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Abstract. Observations of the organic components of the
natural aerosol are scarce in Antarctica, which limits our
understanding of natural aerosols and their connection to
seasonal and spatial patterns of cloud albedo in the region.
From November 2015 to December 2016, the ARM West
Antarctic Radiation Experiment (AWARE) measured submi-
cron aerosol properties near McMurdo Station at the south-
ern tip of Ross Island. Submicron organic mass (OM), par-
ticle number, and cloud condensation nuclei concentrations
were higher in summer than other seasons. The measure-
ments included a range of compositions and concentrations
that likely reflected both local anthropogenic emissions and
natural background sources. We isolated the natural organic
components by separating a natural factor and a local com-
bustion factor. The natural OM was 150 times higher in sum-
mer than in winter. The local anthropogenic emissions were
not hygroscopic and had little contribution to the CCN con-
centrations. Natural sources that included marine sea spray
and seabird emissions contributed 56 % OM in summer but
only 3 % in winter. The natural OM had high hydroxyl group
fraction (55 %), 6 % alkane, and 6 % amine group mass, con-
sistent with marine organic composition. In addition, the
Fourier transform infrared (FTIR) spectra showed the nat-
ural sources of organic aerosol were characterized by amide

group absorption, which may be from seabird populations.
Carboxylic acid group contributions were high in summer
and associated with natural sources, likely forming by sec-
ondary reactions.

1 Introduction

West Antarctica is one of the most rapidly warming regions
on Earth (Bromwich et al., 2013), which has potential im-
pacts for the melting of the Antarctic ice sheets and conse-
quent sea level rise (Steig et al., 2009; Lambeck et al., 2002).
In some regions, ambient aerosols contribute substantially
to the radiation balance (IPCC, 2013), but little is known
about the sign and magnitude of their contribution in Antarc-
tica because of the lack of measurements of their abundance,
composition, and sources. In fact, there are few places on
Earth where measurements of aerosols and their properties
are needed to constrain modeled radiation as much as in
Antarctica.

McMurdo Station is the only site with measurements of
PM (particulate matter), elemental carbon, organic carbon,
and number concentrations that is within 300 km of the Ross
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Ice Shelf (which covers an area of more than 500 000 km?).
Furthermore, the station is unique in that McMurdo Station
is one of the two sites that have published aerosol measure-
ments starting in 1968, with the other one being the Amund-
sen Scott Station at the South Pole. The site has at least
10 publications describing aerosol measurements over the
past 50 years, most of which were limited to summer (Cadle
et al., 1968; Warburton, 1973; Ondov et al., 1973a; Hogan,
1975; Hofmann, 1988; Hansen et al., 2001; Mazzera et al.,
2001a, b; Giordano et al., 2017; Kalnajs et al., 2013; Khan
et al., 2018). No stations in Antarctica measured inorganic
chemical composition year-round until 1978 (Parungo et al.,
1981), and none have measured year-round organic compo-
nents. In 1966, electron micrographs of particles collected
on a four-stage impactor provided some of the first aerosol
measurements carried out at McMurdo Station (Cadle et al.,
1968). Filter samples were collected for elemental analy-
sis in 1970-1971 (Ondov et al., 1973b). During the austral
summers of 1969 and 1970, the Aitken nuclei concentration
was reported to be ~ 1000 cm™> (Warburton, 1973). In an-
other study, the number concentration was 50 to 150 cm™3
with continental winds and ~ 300 cm™3 with maritime winds
(Hogan, 1975). Balloon measurements were conducted later
for stratospheric aerosols, and long-distance signals from
volcanic sources in tropical areas were found in the strato-
sphere (Hofmann et al., 1986; Solomon et al., 1994). Hansen
et al. (2001) measured black carbon at McMurdo in aus-
tral summer in 1995-1996. Another study (Mazzera et al.,
2001b) reported more detailed PMjg elemental composi-
tion, elemental and organic carbon, and nitrate concentra-
tions for 1995-1996 and 1996-1997 at McMurdo. Chemi-
cal mass balance (CMB) receptor modeling estimated that
soil dust, sea salt, combustion emissions, sulfates, methane-
sulfonate, and nitrates contributed 57, 15, 14, 10, 3, and
1 %, respectively, to the summertime PMp mass (Mazzera
et al., 2001a). Kalnajs et al. (2013) showed that ozone deple-
tion is correlated to aerosol concentrations because halogen-
containing aerosol consumed ozone. An aerosol mass spec-
trometer (AMS) at a site 20 km northeast from McMurdo
Station during October to December 2014 and August to Oc-
tober 2015 (Giordano et al., 2017) found sulfate accounted
for more than 50 % of nonrefractory composition. Many
measurement campaigns were limited to austral summer
months because of restrictions on access (Cadle et al., 1968;
Ondov et al., 1973a; Warburton, 1973) and so lack informa-
tion on seasonal changes.

The few year-round aerosol concentration and compo-
sition measurements in Antarctica were collected at sev-
eral sites in coastal Antarctica (all of which are more than
1500 km from McMurdo Station) (Hara et al., 2005; Wagen-
bach et al., 1998; Jourdain and Legrand, 2002; Gras, 1993;
Hara et al., 2004, 2010; Weller et al., 2013; Minikin et al.,
1998; Read et al., 2008) and at several sites on the Antarc-
tic Peninsula (more than 3000 km from McMurdo Station)
(Asmi et al., 2018; Mishra et al., 2004; Kim et al., 2017,
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Saxena and Ruggiero, 1990; Savoie et al., 1993; Loureiro et
al., 1992), as well as at the South Pole (more than 1000 km
from McMurdo Station) (Hansen et al., 1988; Bodhaine et
al., 1986; Harder et al., 2000; Parungo et al., 1981; Bodhaine,
1983; Hogan and Barnard, 1978) and at Dome C (more than
1000 km from McMurdo Station) (Legrand et al., 2017a, b;
Udisti et al., 2012). At the South Pole, aerosol particle num-
ber concentration ranged from 10 to 30cm™> in winter and
100 to 300 cm 3 in summer (Bodhaine, 1983; Parungo et al.,
1981; Hogan and Barnard, 1978). This low winter and high
summer seasonal difference has also been observed at coastal
Antarctic sites, but the average concentrations were typi-
cally higher, with summertime concentrations ranging from
300 to 2000 cm > and wintertime concentrations from 10 to
200 cm—3 (Kim et al., 2017; Gras, 1993). Consistent with this
seasonal difference in particle number concentrations, most
summertime non-sea salt sulfate mass concentrations were
at least 5 times higher than winter concentrations (Jourdain
and Legrand, 2002; Weller and Wagenbach, 2007; Udisti et
al., 2012; Legrand et al., 2017a; Asmi et al., 2018), likely
because of the contributions from biogenic DMS emissions
from the surrounding Southern Ocean. However, most sea
salt aerosols had wintertime maximum concentrations with
more than 2 times more Nat mass concentrations in win-
ter than summer (Parungo et al., 1981; Wagenbach et al.,
1998; Jourdain and Legrand, 2002; Weller and Wagenbach,
2007; Jourdain et al., 2008; Udisti et al., 2012; Legrand et al.,
2017a, b; Asmi et al., 2018).

The few hygroscopicity and CCN measurements reported
near West Antarctica are also recent and sparse. Defelice et
al. (1997) conducted CCN measurements at Palmer Station
on the Antarctic Peninsula in January and February 1994.
They collected CCN for 27 days at 0.3 and 1 % SS and found
CCN concentration to be between 79 and 158 cm™3. Asmi
et al. (2010) found that aerosol particles over the Southern
Ocean are very hygroscopic, with a growth factor of 1.75 at
90 nm. At King Sejong Station on King George Island, Kim
et al. (2017) found that CCN concentrations are high in sum-
mer (~ 200 cm~3) and low in winter (~ 50 cm™3). Biological
emissions from marine sulfate sources have been proposed
to explain a large fraction of CCN in the Southern Ocean
region (McCoy et al., 2015). Biological sulfate aerosol ac-
counts for 43-65 % of the summer zonal mean CCN concen-
trations and 7-20 % of the winter CCN over the oceans in
the Southern Hemisphere, including the circumpolar South-
ern Ocean (Korhonen et al., 2008). This important role for
biological sulfate in the Southern Ocean suggests that bio-
genic organic components may also contribute significantly
to particle number and mass, but measurements of organic
particles are too scarce to determine if this is the case (Mc-
Coy et al., 2015).

For comparison, in marine and Arctic regions, the organic
composition of particles have shown a high fraction of hy-
droxyl group (61 % of OM for the North Atlantic and 47 %
of OM for the Arctic) as well as some alkane and amine
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groups, likely associated with sugars, carbohydrates, and
amino sugars that originated from biological materials in sea-
water (Hawkins and Russell, 2010; Modini et al., 2015; Rus-
sell et al., 2010; Frossard et al., 2013; Leaitch et al., 2018;
Shaw et al., 2010). Organic nitrogen has also been identified
as a tracer component (0.02 to 10 ng m~3) in aerosol particles
in various studies in Antarctic (Schmale et al., 2013; Barbaro
et al., 2015b; Dall’Osto et al., 2017) and Arctic (Scalabrin
et al., 2012; Dall’Osto et al., 2012) regions. Some of the
few measurements of organic aerosol particle composition
that have been made in marine and polar regions are those of
amino acids, which are summarized in Table S1 in the Sup-
plement (Mace et al., 2003a, b; Kuznetsova et al., 2005; Scal-
abrin et al., 2012; Barbaro et al., 2015b; Wedyan and Preston,
2008; Shi et al., 2010; Matsumoto and Uematsu, 2005; Man-
dalakis et al., 2011; Violaki et al., 2010). Amino acids in re-
mote marine and coastal regions have been used as markers
for biological activities since they are natural chemical con-
stituents of many marine and terrestrial organisms (Barbaro
et al., 2015b; Scalabrin et al., 2012; Milne and Zika, 1993;
Cowie and Hedges, 1992). In addition, amino acids contain
organic nitrogen and specifically amine groups, which are
also consistent with measurements in polar regions of CHNO
fragments (Schmale et al., 2013) and amine groups (Shaw et
al., 2010; Frossard et al., 2011). Sugar, levoglucosan, phe-
nols and anthropogenic persistent organic compounds were
measured in ambient aerosols at Mario Zucchelli Station and
Concordia Station (Zangrando et al., 2016; Barbaro et al.,
2016, 2017, 2015a). Carboxylic acids with low molecular
weights were also measured at Mario Zucchelli Station, Con-
cordia Station, and Dumont d’Urville (Barbaro et al., 2017;
Legrand et al., 2012).

The Ross Sea has a surprisingly high biological primary
production rate in the summer, making it the most biologi-
cally active part of the southern polar region (Arrigo et al.,
2008). Seabird emissions were linked to new particle forma-
tion (Weber et al., 1998) and to particles containing CHN and
CHNO fragments (Schmale et al., 2013). The CHNO frag-
ments identified by mass spectrometry have been associated
with uric acid and other nitrogen-containing components that
are produced from penguin guano (Schmale et al., 2013). The
ammonia emissions from seabird colonies have also been
shown to contribute substantially to atmospheric particle for-
mation and cloud-albedo radiative effects in the Arctic (Croft
et al., 2016b). Organic aerosol components were also associ-
ated with meltwater ponds in continental Antarctica (Kyro et
al., 2013).

AWARE (ARM West Antarctic Radiation Experiment)
provides the most thorough yearlong aerosol and radiative
property measurements yet obtained from Antarctica, and the
only four-season time series of weekly Fourier transform in-
frared (FTIR) measurements of organic functional groups in
Antarctica. This paper characterizes the sources of organic
aerosol across four seasons in Antarctica. Dust, sea salt, and
non-sea salt sulfate mass concentrations measured by X-ray
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fluorescence (XRF) are used to separate the seasonal contri-
butions to inorganic particle components. Seasonal patterns
of natural marine and coastal-sourced organic aerosol are
identified from the functional groups after separation of local
emissions.

2 Methods

The AWARE aerosol measurements were collected from
23 November 2015 to 29 December 2016 at the Cosray
site on the eastern edge of McMurdo Station (77.85°S,
166.66° E), which is located on the southern tip of Ross
Island in Antarctica. To quantify seasonal differences, four
seasons were defined as summer (November through Febru-
ary), fall (March through April), winter (May through Au-
gust), and spring (September through October) (Fig. 1).
The 4-month winter is characterized by irradiance of nearly
zero and average temperature below —20°C. The 4-month
summer had irradiance above 250 Wm™2 and temperature
higher than —10 °C. Spring and fall marked transitions be-
tween summer and winter. The station hosts more than
1000 scientists and support personnel during austral sum-
mer and consumes more than 2 million gallons of AN-8
diesel fuel (with a 0.3 % sulfur content by weight) for sta-
tion operations (Mazzera et al., 2001a). The aerosol inlet
samples at ~ 10 m above ground level and has a rain guard
and bug screen; 1000 Lmin~! turbulent flow through 4.6 m
of large-diameter (20 cm ID), powder-coated aluminum tub-
ing; a 2.1 m smaller-diameter tube (4.76cmID) that ex-
tracts 150Lmin~!' flow from the center of the larger-
diameter tubing; and a flow distributor with five ports,
each drawing 30 Lmin~! through 25cm of 1.59cm (5/8")
inner diameter stainless-steel tubing. The size-dependent
losses were measured below 10 % for particles from 10 nm
to 10 ym diameter (https://www.arm.gov/publications/tech_
reports/doe-sc-arm-tr-191.pdf, last access: 11 June 2018).
Other details of the measurement system can be found on-
line in the description of the second ARM Mobile Facil-
ity (AMF2, https://www.arm.gov/capabilities/observatories/
amf, last access: 11 June 2018) and Aerosol Observing Sys-
tem (AOS, https://www.arm.gov/capabilities/instruments/
aos, last access: 11 June 2018).

Ambient aerosol particles were measured by CPC (Con-
densation Particle Counter, TSI model 3772), HTDMA (Hy-
groscopic Tandem Differential Mobility Analyser, Brech-
tel model 3002), and CCN Counter (Cloud Condensation
Nuclei, DMT model CCN100) and were collected on fil-
ters for off-line FTIR and X-ray fluorescence. CN (con-
densation nuclei from CPC) concentrations had frequent
short-lived increases that typically had high concentrations
(> 1000 particles cm™> for 1Hz CN), which we attributed
to short-term local contamination events (SLCEs) (Fig. S1
in the Supplement). High CN concentrations (> 1000 cm™>)
occurred 48 % of the time when the wind was from the west
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Figure 1. Monthly average of (a) temperature, shortwave downwelling irradiance measured in this study, and sea ice expansion rate of the
Ross Sea (Holland, 2014); (b) Sea salt, dust, and non-sea salt sulfate concentration from XRF and FTIR peak location at 1500-1800 cm™!
wavenumber region. Standard deviations are shown on the plot as error bars.

(Fig. S2), which is the same direction as the McMurdo Sta-
tion central facilities. However, westerly winds only occurred
3 % of the time, so emissions at McMurdo Station were un-
likely to account for most of the emissions. Spikes were sep-
arated using a “de-spike” algorithm based on running me-
dian filters (Beaton and Tukey, 1974; Tukey, 1977; Velle-
man, 1977; Goring and Nikora, 2002). We applied a running
median length of 24 h and weighted by cosine bell running
mean of 24 h to the 1 Hz CN concentration and assigned the
CN concentration above the resulting filter as SLCEs. The
SLCEs were characterized by an average duration of less
than 1h (0.5 &6 min), rapid rate of concentration change
(8520 436780 cm~3 min~!), and concentrations exceeding
1000cm™3. After SLCEs (spikes) were removed, the 24 h
running median concentration was interpreted to be the nat-
ural background CN, for reasons discussed in Sect. 3.
Submicron aerosol particle samples were collected on pre-
scanned Teflon filters (Teflon, Pall Life Science Inc., 37 mm
diameter, 1.0ym pore size) behind a PM; sharp-cut cy-
clone (SCC2.229 PM;, BGI Inc.). One sample filter and
one background filter were collected each week. Samples
were frozen and transported to the UCSD laboratory for
FTIR spectroscopy. A Bruker Tensor 27 FTIR spectrometer
with a deuterated triglycine sulfate (DTGS) detector (Bruker,
Waltham, MA) was used to scan the filters both before and
after sampling. An automated algorithm was applied to quan-
tify the mass of the organic functional groups (Takahama et
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al., 2013; Russell et al., 2009). Four groups (alkane, amine,
hydroxyl, and carboxylic acid) were quantified by the area
of absorption peaks and the sum of the mass of the five
functional groups. Other groups (organonitrate, organosul-
fate, and nonacid carbonyl) were fit but all samples were be-
low detection limit. The detection limit and error for each
functional group is the larger of twice the standard deviation
of the absorption values associated with blank filters and the
visual determination of the minimum peak size that could be
distinguished from spectral noise (Maria et al., 2002). The
detection limit of OM was 0.09 ug based on the sum of the
detection limits of the three largest functional groups during
the project (alkane, hydroxyl, and amine). For the weekly air
sampling volume of 80m?> used in this study, this loading
corresponds to a concentration of 0.001 uygm~3. OM is cal-
culated as the sum of all functional groups measured above
detection, based on the assumptions of Russell (2003). Sub-
sequent evaluations and intercomparisons (Takahama et al.,
2013; Russell et al., 2009; Maria et al., 2002) have shown that
errors associated with functional groups that are not quanti-
fied because of Teflon interference and semivolatile proper-
ties are accounted for within the stated +20 % uncertainty
for ambient particle compositions. The ammonium mass is
not quantified by FTIR of Teflon filter samples because am-
monium nitrate is semivolatile. The location of absorption by
sulfate in FTIR coincides with the location of Teflon absorp-
tion. Since the absorption by the Teflon filter far exceeds that
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of the sulfate particles, sulfate cannot be measured on this
substrate. Sulfur was measured by XRF and is expected to be
largely ammonium sulfate, since organosulfate and bisulfate
were below the limit of quantification. Pure (> 99 %) uric
acid (Sigma-Aldrich) and urea (Fisher Scientific) were dis-
solved in water, atomized, and collected on triplicate Teflon
filters to provide FTIR reference spectra for comparison of
the amide group region. FTIR spectra were baselined by sub-
tracting a combination of piecewise linear and polynomial
regressions from the spectrum using an automated algorithm
(Takahama et al., 2013).

Positive matrix factorization (PMF) was applied to the
baselined FTIR spectra for the PM; samples collected in
2016 at McMurdo Station with PMF2 V4.2 (Paatero and Tap-
per, 1994; Paatero, 1997). Six-factor solution spaces (1 ~ 6)
were considered. Fpeak values from —2 to 2 at 0.5 incre-
ments were considered. Seeds of 1, 10, and 100 were used
at each Fpeak and factor number to examine the robustness
of each solution. There was little change in solutions with
rotations for all solutions. Q / Qexpected decreases as factor
number increases for all solutions (Table S2). The two-factor
solution is considered robust because the spectra are almost
identical for all rotations and seeding conditions (Fig. S3).
The solution leaves an average of 23 % of the OM as resid-
ual. The two factors are not correlated in time and do not have
similar spectra (Table S2). The new factor identified from
the three-factor solutions is either degenerate or very similar
(cosine similarity = 0.99) to one of the first two factors. Simi-
larly for four or more factor solutions two or more degenerate
or duplicate factors are found. This makes the two-factor so-
lution with Fpeak of 0 optimal for the AWARE data set. The
small number of factors identified compared to other regions
(Russell et al., 2011) is the result of both the low aerosol con-
centrations and limited personnel access at AWARE, which
reduced the time resolution of FTIR samples to 1 week each
and yielded only 54 samples in 1 year. The low variability
during the study also meant that PMF was unable to separate
more than two factors.

In addition, k-mean clustering (Hartigan and Wong, 1979)
was applied to the baselined FTIR spectra (Takahama et al.,
2013). Solutions with 1 to 10 clusters were evaluated. The
two-cluster solution was chosen because solutions with three
or more clusters included at least one pair of clusters with
centroids with cosine similarity higher than 0.95 (Table S2),
making those clusters effectively overlapping. The two clus-
ters and two PMF factors were identified as being associated
with fossil fuel combustion (FFC) and marine and seabird
(M&S) sources, as described below. Factorization techniques
like PMF are applied to separate each individual composition
measurement into the independent factors that contribute to
its composition, where these factors may represent different
sources as well as different formation processes. On the other
hand, clustering algorithms are used to sort similar measure-
ments into categories, each of which may contain a mixture
of different sources and formation processes and is charac-
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terized by the centroid to which all measurements in that
category are most similar. The similarity of the k-mean cen-
troids and PMF factors (cosine similarity > 0.97) indicates
that both separations are robust. Since the PMF residual is
the fraction of OM that could not be assigned to either factor,
the ratio of the residual to the factor OM provides a mea-
sure of the uncertainty of the PMF separation — namely the
fraction of OM that could be missing from the factor. The
ratio of the PMF residual to the FFC OM varies from 29 %
in winter to 63 % in summer, making this result more likely
to represent all of the FFC OM in winter when FFC OM is
a larger relative fraction of OM. Similarly, the PMF residual
is 33 % of M&S OM in summer, indicating the source sepa-
ration could be missing a third of M&S OM. In contrast, the
PMF residual is 9 times larger than the M&S OM in winter
(Table 1), making the quantification of M&S OM in winter
very uncertain.

Half of the filters (25) were selected for XRF (Chester
Labnet, OR) quantification of major elements above 23 amu.
The elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Br, Rb, Sr, Zr, Ag, Pb, and Ba had mass
above the detection limit (3 times the uncertainty) for 95 % of
the samples and are used here. The mass of dust was calcu-
lated from XRF metal concentrations, assuming dust consists
of MgCO;, Al,03, SiO2, K,0, CaCO3, TiO,, Fe,03, MnO,
and BaO (Usher et al., 2003) after excluding mass associated
with sea salt. Sea salt particle mass components were calcu-
lated from XRF-measured Na and Cl concentration (Frossard
et al., 2014b; Modini et al., 2015).

The CPC measured particles with diameters larger than
10nm and operated continuously, except from 29 March
to 7 April 2016 when a malfunction occurred (Fig. S1).
The CCN Counter measured the particle concentration acti-
vated at supersaturations of 0.1, 0.2, 0.5, 0.8, and 1.0 % dur-
ing AWARE, with only short time periods of missing data
(Fig. S1). HTDMA provided humidified aerosol size distri-
butions for five dry particle sizes at specified relative hu-
midity (RH=90 %) for two periods during the campaign:
23 November to 20 December 2015 and 16 to 31 Jan-
uary 2016. Aerosol particle growth factors (GF;) from the
HTDMA measurements were calculated as the ratio of hu-
midified particle diameter of size i to the selected dry diam-
eter. Mean growth factors (GFs) and hygroscopicity parame-
ters (x) (Petters and Kreidenweis, 2007; Su et al., 2010) were
calculated from Egs. (1) and (2):

dN
ZGFi (dlogDp )i
i

z dN ’
dlog D), J;

i

GF = 6]

——3
- (GF —l)(l—aw)’ o

Ay

where N is the measured number concentration and ay, is
water activity (Rickards et al., 2013).
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Table 1. Mean concentrations and ratios with standard deviations during 2016 at McMurdo.

Spring Summer Fall Winter
CCN Number 0.1% SS 11.2+13.3 40.1£34.2 9.7+6.6 7.1+£8.5
Concentration (cm ™) (0.07+£0.06) (0.08+£0.06) (0.06£0.05) (0.1£0.09)
(CCN /SLCE-removed CN)  0.2% SS 37.9+364 131+80.2 48.24+29.3 18.6 £20.5
0.19£0.11)  (0.26£0.12)  (0.29+£0.11)  (0.26£0.14)
0.5% SS 72.1+48.5 276.4+£147.9 104 +£60.7 33.3+£253
(0.37+£0.20) (0.56+£0.24) (0.63£0.20) (0.49+£0.26)
0.8% SS 99.7£73.9 348 £203 1244+72.3 42.9+£39.6
(0.5£0.23) (0.68+0.25) (0.75+0.23) (0.57+0.29)
1% SS 117+110 371+234 132+77.5 48.5+50.2
(0.55+0.24)  (0.73£0.26) (0.8£0.23) (0.6 £0.30)
CN (cm™3) CN SLCE-removed 161 +94 400 + 228 141+ 88 65+77
CN 376 £ 571 740 £ 693 241+ 187 2374502
Absorption (mM—1) 0.2+0.47 0.34 £0.66 0.16 £0.66 0.2+0.50
Measured FTIR OM 0.06 £0.04 0.27+0.16 0.07 £0.06 0.04 £0.02
(ngm™)
PMF of FTIR OM FFC OM 0.03 £0.01 0.06 £0.05 0.03 £0.02 0.03 £0.02
(ngm™—?)
M&S OM 0.018+0.028 0.155+0.121 0.026+0.046  0.001 £0.001
(ngm™)
Residual / FFC 0.40£0.72 0.63+0.84 0.36 £0.49 0.28 £0.52
Residual / M&S 1.12£097 0.33£0.46 1.03£0.63 9.22+7.74

Meteorological variables (temperature, humidity, wind
speed, and wind direction) were measured with a Vaisala
model WXT-520 (Helsinki, Finland). The Surface Energy
Balance System (SEBS) included upwelling and down-
welling solar and infrared radiometers at the measurement
site at McMurdo Station from 4 February to 29 Decem-
ber 2016. Aerosol absorption was measured at three wave-
lengths (470, 522 and 660 nm) by a Particle Soot Absorption
Photometer (PSAP; Radiance Research, Seattle, WA). The
PSAP absorption at 660 nm was used as a proxy for black
carbon (BC) because it is expected to have the least interfer-
ence from brown carbon (Olson et al., 2015).

3 CN, CCN, hygroscopicity, and inorganic particle
measurements

19% of the 1Hz CN measurements recorded during the
project were identified as SLCEs, and the average of the con-
centrations for those times contributed 55 % of the project-
average CN concentrations. The distribution of SLCE dura-
tion and timing (Fig. S4) shows that SLCEs were approx-
imately 2 times more frequent during local daytime than
nighttime. This short duration and largely daytime timing of
SLCEs suggests that site maintenance and nearby road traffic
are likely responsible for many of the high CN events.
There are two reasons why the CN concentrations that re-
main after SLCEs (spikes) are removed are considered rep-
resentative of the natural background rather than local pol-
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lution from McMurdo Station activities: First, the SLCE CN
concentration is correlated weakly to BC (r = 0.48), but the
background CN is correlated negatively to BC absorption
(r =—0.4). Second, the two indicators of combustion-related
pollution (BC absorption and the FFC factor) were approx-
imately 2 times higher in summer than winter (Table 1),
which is similar to the 2-fold increase in SLCE CN in sum-
mer compared to winter but not enough to account for the
7-fold increase in the background (SLCE-removed) CN in
summer compared to winter. Consequently, this larger sum-
mertime difference in background CN is likely associated
with the higher productivity of natural sources in summer.
More specifically, the CN concentration associated with nat-
ural sources was very low (~ 60 cm™3) in winter during low
phytoplankton activity but as high as 2000 cm™> in summer
(Fig. S1), indicating a significant increase in biogenic (sul-
fate or organic) CN.

SLCEs had nearly no contribution to CCN, which is con-
sistent with SLCE particles having extremely low hygro-
scopicity and being freshly emitted from fuel combustion
(Wex et al., 2010) (Fig. S1). The CCN measurements did
not have short-term spikes even at the highest supersatura-
tion level (1 %), at which only 0.1 % of the measurements
were 5 % higher than the background CN. The absence of
the SLCE in the CCN measurements is likely the result of
the local pollution having hygroscopicity both too small and
too low to serve as CCN at 1 % or below. The CCN concen-
tration correlated moderately or strongly to background CN
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(r =0.80, 0.83, 0.87, and 0.88 for 0.2, 0.5, 0.8, and 1 % SS,
respectively). CCN and CN were S to 7 times higher dur-
ing summer, but the ratio of CCN /CN changed less than
30 % throughout the year (Table 1). CCN /CN was largely
constant at all five supersaturations during most of 2016, but
from late September to early October the ratio of CCN / CN
decreased to 0.5 at 1% supersaturation (Fig. S1). This de-
crease of the ratio of CCN to background (spike-removed)
CN during the winter—spring transition could be caused by
changes in particle size and composition. One such cause
would be additional CN that are too small to contribute to
CCN. Previous observations at a site 10 km from McMurdo
Station showed an increase in the fraction of CN smaller
than 250 nm at polar sunrise (September—October), although
a specific cause was not clear (Giordano et al., 2017). The
higher CCN / CN ratio in the summer (Table 1) is consistent
with both the higher biogenic sulfate contributions during the
highest productivity season (summer) and the slightly larger
diameter of the accumulation mode particles observed in pre-
vious summers (Kim et al., 2017).

The growth factors and hygroscopicity parameters were
both nearly constant during the two measurement peri-
ods (Fig. S5), with values of 1.5+ 0.3 for growth factors
and 0.4 £ 0.1 for hygroscopicity parameters. These numbers
were constant across the measured size range of 50 to 250 nm
diameter and are comparable to other observations in the
Antarctic region (Wex et al., 2010; Asmi et al., 2010; Kim
et al., 2017). The particles that had hygroscopicity too low to
grow measurably may be those that were emitted by local an-
thropogenic emissions. The moderate correlation of BC ab-
sorption to the fraction of particles that did not grow at in-
creased relative humidity in the HTDMA (R = 0.52, Fig. 2a)
indicates that the BC-containing particles could be the par-
ticles that have low hygroscopicity. In addition, BC absorp-
tion correlated moderately to the nonactivated CN particles
(1-CCN /CN) (R=0.34 for 1 % supersaturation, Fig. 2b).
Since BC-containing particles, such as those freshly emit-
ted from combustion sources, have been shown to have low
hygroscopicity (Peng et al., 2017; Vu et al., 2017), these cor-
relations are consistent with the particles that did not take
up water being those that were emitted by local combustion
activities.

XRF measurements of elemental concentrations of S, P,
K, Ca, Si, Mn, Al, Ag, Fe, and V were 2 to 15 times higher
in summer than in winter (Fig. S6). Submicron dust mass
concentration was 7 times higher in summer, consistent with
the lack of exposed soil in winter (Fig. 1). Sea salt parti-
cle mass concentration (Fig. 1) was 3 times higher in win-
ter than in summer, consistent with the higher circumpolar
wind speed providing more sea spray in winter than summer
(Bintanja et al., 2014). The measured Cl1~ /Na™ of 2 rep-
resents a large sodium deficiency in wintertime submicron
particles (Fig. 1). The depletion of Na™ relative to Cl~ in
winter indicates a likely contribution to the aerosol submi-
cron mass from wind-blown frost flowers (Alvarez-Aviles et
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al., 2008; Thomas and Dieckmann, 2003; Shaw et al., 2010).
This sodium depletion is the result of Na;SOy4 precipitating
out from sea ice brine before frost flowers wick up the re-
maining salt solution. Blowing snow could also contribute to
submicron particles (Domine et al., 2004), but this source has
not been associated with a substantial sodium deficiency in
submicron particle composition (Gordon and Taylor, 2009).
If either frost flowers or blowing snow were generated
near the site, we would expect a correlation of concentra-
tions to wind speed at higher wind speeds, since both sources
have been characterized as requiring wind speed thresholds
of approximately 7ms~! for lofting of particles (Schmidt,
1981; Shaw et al., 2010). During AWARE, 1 min wind speed
only exceeded this threshold by 1 ms~! for 24 % of the time,
and the weekly average wind speed was never higher than
7ms~!. Wind speed had no correlation to CN concentra-
tion for the campaign (r = —0.32) or for winter (r = —0.31).
In addition, there was no correlation (R = —0.15) of submi-
cron CN number with wind speed (> 8 m s~1), as would be
expected for blowing snow generated locally (Yang et al.,
2008). The M&S factor concentration also showed no corre-
lation (r =0.1) to the fraction of time with high wind speed
(> 8ms~!). While these relationships do not support the at-
tribution of the wintertime salt mass to either frost flowers or
blowing snow, they do not rule it out since the particles may
have been lofted upwind and transported to McMurdo Sta-
tion. A recent model simulation (Huang and Jaegle, 2017)
predicted that blowing snow has significantly higher con-
tributions to submicron particle mass than frost flowers in
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Antarctica and the Arctic, but also showed that the region
at the north edge of the Ross Ice Shelf (including Ross Is-
land) had both higher emissions (> 0.6 x 10" %kgm=2d~")
and concentration (> 1.5ugm™3) from frost flowers than
the emissions (< 0.4 x 10~%kgm~=2d~") and concentration
(< 1.0ugm™3) from blowing snow, consistent with the find-
ing that wintertime OM at McMurdo Station were more
likely from frost flowers than blowing snow.

4 Organic mass and composition

The measured organic functional group mass concentrations
are shown in Fig. 3c. The average OM is 0.13ugm~> for
AWARE, with hydroxyl groups having the highest mass frac-
tion (41 %), followed by alkane (39 %), amine (13 %), and
carboxylic acid (7 %) groups. Similar to CN concentrations,
OM was highest in summer (0.27 pg m—>) and lowest in win-
ter (0.04ugm™3). Arctic OM at Utgiagvik (formerly Bar-
row) and Alert showed a very different seasonal pattern, with
low concentrations in Arctic summer (0.03 and < 0.5 ugm™3
in Alert and Utqgiagvik, respectively) and high concentra-
tions in winter and spring (0.3 and 1 ugm™ in Alert and
Utqiagvik, respectively) (Frossard et al., 2011; Leaitch et al.,
2018). Consistent with OM, CN concentrations at these two
Arctic sites, with particle size range of 80-500nm at Alert
and > 100nm at Utqiagvik, were also low in Arctic sum-
mer (<50 and 100-300cm™3 at Alert and Utgiagvik, re-
spectively) and high in winter and spring (> 100 and 400-
1000 cm—3 at Alert and Utqiagvik, respectively) (Croft et al.,
2016a; Polissar et al., 1999). The springtime high concen-
trations in the Arctic result from long-range transport from
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midlatitudes after the breakup of the vortex. The lack of sub-
stantial pollution sources at southern midlatitudes (compared
to those at northern midlatitudes) means the Antarctic does
not have an equivalent haze in spring (Stohl, 2006; Stohl
and Sodemann, 2010; Russell and Shaw, 2015). The higher
summer OM in Antarctica is likely produced by the specific
local conditions of the three polar sites, namely that Ross
Island has higher marine and seabird activity compared to
Utqgiagvik and Alert.

The FFC cluster and factor are similar to each other (co-
sine similarity =0.97) and are both named because of the
similarity of the spectra to factors identified as FFC previ-
ously (Price et al., 2017; Guzman-Morales et al., 2014; Sal-
iba et al., 2017). The FFC factor has two narrow peaks at
2865 and 2934 cm ™! that are characteristic of long-chain hy-
drocarbons and a cosine similarity greater than 0.8 with fac-
tor spectra identified previously as urban combustion emis-
sions (Guzman-Morales et al., 2014) and fresh ship engine
emissions (Price et al., 2017). The FFC factor has alkane and
amine groups that account for 80 % OM (Fig. 4), which is
consistent with urban combustion emissions and vehicle en-
gine tests (Guzman-Morales et al., 2014; Saliba et al., 2017).
The FFC factor was 73 % OM in winter but only 23 % in
summer (Fig. 3a and b). The FFC factor concentration is
weakly or moderately correlated to Ca, P, Fe, Cu, Cr, Mn,
and Zn (r =0.3-0.5), which have been identified as tracers
of vehicle emissions (Lin et al., 2015; Cheung et al., 2010).

The primary amine peak (1620cm™!) is present in both
FFC and M&S factors at McMurdo Station (Fig. 5), con-
sistent with previous studies (Shaw et al., 2010; Guzman-
Morales et al., 2014; Price et al., 2017; Leaitch et al., 2018).
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The difference between the FFC and M&S spectra is that
FFC has double sharp alkane group peaks at 3000 cm™" but
M&S has a broad hydroxyl group absorption at 3400 cm™!
(Fig. 4). Ammonium has peaks at 3050 and 3200 cm~! and
contributes to both FFC and M&S spectra (Fig. 4).

The M&S factor is identified as “marine” because of its
high hydroxyl group fraction, which is similar to past marine
sea spray factors (Russell et al., 2010), and as “seabird” be-
cause of absorption from ammonium and an organic nitrogen
peak that is likely associated with coastal penguin emissions.
The high hydroxyl group that accounted for 55 % OM in the
M&S factor makes this factor overall similar to the marine
factors identified in measurements at Utqiagvik and Alert
(cosine similarity =0.53—-0.57) (Shaw et al., 2010; Leaitch
et al., 2018) (Figs. 3 and 4). The M&S hydroxyl group frac-
tion is lower than the Arctic marine factors that have 80 %
hydroxyl (Shaw et al., 2010; Leaitch et al., 2018).

Utqgiagvik and Alert had higher marine OM concentrations
in winter than in summer. Likely this is because these two
Arctic sites did not have the large seabird contributions that
contributed to the M&S factor on Ross Island during summer
(Lyver et al., 2014). The smaller seabird populations near the
Arctic sites also meant that Utgiagvik and Alert OM had only
very small amide contributions (Fig. 5). The M&S factor has
higher alkane (38 %) and amine (8 %) group mass compared
to two marine factors in Arctic regions that had only 6 %
alkane and 6 % amine group mass (Shaw et al., 2010; Leaitch
et al., 2018). This factor contributed a substantial fraction
of organic mass in summer (58 %) but very little in winter
(5 %) (Fig. 3b). The M&S organic mass concentration was
only 0.001 ugm~3 during winter and was 0.15ugm™> dur-
ing summer (Fig. 3d). The low winter and high summer M&S
OM means that salt was not correlated to the M&S Factor or-
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ganic mass, indicating the high summertime concentrations
of natural OM could not be explained by primary marine
aerosol contributions alone. Marine OM contributions could
be high in winter relative to summer because of the higher re-
gional wind speeds, but their absolute concentration was too
low to separate and identify in this set of 54 1-week samples.
Specifically, the small number of long-duration samples re-
sulted in PMF residuals that were more than 9 times higher
than the M&S factor in winter, so that the marine fraction in
winter is very uncertain.

The FTIR spectra for summer samples show an absorp-
tion peak at 1680 cm™! that is not present in winter (Fig. 1).
The M&S factor FTIR absorption peak (Fig. 5) was located
at a wavenumber that was both too high (> 1630 cm™ 1) to
be primary amine bending and too low (< 1714cm™!) to be
carbonyl bending (Fig. 5) (Takahama et al., 2013). Seabirds
excrete urea that degrades to uric acid, and the amide groups
found in both urea and uric acid could explain the 1680 cm™!
peak in the summer FTIR spectra (Fig. 5). The ammonium
peaks (Fig. 4) associated with the M&S factor are also con-
sistent with ammonia emissions from guano (Legrand et al.,
1998), which is taken up on particles as ammonium.

More than 155 000 breeding pairs reside in the ice-free ar-
eas on Ross Island (Attwood et al., 2014) from October to
March (Davis et al., 2001). The three penguin habitats on
Ross Island are all less than 100 km from McMurdo Sta-
tion (Fig. S2) (Lyver et al., 2014). Previous studies have
also attributed aerosol emissions and properties to penguin
activities, including ammonia-enhanced new particle forma-
tion (Weber et al., 1998) and oxalate-enriched particles and
organonitrogen-containing fragments from urea breakdown
products (Legrand et al., 2012; Schmale et al., 2013). The
finding here of amide groups would be consistent both with
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particle formation and with substantial organonitrogen com-
ponents. Since McMurdo Station is most frequently down-
wind from Cape Crozier (which is located to the northeast
of the sampling site), its estimated ~ 300 000 penguins are a
likely source of this organic and ammonium contribution to
particles (Lyver et al., 2014).

This 1680cm™! amide peak was present in very small
amounts in multiyear Arctic FTIR measurements (Shaw et
al., 2010; Leaitch et al., 2018) (Fig. 5), but their low concen-
trations did not support further investigation. The 1680 cm™!
peak has not been observed in open-ocean marine factors
(Russell et al., 2010; Frossard et al., 2014a), suggesting that
an open-ocean marine source is not likely. An alternative ex-
planation of the amide group is emissions from seasonal ice
microbiota (Dall’Osto et al., 2017). Given the proximity and
abundance of seabirds at McMurdo Station, seabirds are the
more likely source than sea ice algae or other phytoplank-
ton during AWARE. There are four reasons that the M&S
factor are likely associated with marine and seabird emis-
sions: the 1680 cm™! signal has been found at two coastal
Arctic sites (in small amounts) but not on open-ocean ma-
rine studies (Hawkins and Russell, 2010; Leaitch et al., 2018;
Shaw et al., 2010; Frossard et al., 2011). This difference sug-
gests that the amide group is likely associated with seabirds,
since they are found in coastal marine areas but generally
not in open-ocean marine areas. The higher concentrations
of the M&S OM factor coincided with the summer breed-
ing period of a large penguin colony at Cape Crozier, which
was upwind during most of the summer. Other possible con-
tributions, such as from algal blooms during ice melting in
spring, are not consistent with the northeasterly winds, the
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amide group, or the seasonality of the M&S OM. HYSPLIT
back trajectories (Draxier and Hess, 1998) did not add useful
information because the day-to-day variability exceeded the
differences among weekly averages. Weekly-average wind
direction was always northeasterly (£45°), so there was in-
sufficient variation to identify sources in different directions.
The emissions from seabirds have significant regional impli-
cations in polar areas because of their large population and
wide distribution (Croft et al., 2016b; Riddick et al., 2012).
Chemical transport model simulations suggest that emissions
of reduced nitrogen from seabirds in the Arctic could signif-
icantly increase aerosol particle formation, and in turn cloud
droplet number concentration and cloud albedo, yielding as
much as —0.5W m~2 radiative forcing averaged over the
14000 000 km? of the Arctic Ocean (Croft et al., 2016b).

The measured acid group concentration is likely to be a
secondary aerosol contribution since photochemical oxida-
tion has been shown to form highly oxidized molecules in-
cluding carboxylic acids by photochemical reactions (Xu et
al., 2013; Barbaro et al., 2017; Kawamura and Gagosian,
1987; Sax et al., 2005; Charbouillot et al., 2012; Alves
and Pio, 2005; Claeys et al., 2007; Alfarra et al., 2006;
Stephanou and Stratigakis, 1993). Acids are also present in
trace amounts in seawater (Gagosian and Stuermer, 1977;
Kawamura and Gagosian, 1987), but the higher concentra-
tions measured here are likely to only be explained by sec-
ondary processes. The carboxylic acid group mass concentra-
tion that was associated with the M&S factor was correlated
moderately to downwelling shortwave irradiance (r =0.75,
Fig. 6).
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Carboxylic acid group mass fractions have also been iden-
tified as secondary photochemical products based on their
correlation to solar radiation in clean, open-ocean conditions
(Frossard et al., 2014a). However, since the seabird emis-
sions were only high in summer when radiation was also
generally high, the correlation to radiation does not provide
evidence of photochemical contributions in this case. Inter-
estingly, the carboxylic acid group associated with the FFC
factor had no correlation (r =0.09) to downwelling short-
wave irradiance. This difference may be because the lo-
cal emissions from McMurdo Station facilities reached the
Cosray site in less than 5 min (since McMurdo Station was
2km away and wind speeds were 6 ms~! on average), mak-
ing them essentially “fresh” primary particles, whereas those
from the large upwind penguin colony took 6 h (since Cape
Crozier was 100km away and wind speeds were 6ms™!
on average) to reach the site, giving them approximately
50 times more time for photochemical reactions leading to
SOA production. It is also possible that the anthropogenic
gas-phase precursor emissions had lower SOA acid yields but
there is little evidence to support this (Rickard et al., 2010;
Wyche et al., 2009; McNeill, 2015). The source of the vapor-
phase organic precursors of the summer seabird acid groups
is not known, but given their substantial contribution to mass
is worthy of further investigation.

5 Conclusions

The first yearlong organic functional group measurements
in Antarctica show the seasonal trend of higher summer
concentrations in most of the aerosol measurements. Short-
lived contamination events (SLCESs) of typically less than 1 h
(Fig. S1) from local sources were separated from the CN
time series to investigate the more regionally representative
or “background” concentrations. With SLCE removed, aver-
age CN concentrations were 65 cm™> in winter but 400 cm ™3
in summer.
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The ratio of CCN to background (spike-removed) CN
was largely constant for most of the measured seasons.
Growth factors (1.5 £ 0.3) and hygroscopicity parameters «
(0.4 £0.1) were measured in two 1-month periods during the
2015-2016 summer and are comparable to marine aerosols
reported near Antarctica (Wex et al., 2010; Asmi et al., 2010;
Kim et al., 2017).

Both natural dust and biogenic as well as anthropogenic
concentrations were more abundant in the summer months
due to both the higher sunlight for productivity and the higher
site accessibility. The mean summer OM concentration was
0.27 ugm~3, which was 7 times higher than winter OM. Hy-
droxyl and alkane groups were found to be the most abundant
and accounted for 80 % of OM. Two factors were identified
by PMF with an average residual of 23 %: the M&S fac-
tor was associated with natural marine sea spray and coastal
seabird sources, and the FFC was associated with local com-
bustion emissions. The M&S factor mass concentration was
150 times higher in summer than winter; the FFC factor had
a higher concentration than M&S in winter but the concen-
trations were so low that the quantification of the M&S factor
in winter is very uncertain.

In addition to the primary amine peak present in past ma-
rine sea spray measurements, an FTIR absorption peak at
1680cm~! was associated with the M&S factor in summer.
The likely source of this peak as well as the coincident am-
monium concentrations was seabird-related emissions from
penguin colonies at Cape Crozier. The carboxylic acid group
mass in the M&S factor was high in summer and was likely
from secondary products of photochemical reactions.

Data availability. FTIR and XRF measurements are available at
UCSD digital archives: https://doi.org/10.6075/JOWM1BKV (Liu
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access: 11 June 2018).
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