condition is that
ailaz = apnazl, ajap <0.

Then we have the positive equilibrium solutions

ait
(u*,v*) = (c, ——c)
aln

for any positive constant c.
We linearize the ODE system (7.2) about the constant equilibrium (u*, v*). Let U = u — u*,
V = v — v* be a spatial perturbation for which, we have

U =9, fi(u*, v)u*U + 8y f1 ™, v)u*V, 73
V =0, fo(u*, v U + 8y fou*, v)o*V. '
We define the matrix J by the following
A Oufr*, v )u* 0y fr(u*, vFu*
1= (aufzw*, VW By fal, v ) G4

In fact the stability of (0, 0) in (7.3) is equivalent to the stability of matrix J, which depends on
the signs of the eigenvalues A of J, i.e., all which must have negative real parts. The characteristic
polynomial of J is given by

P;(A) =A% — Trace(J) + Det(J).
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A direct calculation yields

ko %k ko %k
(ar —012)m (a2 —all)m
Det(J) = Det ( e ( e —0. (1.5
a —a O E— a —dad B E——
21 — A 1o 22 —azi Ty

It is easy to see that at lest one eigenvalue of J is zero. Thus, (u*, v*) is not a stable equilibrium
with respect to (7.3). We summarize the result in the theorem below.

Theorem 7.1. Let ajjaz; = appazy, ajjayy < 0. Suppose that (u™*, v*) is a positive equilibrium
solution of (1.6). Then (u™*, v*) is not a stable solution with respect to the ODE system (7.2) and
the cross-diffusion system (1.0).

Next, we add two diffusion terms to the ODE system (7.2), that is, for the parameters
Vi, v2 >0,

uy = f1(u, v)u +viAu,

(7.6)
vy = fo(u, v)v 4+ vaAv.

We consider the situation in which the stability of the equilibrium changes from unstable for
the ODE system (7.2) to stable for the diffusion system (7.6). Clearly, if ajjaz; = ajzaz; and
arjarz < 0, then for any positive constant c,

ail
(M*, U*) = (Cs ——C)
a2

are also the positive equilibrium solutions of (7.6). Linearizing the diffusion system (7.6) about
the positive equilibrium (u*, v*), we have

W, =JW + DAV, (1.7)

where W = (U, V)T and D = diag(vy, v2). Let 0 = A1 < A < - - - be the eigenvalues of operator
—A on  with the homogeneous Neumann boundary condition, and E(A;) be the eigenspace
corresponding to A; in C2(Q). Let X={ue [CI(Q)]2|3—:‘1 =0o0n a2}, {¢ij}j=1,2, dim E(;) be
an orthonormal basis of E(};), and X;; = {c¢;j|c € R2}. Then

dim E(;)

oo
X=X and Xi= (K) Xi.
i=1 j=1

For each i > 1, X is invariant under the operator J + DA. Then problem (7.5) has a non-trivial
solution of the form W = c¢ exp(ut) if and only if (i, ¢) is an eigenpair for the matrix J — X; D,
where ¢ is a constant vector. The equilibrium (u*, v*) is stable if all the eigenvalues have negative
real parts for each A; > 0.

The characteristic polynomial of J — A; D is given by

P; (1) = u?> — Trace(J — A; D)ju + Det(J — A; D),
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where
u*v*
Trace(J — A; D) = (a1 — a2 +axn — 021)m — V1A — A,
Det(J — A; D) = 2 uv?
et(J — A; D) =vivd; — [vi(axn —az1) + va(air — a2)lA; @

We denote w1(A;) and wo(X;) as the roots of P;(u) =0, and then we have
w1 (Ai) + pu2(d;) =Trace(J —A; D) and (A2 () = Det(J — A; D).
In order to get Rew(A;) < 0 and Rews(A;) < 0, a sufficient condition is that
Trace(J —A;D) <0 and Det(J —A;D) >0

for each A; > 0. Thus,

aygn —ap+ap —ay <0 and vy(an —ap)+vi(an —az) <0. (7.8)
As a consequence, we give sufficient conditions on diffusion which leads to stability.
Theorem 7.2. Let aj1ax = appazy, ajjayz <0, vy > 0, va > 0 and the condition (7.8) hold. Sup-
pose that (u*, v*) is a positive equilibrium solution of (7.6). Then (u*, v*) is a stable equilibrium

solution with respect to the diffusion system (7.6).

Furthermore, we study the diffusion system (7.6) with cross-diffusion effects, which takes the
form

FiGu, v+ viAu+ i ( Jdiv( = Vi + v Vo)
u; = fi(u,v)u +viAu aj; —a v ——=Vu+ ——=Vv),

. v2 uv ’
v = fo(u, v)v +v2Av + Ba(az — azz)dIV< BT Vu + P Vv).

We linearize the cross-diffusion system (7.9) about the positive equilibrium (u*, v*) to obtain

U, =JV + (D+ H)AVY, (7.10)
where
u* * M*u*
o —Bi(an —alz)m Bi(arn —alz)m
- * 0k M*U*
—Ba(az — dzz)m Ba(ax — azz)m

Then the characteristic polynomial of J — X;(D + H) is

Pi(1) = u? — Trace(J — Ai(D + H))p + Det(J — A;(D + H)),
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where

u*v*

Trace(J — A; (D + H)) = (a1 —app +axn — QZI)W

—Ai(vi+v2)

u*v*

+ Ai[(all —ap)p1 + (axpn — aﬂ)ﬂz]m,

k0 3k

Det(J — A;(D + H)) =Det(D + H)A? — [va(ar; — a12) + vi(an — az)) A; + DetJ

u
(u* + v*)2
u*v*
_ 2
= {V1V2 — [v2Bi(ai1 —ai2) + vipa(an — 6121)]m } A

u*v*

- [Vz(dll —ay) +vi(axn — Clﬂ)]m)\i-

Then the equilibrium (u*, v*) is stable with respect to (7.9) if all eigenvalues have negative
real parts, that is, for all A; > 0,

Trace(J — A (D + H)) <0, Det(J — A; (D + H)) > 0.

Under the assumption (7.8), the sufficient conditions are that

ko %k
[(a11 —a12)B1 + (a2 — azl)ﬂz]m <vi+w,
iy (7.11)
[v2B1(a11 — arz) +viBa(an — a21)]m <viv.

In order to have a Turing instability, the polynomial P; must at least have one eigenvalue with
positive real part for some ;. Thus, we need one of the two conditions

k)%

[(a11 —a2)B1 + (a2 — az])ﬂz](u*u—l——v*ﬂ > v+, (7.12)
[v2Bi(arn — a2) + viBalaxn — azl)]m < v, (7.13)

Theorem 7.3. Let ajjazy = ajpaxn, ajjaiz <0, vy > 0,vy > 0 and the condition (7.8) hold.
Suppose that (u*, v*) is a positive equilibrium solution of (7.9). Then, (u*, v*) is a stable equi-
librium solution with respect to the diffusion system (7.9) if (7.11) is true, (u™*, v*) is an unstable
equilibrium solution with respect to the diffusion system (7.9) if (7.12) (or (7.13)) is true.

Moreover, we make a modification to the ODE system (7.2), that is,

. anutapv+te

H=—"—"u, t>0,
u-+v

. a)iu +axyv+e¢e

V= ——" 9, t>0.
u-+v

(7.14)
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It is easy to see that if

ajpp —an
>0,

appaz; —apzdaz)

azr —dairi
aprazz —aprazy

>0,

the ODE system (7.14) has a unique positive equilibrium (i, v) which is given by

- aip —an
U=—"—""""—""—z¢,
apla; — apazg

azr —airi
aprazz —apndazy

Using the similar argument above, we find that (i, v) is a stable equilibrium with respect to the
ODE system (7.14) if aj1 — a2 +ax —az1 <0,¢ > 0and

a) —ain
> 0.

(7.15)

a2 —an
>0,
appaz —ajpzayl

ajlazz — ajzazl

We proceed to examine Turing instability for the following system with cross-diffusion

_anu+apv+e
u-+v
_axu +a»v+¢

U

v =—————Vv+ palaz — azz)diV< -

u-+v

u+pBilan — a12)diV( -

uv u2
(u +v)? Vit (u +v)? Vv),
U2 uv
wror o)

(7.16)

Linearizing the cross-diffusion system (7.16) about the positive equilibrium (it, v) gives

P, =GP+ KAD,

where ® = (u — i1, v — 9)! and

(arn —ap)v—¢ _

(a2 —au—e _

(it + )2
(a21 —axn)v—=¢ _

(it +v)?
(ap —ax)u — ¢ _

’

(i + )2

uv
o —Bi(an —alz)m
= 2

—B2(ax1 — ax) m

(it + )2
ﬁZ

(i1 + v)2
v

(it + )2

Bi(air —az)

Ba(az1 — az)

We obtain that the characteristic polynomial of G — ;K is

P; (1) = u* — Trace(G — A; K) i + Det(G — A K),

where
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Trace(G — A K) = (a11 —aiz +ax —azl)% - %
+Ail(a1r —a)pr + (axn — a21),32]( i_ 7
Det(G — 1K) = Deth —(ay —app+ax —azl)( ey _)3A + DetG
EUV EUV

=—(a —app+axp —an)——=r — (a1 —app +axn —az)

G+ (i +1v)>
Notice that Det(G — A; K) > 0. If Trace(G — A; K) < 0 for all A; > 0, then the two roots of
P; (i) = 0 have negative real parts. To this end, we need the sufficient condition (a1 — ai2) 81 +
(azy — az1)B2 < 0. In this case, a Turing instability does not occur, and the equilibrium (i, v) is
stable for (7.16).

In the other case, Trace(G — A; K) > 0 for some A; if (a1 — a12)B1 + (a2 — az1)B2 > 0.
Then both roots have positive real parts, the equilibrium (i, v) is Turing unstable for (7.16). It is
observed that the cross-diffusion effect is able to destabilize the positive equilibrium.

Theorem 7.4. Let aj1 — ayp + ax —az <0, € > 0 and the condition (7.15) hold. Then if (aj1 —
ai2)B1 + (axp — azy) B2 < 0, the unique positive equilibrium (i, v) is stable for (7.14) and (7.16).
If (a11 —a12) B1 + (a2 — az1) B2 > 0, the unique positive equilibrium (u, v) is unstable for (7.16),
but is stable for (7.14).

8. Conclusions

In this paper we have considered the dynamics of two populations, interacting via a symmet-
ric game, who drive their migration by spatial gradients in the fitness function determined by the
game payoffs. We have established existence and uniqueness results for strong solutions to the
regularized fitness gradient system. However, it is still a very challenging problem to study the
solutions of the original fitness gradient system, namely, the convergence of approximate solu-
tions (u¢, ve) as € tends to 0. Further, we have shown the occurrence of a Turing instability when
growth rate terms are included. These equations represent in only an average, population-level
way the variety of competitive interactions between organisms which comprise these populations
[2,8], yet our mathematical analysis puts into evidence some of the intrinsic difficulties of this
system. Whether these aspects, some of which have been seen in numerical simulations [6,7],
represent possible occurrences in corresponding ecological systems, or whether they point di-
rectly to the ways in which the mathematical representation should be refined, remains unclear
and is a subject for future studies.
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