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Abstract. This paper considers the equations governing incompressible fluid-flow on
an evolving surface. We employ an energetic variational approach to derive the dynamical
system for the motion of incompressible fluid on such an evolving surface. The focus is
to understand the coupling of an incompressible fluid-flow and the evolution of a moving
surface, involving both the curvature and the motion of the surface.

1. Introduction. There has been a lot of interest in studying motions and dynamics
on moving surfaces with applications such as those in geophysics and biology. We are
concerned with mathematical derivations of the governing equations for the motion of
incompressible fluid on an evolving surface. Although there may be several ways to derive
such equations, here we apply our energetic variational approach for their derivation.

Let us first explain our setting. Let T'(¢) be a surface in R? depending on time t € [0,T)
for some T € (0,00]. Let w = “(wy(x,t), ws(x,t), ws(x,t)) be a given velocity field at
a point z = *(x1, e, x3) of T'(t) which determines the velocity of T'(t). This velocity w
may or may not be tangential to I'(¢), in which cases I'(¢) can change the shape. We
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consider a fluid with zero thickness moving on T'(¢). Let u = *(u1(z,t), uz(z,t), uz(x,t))
be a relative velocity of a fluid particle at x = *(x1, 22, x3). The velocity

v=uv(z,t) = "(vi(2, 1), v2(z, 1), v3(x, ) = u+w

is defined as the total velocity of the fluid particle at x. We confine ourselves to the
cases where the relative velocity w is a tangential to I'(¢) so that there is no exchange of
particles between the surface and the environment. We often call w the motion velocity
(speed) of the evolving surface and u a surface flow (velocity) on the evolving surface.

One of the goals in this paper is to derive the following evolution system for viscous
incompressible fluid-flow on an evolving surface:

Diyp=20 on Sr,
pDv + gradpo + o Hn = 2uodive(PrD(v)Pr)  on Sr, (1.1)
divprv =0 on St.

Here

Sr=|J {r@) < {t}}.
0<t<T
The symbols p = p(z,t) and po represent the density and the viscosity coefficient of
the fluid on I'(t), respectively. The quantity ¢ = o(x,t) is a pressure associated with
the incompressibility of the total velocity v, and the notation D; denotes the material
derivative, i.e., Dif = Oif + (v,V)f. The operators grad and divr denote surface
gradient and surface divergence, respectively. The symbol n = n(z,t) = *(nq,n2,n3)
denotes the unit outer normal vector of I'(¢), H denotes the mean curvature in the
direction of n, and Pr = Pr(z,t) denotes an orthogonal projection to the tangent space
of I'(t) at =, which is orthogonal to n. The symbols are defined as D(v) = (*Vv+ Vv)/2,
V = 481,09,03), and 9; = 9/0x;. We call the system (1.1) the incompressible full
Navier-Stokes system on an evolving surface or the incompressible full Navier-Stokes-
Seriven-Koba (NSSK) system on an evolving surface when pg > 0, and we call the
system the incompressible Fuler system on an evolving surface in the case of ug = 0.
Such systems have attracted many researchers over the years. Our results give the
system (1.1) including the continuity of the momentum with the stress determined by
the Boussinesqg-Scriven law (Boussinesq [5], Scriven [16]):

SF(’U, O’) = 2M0PFD(’U)PF — PFO'.
Indeed, we can rewrite the system (1.1) as
pDv = divpSr(v, o).

In this paper, we would like to derive the system (1.1) from a unified energetic variational
approach which had been studied by Rayleigh-Strutt [15] and Onsager [13,14]. Applying
our variational methods depending on the variational spaces, we can derive several dif-
ferent types of systems of incompressible fluid-flow on a prescribed evolving surface (see
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 361

Section 4). For example, we apply our methods to derive the following system:

Diyp=20 on St,
Ppp{at’U + (U, V)U} + gradpo = 2#0deiV1’*(PpD(’U)Pp) on S, (12)
divpv =0 on St.

We call the system (1.2) the tangential incompressible Navier-Stokes system on an evolv-
ing surface or the tangential incompressible NSSK system on an evolving surface when
o > 0. Note that the incompressible Navier-Stokes system on a manifold introduced
by Taylor [19] is different from the system (1.2) with w = 0. On the other hand, (1.2)
with o = 0 agrees with the Euler system on a manifold derived by Arnol'd [2,3] (see
also Ebin and Marsden [7]). See Appendix (I) for the comparison of our systems with
previous models.

Here is our subtle issue. In general, the system (1.1) is an overdetermined system for
its initial value problem if the motion of I'(¢) is given. In fact, in (1.1) there are three
unknowns: tangential velocity (having essentially two unknowns) and the pressure. In
the meantime there are four equations including incompressibility. We remark that the
system (1.2) is not an overdetermined system for its initial value problem if the motion
of T'(t) is given.

1.1. Main results. We shall state the main results of this paper. To derive equations
from the variational principle we need to calculate the variation of the action integral
with respect to the flow maps, as well as the variation of the dissipation energy with
respect to the velocity. Of course we also need the continuity of the density.

Let {T'(t)}o<i<T be a smoothly evolving surface in R3. Assume that I'(t) is a 2-
dimensional closed Riemannian manifold for each t € [0,T).

We say that Q(¢t) C I'(¢) is deformed as transported with or without domain by
the velocity field © = *(v1(x,t), va(x,t),03(z,t)) if there exists a smooth function x =
Hx1(&,t), m2(€, 1), w3(&, 1)) such that for £ € T'(0),

{%(&t):@(x(é,t),t), te(0,7),

zli=0 = &,
and
Qt) = {o ="(z1,22,23) € R® . =x(&,1), £ € o, Qo CT(0)}.

The mapping & — z(&,t) is called a flow map on T'(t), while the mapping t — x(,t) is
called an orbit starting from &.

Let p = p(x,t) be a smooth function defined on Sr. If Q(¢) is flowed by the total
velocity v, then

d

— p(z,t) dH2 z/ {D;p + (divrv)p}(x,t) dH2, (1.3)
dt Jaw

Q(t)
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where Dyp = 9;p + (v, V)p and dH2 denotes the 2-dimensional Hausdorff measure. This
is equivalent to

d
G|ty ait = [ ot o V)~ Hw mphe.t) i
dt Jogw Q)

if Q(¢t) has no boundary. This equality is often called a Leibniz formula.
If we use the Leibniz formula on the surface, we immediately obtain the continuity
equation.

THEOREM 1.1 (Continuity equation). Assume that a smooth function p fulfills

Lk p(x,t) dHZ =0 (1.4)

for t € (0,T) and for all Q(t) C T'(¢) flowed by v. Then p satisfies the continuity equation
D;p + (divrv)p = 0 on Sr. (1.5)

Conversely, if p fulfills the continuity equation (1.5), then (1.4) holds for all Q(t) C T'(t)
flowed by v.

If p is a constant, we have a necessary and sufficient condition for preserving area.

THEOREM 1.2 (Area preserving property). The velocity v fulfills
divrv =0 on S

if and only if
4 1dH2 =0
dt Q(t)

for any Q(t) flowed by v.
There is a chance that there is no incompressible velocity field v for w.

THEOREM 1.3 (Necessary condition for the existence of incompressible fluid-flow). For
a fixed t € [0,T) assume that
divpv = 0 on I'(¢).

Then

H(z,t)n(z,t) - {v(z,t) —w(z,t)} dH2 =0

['(t)
if and only if
H(z,t){n(x,t) - w(z,t)} dH2 = 0. (1.6)

T(t)

In particular, if u = v — w is tangential, i.e. (v —w)-n =0, then (1.6) holds.

REMARK 1.4. This is easy to prove. Since I'(¢) is a closed surface, we use divpv = 0
and integration by parts (Lemma 2.4) to see that

0= / divrv dH2 = divp(v — w) dH2 + / divrw dH?
I'(t)

ING) I(t)

:_/ Hi{n-(v—w)} cmi—/ H(n-w) dH3.
T'(t) I'(t)
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 363

Therefore the restriction (1.6) is a necessary condition for the existence of incompressible
fluid-flow uw on an evolving surface. For example, if w is a constant vector and I'(¢) is
symmetric with respect to some plane orthogonal to w, then such a motion I'(t) satisfies
(1.6).

In order to derive the momentum equation, we now discuss the variation of the flow
map to the action integral. Let z(£,t) be a flow map on I'(t), and let v be the total
velocity determined by the flow map z(&,t) on I'(¢). We would like to allow variation of
T'(t) itself. For this purpose we consider a general flow map z(£,¢) on another evolving
surface and the velocity v determined by the flow map Z, i.e. for £ € I'(0) and 0 < t < T,

For each variation T we define the action integral as

AlF] = /T/ L )5, ) dH2adt.
o JEw 2
Here
L(t) = {z = (a1,22,25) €R® 2 = F(E,1), £ €T(0)}
and p satisfies
Op + (0, V)p + (divpv)p = 0 on Sr.

Here
Sr=|J (T = {t}}.
0<t<T
For —1 < ¢ < 1, let us consider a variation (z°(&,t),S5) of (x(§,t), Sr) with I'*(0) =
I'(0), where

St = U {T(t) x {t}}.
0<t<T
Here I'*(t) is an evolving surface. We say that (z°(,t),S5) is a variation of a smooth
(x(&,t),Sr) if 2°(&,t) is smooth as a function of (¢,&,t) € (—1,1) x I'(0) x [0,T) and
2 (6, 1) oo = 2(E, 1)
We now assume that there are y € [C§°(R? x [0,7))]? and 2 € [C*°(Sr)]® such that
for £ €eT(0) and 0 <t < T,

(&1 =x(61),

e=0
CEE0.0| = veEn. 0,
d

Z(.’L‘(f,t)ﬂf) = y(é, t)‘
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Here z is the variation vector field described by the Eulerian coordinates. Suppose that
p and p° satisfy

{atp + (v, V)p + (divrv)p = 0 on S, (1.7)
pli=o = po
and
{@pg + (v%,V)p® + (divrev®)p® = 0 on SF, (1.8)
P le=0 = po

for some py € C(T'(0)). Moreover, we assume that for £ € I'(0) and 0 < ¢ < T,

pa(xa(£7 t),t)]|c=0 = p(x(&, t)v t)‘

THEOREM 1.5 (Variation of the flow map to the action integral). Let z(,t) be a flow
map on I'(t), and let v be the total velocity of the fluid-flow determined by the flow map
x(&,t). Let (2°(&,t),S5) be a variation of (z(&,t),Sr) with I'“(0) = I'(0). Assume that
p and p° satisfy the systems (1.7) and (1.8) for some py € C(I'(0)). Then

4
de

T
] = — T w(x,t) - 2(x, 2dt.
Ay == [ [ oDt 2o ara

e=0

(i) For every z € [C§°(St))? satisfying divpz = 0 on Sr, assume that

T
—/ / plx,t)Dyv(x,t) - z(x,t) dH2dt = 0.
o Jrw

Then v solves
pDiv + gradpo +oHn =0 on St

with some o € C19(S7).
(ii) For every z € [C5°(Sr)]? satisfying divrz = 0 and 2 - n = 0 on Sy, assume that

T
—/ / p(x, t)Dyv(x,t) - z(z,t) dH2dt = 0.
0o Jre

Then v solves
PrpDyv + gradpo =0 on Sp
with some o € C1%(S7).

In (i) variation is with respect to the total flow map, including the motion of T'(¢).
In (ii) variation is with respect to only the tangential part of the total velocity on T'(¢).
See Lemma 2.7 for the pressure term of the incompressible fluid on an evolving surface.

We now define the dissipation energy F[v] for the velocity field

U= t(al(xvt)v®2(x’t)a63(xat))

at each fixed time t. For fixed ¢, let puo be a positive constant and

ma:—/ ol P, 1) D@, £)) P, 1) dH2.
T(t)
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 365

Here 5 5
1 (o v,
D(v ij — = J .
DO =5 (5o + 52)
See Subsection 2.2 for the notation [ - ];;. We shall study its variation.

THEOREM 1.6 (Variation of dissipation energy). Fix ¢t € (0,7). For every vector field
¢ € [C5°(T(¢))]? the direction derivation of E at v is of the form

d% 6:OE[U +ep] = /F(t) 2podive (Pr(z, t) D(v(z, t)) Pr(z,t)) - o(x) dHi
(i) If
d
| Plu+eel =0

for all ¢ € [C5°(T(t))]? satisfying divpe = 0 on I'(t), then v fulfills
—2uodivp (PrD(v) Pr) + gradpo + oHn = 0 on T'(t)

for some o € CH(T'(t)).

(ii) If

Elv+ep] =0
for all p € C§°(T'(t)) satisfying divran;OO and ¢ -n =0 on I'(¢), then v fulfills

—2p0 Prdivp (PrD(v) Pr) + gradpo = 0 on I'(t)

for some o € C1(I(t)).

Applying Theorems 1.1-1.6, we obtain several incompressible fluid systems on an
evolving surface. See Section 4 for details.

There are three subtle issues (difficulties), sometimes confusing, in the derivation of
incompressible fluid systems on an evolving surface.

e The first one is to characterize the incompressibility of the fluid on the prescribed
evolving surface which follows from a continuity equation for the evolving surface.

e The second one is to calculate the variation of the action integral. This is a domain
variation and there are two ways of variation: one is variation with respect to all directions
while the other is variation only in the tangential direction. Since the surface is moving,
one needs to use a Riemannian metric expression for all the computations.

e The third difficulty is to derive a viscous term which is obtained as the variation of
the dissipation energy with respect to the total velocity. Here again we use Riemannian
metric interpretation to proceed with the calculation. The resulting equation follows
from the identity that the variation of the action integral with respect to the flow map
agrees with a constant multiple of velocity variation of the dissipation energy. Actually,
it is easy to say that the real calculation is quite involved.

We next explain some mathematical derivations of the incompressible fluid system on
a manifold and surface. Arnol’d [2,3] applied the Lie group of diffeomorphisms to derive
the Euler system on a manifold. Taylor [19] introduced the incompressible Navier-Stokes
system on a manifold from their physical sense (see also Taylor’s book [20]). Mitsumatsu
and Yano [12] used their energetic approach to derive the incompressible Navier-Stokes
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system on a manifold. Arnaudon and Cruzeiro [1] applied the stochastic variational
approach to derive the incompressible Navier-Stokes system on a manifold. We remark
that the system derived by [12] agrees with one introduced by [19].

Let us state some related papers and books to fluid-flow on an evolving surface. Dz-
iuk and Elliott [6] derived several fluid systems on an evolving surface by applying the
Leibniz formula on an evolving surface and their diffusive flux. Bothe and Priiss [4]
used the Boussinesg-Scriven law to make a model for the two-phase fluid flow with sur-
face tension and surface viscosity. Koba [11] derived compressible fluid systems on an
evolving surface by his energetic variational approach and thermodynamical theory and
gave a mathematical justification of the Boussinesq-Scriven law. For Boussinesg-Scriven
surface fluid, we refer the reader to Slattery’s book [18]. Remark that the systems in [6]
are different from our systems.

Finally we state the outline of the paper. In Section 2 we introduce evolving surfaces
and function spaces, and study calculus on an evolving surface. In Section 3 we study
incompressible fluid-flow on an evolving surface. We first consider the continuity equation
for fluid on the evolving surface. Secondly we investigate the existence for incompressible
fluid-flow on the evolving surface. Thirdly we use our action integral to derive the Euler
system on the evolving surface. Finally, we study the dissipation energy and viscous
terms of the system (1.1). In Section 4 we present various incompressible fluid systems
on an evolving surface. In Appendix (I) we compare our systems with previous models
such as the Euler system on a manifold and the Navier-Stokes system on a manifold. In
Appendix (IT) we discuss the energy law and work of the fluid in a moving domain.

2. Preliminaries. In this section, we first introduce evolving surfaces and functions
on an evolving surface. Secondly, we state convention and notation used in this paper.
Especially, we define notation such as surface gradient gradp, surface divergence divr,
mean curvature H, and an orthogonal projection to a tangent space Pr. Thirdly, we study
integration by parts on a surface, and we give an important tool to derive a pressure of
the incompressible fluid on a surface. Fourthly, we describe flow maps on an evolving
surface and a variation of the flow map. Finally we use Riemannian metrics on a surface
to characterize an orthogonal projection Pr and differential operators 9/".

2.1. Ewvolving surfaces and function spaces. We first introduce 2-dimensional C?-sur-
faces in R? and evolving 2-dimensional C?!'-surfaces in R3.

DEFINITION 2.1 (2-dimensional C2-surfaces in R3). A set Iy in R? is called a C*-
surface in R? if for each point ¢ € I'g there are r > 0 and ¢ € C?(B,(z0)) such that

Lo N Br(w0) = {x = "(21,22,73) € B.(70); ¢(x) =0}

and that

Vb=t <8_¢ 5_(,25 %) #(0,0,0) on B,(zo)-

8.1‘1 ’ 8])2 ’ 8])3
Here

B,(xg) :={x € R® |z —x0| < r}.
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 367

In this paper we call a 2-dimensional C2-surface in R a 2-dimensional surface in R3.
Note that Iy may not be a closed surface. It may have a geometric boundary dT'y. It
may not be bounded. We also recall a definition of an evolving surface [8].
DEFINITION 2.2 (Evolving 2-dimensional C%!-surfaces in R3). Let T € (0,00]. Set
I =10,T). Suppose that I'(¢) is a set in R3 for each ¢t € I. A family {I'(¢)},e; is called
an evolving 2-dimensional C%*!-surface in R? on I if the following two properties hold:
(i) T(0) is a 2-dimensional surface in R3.
(ii) For each tg € (0,T) and zg € I'(t9) there are ry,75 > 0 and ¢ €
C?1(B,,(z0) x B,,(to)) such that
L(to) N By, (z0) = {z = “(21,22,73) € By, (20); ¥(z,t0) = 0}
and that

(0 DY
Vo= (a— o %) #(0,0,0) on By, (o) x By (to):

Here
By, (z0) == {z € R?; |z —xo| <71},
By, (to) :={t € Ry; [t —to] <12},

C*Y(By, (w0) % By, (to)) = {f € C(Br, (x0) x Br,(to));
8if, 8j6if, &gf, 8,»8tf, 8j8i8tf (S C(Bn (l‘o) X BT2 (to)) for each ’i,j = 1, 2, 3}
Throughout this paper we write I'(¢) instead of {I'(¢)}+c;. As in Definition 2.1, we often
suppress the word C%1.

Next we define functions on an evolving surface. Let I'g be a 2-dimensional surface
in R3, and let I'(t) be an evolving 2-dimensional C?!-surface in R? on [0,T) for some

)

T € (0,00]. Set
St =Srrp) = {(x,t) =(x1, 20, 23,t) €RY; (2,1) € U {T'(¢t) x {t}}} .
0<t<T
For each m € NU {0, 00} we define
C™(g) := {f :To = R; g|r, = f for some g € C"™(R?)},
Ci*(Ty) :=={f € C™(I'y); suppf does not intersect the geometric boundary of I'y},
C(St) :={f:S7 = R; g|s, = f for some g € C(R® x R)},
Co(Sr) :={f € C(Sr); suppf is included in Sy and
suppf(-,t) does not intersect the geometric boundary of T'(¢)}.

Moreover, we write
CH0(Sy) == {f € C(Sr); 0;f € C(Sr) for each i = 1,2,3},
C?Y(Syr) == {f € CVO(Sy); 0;0if,0:f,0;0:f,;0;0:f € C(Sr) for each i,j = 1,2,3},
CeM(Sr) == C¥Y(Sr) N Cy(St), C=(S7) := C=(R*) N C(Sr),
and C§°(Sr) := C(R*) N Cy(Sr).
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368 HAJIME KOBA, CHUN LIU, anp YOSHIKAZU GIGA

2.2. Convention and notation. Let us explain some conventions used in this paper.
We use italic characters 4,7, k,¢,i'j" as 1,2,3, and use Greek characters a, 8,¢,n, o, 3’
as 1,2. Moreover, we use the followmg Einstein summation convention:

azjb - E a”Lj ) a2] ijl = § az] ijly Qij zacaﬁ - E E A zacaﬁ

3,5=1 =1 a=1

Let X be a set. The symbol M,x,(X) denotes the set of all p x ¢ matrices whose
component belongs to X'; that is, M € M, ,(X) if and only if

(Ml [M]iz -+ [M]y,
I [M:]zl [Mz}w [M:bq ’
[M]pl [M]p2 [M]pq

and [M];; e X i=1,2,...,p, 1 =1,2,...,q), where [M];; denotes the (i,j)-th component
of the matrix M.

Let I'(¢) be an evolving 2-dimensional C?!-surface in R? on [0, 7)) for some T' € (0, ).
By n = n(zo,to) = “(n1,n2,n3) we mean the unit outer normal vector of T'(ty) at
xo € I'(to) for each fixed tg € [0,T). In this paper, we use the following notation:

3
8{“” = (613 — ninj)(?j Z nzn] s

vtan - t(a an 8tan tan)7
Atan = (afan) + (aﬁan) (8tan) .

Here §;; is Kronecker’s delta. Moreover, for f = !(fi, fo, f3) € [C1O(Sr)]® and ¢ €
C*0(Sr),

divpf = 01" f1 + 85" fa + 05" fs,
gradpg :== V'*"yg,

Arg = Al%"g.
Let H and Pr be the mean curvature and the orthogonal projection to a tangent space
defined by
H = H(x,t) := —divpn, (2.1)
[Prlij = [Pr(e,t)]ij := 6ij —ning (i,5 = 1,2,3), (2.2)

respectively. Note that Pr = I —n ® n and that n + n3 +n3 = 1.

2.3. Calculus on surfaces. Let I'g be a 2-dimensional surface in R?, and let n = n(z) =
t(n1,m2,n3) be its unit outer normal vector at * € I'y. Let H and Pr be the mean
curvature and orthogonal projection to tangent defined by (2.1) and (2.2), respectively.

Let us first study the relation between H and Pr.

LEMMA 2.3. Assume that o € C*(I'g). Then
divp (o Pr) = gradro + o Hn. (2.3)
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 369

Proof of Lemma 2.3. Fix j € {1,2,3}. A direct calculation gives
0;"" (o[Prlij) =(9;""0)(8ij — niny) + o(0;"" [Prli;)
:8§a"0 + o(@f“” [PF]”) (24)
It is easy to check that
9" [Prlij =(8ir. — nini) Ok (855 — niny)
= — (5ik — nmk)(akni)nj — (5#@ — ’I’Link)ni(aknj)
= — (6zk - nlnk)(aknl)nj (25)
By definition, we observe that
I
Combining (2.4)-(2.6), we obtain
af“”(a[Pp]ij) = 6;(1”0' + O'HTLj.

Therefore we see (2.3). O
Next we state one useful lemma to deal with integration by parts on a surface.

LEMMA 2.4 (Integration by parts). Let f = (f1, fa, f3) € [C*(I'o)]®. Then
—/ u-de;:/ divrf dH2 + | Hn- f dH2.
ol To To
In particular,

/ divrfdﬁiz—/ v-f dH!: when f-n =0,
T'o

T’y

/ divpf dH2 = — | Hn- f dH2 when f € [C4(To)]>. (2.7)
Fo 1—‘0

Here v is the inward pointing unit co-normal of dT'y; that is, |v| = 1, where v is normal
to dI'g and tangent to I'g.

The proof of Lemma 2.4 is found for example in Simon’s book [17].

LEMMA 2.5. Assume that Ty is a closed manifold. Then for every f = '(fi, f2, f3) €
[C(To)P?,

0:/ divprf dH2 + | Hn- f dH2.
Ty Lo

Proof of Lemma 2.5. Fix zqg € T'g. We choose r > 0 sufficiently small such that
Iy \ Br(xg) C T'y. Using Lemma 2.4, we have

—/ u-de;:/ divrde§+/ Hn - f dH2.
A(To\Br(x0)) To\Br(zo) To\Br(zo)

Since |v| =1 and f € [C(T)]3, we let r — +0 to get the desired result. O
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LEMMA 2.6 (Integration by parts). For each f € C1(Iy), g € C}(I'g), and m € {1,2,3},
[ @ngare = [ s@g e - [ Hunfgane. (28)
To To Lo

Proof of Lemma 2.6. We give the proof only for the case when m = 1 since other

cases are similar. Set h = t(hy, ha, h3) :=(fg,0,0). It is easy to check that
divph =01 h,
— (91" Pg + (")

By (2.7), we observe that

/ (901" f + fOi""g) dH3 = / divph dH?
Ty T

0

=— | Hn-hdH?
To

=— Hny fg dH2.
o
Therefore the lemma, follows. ]
The following lemma is important to derive the pressure of the incompressible fluid
on an evolving surface.

LEMMA 2.7. Set
E = {f e [L2T)]?; [ f-pdH2 =0 for all p € [C5(Ty)]® with divpe = 0} .
T'o
Then f € E if and only if there is p € W12(I'g) such that

f=V""p +pHn.
Moreover, if f is continuous, then p € C1(I'y).

Proof of Lemma 2.7. We first show the necessary condition <). Fix ¢ € [C5°(T))]?
with divpe = 0. From (2.7), we see that

/ dive(pg) M2 = — | Hn - (po) dH2.
Ty o

Since
divr(pp) = (V"p) - ¢ + pdivre,
we have
[ &y drz == [t wp) ari.
To o
Next we prove the sufficient condition =). We assume that

fran - ©tan dH2 =0 for all ¢ € [C§°(To)]® with divr@sen = 0.
To
Here fiqn := Prf and ¢ian := Pre. Note that f = fian + (f - n)n. We easily check that

for every circle C in Ty,
/ fran dH2 = 0.
c
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From Weyl’s Theorem, there is a p € W12(T'g) such that fia, = V®p. Therefore, we

have

f~<dei:/ vt‘mp«od%%/ (f - n)n- o dH2.

T'o To Ty
On the other hand,

/ (V) dH2 = [ dive(pg) dH2
To

To

=— Hn - (py) d’Hi.
To

Thus, we check that that

0= [ f-odH:
To

__ Hn-(pnp)d’)'-[i—i—/(f'n)n'@dHi-

Ty To

This implies that f -n = pH. Therefore, we conclude that f = V"p + pHn. Moreover,

we see that p € C(Tg) when f is continuous since Ty is a smooth surface.

O

2.4. Flow maps on evolving surfaces. In this section we consider flow maps on evolv-
ing surfaces. In what follows we only consider closed surfaces for simplicity. We shall
introduce an evolving surface I'(¢) and a flow map on I'(t). Then we study surface area

by applying such flow maps.

DEFINITION 2.8 (Evolving surface). Let {I'(t) }o<;<1 be a given evolving 2-dimensional
C?*'-surface in R? on [0,7) for some T € (0,00]. We simply call I'(t) a 2-dimensional
evolving surface in R if for each fixed t € [0,T), T'(¢) is a Riemannian 2-dimensional

manifold.

DEFINITION 2.9 (Flow map on an evolving surface). Let I'(¢) be a given evolving 2-
dimensional surface in R? on [0,T) for some T € (0,00]. Let x € [C>(R*)]?. We call =

a flow map on I'(t) if the three properties hold:
(i) for £ € Ty :=T(0)

2(£,0) = &,
(ii) for E eTpand 0 <t < T
z(&,t) € T(D),
(iii) for 0 <t < T
z(-,t) : To — I'(¢) is bijective.

Let I'(t) be a given evolving 2-dimensional surface in R? on [0, T) for some T' € (0, .
Let x be a flow map on I'(¢). Suppose that there is a smooth function v(-,-) such that

dxr

o = (&) = 0(a(&1),1) = v ="(01, 3, v5).

We call the vector-valued function v a velocity determined by the flow map x. We assume

that v is the total velocity.
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372 HAJIME KOBA, CHUN LIU, anp YOSHIKAZU GIGA

Since 'y = I'(0) is a 2-dimensional closed Riemannian manifold, there is a partition of
unity, i.e. there are I',,, C ['g, ®,,, € C*(R?), U,, C R2, ¥,,, € C°(R3) (m =1,2,--- ,N)
such that

N
|J T =T,
m=1

Ly =20, (Un),
suppV¥,, C I',,,
[Pl =1,

N
Z U, =1onIy.
m=1

Fix £ € T'g. Assume that £ € Ty, for some m € {1,2,---,N}. Since we can write
¢ = ®,,(X) for some X = (X1, X5) € Uy, CR?, we set

T = F(X, ) = 2(®(X), £)(= 2(£,1)).
Then

Now we write
D=9, if£ely,.

Then for each £ € Ty,

Zli=o = S(X)(= &)
We also call Z(X,t) a flow map on I'(¢). For the map 7 = Z(X,t), we define

{%_gw&w_wﬂXﬁJ%

0Ty oTy

0X1 0Xo

I P -~ 652 852
F=F(X,t)=Vxi= |22 22
0T3 OT3

0X1 0X2

Next we study the surface area integral by applying flow maps x(&,t) on I'(¢). For
each f(-,-) € C(R?® x R), we see that

/F @ M2 = /U B(X)f(F(X, 1), ) /IR FE) dX,

Here, the right-hand side is a shorthand notation of the form
/ U(X)f(@(X,1),t)\/det({FF) dX
U
N
=2 / Wi (@ (X)) f(Z(X, 1), 1)/ det(*FF) dX.
m=1 Um

By the bijective of the flow map z(-,t), one can write

D(t) = {o € B @ = a(6,1), € € o).
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Using the change of variables and the usual surface area integral, we observe that for

0<t<T,
fant) dH2 = [ F(a(&, ), 1) (det(Vex)) dH2
'(¢) To
N
3 / W (€) f(2(€, ), ) (det(Vw)) dH2
N
=3 /U U (B (X)) F(2( D (X), 1), 1) (det(Vex))y/det ((V x ©,py V x Oy ) dX

N
-3 /U U (B (X)) F(F(X, 1), 1) /et ((F F) dX.

2.5. Riemannian metrics on evolving surfaces. Let us prepare key tools to analyze
fluid-flow on an evolving surface. Let I'(¢) be a given evolving surface. Let 2 = (&, t) or
Z =Z(X,t) be a flow map on I'(t). Assume that I'g := I'(0) satisfies the same conditions
in Subsection 2.4. See Subsection 2.4 for details. For the flow map z = Z(X, t),

(0% (0% 0%, O0Fs
Io = \0Xa ) 10y \0X. 09X, 09X, )

Write
L _ 851 852 _Z 852 851
Jol =90 I 9K, 0K 40X 0X5
Set
9*7 = (ga8) 7",
g% = g*gg,
, _d ov
Jo ‘= dtga = 0X.
Note that
9" =g% ¢,
o = gaﬁgﬁ
and

gaﬁ = Ja “ 98+ ga 'gﬂa
ov ox; Ov Z ox; Ov
i

9o = 59X, ~ 09X, 01, X, 07,
, - 8.%1 8Uj 6fj - 851 61)]‘ 85]
Jo 98 = OX, 0% 0X5 Zj: 90X, 0%; 0X5’

, - 852 8vj (%i 85] - 8@ B 85]
o8 = X, (a@ a@> ox, "~ OX. P@ligx, -

(2
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Using the above symbols we obtain
LEMMA 2.10. The projection in (2.2) can be expressed in the Lagrange coordinate X as

L OF O .
[Prlij = 09X, 0X57 -

Proof of Lemma 2.10. Using rotation, we may assume that at x = a such that

oF oF oF.
a)ré a;?l afé (1 0 0
9z, 9z, 9z | \0 1 0/

0Xo 0Xo 0Xo

Therefore we see that

o 1 00
oz; 0x; |
<8X 8ngﬁ> =10 1 0)|=I-n®n.
a B i,j=1,2,3 00 0

LEMMA 2.11. For each fixed Qg CT'gand 0 <t < T,
) = {z e R* w=x(&,1), €€,
where x(,t) is a flow map on T'(¢). Then the following two assertions hold:
(1) For f = t(flaf2af3) € [Cl(R3 X R)]3’

divr f(x,t) dHi:/Umo(@(X))\i(X)g“-aa)f Vdet((FF) dX.  (2.9)

o)
(ii) For f € C'(R3® x R),
/ f(x, t)divro(z,t) dH2
0
= /U Lo, (®(X))U(X)f(Z(X,1),1) <%\/det(tFF)) dX. (2.10)

Here
17 5 € QOu
Lo, (g) = 3
0, f eR \Qo
Proof of Lemma 2.11. We first show (i). Fix Qy C 'y and 0 < t < T. By definition,
we check that

Qo

/ divr f(z,t) dH2 = / divp f(z(&,t),t)(det Vex) dHZ
Q(t)
= [ toy(©)dive fla(e, 0, 0)(det Vo) dn
To

= /U Lo, (®(X))U(X)divp f(Z(X, 1), t)\/det(tFF) dX.
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A direct calculation shows that

g~ of =g’ of =g'%g of +9*g o5
X, 5 ox, 5 ox, 70X,
of of af
_ (11 21,
—(g 9 ax+gg aX)+<g 9o
_ 11 0T, 8fl + 12 011 8fl + 21 0T, afl 22 0T, 8fl
ox,0x, Y ax,0x, Y ax,0x, Y ox,0x,
0%y OF 0%y 0 R )
11 2 2 12 2 21 22
* <9 X, 0x, Y ax,ox, Y ax, 0%, Y 09X, 0X,
075 OF 075 OF 0Ty 0fs | 0% Ofs
11 3 3 12 3 3 21 3 2
+ <g X, 0x: Y ax,ox: Y ax, 0%, Y 09X, 0X,
=1+ I+ Is.

It is easy to check that

0x,0x, 7 ax,0x, Y ax, 0%, Y 09X, 0X, ) 0%
0z, 0% 0z, 0% 0z, 0% 97, 07y '\ 0f1
11 1 2 12 1 2 21 1 2 29 1 2 1
* (g X, ox, 9 ox 0%, 9 ox 0%, 90X, axg) 07
+ ( 11 651 853 + 912 89?1 65,"3 g21 8901 61[13 g22 &vl 8903 ) 6f1
6X1 8X1 8X1 6X2 8X1 8X2 8X2 8X2 3:1:3

- 851 8%1 af 0 851 8%2 af 0 8%1 8:103 aﬂ 8 tan

- <8Xa 0X;7 07 | 0X.0X;" Ons | 0X.0X5Y fr=a"" fr.

Similarly, we see that

I, = (gll 0z1 011 412 0ry 01y el 071 011 s 074 83:1) ofr

= 05" fa,
Iy = 95" f.

Therefore we obtain (2.9).
Next we prove (ii). A direct calculation shows that

0
—+/det tFF FF
i Vel 2,W 3 at )

v itmRy e [yt OCEE)
2 det(tFF)dt( FR)-t (( FE) ot )

OF oF
£ ) t -1 [t (98 t 9L
det(tF'F) tr((FF) <<8t>F+F8t>>'
It is easy to check that

oF OF 0F  ov  0F o
t 71' t = tp 2o — af3 X .
tr<<FF) <<8t)F+F8t>) trg (axﬁ ox. " ax. axﬁ)
811 + 5. 31)
ox, 7 ox,

Therefore the lemma follows. O

o .

=g (= 2divro).
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3. On incompressible fluid-flow on evolving surfaces. In this section we study
incompressible fluid-flow on an evolving surface. Let I'(t) be an evolving surface on
[0,T) for some T € (0,00]. Assume that I'g := I'(0) satisfies the same conditions as in
Subsection 2.4. Let z = z(&,t) or T = Z(X,t) be a flow map on I'(¢).

3.1. Continuity equation and local surface area preserving. Now we study the conti-
nuity equation of fluids on the evolving surface I'(t). A proof of Theorem 1.1 is found in
[6, Appendix|. We give here a complete proof for our later purpose and completeness.

LEMMA 3.1. For each fixed Qg CTgand 0 <t < T,
Qt) :={z e R z=x(¢,t), £ € Q).
Then for each Q¢ CT'gand 0 <t < T,

d
— p(x,t) dH? = {Dyp(z,t) + (divro(z, t))plz, t)} dH2. (3.1)
dt Jo ()

Proof of Lemma 3.1. Fix g C I'g and 0 < ¢t < T. By definition, we observe that

/ Pt e = | el ). et Vea) an

Qo

- / Lo (€)p((&, 1), 1) (det Vex) dH2

= /U Lo, (®(X))U(X)p(F(X, 1), )\/det(FF) dX.

Here
L 17 5 S QOu
1o, (§) = {07 €€ R3\ Q.
Since
G [ oty a2 = [ 10,@00)T0X) (§0(@0X0.0 ) VIRTFF) ax

~ " o ;
+ /U Loy (B(X)T(X)p(F(X, 1), 1) <a\/det( FF)) dx,

it follows from Lemma 2.11 to derive (3.1). O
Proof of Theorem 1.1. Fix t € (0,T) and Q(t) C I'(t). Since the flow map z(&, ) is
bijective, there is g C I'g such that

Qt) ={z € R3 x ==a(&t), €€ Q).

From Lemma 3.1, we observe that

d
G| oty ant = [ (Diptat) + (iveota, ol 0} dH.
dt Joew Q)

Since €(t) can be taken arbitrary, this implies that
Dyp + (divpv)p =0 on Sp.

Therefore we see the continuity equation of the fluid on I'(¢). O
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Proof of Theorem 1.2. Assume that divpv = 0. Fix Q(¢) C I'(¢). By an argument
similar to that in the proof of Lemma 3.1, we check that

ﬁ:/ 1dH§:i/ divro(z,t) dH2 =0
dt Jo Q(t)

Therefore Theorem 1.2 is proved. O
3.2. Necessary condition for the existence of an incompressible fluid-flow. This is
stated in Theorem 1.3 whose proof is given in Remark 1.4 and is justified in Subsec-
tions 2.2 and 2.3.
3.3. Action integral. Let us recall our action integral. Let I'*(¢) be a variation of I'(t)
with I'°(0) = I'g. Let (2°(&,t),S5) be a variation of (z,Sr), and let v® be the velocity

determined by z%; that is,
BE(E,1) = v (25 (&, 1), 1),
x%(&,0) = ¢&.

Suppose there are y € [C®(R3? x R)]? and z € [C*°(Sr)]® such that for £ € Ty and

0<t<T,
=(§:t)]  =w(6t),
e=0
va(l'a(gvt),t) = ’U(.’ﬂ(g,t),t),
e=0
d

AR GO0
e=0
2(2(&,1), 1) = y(&, 1)

For such a flow map 2 = 2¢(,t) of the flow map, we define A[z¢] by

/ / —p x, )¢ (z,t)]? dH2dt.
E(t) 2

Here
[(t) = {z € R%; z =a°(&,1), £ € Do}
and p°© satisfies

0:p° + (v°, V)p® + (divr-v®)p® = 0 on S7,
plt=0 = po

for some py € C(I'(0)). Suppose that p satisfies

{atp + (v, V)p + (divrv)p = 0 on Sr,

P|t:o = po-
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Moreover, we assume that for £ € I'(0) and 0 <t < T,
pe(xs(§7 t)a t)|5:0 = P(CU(§> t)u t)
By the same argument as in Subsection 2.4, we write
(X, t) = 2 (P, (X)), 1)

and
ows  0Es
00X 0Xo
e _ 1€ L ~c oI5 0T
Fc=F (X,t) =Vxzt = X 0%
ows  0Fs
00X 0Xo

We also see that for f € C(R*),

Flat) dH2 = /U B(X)f (G (X, 1), )y /At ((FLFL) dX.

re(¢)

Here

/\TJ(X) FE°(X,t),t)\/det(tFFL) dX
U
N
::Z/ U, (0, (X)) f(@°(X, 1), t)\/det(tF.F.) dX.
m=1 Um

LEMMA 3.2. The variation of the action integral with respect to the flow map is of the

form .
4 Ap=- / / p(, ) Dyv(a, ) - 2(, ) dH2dL. (3.3)
dS =0 F(t
Proof of Lemma 3.2. We first show that
y(£,0) = 0. (3.4)
Set
y(X, 1) = y((X), ).
Since
Ia(ﬁ,O) —I(ﬁ,O) = f - f = Oa
we see that
d . o
d_E E:O‘T (67 0) =0= y(§70)

Thus, we have (3.4).
Next we show the key lemma to study the variation of our action integral.

LEMMA 3.3. We have

/ / plx, t)|v(z,t)|? dH2dt = / / —po(X)U(X)|T((X,t)|> dXdt, (3.5)

//()2pxtv(xt|2d7{2dt // —po(X)U(X)|Z5(X,1)|? dXdt.  (3.6)
e(t
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Here

Po(X) = po(Z(X,0))\/{det(*FF)}(X,0).

Proof of Lemma 3.3. We only prove (3.5). By the definition, we check that

/ / p(x, t)|v(z,t)|* dH2dt
/ / YO (X)|& (X, 8)|2/det CFF) dXdt.

Set

QX 1) = p(E(X, 1), 1) \/{det (FF)}HX, ).
From Lemma 2.11 and the assumption of p, we observe that
d
%Q(X, t) ={(v,V)p+ 0p+ p(divpv) }\/det P FF) = 0.
Since Q(X,0) = po(Z(X,0))/{det(* FF)}(X,0), we have

Po(X)
det (*FF)

p(T(X,1),1) =

Therefore we obtain (3.5). Similarly, we see (3.6) and that

po(X)

p°(z°(X, 1), 1) = At (EF)

Note that z°(X,0) = z(X,0) = &(X) =& 0
From (3.6), we have

3.6
/ / (z,t) v (z,t)|* dH2dt = / / —po(X

A direct calculation gives

:/OT/UﬁO(X)\T/(X) (d%xt(X t)) LFE(X, 1) dXdt.

_ /0 ! /U Bo(X) (XG0 (X, 1) - Fo(X, ) dXdt.

(X, 1)|* dXdt.

Hence, we have

Next we prove that
T ~
/ / Fo(X) B (X, 1) - (X, 1) dXdt
0 U
T
—= [ [ w0 Dty (w0 ariae
o Jrw
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By integration by parts and (3.4), we see that
T ~
| mEORCORCGD - F(x0) dx
o Ju
T ~
— [ [ BTG - vGOX 0.1 dX
0o Ju

[/ [ 0w (i

dt

d
I(X)G(X, 1) - | —v(@FX TFF) dXdt.
= [ A w0i0rn- (. ) VERTTT) axa
Therefore we see that
d T
Ala] = — / / o, ) Drv(a, ) - 2(, ) dH2dL,
e=0 0 T'(t)

de
which is (3.3). O
Proof of Theorem 1.5. We first show (i). Assume that for each z € [C§°(Sr)]® satis-
fying divpz = 0,

v(F(X, 1), t)) dXdt

T
—/ / p(x,t)Dyv(x,t) - z(z,t) dH2dt = 0.
0o Jre
From Lemma 2.7, there is ¢ € C10(Sr) such that
pl{ve + (v, V)v} + V"o + o Hn = 0.

Next we attack (ii). Assume that for each 2z € [C§°(Sr)]? satisfying divrz = 0, and
z-n=0,

T
—/ / plx,t)Dyv(x,t) - z(x,t) dH2dt = 0.
o Jrw

Since

T T
/ / p(x,t)Dyv(x,t) - 2(x,t) dH2dt = / / Prp(z,t)Dyv(z, t) - 2(x,t) dH2dt,
o Jre o Jro

it follows from Lemma 2.7 to see that there is o € C1%(S7) such that

Prp(z,t){vi + (v, V)v} + V"o = 0.

3.4. Dissipation energy. In this subsection we consider the dissipation energy.

LEMMA 3.4. Fix t € (0,T). Define E[v](t) by
ER)(t) = —/ 10| Pr(@, £) D (w(z, £)) Pr(z, )2 dH2.
(t)

Then for all ¢ = (1, pa, ¢3) € [C(D(2))]?
d

e Elv+ep] =2uo [ divp(Pr(z,t)D(v(z,t))Pr(x,t)) - o dH2.

e=0 To
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We first prepare the following lemma.

LEMMA 3.5 (Projected strain rate). Set
DF(’U) = PFD(U)PF.

Then for each 7,5 = 1,2, 3,
1

[Dr(v))ij = 5mi

We call Dr(v) a projected strain rate.
Proof of Lemma 3.5. By definition, we see that

1
(05" ) + A (0 m). (3.7)

1 81% 8’0(
[PFD( )PF} 2;(5119_”17%) (0_:Ee+8—m> ((5](—71]71@)
1 an 1 an
=3 ;(5% — ning) 05" vy, + 3 Z(éﬂ — njng) Oy
1
=3 Z[Pr]zkamnvk + 2 Z [Pr] 00t vy
k
1 an 1 an
L @)+ Sy - (01),

Therefore we obtain (3.7). O
Proof of Lemma 3.4. Fix ¢ = (1, 92, p3) € [C5°(To)]3. A direct calculation gives

d

d
— E dH2 = — —
de le=0 /Fo (v+ep) dH, de le=

[ 2molPeD+ o) P ane
To

=— QMO/ Tr(PrD(v)PrPrD(o)Pr) dH2. (3.8)
o
Note that

A[Pr]ik[D(v +e@)]i;[Pr]je[D(v + e0) ke

ing [Oitep) | O(v; +ep;)) [ O(vk +epr) | O(ve + epy)
= [Prlix < ox; + 0x; [Prje Oxy + oz, '

Now we prove that

/F Tr(Dr(v) Dr(p)) dH2 = — | diveDr(v) - o dH2. (3.9)

To
Since

71_iat‘anv + ﬂ_‘aﬁanv ({)ta"go + T 8tan )
7 ]
Z(Wlatan )(ﬂ_zatan )_1_2(7_‘_]8tan )(ﬂ_latan )

we have

/F Te(Dy (0) Dr () dH2

—_ / (w05 0) (05" p) dHE — / (m;0{0) (m; 0" ) dH.
Fo FD
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Applying Lemma 2.6, we check that

/ (m 05" 0) (m; 05" p) dH,
To

__ / (8t (mtem)m) ko dH2 — [ Hng(mdtoo)r, dH?
To

To

=— {8;“”((71'2»8;“”11)7@)}@ d?-[i.
o

Here we used the fact that nj(?;‘m = 0. By definition, we see that
[Prlirmiv =(8ir — ning)(Sie — ning)ve

:(5kl — nknz)w = TV (310)

and that
[Pr]ixd; " v =(8ix — nink)(6ie — nimg)Opv

:(6M — nk’ng)aﬂj

=0y, (3.11)
Using (3.10) and (3.11), we observe that

{0577 (mi05"v)mi) o ={O5"™ [(Sir, — manx) 05 vr (850 — mame)] b

={05" (6 — ) 05 vy b

{01 (medl0) o

Thus, we have

/1“ (w05 0) (04" ) dHE = — g O™ (04 )y dH.

Similarly, we see that

/F (m;000) (w30 ) A2
= — [ (@ (mj0imoym) Yo dHE — / Hony (300 0)migp dH2
F() FO

= — | {3 ((m;07* v)mi) }p dH
To

and that
A5 (i (9i " v)mi)p =i {3 (850 — nyme) Bk — man) (Owve) (s — mimar )]}

=i {05 (850 — mjmg) (s — namir)Ove] }
i (8197 (;01570)).
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Consequently, we obtain
[ mdtmomoiene) i = - | ooty dr.
T o

which is (3.9). Combining (3.8), (3.9), and Lemma 3.5, we finish the proof of the lemma.
(]
Proof of Theorem 1.6. We first show (i). Fix t € (0,7). From Lemma 3.4 and the

assumption, we see that for all ¢ = (1, 2, ¢3) € [C5°(L(t))]? satisfying divre = 0,
d

de|._,
From Lemma 2.7, there is ¢ € C10(T'(¢)) such that
—2u0diVF(PpD(’U)PF) + viang +ocHn = 0.

Elv+ep|(t) = Zuo/r divr(Pr(z,t)D(v(x,t)) Pr(2,t)) - o(x) dH2 = 0.

Next we prove (ii). Fix ¢ € (0,T). From Lemma 3.4 and the assumption, we check
that for all ¢ = (1, 2, ¢3) € [C5°(T(t))]? satisfying divre = 0 and ¢ - n = 0,
d

de
From Lemma 2.7, there is ¢ € C10(Sr) such that
—2uo Prdivr (PrD(v) Pr) + V"o = 0.

Elv+eyp| = 2,u0/ Prdivy(Pr(z,t)D(v(z, ) Pr(z,t)) - p(z) dH2 = 0.

e=0 I'y

O
Finally, we state the reason why Er[v] is a candidate of an energy of fluid-flow systems
on an evolving surface.

LEMMA 3.6 (Surface energy density). Set

L . 1 L o
er(v) = 10asdeng™* 9™ = 7 D daslcng™ 9"
a,B,¢,n
Then
er(v) = |Dr(v)|* = [PrD(v) Pr|*.
Proof. 1t is easy to check that
63% ox; 8:% (91‘[
— D Rt/ BpReTepy: L) .
erv) = Iy 507" G Dkt
Since P
€Z; Tji o
[Prlij = [[ —n@nly; = 55 8X;g ’

by Lemma 2.10, we see that
er(v) =D [D)]iell =1 @ nliull —n @ nlye
=Tr(D(v)PrD(v)Pr)
:TI‘(PFD(’U)PFPFD(U)PF)
=|PrD(v)Pr|*.

Therefore the lemma follows. O
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4. Incompressible fluid systems on an evolving surface. Let us derive the
incompressible fluid flow system (1.1). Let I'(t) be a given evolving surface and = z (&, t)
a flow map on I'(t). From Theorems 1.1 and 1.2, we see the following incompressible
condition:

divrv = 0 on S7.
Assume that D;p = 0 on Sy. From Theorems 1.5 and 1.6, we apply our energetic
variational approach (Least Action Principle and Minimum Dissipation Principle) to
obtain
pDv + gradpo + o Hn = 2podive(PrD(v)Pr) on St.
Therefore we have the system (1.1).

Applying Theorems 1.1-1.6 and the above argument, we can derive several incom-
pressible fluid systems on a given evolving surface.

For example, under area conservation we get Dyp = 0 from Theorems 1.1 and 1.2.
If it is a critical point of the action integral Alz] = fOT Jre $p|v|? dHZdt among all
possible perturbations including I'(¢), one get from Theorem 1.5 an overdetermined sys-
tem:

Incompressible Euler system (I)

Dtp =0 on ST7
pDiv +gradro +0Hn =0 on Sy, (4.1)
divpy =0 on St.

In this case the system (4.1) satisfies the energy law

d 15 9

— —plv|* dH; = 0.

dt Jrg 2

On the other hand, with the prescribed variation of the motion z is tangent to I'(¢).
Then Theorem 1.5 (ii) gives the incompressible Euler system (IT) as follows:

Incompressible Euler system (II)

Dip=0 on Sr,
Prp{dwv + (v, V)v} + gradpo =0 on Sr, (4.2)
divpy =0 on St.

The equation (4.2) avoids the problem of being overdetermined since there is a function
g = g(z,t) such that pD; + gradpo + gn = 0. Note that g(z,t) is not prescribed.

In this case when v-n =0 on I'(t), the system still satisfies the energy law
d 1

2 2
dH2 = 0.
o F(t)2plvl @

However, in general, the energy law becomes
d

1
G| gePar= [ wonoH - g ar.
dt Jra) 2 T(t)
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In this case the right-hand side corresponds to the work done by the moving surface to
the fluid.
Now we consider the effect of viscosity. The equation is formally of the form

0A  OF
Sr v’
If both variations are general, not necessarily being in a tangential direction including the

variation of the surface, then we have an overdetermined incompressible NSSK system
(I) as follows:

Incompressible NSSK system (I)

Dip=0 on Sp,
pDsv + gradpo + o Hn = 2uedive (PrD(v)Pr)  on S, (4.3)
divry =0 on St.

If both variations are tangent to I'(¢), then we set the incompressible NSSK system

(In):

Incompressible NSSK system (II)/Tangential incompressible NSSK system

Dip=0 on Sr,
Prp{dwv + (v, V)v} + gradpo = 2uePrdive(PrD(v)Pr) on Sr, (4.4)
divpy =0 on St.

We notice the ambiguity of the formal variations above. In fact, if we choose the variation
of v generally, while the variation of E with respect to u is tangential to I'(¢), then we have
the noncanonical incompressible NSSK system (III) which is again an overdetermined
system:

Noncanonical incompressible NSSK system (III)

Dip=0 on S,
pDyv + gradpa +oHn = 2MOPFdiVF(PFD(u)PF) on S, (45)
divrv =0 on St.

In general, for the system (4.3), we can compute the energy law

d 1
G [ gelel @z = [ qulpeD@) P an?
dt Jre) 2 r(t)

by Lemma 3.4. However, the system will include the work done by the evolving surface,
hence, may not be necessarily dissipate. In (4.4) again we compute the energy law:

d 1
- —p‘U‘Q d?‘[i = —/ 2/,60D]j(1}) : DF(P]:'U) d?‘[i
dt Jr 2 r(t)
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However, for (4.5) the identity becomes more complicated. It is of the form

a1

plv|? dH? :/ (v-n)(cH — g) dH2 —/ 2u0Dr(u) : Dr(Prv) dH2,
dt Jrqe 2 r()

I'(t)
where the first term on the right-hand side corresponds to the work done by the evolving
surface.

5. Appendix (I): Comparison to the Euler and the Navier-Stokes systems
on a manifold. In this section we first compare the incompressible Euler system (II)
on a fixed surface with the Euler system on a manifold derived by Arnol’d [2,3]. Next we
compare the incompressible NSSK system (II) on a fixed surface with the Navier-Stokes
system on a manifold introduced by Taylor [19]. More precisely, we prove that our
incompressible Euler system (4.2) on a fixed surface is the same as the Euler system on a
manifold derived by Arnol’d, and show that our incompressible NSSK system (4.4) on a
fixed surface is different from the Navier-Stokes system on a manifold obtained by Taylor.
The difference between Taylor’s model and our model is the dissipative functional.

Let us introduce the Euler system on a manifold derived by Arnol’d [2,3] and the
Navier-Stokes system on a manifold obtained by Taylor [19]. Arnol’d derived the following
Euler system on a manifold M:

{ut—l—Vuu—i—gradMU: 0, (5.1)

divpu = 0.

See [10, Chapters 8 and 9] for a mathematical derivation of the system (5.1). Taylor [19]
introduced the following Navier-Stokes system on a manifold M:

{ut+Vuu—ABu+Ku+gradMa—0, (5.2)

divMu =0.

Here M is a closed 2-dimensional Riemannian manifold, u is a 1-form on M, Apg is the
Borhner-Laplacian, K is Gaussian curvature, grad,, is a gradient operator on M, and
div a4 is a divergence operator on M.

Let us compare our systems with the previous models. Let T'(t) be a fixed surface,
that is, I'(t) = T'g for ¢ € [0,T"). Suppose that I'y = M. Let v be a total velocity on T'y.
Assume that v-n = 0 and divprv = 0. Now we consider I'g as a manifold and v a 1-form
on F().

Let us compare the incompressible Euler system (4.2) on a fixed surface I'g with the
Euler system (5.1) on a manifold I'g. Using local coordinate representation and v-n = 0,
we easily check that

Prvg + Pr(v,V)v = vy + Vv,

divprv = divpapv = 0.

Therefore we conclude that the Euler system (4.2) on a fixed surface I'g is the same as
system (5.1) on a manifold T'y.
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Next we use an energetic variational approach to derive the system (5.2). For fixed
te(0,T) let

Eyfo](t) = — / ol D1 (wz, ) M2

Here D" (v) := 1/2(V'"y 4 1(V'*"v)). We call D"*"(v) a tangential strain rate, com-
paring it to the definition of the projected strain rate in Lemma 3.5. Note that in our
case we use the projected strain rate Dr(v) = PrD(v)Pr.

By the same argument as in the proof of Theorem 1.6, we can obtain the following
theorem:

THEOREM 5.1 (Variation of dissipation energy). For every vector field ¢ € [C§°(T'(t))]*
satisfying divre = 0 and ¢ - n = 0, the direction derivation of E; at v is of the form

4 Ei[v+ep] = / 2uodivy (Pr(z,t) D™ (v(x, 1)) - o(x) dH2.
de . I(t)

The proof of Theorem 5.1 is left to the reader.

Next we prove that divp(PrD!"(v)) = Arv + Kv. Here Ap = (919™)? + (952)? +
(049m)2. We now use the following principal coordinates at the origin (Gibarg and
Trudinger [9, the Appendix in Chapter 14]):

Oiny = —kK1,
O1ng = —ka,
n="0,0,1),
K1+ ko = H,

Kiko = K.

Using the above principal coordinates, divpv = 0, v-n = 0, and vs = 0 at the origin, we
are able to conclude that

deiVF(PFDtan(U)) = ABU + Kwv.

Here we note that Ap = Arp. Therefore our incompressible NSSK system (4.4) on a
fixed surface I'y is different from system (5.2) on a manifold I'g. Here we notice that, in
general,

deiVF (PFD(U)PF) 7& Prdin(PrDtan (’U))
even if divrv = 0 and v - n = 0. In fact, we see at once that

H(n - 0{*mv)
deiVF(PpD(’U)Pp) - deiVF(Ppon(’U)) = H(n . 650’”1})
H(n - 04"v)

Note also that it is easy to check that

PFD(U)PF = Pthu’n(v)Pp.
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6. Appendix (II): Energy law and work. In general, if the fluid is contained
in a moving domain, the kinetic energy may not be conserved. In other words, the
moving boundary is doing work to the fluid. To illustrate this, we consider the simple
example of an incompressible Euler equation in a prescribed smooth moving domain
Q1 = Upcrer1€(t) x {t}}, where Q(t) is a smooth bounded domain. The Euler equation
is written by

us + (u, Vu+ Vp=0in Qr,
V-u=0in Qr,
u-n=V on dQt) x (0,T),

where u = u(t,z) = *(u1,u2,u3) denotes the velocity of the fluid in Qr, p the pressure
of the fluid, V is a given normal velocity of 9€2(t), and n is the unit outer normal. The
rate of change of the kinetic energy is

d 1 1 1

df Lop dq;:/ Gt{—|u|2} da:+/ Lupv are.

dt Jou 2 Q) 2 a0(t) 2
Meanwhile,

/ 8t{1|u2} dx:/ U - Uy dx:—/ u - {(u, V)u} dx—/ uVp dx.
o) (2 () Q(t) Q(t)

Integrating by parts, we get

d 1 1 1
— ~|ul* dz = —/ (u-n)=|ul* dH? —|—/ V= |u|? dH2 — / (u-n)p dH2.
dt Jou 2 29(t) 2 o) 2 a9(t)

Thus, we conclude that
d 1

2 2
— u|* de = —/ Vp dH;
dt Jagu 2‘ | 2Q(t)

since u - n = V. The right-hand side is the work through pressure caused by the motion
of 99(t). From the observation it is clear that the energy law for our Euler system (IT)
includes the work caused by the motion of I'(¢).
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