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Abstract

In this paper, we study a fitness gradient system for two populations interacting via a symmetric game. 

The population dynamics are governed by a conservation law, with a spatial migration flux determined 

by the fitness. By applying the Galerkin method, we establish the existence, regularity and uniqueness of 

global solutions to an approximate system, which retains most of the interesting mathematical properties of 

the original fitness gradient system. Furthermore, we show that a Turing instability occurs for equilibrium 

states of the fitness gradient system, and its approximations.
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1. Introduction

The ability of living things to move spatially during their struggle to survive is an inherent 

aspect of most biological systems, with implicit connections to evolution [8]. The fact that multi-

ple species are moving simultaneously, some in pursuit of others, brings an additional richness to 

ecological dynamics. The particular mechanisms of this motion manifest themselves at the popu-

lation level as dispersal or migration relations, written as a spatial flux which depends on various 

effects, including heterogeneous environmental conditions, spatial distribution of resources, and 

mutually attractive or repulsive interactions between individuals, among many other consider-

ations [2,8]. The challenge for mathematical modeling is to realistically capture the relevant 

aspects of these effects, while nonetheless producing a set of equations which are both tractable 

and provide insight into the phenomena [10].

Partial differential equations have been developed to model populations interacting in a spa-

tially extended region. Among such models, one of the first (called SKT model for short) 

determined by species fitness appeared in Shigesada et al. [29], who studied a Lotka–Volterra 

system of interacting species in a homogeneous environment. For the SKT model, Lou and 

Ni [14,15] showed the existence and nonexistence of nonconstant steady states, and obtained 

the limit of nonconstant steady states. The global existence of smooth solutions was proved by 

Kim [11] and Shim [26] in one dimension, Lou et al. [16] in two dimensions, and Lou and Win-

kler [18] in three dimensions. When the environment itself is spatially inhomogeneous, the case 

of one species moving up a resource gradient while the other disperses randomly was modeled 

by Cantrell et al. [4] based on an earlier single equation approach by Belgacem and Cosner [1]; 

Kareiva and Odell proposed a cross-diffusion model for predator–prey interaction [13]. We also 

refer to [3,10,19,21,22,28,20] and references therein.

Evolutionary game theory provides a specific form of the fitness for each population, based on 

the payoff matrix of the game which defines their mutual interactions [30]. Consider a population 

of individuals who are playing a game in competition. Every individual has a choice of m possible 

pure strategies available, and at each instant every individual is using one of these strategies. For 

each strategy i, pi denotes the proportion of individuals who are, at that moment, using strategy i. 

In a symmetric evolutionary game, the fitness of strategy i is the expected payoff for an individual 

playing strategy i, written as fi , where the payoff matrix is defined by

A =

⎛

⎝

a11 · · · a1m

· · · · · · · · ·

am1 · · · amm

⎞

⎠ .

We adopt the fitness function as defined by Taylor & Jonker [32] and Vickers [34], where the 

fitness for an individual playing strategy i is defined as the expected per capita payoff: fi =

(Ap)i , where p = (p1, · · · , pm).

In this paper we consider two populations, described by density functions u and v, who choose 

one from two strategies (m = 2). The local fitness for each population defined above is written as

f1(u, v) =
a11u + a12v

u + v
, f2(u, v) =

a21u + a22v

u + v
. (1.1)

We assume that

a11 − a12 > 0, a21 − a22 > 0, (1.2)
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an assumption which implies that the u population gains most by playing against itself, whereas 

the v population does better playing against the u population than against itself [7]. We consider 

each species to migrate along its fitness gradient, moving towards a more favorable environment. 

If we take the continuous limit of the discrete model [7], the population fluxes at the position x

and time t are given by

J1 = −β1u∇f1, J2 = −β2v∇f2,

where βi are the proportionality constants determining each population’s sensitivity to its fitness 

gradient. Then the population dynamics is described by the equation of continuity

{

ut = −divJ1 = −β1div(u∇f1),

vt = −divJ2 = −β2div(v∇f2).
(1.3)

For the choice of fitness functions fi in (1.1), one can show that ∇f2 = κA∇f1 [7], where 

κA = (a21 − a22)/(a11 − a12) is a constant. By dividing equations (1.3) by β1 and rescaling the 

time, this system becomes

{

ut = −div(u∇f1),

vt = −βκAdiv(v∇f1),
(1.4)

where β = β2/β1. We make the assumption βκA > 1 and define the positive parameter γ =

βκA − 1 [7]. Using the functional form of f1(u, v), System (1.4) can be expressed as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = (a11 − a12)div
(

−
uv

(u + v)2
∇u +

u2

(u + v)2
∇v

)

,

vt = (a11 − a12)(1 + γ )div
(

−
v2

(u + v)2
∇u +

uv

(u + v)2
∇v

)

.

(1.5)

The resulting generalized diffusion system includes cross-diffusion effects, for which steady state 

solutions and numerical examples of solutions were investigated by [7]. In a related work [12], 

the authors proved existence of global non-negative weak solutions under the assumption that 

A is a symmetric positive–definite matrix with the uniform ellipticity structure, and the fitness 

is determined by the difference between the available resources and the animal’s consumption, 

represented by Ap.

Due to the condition a11 −a12 > 0, the usual energy method is not applicable to the first equa-

tion of (1.5), so the cross-diffusion term can lead to serious problems. In order to overcome the 

mathematical difficulties, we regularize problem (1.5) and utilize a specific change of dependent 

variables [6,7]. The first aim of this paper is to prove the existence of strong solutions to the 

regularized problem shown in (2.1) for a bounded domain � ⊂R
2.

When we consider the additional possibility of local increases or decreases of the two popula-

tions, the fitness of each population manifests itself as a growth rate (see [12,7]). The population 

dynamics can be modeled by the following system

{

ut = f1u − β1div(u∇f1),

vt = f2v − β2div(v∇f2).
(1.6)
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For the main results of this paper, we neglect the growth rates terms, as they do not cause any 

technical difficulty for the existence of strong solutions to (1.4); this allows us to focus on the 

intrinsic difficulties of the fitness gradient terms. However, these growth rates terms do play 

an important role in the instabilities of (1.6), which can destabilize the equilibrium solution. 

Later in this paper we address the effect of growth rates and cross-diffusion on the instability 

in any dimensions. Through a linear stability analysis, we analytically derive a set of sufficient 

conditions which guarantee that the system generates a Turing instability, as first indicated in [7].

The rest of the paper is arranged as follows. We shall regularize the problem and give our 

existence result in Section 2. In Section 3, we first adopt the Galerkin approximation scheme 

and then construct a sequence of approximate solutions (um, θm). In Section 4, we derive some 

a priori estimates for the approximate solutions. We then prove the main result theorem by the 

convergence of the approximate solutions in Section 5. In Section 6, the uniqueness of global 

strong solutions is obtained. The instability of the equilibrium for (1.6) and its approximate 

systems is discussed in Section 7.

2. Regularization the problem and existence result

Without loss of generality, we take a11 − a12 = 1 throughout this paper. We regularize Sys-

tem (1.5) with small parameter ε > 0 as follows

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ut = div

(

ε∇u −
uv

(u + v)2
∇u +

u2

(u + v)2
∇v

)

,

vt = div

(

−(1 + γ )
v2

(u + v)2
∇u + (1 + γ )

uv

(u + v)2
∇v

)

+ ε
v

u
�u.

(2.1)

Remark 2.1. It can be proved that u is a strictly positive function with lower bound, given the 

initial data u0 with positive lower bound. Then the regularizing term 
v
u
�u is mathematically 

well-defined. Further comments on the form of this term are given below.

We study the initial boundary value problem for (2.1) in a bounded domain with smooth 

boundary � ⊂R
2, along with the following initial and boundary conditions

{

u(x,0) = u0(x), v(x,0) = v0(x) x ∈ �,

∇u · n = 0, ∇v · n = 0 x ∈ ∂�,
(2.2)

where the initial densities u0(x) and v0(x) are strictly positive functions and satisfy

0 < inf
x∈�

u0(x) ≤ sup
x∈�

u0(x) < ∞,

0 < inf
x∈�

u0(x)

u0(x) + v0(x)
≤ sup

x∈�

u0(x)

u0(x) + v0(x)
< 1.

(2.3)

Before stating our main result, we explain the notations and conventions that will be used 

throughout the paper. We set QT = [0, T ] × �. Let us denote the usual Sobolev spaces by 

Wm,q(QT ) with the norm ‖ · ‖Wm,q (QT ). For simplicity, the norm of the Sobolev space Wm,q(�)
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is written as ‖ · ‖Wm,q . When q = 2 or m = 0, we will set Hm(�) = Wm,2(�) and Lq(�) =

W 0,q(�), respectively. As usual, 〈·, ·〉 stands for the scalar L2(�)-inner product. For any Banach 

space B and any T > 0, we will denote by Lr(0, T ; B) the Banach space of the B-valued (classes 

of) functions defined a.e. in [0, T ] that are Lr -integrable in the sense of Bochner. Frequently, we 

will consider Banach spaces Lr(0, T ; B) with B = Wm,q(�).

Our main result is the following:

Theorem 2.1. Let � ⊂ R
2 be a bounded domain with smooth boundary and q > 2, and the 

initial value u0(x) ∈ H 2(�), 
u0

u0+v0
(x) ∈ W 2,q(�) satisfy (2.3). Then the initial boundary value 

problem (2.1)–(2.3) has a unique global in time strong solution.

In order to prove Theorem 2.1, we utilize the proportionate variable θ = u/(u + v) defined 

in [6], which transforms System (2.1) into the equivalent form

⎧

⎨

⎩

ut − ε�u + div(u∇θ) = 0,

θt − γ θ(1 − θ)�θ = γ θ(1 − θ)
1

u
∇u∇θ − (1 + γ )|∇θ |2.

(2.4)

The initial and boundary conditions can be rewritten as

{

u(x,0) = u0(x), θ(x,0) = θ0(x) x ∈ �,

∇u · n = 0, ∇θ · n = 0 x ∈ ∂�,
(2.5)

and the initial values u0(x) and θ0(x) are strictly positive functions satisfying

0 < inf
x∈�

u0(x) ≤ sup
x∈�

u0(x) < ∞, 0 < inf
x∈�

θ0(x) ≤ sup
x∈�

θ0(x) < 1. (2.6)

Remark 2.2. Mathematically, System (2.4) bears some similarity to the viscous homogeneous 

Hamilton–Jacobi equation for θ and its relation to fluid system as [5].

Remark 2.3. It is worth mentioning that the inclusion of two regularization terms in System (2.1)

aims to make the transformed system (2.4), with the new variable θ , into a parabolic system, 

by which we can obtain the W 1,q estimate of u for some q > 2. Otherwise, System (2.4) is 

hyperbolic–parabolic, which can also be regarded as a variation model of the Navier–Stokes 

equations. Then due to the appearance of the higher order term ∇u in the second equation of 

(2.4), we cannot close a priori estimates.

Next we have

Proposition 2.1. Let � ⊂R
2 be a bounded domain with smooth boundary, assume that ‖u0‖H 2 ≤

C0 < ∞, ‖θ0‖W 2,q ≤ C0 < ∞ for some q > 2 and (2.6) holds. Then, for any T , the initial bound-

ary problem (2.4)–(2.5) has a unique strong solution (u, θ)(x, t) defined on the time interval 

[0, T ], satisfying the following properties

0 < inf
x∈�

u0(x) ≤ u(x, t) ≤ sup
x∈�

u0(x) < ∞ for x ∈ �, t ∈ [0, T ];
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0 < inf
x∈�

θ0 ≤ θ(x, t) ≤ sup
x∈�

θ0 < 1 for x ∈ �, t ∈ [0, T ],

and there exists a positive constant C depending on T , �, C0, ε such that

‖u‖L∞(0,T ;W 1,q (�)) + ‖∇u‖L2(0,T ;H 1(�)) + ‖ut‖L∞(0,T ;L2(�))∩L2(0,T ;H 1(�)) ≤ C;

‖∇θ‖W 1,q (QT ) + ‖θt‖L∞(0,T ;L2(�))∩L2(0,T ;H 1(�)) ≤ C.

3. The Galerkin approximation

We start by defining the operator

A : H 2(�) ∩
{

u ∈ H 1(�) : ∇u · n = 0
}

�−→ L2(�)

as

Au = −�u + u.

Let λj be the eigenvalues of A and ϕj be the corresponding eigenfunction which is an element 

of C∞(�) ∩ H 2(�), that is, for j = 1, 2, · · · ,

{

−�ϕj + ϕj = λjϕj in �,

∇ϕj · n = 0 on ∂�.

Then {ϕj }
∞
j=1 form an orthonormal basis of L2(�). We set a sequence of finite dimensional 

spaces

Vm = span{ϕj : j ≤ m}, m = 1,2, · · · .

For any fixed integer m > 0, we consider the following Galerkin type approximation of (2.4)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∂tum − ε�um + div(um∇θm) = 0,

∂tθm − γ θm(1 − θm)�θm = γ θm(1 − θm)
1

um

∇um∇θm − (1 + γ )|∇θm|2,

(um, θm)(0) = (u0, θ0).

(3.1)

3.1. The Cauchy problem for the density um

In this subsection, our aim is to look for approximate solutions um of (3.1)1 in Vm for any 

integer m > 0.

Lemma 3.1. For any integer m > 0, there exists a Tm > 0, if θm ∈ C([0, Tm]; H 1(�)), such that 

the Cauchy problem (3.1)1 has a unique solution um ∈ C([0, Tm]; Vm).
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Proof. We may set um =
∑m

j=1 dj (t)ϕj . Taking the inner product of (3.1)1 and ϕk (k =

1, 2, · · · , m), we find that dk(t) satisfies

⎧

⎪

⎪

⎨

⎪

⎪

⎩

d

dt
dk(t) +

m
∑

j=1

dj (t)

∫

�

(

ε∇ϕj∇ϕk − ∇θmϕj∇ϕk

)

dx = 0,

dk(0) = 〈u0, ϕk〉.

(3.2)

Clearly, problem (3.2) is an initial value problem for an ordinary differential equation. Thus, by 

standard theory and using the assumption on θm, it follows that (3.2) possesses a unique local 

solution um ∈ C([0, Tm]; Vm). �

Next, we derive an energy inequality for um. Multiplying (3.1)1 by um and −�um respec-

tively, we integrate by parts to have

1

2

d

dt

∫

�

u2
mdx + ε

∫

�

|∇um|2dx =

∫

�

um∇θm∇umdx

≤
ε

2
‖∇um‖2

L2 + C(ε)‖um‖2
L4‖∇θm‖2

L4

≤
ε

2
‖∇um‖2

L2 + C(ε,‖∇θm‖L∞(0,Tm;H 1(�)))‖um‖2
H 1,

(3.3)

1

2

d

dt

∫

�

|∇um|2dx + ε

∫

�

|�um|2dx

=

∫

�

∇um∇θm�umdx +

∫

�

um�θm�umdx

≤
ε

2
‖�um‖2

L2 + C(ε,‖∇θm‖L∞(0,Tm;H 2(�)))‖um‖2
H 1 .

(3.4)

Summing (3.3) and (3.4), it follows that

d

dt
‖um‖2

H 1 + ε‖∇um‖2
H 1 ≤ C(ε,‖∇θm‖L∞(0,Tm;H 2(�)))‖um‖2

H 1 . (3.5)

By Gronwall inequality, (3.6) implies

‖um‖2
H 1 + ε

t
∫

0

‖∇um‖2
H 1dt ≤ e

C(ε,‖∇θm‖
L∞(0,Tm;H2(�))

)t
‖u0‖

2
H 1

≤ C(ε,‖∇θm‖L∞(0,Tm;H 2(�)), u0)

(3.6)

for t ∈ [0, Tm].

Now, we assume that u1
m, u2

m are two solutions with the same initial value of (3.1)1 cor-

responding to θm = θ1
m, θm = θ2

m respectively. Multiplying the difference of the equations by 

−�(u1
m − u2

m), we integrate by parts to obtain
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1

2

d

dt

∫

�

|∇(u1
m − u2

m)|2dx + ε

∫

�

|�(u1
m − u2

m)|2dx

=

∫

�

∇(u1
m − u2

m)∇θ1
m�(u1

m − u2
m)dx +

∫

�

(u1
m − u2

m)�θ1
m�(u1

m − u2
m)dx

+

∫

�

∇u2
m∇(θ1

m − θ2
m)�(u1

m − u2
m)dx +

∫

�

u2
m�(θ1

m − θ2
m)�(u1

m − u2
m)dx

≤ C(ε)‖u1
m − u2

m‖2
H 1‖∇θ1

m‖2
H 2 + C(ε)‖u2

m‖2
H 1‖∇(θ1

m − θ2
m)‖2

H 2 +
ε

2
‖�(u1

m − u2
m)‖2.

(3.7)

Note that 
∫

�
(u1

m − u2
m)dx = 0 for all t , which allows us to use Poincaré inequality. By Gronwall 

and Poincaré inequalities, taking (3.6) and (3.7) into account, we conclude that

sup
0≤t≤Tm

‖u1
m(t) − u2

m(t)‖H 1

≤ TmC
(

ε,‖∇θ1
m‖L∞(0,Tm;H 2(�)),‖∇θ2

m‖L∞(0,Tm;H 2(�)), u0

)

sup
0≤t≤Tm

‖∇(θ1
m(t) − θ2

m(t))‖H 2 .

Moreover, denoting Lu := ut − ε�u + div(u∇θ), we calculate

L(e
∫ t

0 ‖�θm‖L∞dt ) = e
∫ t

0 ‖�θm‖L∞dt (‖�θm(t)‖L∞ + �θm) ≥ 0, Lum = 0,

L(e−
∫ t

0 ‖�θm‖L∞dt ) = e−
∫ t

0 ‖�θm‖L∞dt (−‖�θm(t)‖L∞ + �θm) ≤ 0.

By virtue of the comparison principle, we have

0 < e−
∫ t

0 ‖�θm‖L∞dt ≤ um(x, t) ≤ e
∫ t

0 ‖�θm‖L∞dt

for all x ∈ �, t ∈ [0, Tm].

The results just obtained can be summarized in the following statement:

Lemma 3.2. Let the initial value u0(x) ∈ H 2(�). Then, for any integer m > 0, there exists a 

Tm > 0 and a mapping S = S(θm),

S : θm ∈ C([0, Tm];H 1(�)) �−→ C([0, Tm];Vm)

such that um = S(θm) is the unique solution to (3.1)1.

In addition to the above assumption, if θm ∈ C([0, Tm]; W 2,∞(�)), we have

e−
∫ t

0 ‖�θm‖L∞dt ≤ um(x, t) ≤ e
∫ t

0 ‖�θm‖L∞dt (3.8)

for all x ∈ �, t ∈ [0, T ], and if ∇θm ∈ C([0, Tm]; H 2(�)), we have

‖S(θ1
m) − S(θ2

m)‖C([0,Tm],H 1(�)) ≤ TmC(ε, k,u0)‖∇(θ1
m − θ2

m)‖C([0,Tm],H 1(�)) (3.9)



Q. Xu et al. / J. Differential Equations 262 (2017) 4021–4051 4029

for any θ1
m, θ2

m belonging to set

ML = {∇θm ∈ C([0, Tm];H 2(�))| ‖∇θm‖C([0,Tm];H 2(�)) < L}.

3.2. The approximate solutions θm

By substituting the above solution um(x, t) into (3.1)2, we obtain the integral equation

∫

�

um(t)θm(t)ϕdx −

∫

�

u0θ0ϕdx

=

t
∫

0

∫

�

{

γ umθm(1 − θm)�θm + γ θm(1 − θm)∇um∇θm − (1 + γ )um|∇θm|2

+ ε�umθm − div(um∇θm)θm

}

ϕdxdt

(3.10)

for all t ∈ [0, Tm] and any function ϕ ∈ Vm. Now, we proceed to look for approximate solutions 

θm ∈ C([0, Tm]; Vm) satisfying (3.10).

To this end, we introduce a family of operators M[u] : Vm → V ∗
m,

〈M[u]ω,ψ〉 =

∫

�

uωψdx.

Clearly, these operators are bounded if u ∈ L1(�), that is

‖M[u]‖L(Vm,V ∗
m) ≤ C(m)‖u‖L1 ,

and invertible provided u is strictly positive on �, so we have

‖M−1[u]‖L(V ∗
m,Vm) ≤ ( inf

x∈�
u(x))−1.

Notice that the identity

M−1[u1] −M−1[u2] =M−1[u2](M−1[u2] −M−1[u1])M−1[u1]

for any u1, u2 from the set

Mη = {u ∈ L1(�)| inf
x∈�

u ≥ η > 0},

leads to

‖M−1[u1] −M
−1[u2]‖L(V ∗

m,Vm) ≤ C(m,η)‖M[u2] −M[u1]‖L(Vm,V ∗
m)

≤ C(m,η)‖u1 − u2‖L1 .
(3.11)
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Now, the integral identity (3.10) can be rephrased in the mild form

θm =M
−1[um]

⎛

⎝q0 +

t
∫

0

N [um(s), θm(s)]ds

⎞

⎠ (3.12)

where for all ϕ ∈ Vm,

〈q0, ϕ〉 =

∫

�

u0θ0ϕdx

and

〈N [um(s), θm(s)], ϕ〉 =

∫

�

{

γ umθm(1 − θm)�θm + γ θm(1 − θm)∇um∇θm

− (1 + γ )um|∇θm|2 + ε�umθm − div(um∇θm)θm

}

ϕdx.

Taking um = S(θm), (3.12) can be rewritten as

θm =M−1[S(θm)]

⎛

⎝q0 +

t
∫

0

N [S(θm)(s), θm(s)]ds

⎞

⎠ . (3.13)

By means of the contraction mapping principle on the Banach space C([0, Tm]; Vm), taking (3.9)

and (3.11) into account, we obtain a local solution θm of (3.13) on a short time interval [0, Tm], 

Tm ≤ T .

3.3. Approximate solutions in a time interval [0, T ]

Our remaining task is to show that Tm = T . Let us suppose that Tm < T . The a priori estimates 

established in Section 4 prove that um and θm stay uniformly bounded in Vm on the whole interval 

[0, Tm]. We take

um(Tm) = lim
t→Tm

um(t), θm(Tm) = lim
t→Tm

θm(t)

as the initial values to solve (3.1). Repeating the argument for the above two functions, after a 

finite number of steps, we finally get Tm = T .

From the above argument, we have the following existence result.

Lemma 3.3. Let q > 2, and assume initial values u0(x) ∈ H 2(�), θ0(x) ∈ W 2,q(�), then for any 

integer m, the Cauchy problem (3.1) admits a unique solution (um, θm)(x, t) in C([0, T ], Vm).
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4. A priori estimates

This section is devoted to deriving some a priori estimates for the approximate solutions 

(um, θm) by iteration. For the sake of simplicity, we drop the index m, using um = u and θm = θ

in this section. Let us assume that

u0(x, t) = u0(x), θ0(x, t) = θ0(x),

and un(x, t), θn(x, t) for any integer n ≥ 1, satisfy the problem

⎧

⎨

⎩

un
t − ε�un + div(un∇θn−1) = 0,

θn
t − γ θn−1(1 − θn−1)�θn = γ θn−1(1 − θn−1)

1

un−1
∇un−1∇θn − (1 + γ )∇θn−1∇θn,

(4.1)

with the initial and boundary value conditions

{

(un, θn)(x,0) = (u0(x), θ0(x)) in �,

∇un · n = 0, ∇θn · n = 0 on ∂�.

For each n ≥ 1, the linear problem (4.1) is solvable in C([0, T ]; Vm) from the argument in the 

previous section.

We recall the well-known interpolation inequality for Sobolev functions on bounded domains 

(see [17]).

Lemma 4.1 (Gagliardo–Nirenberg’s inequality). Suppose that u ∈ W 1,p(�) ∩Lr (�). Then there 

exists a constant C = C(�, N, p, r) such that

‖u‖Lq ≤ C
(

‖Du‖s
Lp‖u‖1−s

Lr + ‖u‖Lr

)

,

where 1
q

= s( 1
p

− 1
N

) + (1 − s) 1
r
. Then range of q is [r, 

Np
N−p

] when p < N , is [r, ∞) when 

p = N , and is [r, ∞] when p > N .

We will often use the following version of the Gagliardo–Nirenberg’s inequality for aniso-

tropic spaces, which is a simple consequence of Lemma 4.1. We refer to [5] for the proof.

Lemma 4.2. Suppose that u ∈ L∞(t, t + δ; L2(�)) and Du ∈ L2([t, t + δ] × �) for t, t + δ ∈

[0, T ]. Then u ∈ L2r ′
(t, t + δ; L2q ′

(�)), for all pairs (r ′, q ′) with the conjugates (r, q) (i.e., 
1
q ′ + 1

q
= 1, 1

r ′ + 1
r

= 1) satisfying

‖u‖2

L2r′ (t,t+δ;L2q′
(�))

≤ C(s, r, q,�)δs
(

‖u‖2
L∞(t,t+δ;L2(�))

+ ‖Du‖2
L2([t,t+δ]×�)

)

where

s = 1 −
N

2q
−

1

r
,
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and

N

2q
+

1

r
< 1 if N = 2;

N

2q
+

1

r
≤ 1 if N = 3.

Next, we will derive some estimates of un and θn uniformly in m. In the following lemma, we 

first obtain the bounds of un and θn by the maximum principle. The key point is that, following 

the idea of [5], we can get the L∞ estimate of ∇θn. In [5], Chen and Su established the existence 

and regularity of global solutions of a viscous approximation for an unsteady Euler flow potential 

flow, which can be regarded as a variation model of the Navier–Stokes equations. By using Moser 

iteration and adopting a new transformation, they mainly derived the global a priori estimates 

with large initial data.

Lemma 4.3. Under the assumption (2.6), let ‖u0‖H 2 ≤ C0 < ∞, ‖θ0‖W 2,q ≤ C0 < ∞ for some 

q > 2. Then, for any T > 0, there exists C = C(T , �, C0, ε) such that (un, θn)(x, t) satisfies the 

following estimates

0 < inf
x∈�

u0(x) ≤ un(x, t) ≤ sup
x∈�

u0(x) < ∞, (4.2)

0 < inf
x∈�

θ0(x) ≤ θn(x, t) ≤ sup
x∈�

θ0(x) < 1, (4.3)

‖un‖2
L∞(0,T ;W 1,q (�))

+ ‖∇un‖2
W 1,2(QT )

≤ C, (4.4)

‖∇θn‖2
L∞(QT ) + ‖∇θn‖2

W 1,q (QT )
≤ C. (4.5)

Proof. Let us begin with the case n = 1. We first find the bounds of u1 and θ1. Set

(

u1 − inf
x∈�

u0(x)
)

−
= min

{

u1 − inf
x∈�

u0(x),0
}

.

Multiplying (4.1)1 for n = 1 by 

(

u1 − inf
x∈�

u0(x)
)

−
, integrating over �, we find

∫

�

u1
t

(

u1 − inf
x∈�

u0(x)
)

−
dx + ε

∫

�

∇u1∇

(

u1 − inf
x∈�

u0(x)
)

−
dx

=

∫

�

u1∇θ0∇

(

u1 − inf
x∈�

u0(x)
)

−
dx.

(4.6)

Using Sobolev’s and Young’s inequalities, (4.6) yields

1

2

d

dt

∫

�

∣

∣

∣

(

u1 − inf
x∈�

u0(x)
)

−

∣

∣

∣

2
dx + ε

∫

�

∣

∣

∣
∇

(

u1 − inf
x∈�

u0(x)
)

−

∣

∣

∣

2
dx

≤ C

∥

∥

∥

(

u1 − inf
x∈�

u0(x)
)

−

∥

∥

∥

2

L2
‖∇θ0‖2

L∞ .

(4.7)
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By Gronwall inequality, we get

∥

∥

∥

(

u1(x, t) − inf
x∈�

u0(x)
)

−

∥

∥

∥

2

L2
≤ eC‖∇θ0‖2

L∞ t
∥

∥

∥

(

u1(x,0) − inf
x∈�

u0(x)
)

−

∥

∥

∥

2

L2
= 0.

This implies

u1(x, t) ≥ inf
x∈�

u0(x) > 0. (4.8)

On the other hand, we set

(

u1 − sup
x∈�

u0(x)
)

+
= max

{

u1 − sup
x∈�

u0(x),0
}

.

In the same way, we have

∥

∥

∥

(

u1(x, t) − sup
x∈�

u0(x)
)

+

∥

∥

∥

2

L2
≤ eC‖∇θ0‖2

L∞ t
∥

∥

∥

(

u1(x,0) − sup
x∈�

u0(x)
)

+

∥

∥

∥

2

L2
= 0,

which gives

u1(x, t) ≤ sup
x∈�

u0(x). (4.9)

Having proved (4.2), we in turn prove that θ1 has a lower and upper bound. Multiplying (4.1)2

for n = 1 by 

(

θ1 − inf
x∈�

θ0(x)
)

−
, integrating over �, we obtain

1

2

d

dt

∫

�

∣

∣

∣

(

θ1 − inf
x∈�

θ0(x)
)

−

∣

∣

∣

2
dx + γ

∫

�

θ0(1 − θ0)

∣

∣

∣
∇

(

θ1 − inf
x∈�

θ0(x)
)

−

∣

∣

∣

2
dx

= −γ

∫

�

(1 − 2θ0)∇θ0∇θ1
(

θ1 − inf
x∈�

θ0(x)
)

−
dx

+ γ

∫

�

θ0(1 − θ0)
1

u0
∇u0∇θ1

(

θ1 − inf
x∈�

θ0(x)
)

−
dx

− (1 + γ )

∫

�

∇θ0∇θ1
(

θ1 − inf
x∈�

θ0(x)
)

−
dx.

Since 0 < inf
x∈�

θ0(x), sup
x∈�

θ0(x) < 1, there exists α > 0 such that

d

dt

∫

�

∣

∣

∣

(

θ1 − inf
x∈�

θ0(x)
)

−

∣

∣

∣

2
dx + α

∫

�

∣

∣

∣
∇

(

θ1 − inf
x∈�

θ0(x)
)

−

∣

∣

∣

2
dx

≤ C‖∇θ0‖2
L∞

∥

∥

∥

(

θ1 − inf
x∈�

θ0(x)
)

−

∥

∥

∥

2

L2
+ C‖∇u0‖2

L4

∥

∥

∥

(

θ1 − inf
x∈�

θ0(x)
)

−

∥

∥

∥

2

L4
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≤ C‖∇θ0‖2
L∞

∥

∥

∥

(

θ1 − inf
x∈�

θ0(x)
)

−

∥

∥

∥

2

L2
+ C‖∇u0‖2

H 1 ×

(

∥

∥

∥

(

θ1 − inf
x∈�

θ0(x)
)

−

∥

∥

∥

L2

∥

∥

∥
∇

(

θ1 − inf
x∈�

θ0(x)
)

−

∥

∥

∥

L2
+

∥

∥

∥

(

θ1 − inf
x∈�

θ0(x)
)

−

∥

∥

∥

2

L2

)

≤ C
(

‖∇θ0‖2
L∞ + ‖∇u0‖2

H 1 + ‖∇u0‖4
H 1

)∥

∥

∥

(

θ1 − inf
x∈�

θ0(x)
)

−

∥

∥

∥

2

L2
.

Here, we have used Lemma 4.1 and Young’s inequality. Then Gronwall inequality gives

θ1(x, t) ≥ inf
x∈�

θ0(x) > 0. (4.10)

Similarly, we have

θ1(x, t) ≤ sup
x∈�

θ0(x) < 1. (4.11)

Next, we proceed to derive the L∞ estimate for ∇θ1. Multiplying (4.1)2 for n = 1 by θ1 and 

−�θ1, respectively, we integrate by parts to obtain

1

2

d

dt

∫

�

|θ1|2dx + γ

∫

�

θ0(1 − θ0)|∇θ1|2dx

= −γ

∫

�

(1 − 2θ0)∇θ0∇θ1θ1dx + γ

∫

�

θ0(1 − θ0)
1

u0
∇u0∇θ1θ1dx

− (1 + γ )

∫

�

∇θ0∇θ1θ1dx

and

1

2

d

dt

∫

�

|∇θ1|2dx + γ

∫

�

θ0(1 − θ0)|�θ1|2dx

= −γ

∫

�

θ0(1 − θ0)
1

u0
∇u0∇θ1�θ1dx + (1 + γ )

∫

�

∇θ0∇θ1�θ1dx.

By Sobolev’s and Young’s inequalities, we have

1

2

d

dt

∫

�

|θ1|2dx + α

∫

�

|∇θ1|2dx ≤ C‖∇u0‖2
L4‖θ

1‖2
L4 + C‖∇θ0‖2

L∞‖θ1‖2
L2

≤ C
(

‖∇u0‖2
H 1 + ‖∇θ0‖2

L∞

)

‖θ1‖2
H 1

(4.12)

and
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1

2

d

dt

∫

�

|∇θ1|2dx + α

∫

�

|�θ1|2dx ≤ C‖∇u0‖2
L4‖∇θ1‖2

L4 + C‖∇θ0‖2
L∞‖∇θ1‖2

L2

≤ C‖∇u0‖2
L4

(

‖∇θ1‖L2‖∇
2θ1‖L2 + ‖∇θ1‖2

L2

)

+ C‖∇θ0‖2
L∞‖∇θ1‖2

L2

≤ C
(

‖∇u0‖2
H 1 + ‖∇u0‖4

H 1 + ‖∇θ0‖2
L∞

)

‖∇θ1‖2
L2 .

(4.13)

Adding up (4.12) and (4.13) gives

1

2

d

dt
‖θ1‖2

H 1 + α‖∇θ1‖2
H 1 ≤ C‖θ1‖2

H 1,

by Gronwall inequality, which yields

‖θ1‖2
H 1 + α

t
∫

0

‖∇θ1‖2
H 1dτ ≤ eCt‖θ0‖

2
H 1 ≤ C (4.14)

for t ∈ [0, T ].

Now, differentiating (4.1)2, we get

∇θ1
t − γ θ0(1 − θ0)∇�θ1 = γ (1 − 2θ0)∇θ0�θ1

+ γ∇

(

θ0(1 − θ0)
1

u0
∇u0∇θ1

)

− (1 + γ )∇
(

∇θ0∇θ1
)

.
(4.15)

Setting ω = ∇θ1 − ‖∇θ0‖L∞ = ∇θ1 − M , (4.15) becomes

ωt − γ θ0(1 − θ0)�ω = γ (1 − 2θ0)∇θ0divω

+ γ∇

(

θ0(1 − θ0)
1

u0
∇u0(ω + M)

)

− (1 + γ )∇
(

∇θ0(ω + M)
)

.
(4.16)

Define ω̄ = max{0, ω} + k with k > 1. Multiplying (4.16) by ω̄p − kp with p ≥ 1 and then 

integrating over [0, t] × � for t ∈ (0, T ), we have

1

p + 1

∫

�

(ω̄p+1 − (p + 1)ω̄kp + pkp+1)dx|t0 +
4pγ

(p + 1)2

t
∫

0

∫

�

θ0(1 − θ0)
∣

∣∇ω̄
p+1

2

∣

∣

2
dxdτ

= −γ

t
∫

0

∫

�

(1 − 2θ0)∇θ0∇ω̄(ω̄p − kp)dxdτ + γ

t
∫

0

∫

�

(1 − 2θ0)∇θ0divω̄(ω̄p − kp)dxdτ

− pγ

t
∫

0

∫

�

θ0(1 − θ0)
1

u0
∇u0(ω + M)∇ω̄ω̄p−1dxdτ (4.17)
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+ p(1 + γ )

t
∫

0

∫

�

∇θ0(ω + M)∇ω̄ω̄p−1dxdτ.

Notice that the fact ω̄p+1 − (p + 1)ω̄kp + pkp+1 ≥ 0 and ω̄(x, 0) = k as well as the inequality

ω̄p+1 − (p + 1)ω̄kp + pkp+1 ≥ (1 − 2−p)ω̄p+1 − pkp+1 ≥
1

2
ω̄p+1 − pkp+1

by Young’s inequality. Then, we deduce from (4.17) that, for any t ∈ (0, T ],

1

2(p + 1)

∫

�

ω̄p+1dx −
p

p + 1

∫

�

kp+1dx +
4pγ

(p + 1)2

t
∫

0

∫

�

θ0(1 − θ0)
∣

∣∇ω̄
p+1

2

∣

∣

2
dxdτ

≤ C
1

p + 1

t
∫

0

∫

�

∣

∣

∣
∇θ0∇ω̄

p+1
2 ω̄

p+1
2

∣

∣

∣
dxdτ

+ C

t
∫

0

∫

�

∣

∣

∣
(|∇u0| + |∇θ0|)

(

1 +
M

k

)

∇ω̄
p+1

2 ω̄
p+1

2

∣

∣

∣
dxdτ.

(4.18)

Setting � = ω̄
p+1

2 , since

∫

�

kp+1dx ≤
1

T

T
∫

0

∫

�

ω̄p+1dxdτ,

it follows from (4.18) that

1

2(p + 1)

∫

�

�2dx +
pα

(p + 1)2

t
∫

0

∫

�

|∇�|2dxdτ

≤ C‖�‖2
L2(QT )

+ C
(p + 1)2

p
‖∇θ0‖2

L∞(QT )‖�‖2
L2(QT )

+ C
(p + 1)2

p

T
∫

0

‖∇u0‖2
L4‖�‖2

L4dτ

≤ C(p + 1)‖�‖2
L2(0,T ;L4(�))

.

This implies that

‖�‖2
L∞(0,T ;L2(�))

≤ C(p + 1)2‖�‖2
L2(0,T ;L4(�))

, (4.19)

‖∇�‖2
L2(0,T ;L2(�))

≤ C(p + 1)2‖�‖2
L2(0,T ;L4(�))

. (4.20)
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Making use of Lemma 4.2 and (4.19)–(4.20), we have, for 1 < κ < 3
2

,

‖�‖2
L2κ (0,T ;L4κ (�))

= ‖�κ‖
2
κ

L2(0,T ;L4(�))
≤ C(p + 1)2‖�‖2

L2(0,T ;L4(�))
. (4.21)

For i = 0, 1, 2 · · · , let

p + 1

2
= κ i, σi = ‖ω̄κ i

‖

2

κi

L2(0,T ;L4(�))

so that i → ∞ when p → ∞. Then (4.21) can be rewritten as

σi+1 ≤ C
1

κi κ
2 i

κi σi .

By iteration, this gives

σi+1 ≤ C

∑i
0

1

κj κ
2
∑i

0
j

κj σ0.

Since

σi = ‖ω̄
p+1

2 ‖
4

p+1

L2(0,T ;L4(�))
= ‖ω̄‖2

Lp+1(0,T ;L2(p+1)(�))
,

let i → ∞, we obtain

‖ω̄‖2
L∞(QT ) ≤ Cσ0 ≤ C.

Here we have used the fact that σ0 = ‖ω̄‖2
L2(0,T ;L4(�))

≤ C from (4.14). Thus, we get

‖∇θ1‖2
L∞(QT ) ≤ C. (4.22)

By the Lq estimate of (4.1), we have

‖∇θ1‖W 1,q (QT ) ≤ C
(

‖θ0‖W 2,q + ‖∇u0‖Lq ‖∇θ1‖L∞(QT )

)

≤ C. (4.23)

‖∇u1‖W 1,2(QT ) ≤ C(‖u0‖H 2 + ‖u1‖L∞(QT )‖�θ0‖L2‖) ≤ C. (4.24)

Applying ∇ to (4.1)1, and then multiplying the resulting equation by |∇u1|q−2∇u1 for q > 2, 

we integrate over � and obtain

d

dt

∫

�

|∇u1|qdx + ε(q − 1)

∫

�

|�u1|2|∇u1|q−2dx

= (q − 1)

∫

�

(∇u1∇θ0 + u1�θ0)�u1|∇u1|q−2dx

≤
ε

2
(q − 1)

∫

�

|�u1|2|∇u1|q−2dx + C(q − 1)‖∇θ0‖2
L∞‖∇u1‖

q

Lq
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+ C(q − 1)‖u1‖2
L∞(QT )‖�θ0‖2

Lq ‖∇u1‖
q−2
Lq

≤
ε

2
(q − 1)

∫

�

|�u1|2|∇u1|q−2dx + C(q − 1)‖∇θ0‖2
L∞‖∇u1‖

q

Lq

+ C(q − 1)‖u1‖2
L∞(QT )

(

‖�θ0‖
q

Lq + ‖∇u1‖
q

Lq

)

,

together with Gronwall inequality and (4.8)–(4.9) again, which implies that

‖∇u1‖L∞(0,T ;Lq (�) ≤ C. (4.25)

Then, in view of (4.8)–(4.9), (4.10)–(4.11), (4.14) and (4.22)–(4.25), we finish the proof of 

(4.2)–(4.5) for n = 1.

Suppose (un−1, θn−1)(x, t) for n = 2, 3, · · · satisfies (4.2)–(4.5). The proof is similar to the 

above argument that dealt with the case n = 1. Due to ‖∇2un−1‖L2 ∈ L2([0, T ]), we control the 

term ‖∇un−1‖L4 by inequality

‖∇un−1‖2
L4 ≤ C

(

‖∇un−1‖L2‖∇
2un−1‖L2 + ‖∇un−1‖2

L2

)

.

It is also worth noting that, since ∇un−1 ∈ L∞(0, T ;Lq(�)),

‖�‖2
L∞(0,T ;L2(�))

≤ C(p + 1)2‖�‖2

L2(0,T ;L
2q

q−2 (�))

,

‖∇�‖2
L2(0,T ;L2(�))

≤ C(p + 1)2‖�‖2

L2(0,T ;L
2q

q−2 (�))

.

Then, for 1 < κ < 2 − 2
q

,

‖�‖2

L2κ (0,T ;L
2qκ
q−2 (�))

= ‖�κ‖
2
κ

L2(0,T ;L
2q

q−2 (�))

≤ C(p + 1)2‖�‖2

L2(0,T ;L
2q

q−2 (�))

.

Therefore, we can conclude that (4.2)–(4.5) hold for any T by repeating our procedure. �

Lemma 4.4. Under the assumptions in Lemma 4.3, it holds that

‖un
t ‖

2
L∞(0,T ;L2(�))

+ ε‖∇un
t ‖

2
L2(QT )

≤ C, (4.26)

‖θn
t ‖2

L∞(0,T ;L2(�))
+ α‖∇θn

t ‖2
L2(QT )

≤ C (4.27)

for any T . Here C is a positive constant dependent on T , �, C0 and ε.
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Proof. For n = 1, applying ∂t to (4.1), multiplying u1
t and θ1

t by the first and second resulting 

equation, we integrate them over � to obtain

1

2

d

dt

∫

�

|u1
t |

2dx + ε

∫

�

|∇u1
t |

2dx =

∫

�

u1
t ∇θ0∇u1

t dx

≤ C‖∇θ0‖2
L∞‖u1

t ‖
2
L2 +

ε

2
‖∇u1

t ‖
2
L2 ,

(4.28)

1

2

d

dt

∫

�

|θ1
t |2dx + γ

∫

�

θ0(1 − θ0)|∇θ1
t |2dx

= −γ

∫

�

(1 − 2θ0)∇θ0∇θ1θ1
t dx + γ

∫

�

θ0(1 − θ0)
1

u0
∇u0∇θ1

t θ1
t dx

− (1 + γ )

∫

�

∇θ0∇θ1
t θ1

t dx

≤ C‖∇θ1‖2
L∞ + C‖∇u0‖2

H 1(‖θ
1
t ‖L2‖∇θ1

t ‖L2 + ‖θ1
t ‖2

L2) + C‖∇θ0‖2
L∞‖θ1

t ‖2
L2 +

α

4
‖∇θ1

t ‖2
L2

≤ C‖∇θ1‖2
L∞ + C(‖∇u0‖2

H 1 + ‖∇u0‖4
H 1 + ‖∇θ0‖2

L∞)‖θ1
t ‖2

L2 +
α

2
‖∇θ1

t ‖2
L2 .

(4.29)

By using (4.5) in Lemma 4.3, it follows from Gronwall inequality that

‖u1
t ‖

2
L2 + ε

t
∫

0

‖∇u1
t ‖

2
L2dτ ≤ eCt‖u1

t (0)‖2
L2 , (4.30)

‖θ1
t ‖2

L2 + α

t
∫

0

‖∇θ1
t ‖2

L2dτ ≤ eCt‖θ1
t (0)‖2

L2 . (4.31)

Taking t = 0 in (4.1), we find that

‖un
t (0)‖L2 ≤ C(ε‖�un(0)‖L2 + ‖∇un(0)‖L4‖∇θn−1(0)‖L4 + ‖un(0)‖L∞‖�θn−1(0)‖L2)

≤ C (4.32)

and

‖θn
t (0)‖L2 ≤ C(α‖�θn(0)‖L2 + ‖∇un−1(0)‖L4‖∇θn(0)‖L4 + ‖∇θn−1(0)‖L4‖∇θn(0)‖L4)

≤ C. (4.33)

In view of (4.30)–(4.33), we conclude that (4.26) and (4.27) hold when n = 1.
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Moreover, we assume that (4.26) and (4.27) hold for the case n − 1. Similar to (4.28)–(4.29), 

we have

1

2

d

dt

∫

�

|un
t |

2dx + ε

∫

�

|∇un
t |

2dx =

∫

�

un
t ∇θn−1∇u1

t dx +

∫

�

un∇θn−1
t ∇u1

t dx

≤ C‖∇θn−1‖2
L∞‖un

t ‖
2
L2 + C‖∇θn−1

t ‖2
L2‖u

n‖2
L∞ +

ε

2
‖∇un

t ‖
2
L2 ,

(4.34)

1

2

d

dt

∫

�

|θn
t |2dx + γ

∫

�

θn−1(1 − θn−1)|∇θn
t |2dx

= γ

∫

�

(1 − 2θn−1)θn−1
t �θnθn

t dx − γ

∫

�

(1 − 2θn−1)∇θn−1∇θn
t θn

t dx

+ γ

∫

�

∂t

(

θn−1(1 − θn−1)
1

un−1
∇un−1∇θn

)

θn
t dx − (1 + γ )

∫

�

∂t

(

∇θn−1∇θn
)

θn
t dx

≤ C
(

‖∇un−1‖2
L4 + ‖�θn‖2

L2

)

‖θn
t ‖2

L4 + C‖∇un−1
t ‖2

L2

+ C‖∇un−1‖2
L4

(

‖un−1
t ‖2

L4 + ‖θn−1
t ‖2

L4

)

+ C‖θn−1
t ‖2

H 1

+ C
(

‖∇θn−1‖2
L∞ + ‖∇θn‖2

L∞

)

‖θn
t ‖2

L2 +
α

4
‖∇θn

t ‖2
L2

≤ C
(

‖∇un−1‖2
H 1 + ‖∇un−1‖4

L2 + ‖∇un−1‖2
L2‖∇

2un−1‖2
L2 + ‖�θn‖2

L2

)

‖θn
t ‖2

L2

+ C‖∇un−1
t ‖2

L2 + C‖∇un−1‖2
L2‖∇

2un−1‖2
L2 + C‖un−1

t ‖2
L2

(

‖∇un−1
t ‖2

L2 + ‖∇un−1‖2
H 1

)

+ C‖∇un−1‖2
L2‖u

n−1
t ‖2

H 1 + C‖θn−1
t ‖2

L2

(

‖∇θn−1
t ‖2

L2 + ‖∇un−1‖2
H 1

)

+ C‖∇un−1‖2
L2‖θ

n−1
t ‖2

H 1 + C‖θn−1
t ‖2

H 1 + C
(

‖∇θn−1‖2
L∞ + ‖∇θn‖2

L∞

)

‖θn
t ‖2

L2

+
α

2
‖∇θn

t ‖2
L2, (4.35)

where we have used Lemma 4.1 in the last inequality. The Gronwall inequality then implies

‖un
t ‖

2
L2 + ε

t
∫

0

‖∇un
t ‖

2
L2dτ

≤ e
C‖∇θn−1‖2

L∞(QT )
t

⎛

⎝‖un
t (0)‖2

L2 + C

t
∫

0

‖∇θn−1
t ‖2

L2‖u
n‖2

L∞dτ

⎞

⎠ ,

(4.36)
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‖θ1
t ‖2

L2 + α

t
∫

0

‖∇θ1
t ‖2

L2dτ

≤ e
C
∫ t

0

(

‖∇un−1‖2

H1 +‖∇un−1‖4

L2 +‖∇un−1‖2

L2 ‖∇2un−1‖2

L2 +‖�θn‖2

L2 +‖∇θn−1‖2
L∞+‖∇θn‖2

L∞

)

dτ

×

(

‖θn
t (0)‖2

L2 + C

τ
∫

0

((

‖∇un−1‖2
L2 + 1

)

‖θn−1
t ‖2

H 1 + ‖∇un−1
t ‖2

L2

+ ‖∇un−1‖2
L2‖u

n−1
t ‖2

H 1

)

dτ
)

.

(4.37)

In view of (4.36)–(4.37) and Lemma 4.3, we get (4.26)–(4.27). �

5. Existence of strong solutions

In this section, we shall establish the existence of the global strong solution by applying the 

convergence method and a priori estimates obtained in the previous section.

5.1. The limit passage n → ∞

The task of this section is to employ the estimates obtained in Lemmas 4.3–4.4 to get the limit 

of the sequence (un
m, θn

m) as n → ∞.

By virtue of the estimates (4.4)–(4.5) and (4.26)–(4.27), and applying the compactness results 

of Sell and You (see Lemma 63.2 in [27]), we can find a subsequence of (un
m, θn

m), relabeled as 

(un
m, θn

m), so that

un
m(x, t) → um weakly-* in L∞(0, T ;W 1,q(�)),

∇un
m(x, t) → ∇um weakly in L2(0, T ;H 1(�),

∇θn
m(x, t) → ∇θm weakly in W 1,q(QT ), (5.1)

(∂tu
n
m, ∂tθ

n
m)(x, t) → (ũm, θ̃m) weakly in L∞(0, T ;L2(�)) ∩ L2(0, T ;H 1(�)),

(un
m, θn

m)(x, t) → (um, θm) strongly in L2(0, T ;H 1(�)) × W 1,q(QT ),

and for almost every t ∈ [0, T ],

(un, θn)(x, t) → (u, θ) strongly in H 1(�). (5.2)

Standard arguments can then be used to show that ũm = ∂tum and θ̃m = ∂tθm. Then, by the 

compactness property of L2-space, we have

(un
t , θ

n
t )(x, t) → (ut , θt ) strongly in L2(0, T ;L2(�)). (5.3)

Lemma 5.1. If the initial conditions of Lemma 4.3 hold, then the couple (um, θm)(x, t) is the 

solution of (3.1), and has the following properties: for any T ,
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0 < sup
x∈�

u0(x) ≤ um(x, t) ≤ sup
x∈�

u0(x) < ∞, t ∈ [0, T ], (5.4)

0 < inf
x∈�

θ0(x) ≤ θm(x, t) ≤ sup
x∈�

θ0(x) < 1, t ∈ [0, T ], (5.5)

‖un‖2
L∞(0,T ;W 1,q (�))

+ ‖∇un‖2
W 1,2(QT )

≤ C, (5.6)

‖∇θn‖2
L∞(QT ) + ‖∇θn‖2

W 1,q (QT )
≤ C, (5.7)

‖∂tum‖2
L∞(0,T ;L2(�))

+ ε‖∇∂tum‖2
L2(QT )

≤ C, (5.8)

‖∂tθm‖2
L∞(0,T ;L2(�))

+ α‖∇∂tθm‖2
L2(QT )

≤ C. (5.9)

Here, α, C are positive constants given in Lemmas 4.3–4.4.

Proof. Due to the above convergence, one can see easily that the couple (um, θm)(x, t) is the 

solution of (3.1). Applying the lower semicontinuity of the norms, and using the estimates in 

Lemmas 4.3–4.4, we deduce the estimates (5.4)–(5.9). �

5.2. Proof of existence

By using Lemma 5.1 and repeating the same procedure in Subsection 3.2 to pass to the limit 

for m → ∞, we prove that the limit function (u, θ) of the approximate solutions (um, θm) is a 

global strong solution of (2.4)–(2.5).

6. Uniqueness of the strong solution

In this section, we consider the uniqueness of the strong solution. Let (u1, θ1) and (u2, θ2)

be two strong solutions of (2.4)–(2.5) with the same initial value and satisfy the regularities 

furnished by Theorem 2.1. We introduce (η, ξ) with

η = u1 − u2, ξ = θ1 − θ2.

Then these functions satisfy the following equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ηt − ε�η = −div(η∇θ1) − div(u2∇ξ),

ξt − γ θ1(1 − θ1)�ξ = γ ξ�θ2 + γ ξ(θ1 + θ2)�θ2 + γ θ1(1 − θ1)
1

u1
∇u1∇ξ

+ γ θ1(1 − θ1)
1

u1
∇η∇θ2 − γ θ1(1 − θ1)η

1

u1 + u2
∇u2∇θ2 + γ η

1

u2
∇u2∇θ2

− γ η(θ1 + θ2)
1

u2
∇u2∇θ2 − (1 + γ )∇θ1∇ξ − (1 + γ )∇θ2∇ξ.

(6.1)

Proof of uniqueness. Multiplying the first equation in (6.1) by η and −�η, and then integrating 

over �, we obtain

1

2

d

dt
‖η‖2

L2 + ε‖∇η‖2
L2 ≤ C‖η‖2

L2‖∇θ1‖
2
L∞ + C‖u2‖

2
L∞‖∇ξ‖2

L2, (6.2)
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1

2

d

dt
‖∇η‖2

L2 + ε‖�η‖2
L2

≤ C‖∇η‖2
L2‖∇θ1‖

2
L∞ + C‖η‖2

H 1‖�θ1‖
2
Lp + C̃‖u2‖

2
L∞‖�ξ‖2

L2

+ C
(

‖∇u2‖L2‖∇
2u2‖L2 + ‖∇u2‖

2
L2

)(

‖∇ξ‖L2‖∇
2ξ‖L2 + ‖∇ξ‖2

L2

)

≤ C‖∇η‖2
L2‖∇θ1‖

2
L∞ + C‖η‖2

H 1‖�θ1‖
2
Lp

+ C‖∇u2‖
2
H 1‖∇ξ‖2

L2 + C̃
(

‖u2‖
2
L∞ + ‖∇u2‖

2
L2

)

‖�ξ‖2
L2 .

(6.3)

In a similar way, from the second equation in (6.1), we find that

1

2

d

dt
‖ξ‖2

L2 + α‖∇ξ‖2
L2 ≤ C(‖∇θ1‖

2
L∞ + ‖∇θ2‖

2
L∞ + ‖�θ2‖L2)‖ξ‖2

L2 + C‖∇u1‖
2
H 1‖ξ‖2

H 1

+ C‖η‖2
H 1‖∇u2‖

2
H 1 + C‖∇η‖2

L2,

(6.4)

1

2

d

dt
‖∇ξ‖2

L2 + α‖�ξ‖2
L2 ≤ C(‖∇θ1‖

2
L∞ + ‖�θ2‖

2
Lp + ‖∇θ2‖

2
L∞)‖ξ‖2

H 1 + C‖∇u1‖
2
L4‖∇ξ‖2

L4

+ C‖∇η‖2
L4‖∇θ2‖

2
L4 + ‖η‖2

H 1‖∇u2‖
2
H 1‖∇θ2‖

2
L∞

≤ C(‖∇θ1‖
2
L∞ + ‖�θ2‖

2
Lp + ‖∇θ2‖

2
L∞ + ‖∇u1‖

2
L2

+ ‖∇u1‖
2
L2‖∇

2u1‖
2
L2)‖ξ‖2

H 1

+ C‖∇η‖2
L2‖∇θ2‖

2
L∞ + ‖η‖2

H 1‖∇u2‖
2
H 1‖∇θ2‖

2
L∞ .

(6.5)

We can choose a small constant d such that

dC̃(‖u2‖
2
L∞ + ‖∇u2‖

2
L2) ≤

1

2
α.

Multiplying (6.3) by d , combining it with (6.2) and (6.4)–(6.5), we get

d

dt

(

‖η‖2
H 1 + ‖ξ‖2

H 1

)

+ ε‖∇η‖2
H 1 + α‖∇ξ‖2

H 1 ≤ Ch(t)
(

‖η‖2
H 1 + ‖ξ‖2

H 1

)

,

where

h(t) = C
(

1 + ‖∇θ1‖
2
L∞ + ‖�θ1‖

2
Lp + ‖∇θ2‖

2
L∞ + ‖�θ2‖

2
Lp + ‖∇u1‖

2
H 1

+ ‖∇u2‖
2
H 1 + ‖∇u1‖

2
L2‖∇

2u1‖
2
L2 + ‖∇u2‖

2
H 1‖∇θ2‖

2
L∞

)

.

Observe that h is an integrable function in [0, T ], in view of the regularity of (u1, θ1) and (u2, θ2). 

Consequently, we can apply Gronwall inequality, which gives

‖η‖2
H 1 + ‖ξ‖2

H 1 = 0,

that is, u1 = u2 and θ1 = θ2 a.e. in QT . This ends the proof of uniqueness. �
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7. Turing instability in a bounded domain

The Turing instability was proposed by A.M. Turing in 1952 [31] as an explanation for pattern 

formation in reaction–diffusion systems. It is the phenomenon that an initially stable steady state 

of a dynamical system can become unstable if diffusion is additionally taken into account. This 

is both surprising and unexpected, because diffusion usually makes things more smooth and 

uniform. This loss of stability due to diffusion is what is known as the Turing instability [24]. 

For this issue, there are many works made on population dynamics of biological systems [9,25,

23,33]. In this section, we present a stability analysis of the nonlinear cross-diffusion system 

(1.6) for two interacting populations in a bounded domain � ⊂R
N .

Suppose that (u∗, v∗) is a constant equilibrium solution, i.e.

f1(u
∗, v∗)u∗ = 0, and f2(u

∗, v∗)v∗ = 0, (7.1)

where the fitness fi(u, v), i = 1, 2, are defined by (1.1). Clearly, (u∗, v∗) is also constant equi-

librium solution of a system of ordinary differential equations:

{

u̇ = f1(u, v)u, t > 0,

v̇ = f2(u, v)v, t > 0.
(7.2)

If a positive equilibrium solution exists, a sufficient condition is that

a11a22 = a12a21, a11a12 < 0.

Then we have the positive equilibrium solutions

(u∗, v∗) = (c,−
a11

a12
c)

for any positive constant c.

We linearize the ODE system (7.2) about the constant equilibrium (u∗, v∗). Let U = u − u∗, 

V = v − v∗ be a spatial perturbation for which, we have

{

U̇ = ∂uf1(u
∗, v∗)u∗U + ∂vf1(u

∗, v∗)u∗V,

V̇ = ∂uf2(u
∗, v∗)v∗U + ∂vf2(u

∗, v∗)v∗V.
(7.3)

We define the matrix J by the following

J =

(

∂uf1(u
∗, v∗)u∗ ∂vf1(u

∗, v∗)u∗

∂uf2(u
∗, v∗)v∗ ∂vf2(u

∗, v∗)v∗

)

. (7.4)

In fact the stability of (0, 0) in (7.3) is equivalent to the stability of matrix J , which depends on 

the signs of the eigenvalues λ of J , i.e., all which must have negative real parts. The characteristic 

polynomial of J is given by

PJ (λ) = λ2 − Trace(J )λ + Det(J ).
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A direct calculation yields

Det(J ) = Det

⎛

⎜

⎜

⎝

(a11 − a12)
u∗v∗

(u∗ + v∗)2
(a12 − a11)

u∗u∗

(u∗ + v∗)2

(a21 − a22)
v∗v∗

(u∗ + v∗)2
(a22 − a21)

u∗v∗

(u∗ + v∗)2

⎞

⎟

⎟

⎠

= 0. (7.5)

It is easy to see that at lest one eigenvalue of J is zero. Thus, (u∗, v∗) is not a stable equilibrium 

with respect to (7.3). We summarize the result in the theorem below.

Theorem 7.1. Let a11a22 = a12a21, a11a12 < 0. Suppose that (u∗, v∗) is a positive equilibrium 

solution of (1.6). Then (u∗, v∗) is not a stable solution with respect to the ODE system (7.2) and 

the cross-diffusion system (1.6).

Next, we add two diffusion terms to the ODE system (7.2), that is, for the parameters 

ν1, ν2 > 0,

{

ut = f1(u, v)u + ν1�u,

vt = f2(u, v)v + ν2�v.
(7.6)

We consider the situation in which the stability of the equilibrium changes from unstable for 

the ODE system (7.2) to stable for the diffusion system (7.6). Clearly, if a11a22 = a12a21 and 

a11a12 < 0, then for any positive constant c,

(u∗, v∗) = (c,−
a11

a12
c)

are also the positive equilibrium solutions of (7.6). Linearizing the diffusion system (7.6) about 

the positive equilibrium (u∗, v∗), we have

�t = J� + D��, (7.7)

where � = (U, V )T and D = diag(ν1, ν2). Let 0 = λ1 < λ2 < · · · be the eigenvalues of operator 

−� on � with the homogeneous Neumann boundary condition, and E(λi) be the eigenspace 

corresponding to λi in C2(�). Let X = {u ∈ [C1(�)]2| ∂u
∂n

= 0 on ∂�}, {φij }j=1,2,··· ,dim E(λi) be 

an orthonormal basis of E(λi), and Xij = {cφij |c ∈R
2}. Then

X =

∞
⊗

i=1

Xi and Xi =

dim E(λi)
⊗

j=1

Xij .

For each i ≥ 1, Xi is invariant under the operator J + D�. Then problem (7.5) has a non-trivial 

solution of the form � = cφ exp(μt) if and only if (μ, c) is an eigenpair for the matrix J − λiD, 

where c is a constant vector. The equilibrium (u∗, v∗) is stable if all the eigenvalues have negative 

real parts for each λi > 0.

The characteristic polynomial of J − λiD is given by

Pi(μ) = μ2 − Trace(J − λiD)μ + Det(J − λiD),
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where

Trace(J − λiD) = (a11 − a12 + a22 − a21)
u∗v∗

(u∗ + v∗)2
− ν1λi − ν2λi,

Det(J − λiD) = ν1ν2λ
2
i − [ν1(a22 − a21) + ν2(a11 − a12)]λi

u∗v∗

(u∗ + v∗)2
.

We denote μ1(λi) and μ2(λi) as the roots of Pi(μ) = 0, and then we have

μ1(λi) + μ2(λi) = Trace(J − λiD) and μ1(λi)μ2(λi) = Det(J − λiD).

In order to get Reμ1(λi) < 0 and Reμ2(λi) < 0, a sufficient condition is that

Trace(J − λiD) < 0 and Det(J − λiD) > 0

for each λi > 0. Thus,

a11 − a12 + a22 − a21 < 0 and ν2(a11 − a12) + ν1(a22 − a21) < 0. (7.8)

As a consequence, we give sufficient conditions on diffusion which leads to stability.

Theorem 7.2. Let a11a22 = a12a21, a11a12 < 0, ν1 > 0, ν2 > 0 and the condition (7.8) hold. Sup-

pose that (u∗, v∗) is a positive equilibrium solution of (7.6). Then (u∗, v∗) is a stable equilibrium 

solution with respect to the diffusion system (7.6).

Furthermore, we study the diffusion system (7.6) with cross-diffusion effects, which takes the 

form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = f1(u, v)u + ν1�u + β1(a11 − a12)div
(

−
uv

(u + v)2
∇u +

u2

(u + v)2
∇v

)

,

vt = f2(u, v)v + ν2�v + β2(a21 − a22)div
(

−
v2

(u + v)2
∇u +

uv

(u + v)2
∇v

)

.

(7.9)

We linearize the cross-diffusion system (7.9) about the positive equilibrium (u∗, v∗) to obtain

�t = J� + (D + H)��, (7.10)

where

H =

⎛

⎜

⎜

⎝

−β1(a11 − a12)
u∗v∗

(u∗ + v∗)2
β1(a11 − a12)

u∗u∗

(u∗ + v∗)2

−β2(a21 − a22)
v∗v∗

(u∗ + v∗)2
β2(a21 − a22)

u∗v∗

(u∗ + v∗)2

⎞

⎟

⎟

⎠

.

Then the characteristic polynomial of J − λi(D + H) is

Pi(μ) = μ2 − Trace(J − λi(D + H))μ + Det(J − λi(D + H)),
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where

Trace(J − λi(D + H)) = (a11 − a12 + a22 − a21)
u∗v∗

(u∗ + v∗)2
− λi(ν1 + ν2)

+ λi

[

(a11 − a12)β1 + (a22 − a21)β2

] u∗v∗

(u∗ + v∗)2
,

Det(J − λi(D + H)) = Det(D + H)λ2
i − [ν2(a11 − a12) + ν1(a22 − a21)]

u∗v∗

(u∗ + v∗)2
λi + DetJ

=

{

ν1ν2 −
[

ν2β1(a11 − a12) + ν1β2(a22 − a21)
] u∗v∗

(u∗ + v∗)2

}

λ2
i

−
[

ν2(a11 − a12) + ν1(a22 − a21)
] u∗v∗

(u∗ + v∗)2
λi .

Then the equilibrium (u∗, v∗) is stable with respect to (7.9) if all eigenvalues have negative 

real parts, that is, for all λi > 0,

Trace(J − λi(D + H)) < 0, Det(J − λi(D + H)) > 0.

Under the assumption (7.8), the sufficient conditions are that

[

(a11 − a12)β1 + (a22 − a21)β2

] u∗v∗

(u∗ + v∗)2
< ν1 + ν2,

[

ν2β1(a11 − a12) + ν1β2(a22 − a21)
] u∗v∗

(u∗ + v∗)2
≤ ν1ν2.

(7.11)

In order to have a Turing instability, the polynomial Pi must at least have one eigenvalue with 

positive real part for some λi . Thus, we need one of the two conditions

[

(a11 − a12)β1 + (a22 − a21)β2

] u∗v∗

(u∗ + v∗)2
≥ ν1 + ν2, (7.12)

[

ν2β1(a11 − a12) + ν1β2(a22 − a21)
] u∗v∗

(u∗ + v∗)2
< ν1ν2. (7.13)

Theorem 7.3. Let a11a22 = a12a22, a11a12 < 0, ν1 > 0, ν2 > 0 and the condition (7.8) hold. 

Suppose that (u∗, v∗) is a positive equilibrium solution of (7.9). Then, (u∗, v∗) is a stable equi-

librium solution with respect to the diffusion system (7.9) if (7.11) is true, (u∗, v∗) is an unstable 

equilibrium solution with respect to the diffusion system (7.9) if (7.12) (or (7.13)) is true.

Moreover, we make a modification to the ODE system (7.2), that is,

⎧

⎪

⎨

⎪

⎩

u̇ =
a11u + a12v + ε

u + v
u, t > 0,

v̇ =
a21u + a22v + ε

u + v
v, t > 0.

(7.14)
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It is easy to see that if

a12 − a22

a11a22 − a12a21
ε > 0,

a21 − a11

a11a22 − a12a21
ε > 0,

the ODE system (7.14) has a unique positive equilibrium (ū, v̄) which is given by

ū =
a12 − a22

a11a22 − a12a21
ε, v̄ =

a21 − a11

a11a22 − a12a21
ε.

Using the similar argument above, we find that (ū, v̄) is a stable equilibrium with respect to the 

ODE system (7.14) if a11 − a12 + a22 − a21 < 0, ε > 0 and

a12 − a22

a11a22 − a12a21
> 0,

a21 − a11

a11a22 − a12a21
> 0. (7.15)

We proceed to examine Turing instability for the following system with cross-diffusion

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut =
a11u + a12v + ε

u + v
u + β1(a11 − a12)div

(

−
uv

(u + v)2
∇u +

u2

(u + v)2
∇v

)

,

vt =
a21u + a22v + ε

u + v
v + β2(a21 − a22)div

(

−
v2

(u + v)2
∇u +

uv

(u + v)2
∇v

)

.

(7.16)

Linearizing the cross-diffusion system (7.16) about the positive equilibrium (ū, v̄) gives

�t = G� + K��,

where � = (u − ū, v − v̄)T and

G =

⎛

⎜

⎜

⎝

(a11 − a12)v̄ − ε

(ū + v̄)2
ū

(a12 − a11)ū − ε

(ū + v̄)2
ū

(a21 − a22)v̄ − ε

(ū + v̄)2
v̄

(a22 − a21)ū − ε

(ū + v̄)2
v̄

⎞

⎟

⎟

⎠

,

K =

⎛

⎜

⎜

⎝

−β1(a11 − a12)
ūv̄

(ū + v̄)2
β1(a11 − a12)

ū2

(ū + v̄)2

−β2(a21 − a22)
v̄2

(ū + v̄)2
β2(a21 − a22)

ūv̄

(ū + v̄)2

⎞

⎟

⎟

⎠

.

We obtain that the characteristic polynomial of G − λiK is

Pi(μ) = μ2 − Trace(G − λiK)μ + Det(G − λiK),

where
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Trace(G − λiK) = (a11 − a12 + a22 − a21)
ūv̄

(ū + v̄)2
−

ε

ū + v̄

+ λi[(a11 − a12)β1 + (a22 − a21)β2]
ūv̄

(ū + v̄)2
,

Det(G − λiK) = DetKλ2
i − (a11 − a12 + a22 − a21)

εūv̄

(ū + v̄)3
λi + DetG

= −(a11 − a12 + a22 − a21)
εūv̄

(ū + v̄)3
λi − (a11 − a12 + a22 − a21)

εūv̄

(ū + v̄)3
.

Notice that Det(G − λiK) > 0. If Trace(G − λiK) < 0 for all λi > 0, then the two roots of 

Pi(μ) = 0 have negative real parts. To this end, we need the sufficient condition (a11 − a12)β1 +

(a22 − a21)β2 ≤ 0. In this case, a Turing instability does not occur, and the equilibrium (ū, v̄) is 

stable for (7.16).

In the other case, Trace(G − λiK) > 0 for some λi if (a11 − a12)β1 + (a22 − a21)β2 > 0. 

Then both roots have positive real parts, the equilibrium (ū, v̄) is Turing unstable for (7.16). It is 

observed that the cross-diffusion effect is able to destabilize the positive equilibrium.

Theorem 7.4. Let a11 − a12 + a22 − a21 < 0, ε > 0 and the condition (7.15) hold. Then if (a11 −

a12)β1 + (a22 −a21)β2 ≤ 0, the unique positive equilibrium (ū, v̄) is stable for (7.14) and (7.16). 

If (a11 −a12)β1 + (a22 −a21)β2 > 0, the unique positive equilibrium (ū, v̄) is unstable for (7.16), 

but is stable for (7.14).

8. Conclusions

In this paper we have considered the dynamics of two populations, interacting via a symmet-

ric game, who drive their migration by spatial gradients in the fitness function determined by the 

game payoffs. We have established existence and uniqueness results for strong solutions to the 

regularized fitness gradient system. However, it is still a very challenging problem to study the 

solutions of the original fitness gradient system, namely, the convergence of approximate solu-

tions (uε, vε) as ε tends to 0. Further, we have shown the occurrence of a Turing instability when 

growth rate terms are included. These equations represent in only an average, population-level 

way the variety of competitive interactions between organisms which comprise these populations 

[2,8], yet our mathematical analysis puts into evidence some of the intrinsic difficulties of this 

system. Whether these aspects, some of which have been seen in numerical simulations [6,7], 

represent possible occurrences in corresponding ecological systems, or whether they point di-

rectly to the ways in which the mathematical representation should be refined, remains unclear 

and is a subject for future studies.
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