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GENERALIZED SHOCKLEY–RAMO THEOREM IN ELECTROLYTES∗
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Abstract. The charge motion in vacuum and the induced currents on the electrodes can be related
through the Shockley–Ramo (SR) theorem. In this paper, we develop a generalized Shockley–Ramo
(GSR) theorem, which could be used to study the motion of macro charged particles in electrolytes. It
could be widely applied to biological and physical environments, such as the voltage-gated ion channels.
With the procedure of renormalizing of charge and dipole, the generalized theorem provides a direct
relationship between the induced currents and the macro charge velocity. Compared with the original
Shockley–Ramo theorem, the generalized Shockley–Ramo theorem avoids integrating all the ionic flux,
which could reduce the computational cost significantly.
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1. Introduction

Shockley-Ramo theorem [28, 31] presents a relationship between the instantaneous
induced current on an electrode and the charge motion in the vicinity. By realizing
that the current is induced by the electrostatic flux change on electrodes instead of the
amount of electrons arriving or leaving, the theorem considers the total current includ-
ing the displacement current and the particle current. It can be viewed as an extension
of Kirchhoff’s law. Shockley–Ramo theorem has received wide applications in semicon-
ductors as well as nuclear devices [12, 18, 24]. Commonly the induced currents can be
easily measured by experiments and we can thus infer the charge velocity through the
Shockley–Ramo theorem, which is the basic principle of radiation detection techniques.

When applied to systems with lots of charged particles, the theorem requires to
sum up the contributions of all charges. It is very expensive to employ Shockley–Ramo
theorem to determine the trajectory of a macro charge in the electrolytes, which is also
difficult to measure directly in experiments.

One of the most important application is the charged residuals called voltage sensor
which contribute to the conformational change under external fields in voltage-gated ion
channels [4,13]. The molecular structure of a channel protein has been characterised by
crystallography in a frozen state [1, 6, 29]. And the real-time conformational dynamics
has been obtained through fluorescence microscopy [34], which is at the subcellular level
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and not valid for intracellular sites. Or by using a special-designed computer for high-
speed molecular dynamic simulation, Jensen et al. [16] reported the gating mechanism
in a potassium channel, which is still considered too expensive for a wide application.

Since direct measurements remains unsatisfactory, indirect methods mainly rely
on the measurement of the electrical signals, especially the induced currents [3, 17, 30]
in voltage-clamp or patch-clamp [23] experiments. Continuum models has been often
used to quantitatively understand the behaviour of electrolytes. The kinetic properties
of ion transport could be described by Poisson–Nernst–Planck (PNP) equations with
density functional theory or field theoretical models [7, 9, 11, 14, 20, 32, 35] or by using
an energetic variational approach [8, 15] to properly take into account the electrostatic
and hard core correlations. All these PNP-type models are solving a forward problem:
given the charged particle velocity, we aim to solve the gating current. However, in
real experiments, the quantity being measured is the gating current, thus we need to
formulate an inverse problem [5] to reconstruct the particle trajectory. It is generally
considered to be too expensive to solve this inverse problem.

Compared to small ions, voltage sensor which is actually composed of amino acids,
can be considered as a macro particle. And we are only interested in the trajectory
of the voltage sensor instead of how the ions move. For the purpose, we generalize
the Shockley–Ramo theorem to systems in electrolytes, which can be used directly
for understanding the macro charged particle motion in electrolytes. The generalized
Shockley–Ramo theorem gives a simple relation between macro particle velocity and
the induced currents, avoiding the integration of all the electrolyte flux. With this
theorem, it will be much more convenient to solve the inverse problem without much
computational cost. As an important application, it could help us understand the ion
channel property and the gating dynamics quantitatively.

2. Mathematical model and methods

The induced current and charged particle velocity in electrolytes are related. In this
section, we will use the ion channel problem as an example to illustrate the generalized
Shockley–Ramo (GSR) theorem. We want to figure out how the charged residual move
with the current measured.

2.1. Ion channel model. The ion channel model is schematically shown in
Figure 2.1. The electrolytes represent the intra- and extracellular fluids, respectively.
The technique developed in [27, 33] abolishing the ionic conduction allows us to block
the channel so that no ion can move from one side to another. The labeled voltage
sensor can receive external stimulus and move. Two electrodes are grounded, where the
induced currents are measured. Electron cannot transfer from electrode to electrolyte,
or vice versa.

ion channel

membrane

voltage sensor

electrolytes
electrode

i1 i2

Fig. 2.1. Schematic diagram of a voltage gated ion channel. The amino acid’s motion can
determine the state of channel: open or closed. We use Ω to represent the domain of electrolyte and B
for ion channel, Γ1 for left electrode and Γ2 for right electrode. The detailed structure of ion channel
protein is not shown in the diagram.
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The governing equation for the forward problem could be written as



















−∇·ǫ∇u=
∑

k

zkck(r) in Ω,

−∇·ǫ∇u= qδ(r−s(t)) in B,
d

dt
ck+∇·Jk =0 in Ω,

(2.1)

where s(t) is the position of the amino acid at time t which takes charge q, ǫ is the
dielectric permittivity, ǫ= ǫw in Ω and ǫ0 in B. ck and zk are ion density and valence
of kth ionic species, respectively, and Jk is the flux, whose exact form depends on the
model we use. The interface conditions for the electrical potential u are the continuities
of u and its normal derivative ǫ∂u/∂~n. A mean-field theory gives the fluxes of the
PNP equations: Jk =−Dk(∇ck+ck∇u), with Dk being the diffusion coefficient. The
surface charge density at electrodes are represented by: σα=−∂u/∂~n|Γα

, where α= 1
or 2, corresponding to the left or right electrode, respectively, ~n is the outer normal
direction. Induced currents per area are thus: iα=−∂σα/∂t.

We have now built up the relationship to compute the induced currents from given
charge trajectory. By solving the inverse problem, we could be able to understand the
transport of charged particles, such as the gating mechanism in ion channel problem.
However, due to the high dimensions and highly nonlinearity of the forward problem,
the corresponding inverse problem requires to solve the forward problem many times,
and is thus very time consuming.

2.2. Shockley–Ramo theorem and its generalization. The original
Shockley–Ramo (SR) theorem is derived in vacuum area D, while neglecting the mag-
netic and radiation effects. Consider the moving particle with grounded electrodes where
electrical signals are measured. The equation for electric potential is the following Pois-
son equation:

{

−∇·ǫ∇φ= qδ(r−s(t)) in D,

φ|∂D =0,
(2.2)

where φ is electrical potential, q and s(t) are the charge and instantaneous position of
the moving particle, and ∂D is the boundary consisting of all electrodes.

We introduce another potential, which describes the intrinsic information of the
system, satisfying the following:











−∇·ǫ∇ψ=0 in D,

ψ|
∂D\Γ=0,

ψ|Γ=1,

(2.3)

where Γ is one of the the electrode surfaces. By means of Green’s identity, we have

∫

D

(φ∇·ǫ∇ψ−ψ∇·ǫ∇φ)dx=

∫

∂D

ǫ

(

φ
∂ψ

∂~n
−ψ

∂φ

∂~n

)

dS. (2.4)

By using Equations (2.2) and (2.3), the left-hand side reduces to, qψ(s(t)), and the
right-hand side becomes,

−

∫

Γ

ǫ
∂φ

∂~n
dS= qind, (2.5)
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where qind is the induced charge on the electrode surface. Finally, by taking the time
derivative on both sides, we arrive at the SR theorem, which states,

i,−
d

dt
qind= q~v · ~E, (2.6)

where i is the current induced by the particle motion, ~v is its velocity, ~E is the electrical
field at the particle’s instantaneous position.

The SR theorem has been generalized to many cases, for example, time-dependent
dielectric media [26] and electrodynamic simulation [36, 37]. It is suggested that the
gating particle motion induced current could be represented through the SR theo-
rem [10, 25], which requires the knowledge of all the particle velocity or ionic fluxes
to compute the induced current. However, the ionic flux is coupled with the motion of
the charged particle in a nonlinear manner, which is the key difficulty in analyzing the
gating mechanism. Directly employing the SR theorem might not be efficient, it still
needs to solve the inverse transport problem for the conformation change.

Compared to small ions, the motion of amino acids is usually very slow. Thus it is
reasonable to assume the system to be at the quasiequilibrium state for all time. This
would allow us to write the ionic distribution as a function of the electrical potential
and use equilibrium theory to study the charged system. Note that the electrode surface
charge density as well as the induced currents are only related with the local property
of electrical potential. For equilibrium system, the far field behavior (near bulk) could
be described by using linearized PB equation, with renormalized boundary/interface
conditions [2,19]. More detail will be presented in the next subsection. So, the electrical
potential u at time t could be represented by











−∇2u+κ2u=0 in Ω,

−∇·ǫ∇u=(qr+~pr ·∇)δ(r,s(t)) in B,

u|∂(Ω∪B)=0,

(2.7)

where κ=
√∑

k
ckz

2

k

kBTǫw
is the inverse Debye length, kB is the Boltzmann constant and T is

the temperature. qr is the renormalized charge, and pr is the renormalized dipole due
to the geometry asymmetry. Also, we might need to introduce quadrupole and even
multipole expansion for more accurate description of a complex geometry. We shall
require the electrodes to be far away from the channel to ensure the far field condition.
The electrodes are also assumed to be grounded, so there is no another double layer
structure near the electrodes, which cannot be described by the linearized theory.

Now, as in the SR theorem, we introduce intrinsic potentials Φα, which will be used
to derive induced currents at electrodes,



















−∇2Φα+κ
2Φα=0 in Ω,

−∇2Φα=0 in B,

Φα|∂(Ω∪B)\Γα

=0,

Φα|Γα
=1,

(2.8)

where α= 1 or 2, indicating left or right electrode. By means of Green’s identity, we
get,

∫

Ω∪B

(u∇·(ǫ∇Φα)−Φα∇·(ǫ∇u))dx=

∫

∂(Ω∪B)

ǫ

(

u
∂Φα

∂~n
−Φα

∂u

∂~n

)

dS, (2.9)
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the surface charge is, thus,

σα= qrΦα−~pr ·∇Φα= qrΦα+~pr · ~Eα; (2.10)

the induced current is

iα=
(

qr ~Eα−Φα∇qr+∇(~pr · ~Eα)
)

·~v. (2.11)

This is the GSR theorem. And for the cases where higher order renormalized multipoles
are needed, the extension is straight forward.

2.3. Charge renormalization. The charge renormalization has been widely
used in colloidal sciences [2]. It is originally applied to solve the nonlinear PB equation,
though it can be used for a general system where the nonlinear PB equation fails, which
states that the electric potential at the far field can be the solution of linearized equation
but with a renormalized surface charge. The charge renormalization is also known as
Manning counterion condensation in polyelectrolytes [21, 22].

In literature [19], only a renormalized charge has been discussed in colloidal appli-
cations, and the renormalized multipoles are usually ignored. In our problem, we should
additionally introduce the renormalized dipole, which can be significantly important.
To understand this, let us consider a simple example: the PB equation in one dimension,
for which the renormalized charge and dipole could be computed analytically, as











uxx=κ
2 sinhu for x<−x1,

−εuxx= qδ(x) for −x1<x<x2,

uxx=κ
2 sinhu for x>x2,

(2.12)

where ε= ǫ0/ǫw is the ratio of dielectric constants between vacuum and water.
The solution of the system (2.12) for x<−x1 and x>x2 and corresponding far field

|x|→∞ asymptotic leading term are given by,














u1=2log
1+C1e

κ(x+x1)

1−C1eκ(x+x1)
∼ 4C1e

κ(x+x1),

u2=2log
1+C2e

κ(x2−x)

1−C2eκ(x2−x)
∼ 4C2e

κ(x2−x),

(2.13)

where C1 and C2 are constants to be determined. And the solution in −x1<x<x2 is a
continuous piecewise linear function with a jump of the electrical displacement at x=0.
By continuous conditions of the potential and electrical displacement at x= −x1 and
x2, we have















2log
1+C1

1−C1
+

4C1κ

1−C2
1

x1
ε
=2log

1+C2

1−C2
+

4C2κ

1−C2
2

x2
ε
,

4C1κ

1−C2
1

+
4C2κ

1−C2
2

= q.
(2.14)

This set of equations give a unique physical solution of (C1,C2) for different (x1,x2).
The asymptotic behaviors at far field can be viewed as the solution of the following
linearized PB equation,











−uxx+κ
2u=0 for x<−x1,

−εuxx= qrδ(x)+prδx(x) for −x1<x<x2,

−uxx+κ
2u=0 for x>x2,

(2.15)
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where
{

qr =4κ(C1+C2),

pr=4C1(ε+κx1)−4C2(ε+κx2).
(2.16)

Equation (2.15) could be written into other forms, for example without the inter-
faces: x1 and x2. The corresponding equation, Equation (2.16), should also be different.
For general 3D cases, the renormalized charge and dipole or even higher order multipole
expansion can be fitted through nonlinear PDEs, Monte Carlo, or molecular dynamics
simulations. Since this is the equilibrium problem instead of a dynamic one, the com-
putational cost for such simulations to determine the renormalized quantities would be
relatively cheap. For a given ion channel, we only need to perform simulations to record
renormalized charges and dipoles at several nodes, then we can use these information
directly with the help of the GSR theorem to predict the property of the conformation
change.

3. Numerical results and discussion

To validate the effectiveness of the GSR theorem, we perform numerical computa-
tions with the analytically computed renormalized charge and dipole, and compare the
results with the direct numerical solution of the PNP equations. The PNP equations
are solved by using a finite difference method which has second order accuracy in both
time and space discretizations.

We assume the electrolytes on both sides consist of two ionic species of valence
z=±1 and bulk concentration cb=100mM . The electrolyte fluxes follow the PNP
equations, whose stationary state can be described by the PB equation. At t=0, the
system is at equilibrium. Then the charged particle gains a constant velocity ṡ(t)= v,
and the electrolyte starts to flow in response,















d

dt
ck=

d

dx

(

d

dx
ck+ck

d

dx
u

)

,

−
d

dx
ǫ
d

dx
u=

∑

k

ckzk+qδ(x−s(t)),
(3.1)

where q is the surface charge density of the charged particle, s(t) is the charged particle’s
position at time t. We assume a fixed voltage and concentration for the boundary
conditions at Γ. The interface condition at the membrane boundary is the electrical
potential and electrical displacement continuities, and the ionic flux in channel area
is zero since the channel is blocked. The surface charge on the electrodes could be
represented by σ1=−du/dx|Γ1

and σ2=du/dx|Γ2
. Due to the planar geometry, the

GSR theorem gives,























i1=

(

qrE1−Φ1
d

dx
qr+E1

d

dx
pr

)

v,

i2=

(

qrE2−Φ2
d

dx
qr−E2

d

dx
pr

)

v,

(3.2)

for which the renormalized charge and dipole as functions of s(t) are shown in Figure
3.1.

The performance of the GSR theorem with respect to different surface charge den-
sities q are shown in Figure 3.2. For low q, the renormalized pr is small and negligible
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Fig. 3.1. Renormalized charge and dipole for one dimensional ion channel. (a) and (b): q=1;
(c) and (d): q=10.

(Figure 3.1). In the case of high q, however, pr is comparable with qr and its influence
becomes significant. The large difference at small t comes from the relaxation of the
PNP equation. Within the relaxation time period from the beginning, the quasiequi-
librium assumption is not valid. After that, the behaviors of the induced currents from
the PNP equations and using GSR theorem tend to be the same. We can also observe
that, when the surface charge density is low, qr≈ q and pr≈ 0, there would not be much
error if we use SR theorem directly without the charge renormalization, while for a
high q, the charge renormalization is essential. At very large q, the prediction using
the GSR theorem deviates from the correct value, but it maintains well the behavior of
the induced current. This deviation is understandable, mainly comes from the system
perturbation from the equilibrium state increases with the particle charge. The velocity
of the charged particle is also relevant to the validity of GSR theorem, as shown in
Figure 3.3. The numerical results are consistent with our analysis that the performance
of the GSR prediction works well for small velocity of the charged particle.

At last, the charge renormalization is used in near bulk region, which requires the
distance from the channel to the electrode to be large. However, when the distance is
larger, the measured electric signal becomes weaker and will be drown in the noise. We
show these numerical results in Figure 3.4.

4. Conclusion

We have derived a GSR theorem which is useful for predicting the charge motion
in electrolytes. This theorem allows us to compute the motion of one macro-particle
from the induced current without integrating all the ionic flux. The results of this work
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Fig. 3.2. PNP are computed through solving PNP equation. GSR are from generalized Shockley–
Ramo formula (3.2). (a): q=0.1, (b): q=1, (c): q=10, (d): q=20.
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Fig. 3.3. Induced current for different velocity v. (a): v=0.001; (b): v=0.05.

are derived based on the following three conditions: (i) The charged particle movement
is slow, compared to the relaxation of electrolytes; (ii) the electrodes should be placed
properly such that neither too close nor too far away to the channel, in comparison with
the inverse Debye length; and (iii) the electrodes which measure the induced currents
should be grounded. Through the procedure of charge and dipole renormalization,
the GSR theorem shows a linear relation between the induced current and the charge
velocity, where the coefficients can be precomputed through numerical and simulation
methods. We can then avoid to solve the inverse problem from the PNP-type equations
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Fig. 3.4. Induced current for different distances to the electrodes. (a): L=2/κ; (b): L=3/κ; (c):
L=4/κ, (d): L=6/κ.

to predict the motion of a macro-particle. Also, the complex geometry of the charged
particle can be represented through the renormalized multipoles, which allow us to
consider real 3-dimensional problems. Since the computational cost can be reduced
dramatically, the GSR theorem is useful in understanding the induced currents in many
fields, including the gating dynamics in voltage-gated ion channels.
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