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Abstract. This paper considers the equations governing incompressible fluid-flow on

an evolving surface. We employ an energetic variational approach to derive the dynamical

system for the motion of incompressible fluid on such an evolving surface. The focus is

to understand the coupling of an incompressible fluid-flow and the evolution of a moving

surface, involving both the curvature and the motion of the surface.

1. Introduction. There has been a lot of interest in studying motions and dynamics

on moving surfaces with applications such as those in geophysics and biology. We are

concerned with mathematical derivations of the governing equations for the motion of

incompressible fluid on an evolving surface. Although there may be several ways to derive

such equations, here we apply our energetic variational approach for their derivation.

Let us first explain our setting. Let Γ(t) be a surface in R
3 depending on time t ∈ [0, T )

for some T ∈ (0,∞]. Let w = t(w1(x, t), w2(x, t), w3(x, t)) be a given velocity field at

a point x = t(x1, x2, x3) of Γ(t) which determines the velocity of Γ(t). This velocity w

may or may not be tangential to Γ(t), in which cases Γ(t) can change the shape. We
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consider a fluid with zero thickness moving on Γ(t). Let u = t(u1(x, t), u2(x, t), u3(x, t))

be a relative velocity of a fluid particle at x = t(x1, x2, x3). The velocity

v = v(x, t) = t(v1(x, t), v2(x, t), v3(x, t)) := u+ w

is defined as the total velocity of the fluid particle at x. We confine ourselves to the

cases where the relative velocity u is a tangential to Γ(t) so that there is no exchange of

particles between the surface and the environment. We often call w the motion velocity

(speed) of the evolving surface and u a surface flow (velocity) on the evolving surface.

One of the goals in this paper is to derive the following evolution system for viscous

incompressible fluid-flow on an evolving surface:

⎧
⎪⎪⎨
⎪⎪⎩

Dtρ = 0 on ST ,

ρDtv + gradΓσ + σHn = 2μ0divΓ(PΓD(v)PΓ) on ST ,

divΓv = 0 on ST .

(1.1)

Here

ST :=
⋃

0<t<T

{Γ(t)× {t}}.

The symbols ρ = ρ(x, t) and μ0 represent the density and the viscosity coefficient of

the fluid on Γ(t), respectively. The quantity σ = σ(x, t) is a pressure associated with

the incompressibility of the total velocity v, and the notation Dt denotes the material

derivative, i.e., Dtf = ∂tf + (v,∇)f . The operators gradΓ and divΓ denote surface

gradient and surface divergence, respectively. The symbol n = n(x, t) = t(n1, n2, n3)

denotes the unit outer normal vector of Γ(t), H denotes the mean curvature in the

direction of n, and PΓ = PΓ(x, t) denotes an orthogonal projection to the tangent space

of Γ(t) at x, which is orthogonal to n. The symbols are defined as D(v) = (t∇v+∇v)/2,

∇ = t(∂1, ∂2, ∂3), and ∂i = ∂/∂xi. We call the system (1.1) the incompressible full

Navier-Stokes system on an evolving surface or the incompressible full Navier-Stokes-

Scriven-Koba (NSSK) system on an evolving surface when μ0 > 0, and we call the

system the incompressible Euler system on an evolving surface in the case of μ0 = 0.

Such systems have attracted many researchers over the years. Our results give the

system (1.1) including the continuity of the momentum with the stress determined by

the Boussinesq-Scriven law (Boussinesq [5], Scriven [16]):

SΓ(v, σ) = 2μ0PΓD(v)PΓ − PΓσ.

Indeed, we can rewrite the system (1.1) as

ρDtv = divΓSΓ(v, σ).

In this paper, we would like to derive the system (1.1) from a unified energetic variational

approach which had been studied by Rayleigh-Strutt [15] and Onsager [13,14]. Applying

our variational methods depending on the variational spaces, we can derive several dif-

ferent types of systems of incompressible fluid-flow on a prescribed evolving surface (see
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Section 4). For example, we apply our methods to derive the following system:

⎧
⎪⎪⎨
⎪⎪⎩

Dtρ = 0 on ST ,

PΓρ{∂tv + (v,∇)v}+ gradΓσ = 2μ0PΓdivΓ(PΓD(v)PΓ) on ST ,

divΓv = 0 on ST .

(1.2)

We call the system (1.2) the tangential incompressible Navier-Stokes system on an evolv-

ing surface or the tangential incompressible NSSK system on an evolving surface when

μ0 > 0. Note that the incompressible Navier-Stokes system on a manifold introduced

by Taylor [19] is different from the system (1.2) with w ≡ 0. On the other hand, (1.2)

with μ0 = 0 agrees with the Euler system on a manifold derived by Arnol′d [2, 3] (see

also Ebin and Marsden [7]). See Appendix (I) for the comparison of our systems with

previous models.

Here is our subtle issue. In general, the system (1.1) is an overdetermined system for

its initial value problem if the motion of Γ(t) is given. In fact, in (1.1) there are three

unknowns: tangential velocity (having essentially two unknowns) and the pressure. In

the meantime there are four equations including incompressibility. We remark that the

system (1.2) is not an overdetermined system for its initial value problem if the motion

of Γ(t) is given.

1.1. Main results. We shall state the main results of this paper. To derive equations

from the variational principle we need to calculate the variation of the action integral

with respect to the flow maps, as well as the variation of the dissipation energy with

respect to the velocity. Of course we also need the continuity of the density.

Let {Γ(t)}0≤t<T be a smoothly evolving surface in R
3. Assume that Γ(t) is a 2-

dimensional closed Riemannian manifold for each t ∈ [0, T ).

We say that Ω(t) ⊂ Γ(t) is deformed as transported with or without domain by

the velocity field v̂ = t(v̂1(x, t), v̂2(x, t), v̂3(x, t)) if there exists a smooth function x =
t(x1(ξ, t), x2(ξ, t), x3(ξ, t)) such that for ξ ∈ Γ(0),

{
dx
dt
(ξ, t) = v̂(x(ξ, t), t), t ∈ (0, T ),

x|t=0 = ξ,

and

Ω(t) = {x = t(x1, x2, x3) ∈ R
3; x = x(ξ, t), ξ ∈ Ω0, Ω0 ⊂ Γ(0)}.

The mapping ξ �→ x(ξ, t) is called a flow map on Γ(t), while the mapping t �→ x(ξ, t) is

called an orbit starting from ξ.

Let ρ = ρ(x, t) be a smooth function defined on ST . If Ω(t) is flowed by the total

velocity v, then

d

dt

∫

Ω(t)

ρ(x, t) dH2
x =

∫

Ω(t)

{Dtρ+ (divΓv)ρ}(x, t) dH
2
x, (1.3)
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where Dtρ = ∂tρ+ (v,∇)ρ and dH2
x denotes the 2-dimensional Hausdorff measure. This

is equivalent to

d

dt

∫

Ω(t)

ρ(x, t) dH2
x =

∫

Ω(t)

{∂tρ+ (w · n)(n,∇)ρ−H(w · n)ρ}(x, t) dH2
x

if Ω(t) has no boundary. This equality is often called a Leibniz formula.

If we use the Leibniz formula on the surface, we immediately obtain the continuity

equation.

Theorem 1.1 (Continuity equation). Assume that a smooth function ρ fulfills

d

dt

∫

Ω(t)

ρ(x, t) dH2
x = 0 (1.4)

for t ∈ (0, T ) and for all Ω(t) ⊂ Γ(t) flowed by v. Then ρ satisfies the continuity equation

Dtρ+ (divΓv)ρ = 0 on ST . (1.5)

Conversely, if ρ fulfills the continuity equation (1.5), then (1.4) holds for all Ω(t) ⊂ Γ(t)

flowed by v.

If ρ is a constant, we have a necessary and sufficient condition for preserving area.

Theorem 1.2 (Area preserving property). The velocity v fulfills

divΓv = 0 on ST

if and only if
d

dt

∫

Ω(t)

1 dH2
x = 0

for any Ω(t) flowed by v.

There is a chance that there is no incompressible velocity field v for w.

Theorem 1.3 (Necessary condition for the existence of incompressible fluid-flow). For

a fixed t ∈ [0, T ) assume that

divΓv = 0 on Γ(t).

Then ∫

Γ(t)

H(x, t)n(x, t) · {v(x, t)− w(x, t)} dH2
x = 0

if and only if ∫

Γ(t)

H(x, t){n(x, t) · w(x, t)} dH2
x = 0. (1.6)

In particular, if u = v − w is tangential, i.e. (v − w) · n = 0, then (1.6) holds.

Remark 1.4. This is easy to prove. Since Γ(t) is a closed surface, we use divΓv = 0

and integration by parts (Lemma 2.4) to see that

0 =

∫

Γ(t)

divΓv dH2
x =

∫

Γ(t)

divΓ(v − w) dH2
x +

∫

Γ(t)

divΓw dH2
x

=−

∫

Γ(t)

H{n · (v − w)} dH2
x −

∫

Γ(t)

H(n · w) dH2
x.
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Therefore the restriction (1.6) is a necessary condition for the existence of incompressible

fluid-flow u on an evolving surface. For example, if w is a constant vector and Γ(t) is

symmetric with respect to some plane orthogonal to w, then such a motion Γ(t) satisfies

(1.6).

In order to derive the momentum equation, we now discuss the variation of the flow

map to the action integral. Let x(ξ, t) be a flow map on Γ(t), and let v be the total

velocity determined by the flow map x(ξ, t) on Γ(t). We would like to allow variation of

Γ(t) itself. For this purpose we consider a general flow map x̂(ξ, t) on another evolving

surface and the velocity v̂ determined by the flow map x̂, i.e. for ξ ∈ Γ(0) and 0 < t < T ,
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̂ = t(v̂1(x, t), v̂2(x, t), v̂3(x, t)),

x̂ = t(x̂1(ξ, t), x̂2(ξ, t), x̂3(ξ, t)),
dx̂
dt

= v̂(x̂(ξ, t), t),

x̂(ξ, 0) = ξ.

For each variation x̂ we define the action integral as

A[x̂] =

∫ T

0

∫

Γ̂(t)

1

2
ρ̂(x, t)|v̂(x, t)|2 dH2

xdt.

Here

Γ̂(t) := {x = t(x1, x2, x3) ∈ R
3; x = x̂(ξ, t), ξ ∈ Γ(0)}

and ρ̂ satisfies

∂tρ̂+ (v̂,∇)ρ̂+ (divΓ̂v̂)ρ̂ = 0 on ŜT .

Here

ŜT =
⋃

0<t<T

{Γ̂(t)× {t}}.

For −1 < ε < 1, let us consider a variation (xε(ξ, t),Sε
T ) of (x(ξ, t),ST ) with Γε(0) =

Γ(0), where

Sε
T :=

⋃

0<t<T

{Γε(t)× {t}}.

Here Γε(t) is an evolving surface. We say that (xε(ξ, t),Sε
T ) is a variation of a smooth

(x(ξ, t),ST ) if xε(ξ, t) is smooth as a function of (ε, ξ, t) ∈ (−1, 1) × Γ(0) × [0, T ) and

xε(ξ, t)|ε=0 = x(ξ, t).

We now assume that there are y ∈ [C∞
0 (R3 × [0, T ))]3 and z ∈ [C∞(ST )]

3 such that

for ξ ∈ Γ(0) and 0 ≤ t < T ,

xε(ξ, t)

∣∣∣∣
ε=0

= x(ξ, t),

vε(xε(ξ, t), t)

∣∣∣∣
ε=0

= v(x(ξ, t), t),

d

dε

∣∣∣∣
ε=0

xε(ξ, t) = y(ξ, t),

z(x(ξ, t), t) = y(ξ, t).
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Here z is the variation vector field described by the Eulerian coordinates. Suppose that

ρ and ρε satisfy {
∂tρ+ (v,∇)ρ+ (divΓv)ρ = 0 on ST ,

ρ|t=0 = ρ0
(1.7)

and {
∂tρ

ε + (vε,∇)ρε + (divΓεvε)ρε = 0 on Sε
T ,

ρε|t=0 = ρ0
(1.8)

for some ρ0 ∈ C(Γ(0)). Moreover, we assume that for ξ ∈ Γ(0) and 0 ≤ t < T ,

ρε(xε(ξ, t), t)|ε=0 = ρ(x(ξ, t), t).

Theorem 1.5 (Variation of the flow map to the action integral). Let x(ξ, t) be a flow

map on Γ(t), and let v be the total velocity of the fluid-flow determined by the flow map

x(ξ, t). Let (xε(ξ, t),Sε
T ) be a variation of (x(ξ, t),ST ) with Γε(0) = Γ(0). Assume that

ρ and ρε satisfy the systems (1.7) and (1.8) for some ρ0 ∈ C(Γ(0)). Then

d

dε

∣∣∣∣
ε=0

A[xε] = −

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt.

(i) For every z ∈ [C∞
0 (ST )]

3 satisfying divΓz = 0 on ST , assume that

−

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt = 0.

Then v solves

ρDtv + gradΓσ + σHn = 0 on ST

with some σ ∈ C1,0(ST ).

(ii) For every z ∈ [C∞
0 (ST )]

3 satisfying divΓz = 0 and z · n = 0 on ST , assume that

−

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt = 0.

Then v solves

PΓρDtv + gradΓσ = 0 on ST

with some σ ∈ C1,0(ST ).

In (i) variation is with respect to the total flow map, including the motion of Γ(t).

In (ii) variation is with respect to only the tangential part of the total velocity on Γ(t).

See Lemma 2.7 for the pressure term of the incompressible fluid on an evolving surface.

We now define the dissipation energy E[v̂] for the velocity field

v̂ = t(v̂1(x, t), v̂2(x, t), v̂3(x, t))

at each fixed time t. For fixed t, let μ0 be a positive constant and

E[v̂] := −

∫

Γ(t)

μ0|PΓ(x, t)D(v̂(x, t))PΓ(x, t)|
2 dH2

x.
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 365

Here

[D(v̂)]ij :=
1

2

(
∂v̂i
∂xj

+
∂v̂j
∂xi

)
.

See Subsection 2.2 for the notation [ · ]ij . We shall study its variation.

Theorem 1.6 (Variation of dissipation energy). Fix t ∈ (0, T ). For every vector field

ϕ ∈ [C∞
0 (Γ(t))]3 the direction derivation of E at v is of the form

d

dε

∣∣∣∣
ε=0

E[v + εϕ] =

∫

Γ(t)

2μ0divΓ(PΓ(x, t)D(v(x, t))PΓ(x, t)) · ϕ(x) dH
2
x.

(i) If
d

dε

∣∣∣∣
ε=0

E[v + εϕ] = 0

for all ϕ ∈ [C∞
0 (Γ(t))]3 satisfying divΓϕ = 0 on Γ(t), then v fulfills

−2μ0divΓ(PΓD(v)PΓ) + gradΓσ + σHn = 0 on Γ(t)

for some σ ∈ C1(Γ(t)).

(ii) If
d

dε

∣∣∣∣
ε=0

E[v + εϕ] = 0

for all ϕ ∈ C∞
0 (Γ(t)) satisfying divΓϕ = 0 and ϕ · n = 0 on Γ(t), then v fulfills

−2μ0PΓdivΓ(PΓD(v)PΓ) + gradΓσ = 0 on Γ(t)

for some σ ∈ C1(Γ(t)).

Applying Theorems 1.1–1.6, we obtain several incompressible fluid systems on an

evolving surface. See Section 4 for details.

There are three subtle issues (difficulties), sometimes confusing, in the derivation of

incompressible fluid systems on an evolving surface.

• The first one is to characterize the incompressibility of the fluid on the prescribed

evolving surface which follows from a continuity equation for the evolving surface.

• The second one is to calculate the variation of the action integral. This is a domain

variation and there are two ways of variation: one is variation with respect to all directions

while the other is variation only in the tangential direction. Since the surface is moving,

one needs to use a Riemannian metric expression for all the computations.

• The third difficulty is to derive a viscous term which is obtained as the variation of

the dissipation energy with respect to the total velocity. Here again we use Riemannian

metric interpretation to proceed with the calculation. The resulting equation follows

from the identity that the variation of the action integral with respect to the flow map

agrees with a constant multiple of velocity variation of the dissipation energy. Actually,

it is easy to say that the real calculation is quite involved.

We next explain some mathematical derivations of the incompressible fluid system on

a manifold and surface. Arnol′d [2,3] applied the Lie group of diffeomorphisms to derive

the Euler system on a manifold. Taylor [19] introduced the incompressible Navier-Stokes

system on a manifold from their physical sense (see also Taylor’s book [20]). Mitsumatsu

and Yano [12] used their energetic approach to derive the incompressible Navier-Stokes
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system on a manifold. Arnaudon and Cruzeiro [1] applied the stochastic variational

approach to derive the incompressible Navier-Stokes system on a manifold. We remark

that the system derived by [12] agrees with one introduced by [19].

Let us state some related papers and books to fluid-flow on an evolving surface. Dz-

iuk and Elliott [6] derived several fluid systems on an evolving surface by applying the

Leibniz formula on an evolving surface and their diffusive flux. Bothe and Prüss [4]

used the Boussinesq-Scriven law to make a model for the two-phase fluid flow with sur-

face tension and surface viscosity. Koba [11] derived compressible fluid systems on an

evolving surface by his energetic variational approach and thermodynamical theory and

gave a mathematical justification of the Boussinesq-Scriven law. For Boussinesq-Scriven

surface fluid, we refer the reader to Slattery’s book [18]. Remark that the systems in [6]

are different from our systems.

Finally we state the outline of the paper. In Section 2 we introduce evolving surfaces

and function spaces, and study calculus on an evolving surface. In Section 3 we study

incompressible fluid-flow on an evolving surface. We first consider the continuity equation

for fluid on the evolving surface. Secondly we investigate the existence for incompressible

fluid-flow on the evolving surface. Thirdly we use our action integral to derive the Euler

system on the evolving surface. Finally, we study the dissipation energy and viscous

terms of the system (1.1). In Section 4 we present various incompressible fluid systems

on an evolving surface. In Appendix (I) we compare our systems with previous models

such as the Euler system on a manifold and the Navier-Stokes system on a manifold. In

Appendix (II) we discuss the energy law and work of the fluid in a moving domain.

2. Preliminaries. In this section, we first introduce evolving surfaces and functions

on an evolving surface. Secondly, we state convention and notation used in this paper.

Especially, we define notation such as surface gradient gradΓ, surface divergence divΓ,

mean curvatureH, and an orthogonal projection to a tangent space PΓ. Thirdly, we study

integration by parts on a surface, and we give an important tool to derive a pressure of

the incompressible fluid on a surface. Fourthly, we describe flow maps on an evolving

surface and a variation of the flow map. Finally we use Riemannian metrics on a surface

to characterize an orthogonal projection PΓ and differential operators ∂tan
i .

2.1. Evolving surfaces and function spaces. We first introduce 2-dimensional C2-sur-

faces in R
3 and evolving 2-dimensional C2,1-surfaces in R

3.

Definition 2.1 (2-dimensional C2-surfaces in R
3). A set Γ0 in R

3 is called a C2-

surface in R
3 if for each point x0 ∈ Γ0 there are r > 0 and φ ∈ C2(Br(x0)) such that

Γ0 ∩Br(x0) = {x = t(x1, x2, x3) ∈ Br(x0); φ(x) = 0}

and that

∇xφ = t

(
∂φ

∂x1
,
∂φ

∂x2
,
∂φ

∂x3

)
�= (0, 0, 0) on Br(x0).

Here

Br(x0) := {x ∈ R
3; |x− x0| < r}.
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 367

In this paper we call a 2-dimensional C2-surface in R
3 a 2-dimensional surface in R

3.

Note that Γ0 may not be a closed surface. It may have a geometric boundary ∂Γ0. It

may not be bounded. We also recall a definition of an evolving surface [8].

Definition 2.2 (Evolving 2-dimensional C2,1-surfaces in R
3). Let T ∈ (0,∞]. Set

I = [0, T ). Suppose that Γ(t) is a set in R
3 for each t ∈ I. A family {Γ(t)}t∈I is called

an evolving 2-dimensional C2,1-surface in R
3 on I if the following two properties hold:

(i) Γ(0) is a 2-dimensional surface in R
3.

(ii) For each t0 ∈ (0, T ) and x0 ∈ Γ(t0) there are r1, r2 > 0 and ψ ∈

C2,1(Br1(x0)×Br2(t0)) such that

Γ(t0) ∩Br1(x0) = {x = t(x1, x2, x3) ∈ Br1(x0); ψ(x, t0) = 0}

and that

∇xψ = t

(
∂ψ

∂x1
,
∂ψ

∂x2
,
∂ψ

∂x3

)
�= (0, 0, 0) on Br1(x0)×Br2(t0).

Here

Br1(x0) := {x ∈ R
3; |x− x0| < r1},

Br2(t0) := {t ∈ R+; |t− t0| < r2},

C2,1(Br1(x0)×Br2(t0)) := {f ∈ C(Br1(x0)×Br2(t0));

∂if, ∂j∂if, ∂tf, ∂i∂tf, ∂j∂i∂tf ∈ C(Br1(x0)×Br2(t0)) for each i, j = 1, 2, 3}.

Throughout this paper we write Γ(t) instead of {Γ(t)}t∈I . As in Definition 2.1, we often

suppress the word C2,1.

Next we define functions on an evolving surface. Let Γ0 be a 2-dimensional surface

in R
3, and let Γ(t) be an evolving 2-dimensional C2,1-surface in R

3 on [0, T ) for some

T ∈ (0,∞]. Set

ST ≡ ST,Γ(t) :=

{
(x, t) = t(x1, x2, x3, t) ∈ R

4; (x, t) ∈
⋃

0<t<T

{Γ(t)× {t}}

}
.

For each m ∈ N ∪ {0,∞} we define

Cm(Γ0) := {f : Γ0 → R; g|Γ0
= f for some g ∈ Cm(R3)},

Cm
0 (Γ0) := {f ∈ Cm(Γ0); suppf does not intersect the geometric boundary of Γ0},

C(ST ) := {f : ST → R; g|ST
= f for some g ∈ C(R3 × R)},

C0(ST ) := {f ∈ C(ST ); suppf is included in ST and

suppf(·, t) does not intersect the geometric boundary of Γ(t)}.

Moreover, we write

C1,0(ST ) := {f ∈ C(ST ); ∂if ∈ C(ST ) for each i = 1, 2, 3},

C2,1(ST ) := {f ∈ C1,0(ST ); ∂j∂if, ∂tf, ∂i∂tf, ∂j∂i∂tf ∈ C(ST ) for each i, j = 1, 2, 3},

C2,1
0 (ST ) := C2,1(ST ) ∩ C0(ST ), C

∞(ST ) := C∞(R4) ∩ C(ST ),

and C∞
0 (ST ) := C(R4) ∩ C0(ST ).

Licensed to Penn St Univ, University Park. Prepared on Tue Jul 31 16:24:37 EDT 2018 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf



368 HAJIME KOBA, CHUN LIU, AND YOSHIKAZU GIGA

2.2. Convention and notation. Let us explain some conventions used in this paper.

We use italic characters i, j, k, 
, i′j′ as 1, 2, 3, and use Greek characters α, β, ζ, η, α′, β′

as 1, 2. Moreover, we use the following Einstein summation convention:

aijbj =

3∑

j=1

aijbj , aijbij� =

3∑

i,j=1

aijbij�, aijbiαcαβ =

3∑

i=1

2∑

α=1

aijbiαcαβ .

Let X be a set. The symbol Mp×q(X ) denotes the set of all p × q matrices whose

component belongs to X ; that is, M ∈ Mp×q(X ) if and only if

M =

⎛
⎜⎜⎜⎝

[M ]11 [M ]12 · · · [M ]1q
[M ]21 [M ]22 · · · [M ]2q

...
...

...

[M ]p1 [M ]p2 · · · [M ]pq

⎞
⎟⎟⎟⎠ ,

and [M ]ij ∈ X (i = 1, 2, . . . , p, j = 1, 2, . . . , q), where [M ]ij denotes the (i, j)-th component

of the matrix M .

Let Γ(t) be an evolving 2-dimensional C2,1-surface in R
3 on [0, T ) for some T ∈ (0,∞].

By n = n(x0, t0) = t(n1, n2, n3) we mean the unit outer normal vector of Γ(t0) at

x0 ∈ Γ(t0) for each fixed t0 ∈ [0, T ). In this paper, we use the following notation:

∂tan
i := (δij − ninj)∂j

⎛
⎝=

3∑

j=1

(δij − ninj)∂j

⎞
⎠ ,

∇tan := t(∂tan
1 , ∂tan

2 , ∂tan
3 ),

Δtan := (∂tan
1 )2 + (∂tan

2 )2 + (∂tan
3 )2.

Here δij is Kronecker’s delta. Moreover, for f = t(f1, f2, f3) ∈ [C1,0(ST )]
3 and g ∈

C2,0(ST ),

divΓf := ∂tan
1 f1 + ∂tan

2 f2 + ∂tan
3 f3,

gradΓg := ∇tang,

ΔΓg := Δtang.

Let H and PΓ be the mean curvature and the orthogonal projection to a tangent space

defined by

H = H(x, t) := −divΓn, (2.1)

[PΓ]ij = [PΓ(x, t)]ij := δij − ninj (i, j = 1, 2, 3), (2.2)

respectively. Note that PΓ = I − n⊗ n and that n2
1 + n2

2 + n2
3 = 1.

2.3. Calculus on surfaces. Let Γ0 be a 2-dimensional surface in R
3, and let n = n(x) =

t(n1, n2, n3) be its unit outer normal vector at x ∈ Γ0. Let H and PΓ be the mean

curvature and orthogonal projection to tangent defined by (2.1) and (2.2), respectively.

Let us first study the relation between H and PΓ.

Lemma 2.3. Assume that σ ∈ C1(Γ0). Then

divΓ(σPΓ) = gradΓσ + σHn. (2.3)
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Proof of Lemma 2.3. Fix j ∈ {1, 2, 3}. A direct calculation gives

∂tan
i (σ[PΓ]ij) =(∂tan

i σ)(δij − ninj) + σ(∂tan
i [PΓ]ij)

=∂tan
j σ + σ(∂tan

i [PΓ]ij). (2.4)

It is easy to check that

∂tan
i [PΓ]ij =(δik − nink)∂k(δij − ninj)

=− (δik − nink)(∂kni)nj − (δik − nink)ni(∂knj)

=− (δik − nink)(∂kni)nj . (2.5)

By definition, we observe that

H =− ∂tan
i ni

=− (δik − nink)∂kni. (2.6)

Combining (2.4)-(2.6), we obtain

∂tan
i (σ[PΓ]ij) = ∂tan

j σ + σHnj .

Therefore we see (2.3). �

Next we state one useful lemma to deal with integration by parts on a surface.

Lemma 2.4 (Integration by parts). Let f = t(f1, f2, f3) ∈ [C1(Γ0)]
3. Then

−

∫

∂Γ0

ν · f dH1
x =

∫

Γ0

divΓf dH2
x +

∫

Γ0

Hn · f dH2
x.

In particular,
∫

Γ0

divΓf dH2
x = −

∫

∂Γ0

ν · f dH1
x when f · n = 0,

∫

Γ0

divΓf dH2
x = −

∫

Γ0

Hn · f dH2
x when f ∈ [C1

0 (Γ0)]
3. (2.7)

Here ν is the inward pointing unit co-normal of ∂Γ0; that is, |ν| = 1, where ν is normal

to ∂Γ0 and tangent to Γ0.

The proof of Lemma 2.4 is found for example in Simon’s book [17].

Lemma 2.5. Assume that Γ0 is a closed manifold. Then for every f = t(f1, f2, f3) ∈

[C1(Γ0)]
3,

0 =

∫

Γ0

divΓf dH2
x +

∫

Γ0

Hn · f dH2
x.

Proof of Lemma 2.5. Fix x0 ∈ Γ0. We choose r > 0 sufficiently small such that

Γ0 \Br(x0) ⊂ Γ0. Using Lemma 2.4, we have

−

∫

∂(Γ0\Br(x0))

ν · f dH1
x =

∫

Γ0\Br(x0)

divΓf dH2
x +

∫

Γ0\Br(x0)

Hn · f dH2
x.

Since |ν| = 1 and f ∈ [C1(Γ0)]
3, we let r → +0 to get the desired result. �
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Lemma 2.6 (Integration by parts). For each f ∈ C1(Γ0), g ∈ C1
0 (Γ0), and m ∈ {1, 2, 3},

∫

Γ0

(∂tan
m f)g dH2

x = −

∫

Γ0

f(∂tan
m g) dH2

x −

∫

Γ0

Hnmfg dH2
x. (2.8)

Proof of Lemma 2.6. We give the proof only for the case when m = 1 since other

cases are similar. Set h = t(h1, h2, h3) :=
t(fg, 0, 0). It is easy to check that

divΓh =∂tan
1 h1

=(∂tan
1 f)g + f(∂tan

1 g).

By (2.7), we observe that
∫

Γ0

(g∂tan
1 f + f∂tan

1 g) dH2
x =

∫

Γ0

divΓh dH2
x

=−

∫

Γ0

Hn · h dH2
x

=−

∫

Γ0

Hn1fg dH2
x.

Therefore the lemma follows. �

The following lemma is important to derive the pressure of the incompressible fluid

on an evolving surface.

Lemma 2.7. Set

E :=

{
f ∈ [L2(Γ0)]

3;

∫

Γ0

f · ϕ dH2
x = 0 for all ϕ ∈ [C∞

0 (Γ0)]
3 with divΓϕ = 0

}
.

Then f ∈ E if and only if there is p ∈ W 1,2(Γ0) such that

f = ∇tanp+ pHn.

Moreover, if f is continuous, then p ∈ C1(Γ0).

Proof of Lemma 2.7. We first show the necessary condition ⇐). Fix ϕ ∈ [C∞
0 (Γ0)]

3

with divΓϕ = 0. From (2.7), we see that
∫

Γ0

divΓ(pϕ) dH
2
x = −

∫

Γ0

Hn · (pϕ) dH2
x.

Since

divΓ(pϕ) = (∇tanp) · ϕ+ pdivΓϕ,

we have ∫

Γ0

(∇tanp) · ϕ dH2
x = −

∫

Γ0

Hn · (pϕ) dH2
x.

Next we prove the sufficient condition ⇒). We assume that
∫

Γ0

ftan · ϕtan dH2
x = 0 for all ϕ ∈ [C∞

0 (Γ0)]
3 with divΓϕtan = 0.

Here ftan := PΓf and ϕtan := PΓϕ. Note that f = ftan + (f · n)n. We easily check that

for every circle C in Γ0, ∫

C

ftan dH2
x = 0.
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From Weyl’s Theorem, there is a p ∈ W 1,2(Γ0) such that ftan = ∇tanp. Therefore, we

have ∫

Γ0

f · ϕ dH2
x =

∫

Γ0

∇tanp · ϕ dH2
x +

∫

Γ0

(f · n)n · ϕ dH2
x.

On the other hand,
∫

Γ0

(∇tanp)ϕ dH2
x =

∫

Γ0

divΓ(pϕ) dH
2
x

=−

∫

Γ0

Hn · (pϕ) dH2
x.

Thus, we check that that

0 =

∫

Γ0

f · ϕ dH2
x

=−

∫

Γ0

Hn · (pϕ) dH2
x +

∫

Γ0

(f · n)n · ϕ dH2
x.

This implies that f · n = pH. Therefore, we conclude that f = ∇tanp+ pHn. Moreover,

we see that p ∈ C1(Γ0) when f is continuous since Γ0 is a smooth surface. �

2.4. Flow maps on evolving surfaces. In this section we consider flow maps on evolv-

ing surfaces. In what follows we only consider closed surfaces for simplicity. We shall

introduce an evolving surface Γ(t) and a flow map on Γ(t). Then we study surface area

by applying such flow maps.

Definition 2.8 (Evolving surface). Let {Γ(t)}0≤t<T be a given evolving 2-dimensional

C2,1-surface in R
3 on [0, T ) for some T ∈ (0,∞]. We simply call Γ(t) a 2-dimensional

evolving surface in R
3 if for each fixed t ∈ [0, T ), Γ(t) is a Riemannian 2-dimensional

manifold.

Definition 2.9 (Flow map on an evolving surface). Let Γ(t) be a given evolving 2-

dimensional surface in R
3 on [0, T ) for some T ∈ (0,∞]. Let x ∈ [C∞(R4)]3. We call x

a flow map on Γ(t) if the three properties hold:

(i) for ξ ∈ Γ0 := Γ(0)

x(ξ, 0) = ξ,

(ii) for ξ ∈ Γ0 and 0 ≤ t < T

x(ξ, t) ∈ Γ(t),

(iii) for 0 ≤ t < T

x(·, t) : Γ0 → Γ(t) is bijective.

Let Γ(t) be a given evolving 2-dimensional surface in R
3 on [0, T ) for some T ∈ (0,∞].

Let x be a flow map on Γ(t). Suppose that there is a smooth function v(·, ·) such that

dx

dt
= xt(ξ, t) = v(x(ξ, t), t) = v = t(v1, v2, v3).

We call the vector-valued function v a velocity determined by the flow map x. We assume

that v is the total velocity.
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Since Γ0 = Γ(0) is a 2-dimensional closed Riemannian manifold, there is a partition of

unity, i.e. there are Γm ⊂ Γ0, Φm ∈ C∞(R2), Um ⊂ R
2, Ψm ∈ C∞(R3) (m = 1, 2, · · · , N)

such that
N⋃

m=1

Γm = Γ0,

Γm = Φm(Um),

suppΨm ⊂ Γm,

‖Ψm‖L∞ = 1,

N∑

m=1

Ψm = 1 on Γ0.

Fix ξ ∈ Γ0. Assume that ξ ∈ Γm for some m ∈ {1, 2, · · · , N}. Since we can write

ξ = Φm(X) for some X = t(X1, X2) ∈ Um ⊂ R
2, we set

x̃ = x̃(X, t) = x(Φm(X), t)(= x(ξ, t)).

Then {
dx̃
dt

= x̃t(X, t) = v(x̃(X, t), t),

x̃|t=0 = Φm(X)(= ξ).

Now we write

Φ := Φm if ξ ∈ Γm.

Then for each ξ ∈ Γ0, {
dx̃
dt

= x̃t(X, t) = v(x̃(X, t), t),

x̃|t=0 = Φ(X)(= ξ).

We also call x̃(X, t) a flow map on Γ(t). For the map x̃ = x̃(X, t), we define

F = F (X, t) := ∇X x̃ =

⎛
⎜⎜⎝

∂x̃1

∂X1

∂x̃1

∂X2

∂x̃2

∂X1

∂x̃2

∂X2

∂x̃3

∂X1

∂x̃3

∂X2

⎞
⎟⎟⎠ .

Next we study the surface area integral by applying flow maps x(ξ, t) on Γ(t). For

each f(·, ·) ∈ C(R3 × R), we see that
∫

Γ(t)

f(x, t) dH2
x =

∫

U

Ψ̃(X)f(x̃(X, t), t)
√
det(tFF ) dX.

Here, the right-hand side is a shorthand notation of the form
∫

U

Ψ̃(X)f(x̃(X, t), t)
√
det(tFF ) dX

:=
N∑

m=1

∫

Um

Ψm(Φm(X))f(x̃(X, t), t)
√
det(tFF ) dX.

By the bijective of the flow map x(·, t), one can write

Γ(t) = {x ∈ R
3; x = x(ξ, t), ξ ∈ Γ0}.
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Using the change of variables and the usual surface area integral, we observe that for

0 < t < T ,
∫

Γ(t)

f(x, t) dH2
x =

∫

Γ0

f(x(ξ, t), t)(det(∇ξx)) dH
2
ξ

=
N∑

m=1

∫

Γm

Ψm(ξ)f(x(ξ, t), t)(det(∇ξx)) dH
2
ξ

=

N∑

m=1

∫

Um

Ψm(Φm(X))f(x(Φm(X), t), t)(det(∇ξx))
√
det(t∇XΦm∇XΦm) dX

=
N∑

m=1

∫

Um

Ψm(Φm(X))f(x̃(X, t), t)
√
det(tFF ) dX.

2.5. Riemannian metrics on evolving surfaces. Let us prepare key tools to analyze

fluid-flow on an evolving surface. Let Γ(t) be a given evolving surface. Let x = x(ξ, t) or

x̃ = x̃(X, t) be a flow map on Γ(t). Assume that Γ0 := Γ(0) satisfies the same conditions

in Subsection 2.4. See Subsection 2.4 for details. For the flow map x̃ = x̃(X, t),

gα :=

(
∂x̃i

∂Xα

)

i=1,2,3

= t

(
∂x̃1

∂Xα

,
∂x̃2

∂Xα

,
∂x̃3

∂Xα

)
.

Write

gαβ := gα · gβ =
∂x̃i

∂Xα

∂x̃i

∂Xβ

=
∑

i

∂x̃i

∂Xα

∂x̃i

∂Xβ

.

Set

gαβ := (gαβ)
−1,

gα := gαβgβ ,

ǵα :=
d

dt
gα =

∂v

∂Xα

.

Note that

gαβ = gα · gβ ,

gα = gαβg
β

and

ǵαβ = ǵα · gβ + gα · ǵβ ,

ǵα =
∂v

∂Xα

=
∂x̃i

∂Xα

∂v

∂x̃i

=
∑

i

∂x̃i

∂Xα

∂v

∂x̃i

,

ǵα · gβ =
∂x̃i

∂Xα

∂vj
∂x̃i

∂x̃j

∂Xβ

=
∑

i,j

∂x̃i

∂Xα

∂vj
∂x̃i

∂x̃j

∂Xβ

,

ǵαβ =
∂x̃i

∂Xα

(
∂vj
∂x̃i

+
∂vi
∂x̃j

)
∂x̃j

∂Xβ

= 2
∑

i,j

∂x̃i

∂Xα

[D(v)]ij
∂x̃j

∂Xβ

.
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Using the above symbols we obtain

Lemma 2.10. The projection in (2.2) can be expressed in the Lagrange coordinate X as

[PΓ]ij =
∂x̃i

∂Xα

∂x̃j

∂Xβ

gαβ .

Proof of Lemma 2.10. Using rotation, we may assume that at x = a such that
(

∂x̃1

∂X1

∂x̃2

∂X1

∂x̃3

∂X1

∂x̃1

∂X2

∂x̃2

∂X2

∂x̃3

∂X2

)
=

(
1 0 0

0 1 0

)
.

Therefore we see that

(
∂x̃i

∂Xα

∂x̃j

∂Xβ

gαβ
)

i,j=1,2,3

=

⎛
⎝
1 0 0

0 1 0

0 0 0

⎞
⎠ = I − n⊗ n.

�

Lemma 2.11. For each fixed Ω0 ⊂ Γ0 and 0 < t < T ,

Ω(t) := {x ∈ R
3; x = x(ξ, t), ξ ∈ Ω0},

where x(ξ, t) is a flow map on Γ(t). Then the following two assertions hold:

(i) For f = t(f1, f2, f3) ∈ [C1(R3 × R)]3,
∫

Ω(t)

divΓf(x, t) dH
2
x =

∫

U

1Ω0
(Φ(X))Ψ̃(X)gα ·

∂f

∂Xα

√
det(tFF ) dX. (2.9)

(ii) For f ∈ C1(R3 × R),

∫

Ω(t)

f(x, t)divΓv(x, t) dH
2
x

=

∫

U

1Ω0
(Φ(X))Ψ̃(X)f(x̃(X, t), t)

(
∂

∂t

√
det(tFF )

)
dX. (2.10)

Here

1Ω0
(ξ) :=

{
1, ξ ∈ Ω0,

0, ξ ∈ R
3 \ Ω0.

Proof of Lemma 2.11. We first show (i). Fix Ω0 ⊂ Γ0 and 0 < t < T . By definition,

we check that
∫

Ω(t)

divΓf(x, t) dH
2
x =

∫

Ω0

divΓf(x(ξ, t), t)(det∇ξx) dH
2
ξ

=

∫

Γ0

1Ω0
(ξ)divΓf(x(ξ, t), t)(det∇ξx) dH

2
ξ

=

∫

U

1Ω0
(Φ(X))Ψ̃(X)divΓf(x̃(X, t), t)

√
det(tFF ) dX.
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A direct calculation shows that

gα ·
∂f

∂Xα

= gαβgβ ·
∂f

∂Xα

= g1βgβ ·
∂f

∂X1
+ g2βgβ ·

∂f

∂X2

=

(
g11g1 ·

∂f

∂X1
+ g12g2 ·

∂f

∂X1

)
+

(
g21g1 ·

∂f

∂X2
+ g22g2 ·

∂f

∂X2

)

=

(
g11

∂x̃1

∂X1

∂f1
∂X1

+ g12
∂x̃1

∂X2

∂f1
∂X1

+ g21
∂x̃1

∂X1

∂f1
∂X2

+ g22
∂x̃1

∂X2

∂f1
∂X2

)

+

(
g11

∂x̃2

∂X1

∂f2
∂X1

+ g12
∂x̃2

∂X2

∂f2
∂X1

+ g21
∂x̃2

∂X1

∂f2
∂X2

+ g22
∂x̃2

∂X2

∂f2
∂X2

)

+

(
g11

∂x̃3

∂X1

∂f3
∂X1

+ g12
∂x̃3

∂X2

∂f3
∂X1

+ g21
∂x̃3

∂X1

∂f3
∂X2

+ g22
∂x̃3

∂X2

∂f3
∂X2

)

=: I1 + I2 + I3.

It is easy to check that

I1 =

(
g11

∂x̃1

∂X1

∂x̃1

∂X1
+ g12

∂x̃1

∂X1

∂x̃1

∂X2
+ g21

∂x̃1

∂X1

∂x̃1

∂X2
+ g22

∂x̃1

∂X2

∂x̃1

∂X2

)
∂f1
∂x̃1

+

(
g11

∂x̃1

∂X1

∂x̃2

∂X1
+ g12

∂x̃1

∂X1

∂x̃2

∂X2
+ g21

∂x̃1

∂X1

∂x̃2

∂X2
+ g22

∂x̃1

∂X2

∂x̃2

∂X2

)
∂f1
∂x̃2

+

(
g11

∂x̃1

∂X1

∂x̃3

∂X1
+ g12

∂x̃1

∂X1

∂x̃3

∂X2
+ g21

∂x̃1

∂X1

∂x̃3

∂X2
+ g22

∂x̃1

∂X2

∂x̃3

∂X2

)
∂f1
∂x̃3

=

(
∂x̃1

∂Xα

∂x̃1

∂Xβ

gαβ
∂

∂x̃1
+

∂x̃1

∂Xα

∂x̃2

∂Xβ

gαβ
∂

∂x̃2
+

∂x̃1

∂Xα

∂x̃3

∂Xβ

gαβ
∂

∂x̃3

)
f1 = ∂tan

1 f1.

Similarly, we see that

I2 = ∂tan
2 f2,

I3 = ∂tan
3 f3.

Therefore we obtain (2.9).

Next we prove (ii). A direct calculation shows that

∂

∂t

√
det(tFF ) =

1

2
√
det(tFF )

∂

∂t
(det(tFF ))

=
1

2
√
det(tFF )

det(tFF ) · tr

(
(tFF )−1 ·

∂(tFF )

∂t

)

=
1

2

√
det(tFF ) · tr

(
(tFF )−1 ·

(
t

(
∂F

∂t

)
F + tF

∂F

∂t

))
.

It is easy to check that

tr

(
(tFF )−1 ·

(
t

(
∂F

∂t

)
F + tF

∂F

∂t

))
=tr gαβ

(
∂x̃

∂Xβ

·
∂v

∂Xα

+
∂x̃

∂Xα

·
∂v

∂Xβ

)

=gα ·
∂v

∂Xα

+ gβ ·
∂v

∂Xβ

(= 2divΓv).

Therefore the lemma follows. �
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3. On incompressible fluid-flow on evolving surfaces. In this section we study

incompressible fluid-flow on an evolving surface. Let Γ(t) be an evolving surface on

[0, T ) for some T ∈ (0,∞]. Assume that Γ0 := Γ(0) satisfies the same conditions as in

Subsection 2.4. Let x = x(ξ, t) or x̃ = x̃(X, t) be a flow map on Γ(t).

3.1. Continuity equation and local surface area preserving. Now we study the conti-

nuity equation of fluids on the evolving surface Γ(t). A proof of Theorem 1.1 is found in

[6, Appendix]. We give here a complete proof for our later purpose and completeness.

Lemma 3.1. For each fixed Ω0 ⊂ Γ0 and 0 < t < T ,

Ω(t) := {x ∈ R
3; x = x(ξ, t), ξ ∈ Ω0}.

Then for each Ω0 ⊂ Γ0 and 0 < t < T ,

d

dt

∫

Ω(t)

ρ(x, t) dH2
x =

∫

Ω(t)

{Dtρ(x, t) + (divΓv(x, t))ρ(x, t)} dH2
x. (3.1)

Proof of Lemma 3.1. Fix Ω0 ⊂ Γ0 and 0 < t < T . By definition, we observe that
∫

Ω(t)

ρ(x, t) dH2
x =

∫

Ω0

ρ(x(ξ, t), t)(det∇ξx) dH
2
ξ

=

∫

Γ0

1Ω0
(ξ)ρ(x(ξ, t), t)(det∇ξx) dH

2
ξ

=

∫

U

1Ω0
(Φ(X))Ψ̃(X)ρ(x̃(X, t), t)

√
det(tFF ) dX.

Here

1Ω0
(ξ) :=

{
1, ξ ∈ Ω0,

0, ξ ∈ R
3 \ Ω0.

Since

d

dt

∫

Ω(t)

ρ(x, t) dH2
x =

∫

U

1Ω0
(Φ(X))Ψ̃(X)

(
d

dt
ρ(x̃(X, t), t)

)√
det(tFF ) dX

+

∫

U

1Ω0
(Φ(X))Ψ̃(X)ρ(x̃(X, t), t)

(
∂

∂t

√
det(tFF )

)
dX,

it follows from Lemma 2.11 to derive (3.1). �

Proof of Theorem 1.1. Fix t ∈ (0, T ) and Ω(t) ⊂ Γ(t). Since the flow map x(ξ, t) is

bijective, there is Ω0 ⊂ Γ0 such that

Ω(t) = {x ∈ R
3; x = x(ξ, t), ξ ∈ Ω0}.

From Lemma 3.1, we observe that

d

dt

∫

Ω(t)

ρ(x, t) dH2
x =

∫

Ω(t)

{Dtρ(x, t) + (divΓv(x, t))ρ(x, t)} dH2
x.

Since Ω(t) can be taken arbitrary, this implies that

Dtρ+ (divΓv)ρ = 0 on ST .

Therefore we see the continuity equation of the fluid on Γ(t). �
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 377

Proof of Theorem 1.2. Assume that divΓv = 0. Fix Ω(t) ⊂ Γ(t). By an argument

similar to that in the proof of Lemma 3.1, we check that

d

dt

∫

Ω(t)

1 dH2
x =

∫

Ω(t)

divΓv(x, t) dH
2
x = 0.

Therefore Theorem 1.2 is proved. �

3.2. Necessary condition for the existence of an incompressible fluid-flow. This is

stated in Theorem 1.3 whose proof is given in Remark 1.4 and is justified in Subsec-

tions 2.2 and 2.3.

3.3. Action integral. Let us recall our action integral. Let Γε(t) be a variation of Γ(t)

with Γε(0) = Γ0. Let (xε(ξ, t),Sε
T ) be a variation of (x,ST ), and let vε be the velocity

determined by xε; that is,

{
dxε

dt
(ξ, t) = vε(xε(ξ, t), t),

xε(ξ, 0) = ξ.

Suppose there are y ∈ [C∞(R3 × R)]3 and z ∈ [C∞(ST )]
3 such that for ξ ∈ Γ0 and

0 ≤ t < T ,

xε(ξ, t)

∣∣∣∣
ε=0

= x(ξ, t),

vε(xε(ξ, t), t)

∣∣∣∣
ε=0

= v(x(ξ, t), t),

d

dε

∣∣∣∣
ε=0

xε(ξ, t) = y(ξ, t),

z(x(ξ, t), t) = y(ξ, t).

For such a flow map xε = xε(ξ, t) of the flow map, we define A[xε] by

A[xε] =

∫ T

0

∫

Γε(t)

1

2
ρε(x, t)|vε(x, t)|2 dH2

xdt.

Here

Γε(t) = {x ∈ R
3; x = xε(ξ, t), ξ ∈ Γ0}

and ρε satisfies
{
∂tρ

ε + (vε,∇)ρε + (divΓεvε)ρε = 0 on Sε
T ,

ρε|t=0 = ρ0
(3.2)

for some ρ0 ∈ C(Γ(0)). Suppose that ρ satisfies

{
∂tρ+ (v,∇)ρ+ (divΓv)ρ = 0 on ST ,

ρ|t=0 = ρ0.
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Moreover, we assume that for ξ ∈ Γ(0) and 0 ≤ t < T ,

ρε(xε(ξ, t), t)|ε=0 = ρ(x(ξ, t), t).

By the same argument as in Subsection 2.4, we write

x̃ε(X, t) := xε(Φm(X), t)

and

F ε = F ε(X, t) := ∇X x̃ε =

⎛
⎜⎜⎝

∂x̃ε

1

∂X1

∂x̃ε

1

∂X2

∂x̃ε

2

∂X1

∂x̃ε

2

∂X2

∂x̃ε

3

∂X1

∂x̃ε

3

∂X2

⎞
⎟⎟⎠ .

We also see that for f ∈ C(R4),
∫

Γε(t)

f(x, t) dH2
x =

∫

U

Ψ̃(X)f(x̃ε(X, t), t)
√
det(tFεFε) dX.

Here
∫

U

Ψ̃(X)f(x̃ε(X, t), t)
√
det(tFεFε) dX

:=

N∑

m=1

∫

Um

Ψm(Φm(X))f(x̃ε(X, t), t)
√
det(tFεFε) dX.

Lemma 3.2. The variation of the action integral with respect to the flow map is of the

form
d

dε

∣∣∣∣
ε=0

A[xε] = −

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt. (3.3)

Proof of Lemma 3.2. We first show that

y(ξ, 0) = 0. (3.4)

Set

ỹ(X, t) := y(Φ(X), t).

Since

xε(ξ, 0)− x(ξ, 0) = ξ − ξ = 0,

we see that
d

dε

∣∣∣∣
ε=0

xε(ξ, 0) = 0 = y(ξ, 0).

Thus, we have (3.4).

Next we show the key lemma to study the variation of our action integral.

Lemma 3.3. We have
∫ T

0

∫

Γ(t)

1

2
ρ(x, t)|v(x, t)|2 dH2

xdt =

∫ T

0

∫

U

1

2
ρ̃0(X)Ψ̃(X)|x̃t(X, t)|2 dXdt, (3.5)

∫ T

0

∫

Γε(t)

1

2
ρε(x, t)|vε(x, t)|2 dH2

xdt =

∫ T

0

∫

U

1

2
ρ̃0(X)Ψ̃(X)|x̃ε

t (X, t)|2 dXdt. (3.6)
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INCOMPRESSIBLE FLUID SYSTEMS ON EVOLVING SURFACE 379

Here

ρ̃0(X) = ρ0(x̃(X, 0))
√
{det(tFF )}(X, 0).

Proof of Lemma 3.3. We only prove (3.5). By the definition, we check that

∫ T

0

∫

Γ(t)

1

2
ρ(x, t)|v(x, t)|2 dH2

xdt

=

∫ T

0

∫

U

1

2
ρ(x̃(X, t), t)Ψ̃(X)|x̃t(X, t)|2

√
det(tFF ) dXdt.

Set

Q(X, t) = ρ(x̃(X, t), t)
√
{det (tFF )}(X, t).

From Lemma 2.11 and the assumption of ρ, we observe that

d

dt
Q(X, t) = {(v,∇)ρ+ ∂tρ+ ρ(divΓv)}

√
det(tFF ) = 0.

Since Q(X, 0) = ρ0(x̃(X, 0))
√
{det(tFF )}(X, 0), we have

ρ(x̃(X, t), t) =
ρ̃0(X)√
det (tFF )

.

Therefore we obtain (3.5). Similarly, we see (3.6) and that

ρε(x̃ε(X, t), t) =
ρ̃0(X)√

det (tFεFε)
.

Note that x̃ε(X, 0) = x̃(X, 0) = Φ(X) = ξ. �

From (3.6), we have

∫ T

0

∫

Γε(t)

1

2
ρε(x, t)|vε(x, t)|2 dH2

xdt =

∫ T

0

∫

U

1

2
ρ̃0(X)Ψ̃(X)|x̃ε

t(X, t)|2 dXdt.

A direct calculation gives

d

dε
A[xε] =

∫ T

0

∫

U

ρ̃0(X)Ψ̃(X)

(
d

dε
x̃ε
t (X, t)

)
· x̃ε

t (X, t) dXdt.

Hence, we have

d

dε

∣∣∣∣
ε=0

A[xε] =

∫ T

0

∫

U

ρ̃0(X)Ψ̃(X)ỹt(X, t) · x̃t(X, t) dXdt.

Next we prove that

∫ T

0

∫

U

ρ̃0(X)Ψ̃(X)ỹt(X, t) · x̃t(X, t) dXdt

= −

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, y) · z(x, t) dH
2
xdt.
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By integration by parts and (3.4), we see that

∫ T

0

∫

U

ρ̃0(X)Ψ̃(X)ỹt(X, t) · x̃t(X, t) dXdt

=

∫ T

0

∫

U

ρ̃0(X)Ψ̃(X)ỹt(X, t) · v(x̃(X, t), t) dXdt

= −

∫ T

0

∫

U

ρ̃0(X)Ψ̃(X)ỹ(X, t) ·

(
d

dt
v(x̃(X, t), t)

)
dXdt

= −

∫ T

0

∫

U

ρ̃0(X)√
det(tFF )

Ψ̃(X)ỹ(X, t) ·

(
d

dt
v(x̃(X, t), t)

)√
det(tFF ) dXdt.

Therefore we see that

d

dε

∣∣∣∣
ε=0

A[xε] = −

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt,

which is (3.3). �

Proof of Theorem 1.5. We first show (i). Assume that for each z ∈ [C∞
0 (ST )]

3 satis-

fying divΓz = 0,

−

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt = 0.

From Lemma 2.7, there is σ ∈ C1,0(ST ) such that

ρ{vt + (v,∇)v}+∇tanσ + σHn = 0.

Next we attack (ii). Assume that for each z ∈ [C∞
0 (ST )]

3 satisfying divΓz = 0, and

z · n = 0,

−

∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt = 0.

Since
∫ T

0

∫

Γ(t)

ρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt =

∫ T

0

∫

Γ(t)

PΓρ(x, t)Dtv(x, t) · z(x, t) dH
2
xdt,

it follows from Lemma 2.7 to see that there is σ ∈ C1,0(ST ) such that

PΓρ(x, t){vt + (v,∇)v}+∇tanσ = 0.

�

3.4. Dissipation energy. In this subsection we consider the dissipation energy.

Lemma 3.4. Fix t ∈ (0, T ). Define E[v](t) by

E[v](t) = −

∫

Γ(t)

μ0|PΓ(x, t)D(v(x, t))PΓ(x, t)|
2 dH2

x.

Then for all ϕ = t(ϕ1, ϕ2, ϕ3) ∈ [C∞
0 (Γ(t))]3

d

dε

∣∣∣∣
ε=0

E[v + εϕ] = 2μ0

∫

Γ0

divΓ(PΓ(x, t)D(v(x, t))PΓ(x, t)) · ϕ dH2
x.
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We first prepare the following lemma.

Lemma 3.5 (Projected strain rate). Set

DΓ(v) := PΓD(v)PΓ.

Then for each i, j = 1, 2, 3,

[DΓ(v)]ij =
1

2
πi · (∂

tan
j v) +

1

2
πj · (∂

tan
i v). (3.7)

We call DΓ(v) a projected strain rate.

Proof of Lemma 3.5. By definition, we see that

[PΓD(v)PΓ]ij =
1

2

∑

k,�

(δik − nink)

(
∂vk
∂x�

+
∂v�
∂xk

)
(δj� − njn�)

=
1

2

∑

k

(δik − nink)∂
tan
j vk +

1

2

∑

�

(δj� − njn�)∂
tan
i v�

=
1

2

∑

k

[PΓ]ik∂
tan
j vk +

1

2

∑

�

[PΓ]j�∂
tan
i v�

=
1

2
πi · (∂

tan
j v) +

1

2
πj · (∂

tan
i v).

Therefore we obtain (3.7). �

Proof of Lemma 3.4. Fix ϕ = t(ϕ1, ϕ2, ϕ3) ∈ [C∞
0 (Γ0)]

3. A direct calculation gives

d

dε

∣∣∣
ε=0

∫

Γ0

E(v + εϕ) dH2
x =−

d

dε

∣∣∣
ε=0

∫

Γ0

2μ0|PΓD(v + εϕ)PΓ|
2 dH2

x

=− 2μ0

∫

Γ0

Tr(PΓD(v)PΓPΓD(ϕ)PΓ) dH
2
x. (3.8)

Note that

4[PΓ]ik[D(v + εϕ)]ij [PΓ]j�[D(v + εϕ)]k�

= [PΓ]ik

(
∂(vi + εϕi)

∂xj

+
∂(vj + εϕj)

∂xi

)
[PΓ]j�

(
∂(vk + εϕk)

∂x�

+
∂(v� + εϕ�)

∂xk

)
.

Now we prove that
∫

Γ0

Tr(DΓ(v)DΓ(ϕ)) dH
2
x = −

∫

Γ0

divΓDΓ(v) · ϕ dH2
x. (3.9)

Since

(πi∂
tan
j v + πj∂

tan
i v)(πi∂

tan
j ϕ+ πj∂

tan
i ϕ)

= 2(πi∂
tan
j v)(πi∂

tan
j ϕ) + 2(πj∂

tan
i v)(πi∂

tan
j ϕ),

we have
∫

Γ0

Tr(DΓ(v)DΓ(ϕ)) dH
2
x

= −

∫

Γ0

(πi∂
tan
j v)(πi∂

tan
j ϕ) dH2

x −

∫

Γ0

(πj∂
tan
i v)(πi∂

tan
j ϕ) dH2

x.
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Applying Lemma 2.6, we check that

∫

Γ0

(πi∂
tan
j v)(πi∂

tan
j ϕ) dH2

x

= −

∫

Γ0

{∂tan
j ((πi∂

tan
j v)πi)}ϕ dH2

x −

∫

Γ0

Hnj(πi∂
tan
j v)πi dH

2
x

= −

∫

Γ0

{∂tan
j ((πi∂

tan
j v)πi)}ϕ dH2

x.

Here we used the fact that nj∂
tan
j = 0. By definition, we see that

[PΓ]ikπiv =(δik − nink)(δi� − nin�)v�

=(δk� − nkn�)v� = πkv (3.10)

and that

[PΓ]ik∂
tan
i v =(δik − nink)(δi� − nin�)∂�v

=(δk� − nkn�)∂�v

=∂tan
k v. (3.11)

Using (3.10) and (3.11), we observe that

{∂tan
j ((πi∂

tan
j v)πi)}ϕ ={∂tan

j [(δik − nink)∂
tan
j vk(δi� − nin�)]}ϕ�

={∂tan
j (δk� − nkn�)∂

tan
j vk}ϕ�

={∂tan
j (π�∂

tan
j v)}ϕ�.

Thus, we have
∫

Γ0

(πi∂
tan
j v)(πi∂

tan
j ϕ) dH2

x = −

∫

Γ0

∂tan
j (π�∂

tan
j v)ϕ� dH2

x.

Similarly, we see that

∫

Γ0

(πj∂
tan
i v)(πi∂

tan
j ϕ) dH2

x

= −

∫

Γ0

{∂tan
j ((πj∂

tan
i v)πi)}ϕ dH2

x −

∫

Γ0

Hnj(πj∂
tan
i v)πiϕ dH2

x

= −

∫

Γ0

{∂tan
j ((πj∂

tan
i v)πi)}ϕ dH2

x

and that

∂tan
j (πj(∂

tan
i v)πi)ϕ =ϕi′{∂

tan
j [(δj� − njn�)(δik − nink)(∂kv�)(δii′ − nini′)]}

=ϕi′{∂
tan
j [(δj� − njn�)(δki′ − nkni′)∂kv�]}

=ϕi′(∂
tan
j (πj∂

tan
i′ v)).
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Consequently, we obtain
∫

Γ0

(πi∂
tan
j v)(πj∂

tan
i ϕ) dH2

x = −

∫

Γ0

∂tan
j (πj∂

tan
� v)ϕ� dH2

x,

which is (3.9). Combining (3.8), (3.9), and Lemma 3.5, we finish the proof of the lemma.

�

Proof of Theorem 1.6. We first show (i). Fix t ∈ (0, T ). From Lemma 3.4 and the

assumption, we see that for all ϕ = t(ϕ1, ϕ2, ϕ3) ∈ [C∞
0 (Γ(t))]3 satisfying divΓϕ = 0,

d

dε

∣∣∣∣
ε=0

E[v + εϕ](t) = 2μ0

∫

Γ0

divΓ(PΓ(x, t)D(v(x, t))PΓ(x, t)) · ϕ(x) dH
2
x = 0.

From Lemma 2.7, there is σ ∈ C1,0(Γ(t)) such that

−2μ0divΓ(PΓD(v)PΓ) +∇tanσ + σHn = 0.

Next we prove (ii). Fix t ∈ (0, T ). From Lemma 3.4 and the assumption, we check

that for all ϕ = t(ϕ1, ϕ2, ϕ3) ∈ [C∞
0 (Γ(t))]3 satisfying divΓϕ = 0 and ϕ · n = 0,

d

dε

∣∣∣∣
ε=0

E[v + εϕ] = 2μ0

∫

Γ0

PΓdivΓ(PΓ(x, t)D(v(x, t))PΓ(x, t)) · ϕ(x) dH
2
x = 0.

From Lemma 2.7, there is σ ∈ C1,0(ST ) such that

−2μ0PΓdivΓ(PΓD(v)PΓ) +∇tanσ = 0.

�

Finally, we state the reason why EΓ[v] is a candidate of an energy of fluid-flow systems

on an evolving surface.

Lemma 3.6 (Surface energy density). Set

eΓ(v) :=
1

4
ǵαβ ǵζηg

αζgβη =
1

4

∑

α,β,ζ,η

ǵαβ ǵζηg
αζgβη.

Then

eΓ(v) = |DΓ(v)|
2 = |PΓD(v)PΓ|

2.

Proof. It is easy to check that

eΓ(v) =
∂xi

∂Xα

[D(v)]ij
∂xj

∂Xβ

gαζgβη
∂xk

∂Xζ

[D(v)]k�
∂x�

∂Xη

.

Since

[PΓ]ij = [I − n⊗ n]ij =
∂xi

∂Xα

∂xj

∂Xβ

gαβ

by Lemma 2.10, we see that

eΓ(v) =[D(v)]ij [D(v)]k�[I − n⊗ n]ik[I − n⊗ n]j�

=Tr(D(v)PΓD(v)PΓ)

=Tr(PΓD(v)PΓPΓD(v)PΓ)

=|PΓD(v)PΓ|
2.

Therefore the lemma follows. �
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4. Incompressible fluid systems on an evolving surface. Let us derive the

incompressible fluid flow system (1.1). Let Γ(t) be a given evolving surface and x = x(ξ, t)

a flow map on Γ(t). From Theorems 1.1 and 1.2, we see the following incompressible

condition:

divΓv = 0 on ST .

Assume that Dtρ = 0 on ST . From Theorems 1.5 and 1.6, we apply our energetic

variational approach (Least Action Principle and Minimum Dissipation Principle) to

obtain

ρDtv + gradΓσ + σHn = 2μ0divΓ(PΓD(v)PΓ) on ST .

Therefore we have the system (1.1).

Applying Theorems 1.1-1.6 and the above argument, we can derive several incom-

pressible fluid systems on a given evolving surface.

For example, under area conservation we get Dtρ = 0 from Theorems 1.1 and 1.2.

If it is a critical point of the action integral A[x] =
∫ T

0

∫
Γ(t)

1
2ρ|v|

2 dH2
xdt among all

possible perturbations including Γ(t), one get from Theorem 1.5 an overdetermined sys-

tem:

Incompressible Euler system (I)⎧
⎪⎪⎨
⎪⎪⎩

Dtρ = 0 on ST ,

ρDtv + gradΓσ + σHn = 0 on ST ,

divΓv = 0 on ST .

(4.1)

In this case the system (4.1) satisfies the energy law

d

dt

∫

Γ(t)

1

2
ρ|v|2 dH2

x = 0.

On the other hand, with the prescribed variation of the motion z is tangent to Γ(t).

Then Theorem 1.5 (ii) gives the incompressible Euler system (II) as follows:

Incompressible Euler system (II)⎧
⎪⎪⎨
⎪⎪⎩

Dtρ = 0 on ST ,

PΓρ{∂tv + (v,∇)v}+ gradΓσ = 0 on ST ,

divΓv = 0 on ST .

(4.2)

The equation (4.2) avoids the problem of being overdetermined since there is a function

g = g(x, t) such that ρDt + gradΓσ + gn = 0. Note that g(x, t) is not prescribed.

In this case when v · n = 0 on Γ(t), the system still satisfies the energy law

d

dt

∫

Γ(t)

1

2
ρ|v|2 dH2

x = 0.

However, in general, the energy law becomes

d

dt

∫

Γ(t)

1

2
ρ|v|2 dH2

x =

∫

Γ(t)

(v · n)(σH − g) dH2
x.
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In this case the right-hand side corresponds to the work done by the moving surface to

the fluid.

Now we consider the effect of viscosity. The equation is formally of the form

δA

δx
= −

δE

δv
.

If both variations are general, not necessarily being in a tangential direction including the

variation of the surface, then we have an overdetermined incompressible NSSK system

(I) as follows:

Incompressible NSSK system (I)⎧
⎪⎪⎨
⎪⎪⎩

Dtρ = 0 on ST ,

ρDtv + gradΓσ + σHn = 2μ0divΓ(PΓD(v)PΓ) on ST ,

divΓv = 0 on ST .

(4.3)

If both variations are tangent to Γ(t), then we set the incompressible NSSK system

(II):

Incompressible NSSK system (II)/Tangential incompressible NSSK system⎧
⎪⎪⎨
⎪⎪⎩

Dtρ = 0 on ST ,

PΓρ{∂tv + (v,∇)v}+ gradΓσ = 2μ0PΓdivΓ(PΓD(v)PΓ) on ST ,

divΓv = 0 on ST .

(4.4)

We notice the ambiguity of the formal variations above. In fact, if we choose the variation

of v generally, while the variation of E with respect to u is tangential to Γ(t), then we have

the noncanonical incompressible NSSK system (III) which is again an overdetermined

system:

Noncanonical incompressible NSSK system (III)⎧
⎪⎪⎨
⎪⎪⎩

Dtρ = 0 on ST ,

ρDtv + gradΓσ + σHn = 2μ0PΓdivΓ(PΓD(u)PΓ) on ST ,

divΓv = 0 on ST .

(4.5)

In general, for the system (4.3), we can compute the energy law

d

dt

∫

Γ(t)

1

2
ρ|v|2 dH2

x = −

∫

Γ(t)

2μ0|PΓD(v)PΓ|
2 dH2

x

by Lemma 3.4. However, the system will include the work done by the evolving surface,

hence, may not be necessarily dissipate. In (4.4) again we compute the energy law:

d

dt

∫

Γ(t)

1

2
ρ|v|2 dH2

x = −

∫

Γ(t)

2μ0DΓ(v) : DΓ(PΓv) dH
2
x.
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However, for (4.5) the identity becomes more complicated. It is of the form

d

dt

∫

Γ(t)

1

2
ρ|v|2 dH2

x =

∫

Γ(t)

(v · n)(σH − g) dH2
x −

∫

Γ(t)

2μ0DΓ(u) : DΓ(PΓv) dH
2
x,

where the first term on the right-hand side corresponds to the work done by the evolving

surface.

5. Appendix (I): Comparison to the Euler and the Navier-Stokes systems

on a manifold. In this section we first compare the incompressible Euler system (II)

on a fixed surface with the Euler system on a manifold derived by Arnol′d [2,3]. Next we

compare the incompressible NSSK system (II) on a fixed surface with the Navier-Stokes

system on a manifold introduced by Taylor [19]. More precisely, we prove that our

incompressible Euler system (4.2) on a fixed surface is the same as the Euler system on a

manifold derived by Arnol′d, and show that our incompressible NSSK system (4.4) on a

fixed surface is different from the Navier-Stokes system on a manifold obtained by Taylor.

The difference between Taylor’s model and our model is the dissipative functional.

Let us introduce the Euler system on a manifold derived by Arnol′d [2, 3] and the

Navier-Stokes system on a manifold obtained by Taylor [19]. Arnol′d derived the following

Euler system on a manifold M:
{
ut +∇uu+ gradMσ = 0,

divMu = 0.
(5.1)

See [10, Chapters 8 and 9] for a mathematical derivation of the system (5.1). Taylor [19]

introduced the following Navier-Stokes system on a manifold M:
{
ut +∇uu−ΔBu+Ku+ gradMσ = 0,

divMu = 0.
(5.2)

Here M is a closed 2-dimensional Riemannian manifold, u is a 1-form on M, ΔB is the

Borhner-Laplacian, K is Gaussian curvature, gradM is a gradient operator on M, and

divM is a divergence operator on M.

Let us compare our systems with the previous models. Let Γ(t) be a fixed surface,

that is, Γ(t) = Γ0 for t ∈ [0, T ). Suppose that Γ0 = M. Let v be a total velocity on Γ0.

Assume that v · n = 0 and divΓv = 0. Now we consider Γ0 as a manifold and v a 1-form

on Γ0.

Let us compare the incompressible Euler system (4.2) on a fixed surface Γ0 with the

Euler system (5.1) on a manifold Γ0. Using local coordinate representation and v ·n = 0,

we easily check that

PΓvt + PΓ(v,∇)v = vt +∇vv,

divΓv = divMv = 0.

Therefore we conclude that the Euler system (4.2) on a fixed surface Γ0 is the same as

system (5.1) on a manifold Γ0.
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Next we use an energetic variational approach to derive the system (5.2). For fixed

t ∈ (0, T ) let

E1[v](t) = −

∫

Γ0

μ0|D
tan(v(x, t))|2 dH2

x.

Here Dtan(v) := 1/2(∇tanv + t(∇tanv)). We call Dtan(v) a tangential strain rate, com-

paring it to the definition of the projected strain rate in Lemma 3.5. Note that in our

case we use the projected strain rate DΓ(v) = PΓD(v)PΓ.

By the same argument as in the proof of Theorem 1.6, we can obtain the following

theorem:

Theorem 5.1 (Variation of dissipation energy). For every vector field ϕ ∈ [C∞
0 (Γ(t))]3

satisfying divΓϕ = 0 and ϕ · n = 0, the direction derivation of E1 at v is of the form

d

dε

∣∣∣∣
ε=0

E1[v + εϕ] =

∫

Γ(t)

2μ0divΓ(PΓ(x, t)D
tan(v(x, t))) · ϕ(x) dH2

x.

The proof of Theorem 5.1 is left to the reader.

Next we prove that divΓ(PΓD
tan(v)) = ΔΓv + Kv. Here ΔΓ = (∂tan

1 )2 + (∂tan
2 )2 +

(∂tan
3 )2. We now use the following principal coordinates at the origin (Gibarg and

Trudinger [9, the Appendix in Chapter 14]):

∂1n1 = −κ1,

∂1n2 = −κ2,

n = t(0, 0, 1),

κ1 + κ2 = H,

κ1κ2 = K.

Using the above principal coordinates, divΓv = 0, v · n = 0, and v3 = 0 at the origin, we

are able to conclude that

PΓdivΓ(PΓD
tan(v)) = ΔBv +Kv.

Here we note that ΔB = ΔΓ. Therefore our incompressible NSSK system (4.4) on a

fixed surface Γ0 is different from system (5.2) on a manifold Γ0. Here we notice that, in

general,

PΓdivΓ(PΓD(v)PΓ) �= PΓdivΓ(PΓD
tan(v))

even if divΓv = 0 and v · n = 0. In fact, we see at once that

PΓdivΓ(PΓD(v)PΓ)− PΓdivΓ(PΓD
tan(v)) =

⎛
⎝
H(n · ∂tan

1 v)

H(n · ∂tan
2 v)

H(n · ∂tan
3 v)

⎞
⎠ .

Note also that it is easy to check that

PΓD(v)PΓ = PΓD
tan(v)PΓ.

Licensed to Penn St Univ, University Park. Prepared on Tue Jul 31 16:24:37 EDT 2018 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf



388 HAJIME KOBA, CHUN LIU, AND YOSHIKAZU GIGA

6. Appendix (II): Energy law and work. In general, if the fluid is contained

in a moving domain, the kinetic energy may not be conserved. In other words, the

moving boundary is doing work to the fluid. To illustrate this, we consider the simple

example of an incompressible Euler equation in a prescribed smooth moving domain

QT =
⋃

0<t<T {Ω(t)×{t}}, where Ω(t) is a smooth bounded domain. The Euler equation

is written by ⎧
⎪⎪⎨
⎪⎪⎩

ut + (u,∇)u+∇p = 0 in QT ,

∇ · u = 0 in QT ,

u · n = V on ∂Ω(t)× (0, T ),

where u = u(t, x) = t(u1, u2, u3) denotes the velocity of the fluid in QT , p the pressure

of the fluid, V is a given normal velocity of ∂Ω(t), and n is the unit outer normal. The

rate of change of the kinetic energy is

d

dt

∫

Ω(t)

1

2
|u|2 dx =

∫

Ω(t)

∂t

{
1

2
|u|2

}
dx+

∫

∂Ω(t)

1

2
|u|2V dH2

x.

Meanwhile,
∫

Ω(t)

∂t

{
1

2
|u|2

}
dx =

∫

Ω(t)

u · ut dx = −

∫

Ω(t)

u · {(u,∇)u} dx−

∫

Ω(t)

u∇p dx.

Integrating by parts, we get

d

dt

∫

Ω(t)

1

2
|u|2 dx = −

∫

∂Ω(t)

(u · n)
1

2
|u|2 dH2

x +

∫

∂Ω(t)

V
1

2
|u|2 dH2

x −

∫

∂Ω(t)

(u · n)p dH2
x.

Thus, we conclude that

d

dt

∫

Ω(t)

1

2
|u|2 dx = −

∫

∂Ω(t)

V p dH2
x

since u · n = V . The right-hand side is the work through pressure caused by the motion

of ∂Ω(t). From the observation it is clear that the energy law for our Euler system (II)

includes the work caused by the motion of Γ(t).
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Kōkyūroku 1260 (2002), 33–47. MR1930362

[13] L. Onsager, Reciprocal Relations in Irreversible Processes. I. Physical Review 37 (1931), 405–426.
[14] L. Onsager,Reciprocal Relations in Irreversible Processes. II. Physical Review 38 (1931), 2265–2279.
[15] L. Rayleigh and J.W. Strutt, Some General Theorems Relating to Vibrations. Proceedings of the

London Mathematical Society 4 (1873), 357–368.
[16] L.E. Scriven, Dynamics of a fluid interface Equation of motion for Newtonian surface fluids. Chem.

Eng. Sci. 12 (1960), 98–108.
[17] Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical

Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathe-
matical Analysis, Canberra, 1983. MR756417

[18] John C. Slattery, Interfacial Transport Phenomena, Springer-Verlag, New York, 1990, xvi+1159

pp.
[19] Michael E. Taylor, Analysis on Morrey spaces and applications to Navier-Stokes and other evo-

lution equations, Comm. Partial Differential Equations 17 (1992), no. 9-10, 1407–1456, DOI
10.1080/03605309208820892. MR1187618

[20] Michael E. Taylor, Partial differential equations III. Nonlinear equations, 2nd ed., Applied Mathe-
matical Sciences, vol. 117, Springer, New York, 2011. MR2744149

Licensed to Penn St Univ, University Park. Prepared on Tue Jul 31 16:24:37 EDT 2018 for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/license/jour-dist-license.pdf


	1. Introduction
	1.1. Main results

	2. Preliminaries
	2.1. Evolving surfaces and function spaces
	2.2. Convention and notation
	2.3. Calculus on surfaces
	2.4. Flow maps on evolving surfaces
	2.5. Riemannian metrics on evolving surfaces

	3. On incompressible fluid-flow on evolving surfaces
	3.1. Continuity equation and local surface area preserving
	3.2. Necessary condition for the existence of an incompressible fluid-flow
	3.3. Action integral
	3.4. Dissipation energy

	4. Incompressible fluid systems on an evolving surface
	5. Appendix (I): Comparison to the Euler and the Navier-Stokes systems on a manifold
	6. Appendix (II): Energy law and work
	Acknowledgment
	References

